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The method of order completion provides a general and type-independent theory for the existence
and basic regularity of the solutions of large classes of systems of nonlinear partial differential
equations (PDEs). Recently, the application of convergence spaces to this theory resulted in a
significant improvement upon the regularity of the solutions and provided new insight into the
structure of solutions. In this paper, we show how this method may be adapted so as to allow
for the infinite differentiability of generalized functions. Moreover, it is shown that a large class
of smooth nonlinear PDEs admit generalized solutions in the space constructed here. As an
indication of how the general theory can be applied to particular nonlinear equations, we construct
generalized solutions of the parametrically driven, damped nonlinear Schrödinger equation in one
spatial dimension.

1. Introduction

In the 1994 monograph [1] Oberguggenberger and Rosinger presented a general and type-
independent theory for the existence and basic regularity of the solutions of a large class of
systems of nonlinear PDEs, based on the Dedekind order completion of spaces of piecewise
smooth functions. In the mentioned monograph, it is shown that the solutions satisfy
a blanket regularity property. Namely, the solutions may be assimilated with usual real
measurable functions, or even nearly finite Hausdorff continuous functions [2], defined on
the Euclidean domain of definition the respective system of equations. The latter result is
based on the highly nontrivial characterization of the Dedekind order completion of sets of
continuous functions in terms of spaces of Hausdorff continuous interval valued functions
[3]. Recently, the regularity of the solutions constructed through the order completion
method has been significantly improved upon by introducing suitable uniform convergence
structures on appropriate spaces of piecewise smooth functions; see [4–7]. This new approach
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also gives new insight into the structure of the solutions obtained through the original order
completion method [1].

The generality and type independence of the solution method introduced in [1, 4–
6] has to date not been obtained in any of the usual theories of generalized solutions of
linear and nonlinear PDEs. Indeed, and perhaps as a result of the insufficiency of the spaces
of generalized functions that are typical in the study of generalized solutions of PDEs, at
least from the point of view of the existence of solutions of PDEs, it is often believed that
such a general theory is not possible, see for instance [8, 9]. Within the setting of the linear
topological spaces of generalized functions that form the basis for most studies of PDEs, this
may perhaps turn out to be the case. As a clarification and motivation of the above remarks,
the following general comments may be of interest.

For over 135 years by now, there has been a general and type-independent existence
and regularity result for the solutions of systems of analytic nonlinear PDEs. Indeed, in 1875
Kovalevskaia [10], upon the suggestion of Weierstrass, gave a rigorous proof of an earlier
result of Cauchy, published in 1821 in his Course d’Analyse. This result, although restricted to
the realm of analytic PDEs, is completely general as far as the type of nonlinearities involved
are concerned. The analytic solutions of such a systems of PDEs can, however, be guaranteed
to exists only on a neighborhood of the noncharacteristic analytic hypersurface on which the
analytic initial data is specified. The nonexistence of solutions of a system of analytic PDEs
on the whole domain of definition of the respective system of equations is not due to the
particular techniques used in the proof of the result, but may rather be attributed to the very
nature of nonlinear PDEs. Indeed, rather simple examples, such as the nonlinear conservation
law

Ut +UxU = 0, t > 0, x ∈ R (1.1)

with the initial condition

U(0, x) = u(x), x ∈ R (1.2)

show that, irrespective of the smoothness of the initial data (1.2), the solution of the initial
value problem may fail to exist on the whole domain of definition [0,∞) × R of the equation,
see for instance [11, 12]. Furthermore, in the case of the nonlinear conservation law (1.1),
it is exactly the points where the solution fails to exists that are of interest, since these may
represent the formation and propagation of shock waves, as well as other chaotic phenomena
such as turbulence.

In view of the above remarks, it is clear that any general and type-independent theory
for the existence and regularity of the solutions of nonlinear PDEs must alow for sufficiently
singular objects to act as generalized solutions of such equations. In particular, the solutions
may fail to be continuous, let alone sufficiently smooth, on the whole domain of definition
of respective system of equations. In many cases, it happens that the spaces of generalized
functions that are used in the study of PDEs do not admit such sufficiently singular objects.
Indeed, we may recall that, due to the well-known Sobolev Embedding theorem, see for
instance [13], the Sobolev Space Hk(Rn) will, for sufficiently large values of k, contain only
continuous functions.

Moreover, even in case a given system of PDEs admits a solution which is classical,
indeed even analytic, everywhere except at a single point of its Euclidean domain of
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definition, it may happen that such a solution does not belong to any of the customary spaces
of generalized functions. For example, given a function

u : C \ {z0} −→ C (1.3)

which is analytic everywhere except at the single point z0 ∈ C, and with an essential
singularity at z0, Picard’s Theorem states that u attains every complex value, with possibly
one exception, in every neighborhood of z0. Clearly such a function does not satisfy any
of the usual growth conditions that are, rather as a rule, imposed on generalized functions.
Indeed, we may recall that the elements of a Sobolev space are locally integrable, while the
elements of the Colombeau algebras [14], which contain the D′ distributions, must satisfy
certain polynomial type growth conditions near singularities. Therefore these concepts of
generalized functions cannot accommodate thementioned singularity of the function in (1.3).

In this paper, we present further developments of the general and type-independent
solution method presented in [1], and in particular the uniform convergence spaces of
generalized functions introduced in [4–6]. Furthermore, and in contradistinction with the
spaces of generalized functions introduced in [6], we construct here a space of generalized
functions that admit generalized partial derivatives of arbitrary order. While, following the
methods introduced in [6], one may easily construct such a space of generalized functions,
the existence of generalized solutions of systems of nonlinear PDEs in this space is nontrivial.
Here we present the mentioned construction of the space of generalized functions, and show
how generalized solutions of a large class of C∞-smooth nonlinear PDEs may be obtained in
this space.

As an application of the general theory, we discuss also the existence and regularity of
generalized solutions of the parametrically driven, damped nonlinear Schrödinger equation
in one spatial dimension. In this regard, we show that for a large class of C∞-smooth initial
values, the mentioned Schrödinger equation admits a generalized solution that satisfies the
initial condition in a suitable generalized sense. We also introduce the concept of a strongly
generic weak solution of this equation, and show that the solution we construct is such a
weak solution.

The paper is organized as follows. In Section 2 we recall some basic facts concerning
normal lower semicontinuous functions from the literature. The construction of spaces of
generalized functions is given in Section 3, while Section 4 is concerned with the existence of
generalized solutions ofC∞-smooth nonlinear PDEs. Lastly, in Section 5, we apply the general
method to the parametrically driven, damped nonlinear Schrödinger equation in one spatial
dimension. For all details on convergence spaces we refer the reader to the excellent book
[15] and the paper [16].

2. Normal Lower Semicontinuous Functions

The concept of a normal lower semicontinuous function was first introduced by Dilworth
[17] in connection with his attempts at characterizing the Dedekind order completion of
spaces of continuous functions, a problem that was solved only recently by Anguelov [3].
Here we recall some facts concerning normal semicontinuous functions. For more details,
and the proofs of some of the results, we refer the reader to the more recent presentations in
[4, 18].
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Denote byR = R∪{±∞} the extended real line, ordered as usual. The set of all extended
real-valued functions on a topological space X is denotedA(X). A function u ∈ A(X) is said
to be nearly finitewhenever

{x ∈ X : u(x) ∈ R} is open and dense. (2.1)

Two fundamental operations on the space A(X) are the Lower and Upper Baire Operators

I : A(X) −→ A(X),

S : A(X) −→ A(X),
(2.2)

introduced by Baire [19], see also [3], which are defined by

I(u) : X � x �−→ sup
{
inf
{
u
(
y
)
: y ∈ V } : V ∈ Vx

}
, (2.3)

S(u) : X � x �−→ inf
{
sup
{
u
(
y
)
: y ∈ V } : V ∈ Vx

}
, (2.4)

respectively, with Vx denoting the neighborhood filter at x ∈ X. Clearly, the Baire operators I
and S satisfy

I(u) ≤ u ≤ S(u), u ∈ A(X), (2.5)

whenA(X) is equipped with the usual pointwise order

u ≤ v ⇐⇒ (∀x ∈ X : u(x) ≤ v(x)). (2.6)

Furthermore, the Baire operators, as well as their compositions, are idempotent and
monotone with respect to the pointwise order. That is,

∀u ∈ A(Ω) :

(1) I(I(u)) = I(u),

(2) S(S(u)) = S(u),

(3) (I ◦ S)((I ◦ S)(u)) = (I ◦ S)(u),
∀u, v ∈ A(Ω) :

u ≤ v =⇒
⎛

⎝
(1) I(u) ≤ I(v)
(2) S(u) ≤ S(v)
(3) (I ◦ S)(u) ≤ (I ◦ S)(v)

⎞

⎠.

(2.7)

The operators I and S, as well as their compositions I ◦ S and S ◦ I, are useful tools
for the study of (extended) real-valued functions. In this regard, we may mention that these
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mappings characterize certain continuity properties of functions in A(X). In particular, we
have

u ∈ A(X) is lower semicontinuous ⇐⇒ I(u) = u,

u ∈ A(X) is upper semicontinuous ⇐⇒ S(u) = u.
(2.8)

Furthermore, a function u ∈ A(X) is normal lower semicontinuous on X whenever

(I ◦ S)(u) = u. (2.9)

We denote the set of nearly finite normal lower semicontinuous functions on X by
NL(X). The concept of normal lower semicontinuity of extended real-valued functions
extends that of continuity of usual real-valued functions. In particular, each continuous
function is nearly finite and normal lower semicontinuous so that we have the inclusion

C(X) ⊆ NL(X). (2.10)

Conversely, a normal lower semicontinuous function is generically continuous in the sense that

∀u ∈ NL(X) :

∃B ⊆ X of first Baire category :

x ∈ X \ B =⇒ u continuous at x.

(2.11)

In particular, in case X is a Baire space, it follows that each u ∈ NL(X) is continuous on
some residual set, which is dense in X. Furthermore, the following well-known property
of continuous functions holds also for normal lower semicontinuous functions. Namely, we
have

∀u, v ∈ NL(X), D ⊆ X dense :

(∀x ∈ D : u(x) ≤ v(x)) =⇒ u ≤ v.
(2.12)

With respect to the usual pointwise order, the space NL(X) is a fully distributive
lattice. That is, suprema and infima of finite sets always exists and

∀A ⊂ NL(X), v ∈ NL(X) :

u0 = supA =⇒ inf{v, u0} = sup{inf{u, v} : u ∈ A}.
(2.13)
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Furthermore,NL(X) is Dedekind order complete. That is, every set which is order bounded
from above, respectively, below, has a least upper bound, respectively, greatest lower bound.
In particular, the supremum and infimum of a set A ⊂ NL(X), is given by

sup A = (I ◦ S)(ϕ),
inf A = (I ◦ S)(ψ),

(2.14)

respectively, with ϕ and ψ given by

ϕ : X � x �−→ sup{u(x) : u ∈ A} ∈ R, (2.15)

ψ : X � x �−→ inf{u(x) : u ∈ A} ∈ R. (2.16)

A useful characterization of order bounded sets in NL(X) is the following: If X is a Baire
space, then for any set A ⊂ NL(X) we have

∃u0 ∈ NL(X) :

u ≤ u0, u ∈ A
(2.17)

if and only if

∃R ⊆ X a residual set :

∀x ∈ R :

sup{u(x) : u ∈ A} <∞.

(2.18)

Indeed, suppose that a setA ⊂ NL(X) satisfies (2.18). Then the function ϕ associated withA
through (2.15) satisfies

ϕ(x) <∞, x ∈ R. (2.19)

The function u0 = (I ◦ S)(ϕ) is normal lower semicontinuous and satisfies

u ≤ u0, u ∈ A. (2.20)

It is sufficient to show that u0 is finite on a dense subset of X. To see that u0 satisfies this
condition, assume the opposite. That is, we assume

∃V ⊆ X nonempty and open :

∀x ∈ V :

u0(x) = ∞.

(2.21)
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It follows by (2.5) that

S
(
ϕ
)
(x) = ∞, x ∈ V. (2.22)

Thus (2.4) implies that

∀x ∈ V, W ∈ Vx, M > 0 :

∃xM ∈ V ∩W :

ϕ(xM) > M.

(2.23)

Note that, since each u ∈ A is lower semicontinuous, the function ϕ is also lower
semicontinuous. Therefore (2.23) implies

∀M > 0 :

∃DM ⊆ V open and dense in V :

ϕ(x) > M, x ∈ DM.

(2.24)

There is therefore a residual set R′ ⊆ V such that

ϕ(x) = ∞, x ∈ R′. (2.25)

Since X is a Baire space, so is the open set V in the subspace topology. Furthermore, R ∩ V is
a residual set in V . But R∩V ⊆ V \R′ so that R∩V must be of first Baire category in V , which
is a contradiction. Therefore u0 is finite on a dense subset of X. The dual statement for sets
bounded from below also holds.

A subspace of NL(X) which is of particular interest to us here is the space ML(X)
which consists of all functions in NL(X) which are real-valued and continuous on an open
and dense subset of X. That is,

ML(X) = {u ∈ NL(X) | ∃Γ ⊂ X closed nowhere dense : u ∈ C(X \ Γ)}. (2.26)

The spaceML(X) is a sublattice ofNL(X). As such, it is also fully distributive. Furthermore,
whenever X is a metric space, the following order denseness property is satisfied:

∀u ∈ NL(X) : sup{v ∈ ML(X) : v ≤ u} = u = inf{w ∈ ML(X) : u ≤ w}. (2.27)
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Moreover, the following sequential version of (2.27) holds:

∀u ∈ NL(X) :

∃(λn),
(
μn
) ⊂ ML(X) :

(1) λn ≤ λn+1 ≤ u ≤ μn+1 ≤ μn, n ∈ N,

(2) sup{λn : n ∈ N} = u = inf
{
μn : n ∈ N

}
.

(2.28)

We may note that the spaceML(X), and suitable subspaces of it, also play an important role
in the theory of rings of continuous functions [20], and the theory of differential algebras of
generalized functions [21] where such spaces arise in connection with the so-called closed
nowhere dense ideals. In the next section we construct a space of generalized functions as the
completion of a suitable uniform convergence space, the elements of which are functions in
ML(X), when X is an open subset of Euclidean n-space R

n.

3. Spaces of Generalized Functions

We now consider the construction of spaces of generalized functions based on the spaces
of normal lower semicontinuous functions discussed in Section 2. This follows closely
the method used in [6], with the exception that we consider here the case of infinitely
differentiable functions, this being the main topic of the current investigation.

In this regard, let Ω be an open, nonempty and possibly unbounded subset of R
n. For

m ∈ N ∪ {∞}we denote byMLm(Ω) the set of those functions inNL(Ω) that are Cm-smooth
everywhere except on some closed nowhere dense set Γ ⊂ Ω. That is,

MLm(Ω) = {u ∈ NL(Ω) | ∃Γ ⊂ Ω closed nowhere dense : u ∈ Cm(Ω \ Γ)}. (3.1)

One should note that, while the singularity set Γ associated with a function u ∈ MLm(Ω)
through (3.1) is a topologically small set, it may be large in the sense of measure [22].
That is, the set Γ may have arbitrarily large positive Lebesgue measure. Furthermore, a
function u ∈ MLm(Ω) typically does not satisfy any of the usual growth conditions that
are imposed on generalized functions. In particular, u is, in general, not locally integrable
on any neighborhood of any point x ∈ Γ. Moreover, u will typically not satisfy any of the
polynomial type growth conditions that are imposed on elements of the Colombeau algebras
of generalized functions [14].

For m = 0, the space (3.1) reduces to ML0(Ω) = ML(Ω), as defined in (2.26). For
m = ∞, the usual partial differential operators

Dα : C∞(Ω) −→ C∞(Ω) ⊂ C0(Ω), α ∈ N
n (3.2)

extend in a straight forward way to mappings

Dα : ML∞(Ω) −→ ML∞(Ω) ⊆ ML0(Ω), α ∈ N
n (3.3)
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which are defined through

Dα : ML∞(Ω) � u �−→ (I ◦ S)(Dαu) ∈ ML∞(Ω), α ∈ N
n. (3.4)

The space of generalized functions we consider here are constructed as the completion
of the spaceML∞(Ω) equippedwith a suitable uniform convergence structure. In this regard,
see [4], we consider on ML0(Ω) the uniform order convergence structure.

Definition 3.1. Let Σ consist of all nonempty order intervals in ML0(Ω). The family Jo of
filters onML0(Ω)×ML0(Ω) consists of all filters that satisfy the following: there exists k ∈ N

such that

∀i = 1, . . . , k :

∃Σi =
(
Iin

)
⊆ Σ, ui ∈ NL(Ω) :

(1) Iin+1 ⊆ Iin, n ∈ N,

(2) sup
{
inf Iin : n ∈ N

}
= ui = inf

{
sup Iin : n ∈ N

}
,

(3) ([Σ1] × [Σ1]) ∩ · · · ∩ ([Σk] × [Σk]) ⊆ U.

(3.5)

The family of filters Jo is a uniformly Hausdorff and first countable uniform
convergence structure. Furthermore, the induced convergence structure is the order
convergence structure [23]. That is, a filter F on ML0(Ω) converges to u ∈ ML0(Ω) if and
only if

∃(λn),
(
μn
) ⊂ ML0(Ω) :

(1) λn ≤ λn+1 ≤ u ≤ μn+1 ≤ μn, n ∈ N,

(2) sup{λn : n ∈ N} = u = inf
{
μn : n ∈ N

}
,

(3)
[
λn, μn

] ∈ F, n ∈ N.

(3.6)

The completion of the uniform convergence space ML0(Ω) may be characterized in
terms of the space NL(Ω) equipped with a suitable uniform convergence structure J�

o, see
[4]. In particular, this means that NL(Ω) is complete and contains ML0(Ω) as a dense
subspace. Furthermore, given any complete Hausdorff uniform convergence space Y , and
any uniformly continuous mapping

Ψ : ML0(Ω) −→ Y, (3.7)
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there exists a unique uniformly continuous mapping

Ψ� : NL(Ω) −→ Y (3.8)

which extends Ψ.
The space ML∞(Ω) is equipped with the initial uniform convergence structure with

respect to the family of mappings (3.3). That is,

U ∈ JD ⇐⇒ (∀α ∈ N
n : (Dα × Dα)(U) ∈ Jo). (3.9)

Each of the mappings (3.3) is uniformly continuous with respect to the uniform convergence
structures JD and Jo on ML∞(Ω) and ML0(Ω), respectively. In fact, (3.9) is the
finest uniform convergence structure on ML∞(Ω) making the mappings (3.3) uniformly
continuous.

Since the family of mappings (3.3) is countable and separates the points of ML∞(Ω),
that is,

∀u, v ∈ ML∞(Ω) :

∃α ∈ N
n :

Dαu /=Dαv,

(3.10)

it follows from the corresponding properties of ML0(Ω) that the uniform convergence
structure JD is uniformly Hausdorff and first countable. Furthermore, a filter F onML∞(Ω)
converges to u ∈ ML∞(Ω)with respect to the convergence structure λD induced byJD if and
only if

∀α ∈ N
n :

Dα(F) converges to Dαu in ML0(Ω).
(3.11)

The completion of ML∞(Ω), which we denote by NL∞(Ω), is related to the
completion NL(Ω) of ML0(Ω) in the following way. Since ML∞(Ω) carries the initial
uniform convergence structure with respect to the family of mappings (3.3), it follows [16]
that the mapping

D : ML∞(Ω) � u �−→ (Dαu)α∈Nn ∈ ML0(Ω)N
n

(3.12)



Abstract and Applied Analysis 11

is a uniformly continuous embedding, with ML0(Ω)N
n

equipped with the product uniform
convergence structure with respect to Jo. In particular, the diagram

ML∞(Ω) D

Dα

ML0(Ω)N
n

πα

ML0(Ω)

(3.13)

commutes for each α ∈ N
n, with πα the projection. In view of the uniform continuity of the

mappings (3.3) and (3.12), there are unique extensions of these mappings to the completion
NL∞(Ω) ofML∞(Ω). That is, we have uniformly continuous mappings

Dα� : NL∞(Ω) −→ NL(Ω), α ∈ N
n, (3.14)

D� : NL∞(Ω) −→
(
ML0(Ω)N

n
)�

(3.15)

which extend the mappings (3.3) and (3.12), respectively. Here (ML0(Ω)N
n

)
�
denotes the

completion of ML0(Ω)N
n

. In particular, the mapping (3.15) is injective. Note that there exists
a canonical, bijective uniformly continuous mapping

ι :
(
ML0(Ω)N

n
)� −→ NL(Ω)N

n

, (3.16)

see [16]. We may therefore consider (3.15) as an injective uniformly continuous mapping

D� : NL∞(Ω) −→ NL(Ω)N
n

, (3.17)

where NL(Ω)N
n

carries the product uniform convergence structure with respect to J�
o.

Furthermore, the commutative diagram (3.13) extends to the diagram

NL∞(Ω) D

D

NL(Ω)N
n

πα

NL(Ω)

(3.18)

The interpretation of the existence of the injective, uniformly continuous mapping
(3.17) and the commutative diagram (3.18) is as follows. Each generalized function u� ∈
NL∞(Ω) may be represented in a canonical way through its generalized partial derivatives
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Dα�u�, which are usual nearly finite normal lower semicontinuous functions. This gives a first
clarification of the structure of generalized functions. Furthermore, this also provides a basic
blanket regularity for the generalized functions in NL∞(Ω). Namely, each such generalized
function is identified with the vector of normal lower semicontinuous functions

D�u� =
(
Dα�u�

)
. (3.19)

Now, in view of (2.11), we have

∀u� ∈ NL∞(Ω) :

∃R ⊆ Ω a residual set :

∀α ∈ N
n :

x ∈ R =⇒ Dα�u� continuous at x.

(3.20)

Thus the singularity set associated with each generalized function u� ∈ NL∞(Ω), that is, the
set where u� or any of its generalized partial derivatives are discontinuous, is of first Baire
category. This set, while small in a topological sense, may be dense in Ω. Furthermore, it
may have arbitrarily large positive Lebesgue measure [22]. We note that such highly singular
objects may be of interest in connection with turbulence in fluids and other types chaotical
phenomena.

4. Existence of Generalized Solutions

In the previous section we discussed the structure of spaces of generalized functions which
are obtained as the completion of suitable uniform convergence spaces, the elements of
which are nearly finite normal lower semicontinuous functions. This construction is an
extension of that given in [6] for spaces NLm(Ω) of generalized functions which admit only
generalized partial derivatives of an arbitrary but fixed finite orderm, to the case of infinitely
differentiable functions.

It is shown in [6] that a large class of systems of nonlinear PDEs admit solutions, in a
suitable generalized sense, in the spaces NLm(Ω). In this section we discuss the existence of
such generalized solutions in the space NL∞(Ω). In this regard, consider nonlinear PDE of
orderm of the form

T(x,D)u(x) = f(x), x ∈ Ω. (4.1)

Here the right hand term f is supposed to be C∞-smooth on Ω, while the nonlinear partial
differential operator T(x,D) is defined by a C∞-smooth mapping

F : Ω × R
K −→ R (4.2)
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through

T(x,D)u(x) = F(x, . . . , Dαu(x), . . .), |α| ≤ m (4.3)

for any sufficiently smooth function u defined on Ω. For each β ∈ N
n, we denote by Fβ the

mapping

Fβ : Ω × R
Mβ −→ R (4.4)

such that

Dβ(T(x,D)u(x)) = Fβ(x, . . . , Dαu(x), . . .), |α| ≤ m +
∣∣β
∣∣ (4.5)

for all functions u ∈ C∞(Ω). Consider the mapping

F∞ : Ω × R
N
n � (x, (ξα)α∈Nn) �−→

(
Fβ(x, . . . , ξα, . . .)

)

β∈Nn
∈ R

N
n

. (4.6)

We will assume that the nonlinear PDE (4.1) satisfies the condition

∀x ∈ Ω :

∃ξ(x) ∈ R
N
n

, F∞(x, ξ(x)) =
(
Dβf(x)

)

β∈Nn
:

∃V ∈ Vx, W ∈ Vξ(x) :

F∞ : V ×W −→ R
N
n

open,

(4.7)

where R
N
n
is equipped with the product topology.

With the nonlinear operator (4.3) we may associate a mapping

T : C∞(Ω) −→ C∞(Ω). (4.8)

This mapping may be extended so as to act on ML∞(Ω). In this regard, we set

T : ML∞(Ω) � u �−→ (I ◦ S)(F(·, u, . . . ,Dαu, . . .)) ∈ ML∞(Ω). (4.9)

Furthermore, the partial derivatives Dβ(Tu) of Tu, for u ∈ ML∞(Ω), may be represented
through the mappings (4.4). In particular,

∀β ∈ N
n :

∀u ∈ ML∞(Ω) :

Dβ(Tu) = Tβu,

(4.10)
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where the Tβ, with β ∈ N
n, are the mappings defined in terms of (4.4) as

Tβ : ML∞(Ω) � u �−→ (I ◦ S)
(
Fβ(·, . . . ,Dαu, . . .)

)
∈ ML∞(Ω) ⊂ ML0(Ω), (4.11)

where α ≤ m + |β|. We denote by T∞ the mapping

T∞ : ML∞(Ω) � u �−→
(
Tβu
)

β∈Nn
∈ ML0(Ω)N

n

. (4.12)

From (4.10) to (4.12) if follows that the diagram

ML∞(Ω) T

T ∞

ML∞(Ω)

D

ML0(Ω)N
n

(4.13)

commutes, withD the mapping (3.12).
Through the mapping (4.9) we obtain a first extension of the nonlinear PDE (4.1).

Namely, the equation

Tu = f, (4.14)

where T is the mapping (4.9) and the unknown u is supposed to belong to ML∞(Ω).
Equation (4.14) generalizes (4.1) in the sense that any solution u ∈ C∞(Ω) of (4.1) is also a
solution of (4.14). Conversely, any solution u ∈ ML∞(Ω) of (4.14) satisfies (4.1) everywhere
except on the closed nowhere dense set Γ associated with u through (3.1). That is,

T(x,D)u(x) = f(x), x ∈ Ω \ Γ. (4.15)

A further generalization of (4.1) is obtained by extending themapping (4.9) to the completion
NL∞(Ω) of ML∞(Ω). In order for the concept of generalized solution of (4.1) obtained
through such an extension to be a sensible one, the extension of (4.9) to NL∞(Ω) must be
constructed in a canonical way. In this regard, the following is the fundamental result.

Theorem 4.1. The mapping T : ML∞(Ω) → ML∞(Ω) associated with the nonlinear partial
differential operator (4.3) through (4.9) is uniformly continuous.

Proof. In view of the commutative diagram (4.13) it is sufficient to show that the mapping
(4.12) is uniformly continuous. In this regard, we claim that each of the mappings

Tβ : ML∞(Ω) −→ ML0(Ω) (4.16)
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is uniformly continuous. To see that this is so, we represent each mapping Tβ through the
diagram

ML∞(Ω) D|β|

T β

ML0 (Ω)M|β|

F
β

ML0(Ω)

(4.17)

where

D|β| : ML∞(Ω) � u �−→ (Dαu)|α|≤m+|β| ∈ ML0(Ω)M|β| , (4.18)

F
β
: ML0(Ω)Mβ � u = (uα)|α|≤m+|β| �−→ (I ◦ S)(F(·, . . . , uα, . . .)) ∈ ML0(Ω). (4.19)

Clearly the mapping (4.18) is uniformly continuous. As such, it suffices to show that (4.19)
is uniformly continuous. In this regard, for each |α| ≤ m + |β| consider a sequence (Iαn) of
order intervals that satisfies (1) and (2) of (3.5). For each n ∈ N there is an order interval In in
ML0(Ω) such that

F
β

⎛

⎝
∏

|α|≤m+|β|
In

⎞

⎠ ⊆ In. (4.20)

Indeed, there exists a closed nowhere dense set Γ ⊂ Ω such that

∀K ⊂ Ω \ Γ compact :

∃MK > 0 :

∀n ∈ N, x ∈ K, un = (un,α) ∈
∏

|α|≤m+|β|
Iαn :

−MK < uα(x) < MK, |α| ≤ m +
∣∣β
∣∣.

(4.21)

The inclusion (4.20) now follows by the continuity of the mapping (4.4) and the definitions
of the operators I and S, respectively. For each n ∈ N, set

λn = infF
β

⎛

⎝
∏

|α|≤m+|β|
Iαn

⎞

⎠ ∈ NL(Ω),

μn = supF
β

⎛

⎝
∏

|α|≤m+|β|
Iαn

⎞

⎠ ∈ NL(Ω).

(4.22)
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Clearly the sequence (λn) is increasing, while (μn) is decreasing and

λn ≤ μn, n ∈ N. (4.23)

We show that

u = sup{λn : n ∈ N} = inf
{
μn : n ∈ N

}
= u. (4.24)

From condition (2) of (3.5) it follows that

∀ε > 0, V ⊆ Ω nonempty and open :

∃Nε,V ∈ N, x ∈ V :

∀n ≥Nε,V :

uα(x) − ε < un,α(x) < uα(x) + ε, un = (un,α) ∈
∏

|α|≤m+|β|
Iαn ,

(4.25)

where uα ∈ NL(Ω) is the function associated with (Iαn) through (2) of (3.5). In fact, due to
(2.12), the inequality in (4.25) holds on a nonempty, open subset of V . That is,

∃V ′ ⊆ V nonempty and open :

∀x ∈ V ′ :

uα(x) − ε < un,α(x) < uα(x) + ε, un = (un,α) ∈
∏

|α|≤m+|β|
Iαn .

(4.26)

Therefore the continuity of the mapping (4.4) implies

∀ε > 0, V ⊆ Ω nonempty and open :

∃Nε,V ∈ N, V ′ ⊆ V nonempty and open :

∀x ∈ V ′, n ≥Nε,V :
∣∣∣∣F

β
(un)(x) − F

β
(vn)(x)

∣∣∣∣ < ε, un,vn ∈
∏

|α|≤m+|β|
Iαn

(4.27)

so that

∀ε > 0, V ⊆ Ω nonempty and open :

∃Nε,V ∈ N, V ′ ⊆ V nonempty and open :

∀x ∈ V ′, n ≥Nε,V :

0 < λn(x) − μn(x) < ε

(4.28)
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which verifies (4.24). From the sequential order denseness (2.28) of ML0(Ω) in NL(Ω) we
obtain

∀n ∈ N :

∃(λn,m),
(
μn,m

) ⊂ ML0(Ω) :

(1) λn,m ≤ λn,m+1 ≤ μn,m+1 ≤ μn,m, m ∈ N,

(2) sup{λn,m : m ∈ N} = λn, inf
{
μn,m : m ∈ N

}
= μn.

(4.29)

By [23, Lemma 36] it follows that

∃(λ′n
)
,
(
μ′
n

) ⊂ ML0(Ω) :

(1) λ′n ≤ λ′n+1 ≤ μ′
n+1 ≤ μ′

n, n ∈ N,

(2) λ′n ≤ λn ≤ μn ≤ μ′
n, n ∈ N,

(3) sup
{
λ′n : n ∈ N

}
= u = u = inf

{
μ′
n : n ∈ N

}
.

(4.30)

Therefore the sequence of order intervals (In) = ([λ′n, μ
′
n]) satisfies (1) and (2) of (3.5) and

∀n ∈ N : F
β

⎛

⎝
∏

|α|≤m+|β|
I
β
n

⎞

⎠ ⊆ In (4.31)

which shows that F
β
is uniformly continuous. Therefore, according to the diagram (4.17) each

of the mappings Tβ is also uniformly continuous.
The uniform continuity of the mapping (4.12) now follows by the commutative

diagram

ML∞(Ω) T ∞

T β

ML0 (Ω)N
n

πβ

ML0(Ω)

(4.32)

This completes the proof.

As a consequence of Theorem 4.1 we obtain a canonical extension of the mapping (4.9)
to a mapping

T� : ML∞(Ω) −→ ML∞(Ω). (4.33)
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Indeed, since T is uniformly continuous, there exists a unique uniformly continuous extension
of (4.9). This extension of the nonlinear partial differential operator to the space of
generalized functions gives rise to a concept of generalized solution of (4.1). Namely, any
solution u� ∈ NL∞(Ω) of the extended equation

T�u� = f (4.34)

corresponding to the nonlinear PDE (4.1) is interpreted as a generalized solution of (4.1).
In proving the uniform continuity of the mapping (4.9) in Theorem 4.1, we also

showed that the mappings (4.11) and (4.12) are uniformly continuous. Since the mapping
(3.12) is a uniformly continuous embedding, the diagram (4.13)may be extended to

NL∞(Ω) T

T ∞

NL∞(Ω)

D

NL(Ω)

(4.35)

where T∞� is the uniformly continuous extension of (4.12). Furthermore, each of the
mappings (4.11) extend uniquely to uniformly continuous mappings

Tβ� : NL∞(Ω) −→ NL(Ω), β ∈ N
n. (4.36)

Since (4.10) coincides with Dβ� ◦ T� on the dense subspace ML∞(Ω) of NL∞(Ω), it follows
[24] that

∀u� ∈ NL∞(Ω) :

Tβ�u� = Dβ�
(
T�u�

)
.

(4.37)

From the commutative diagram (4.35), and the identity (3.15) it follows that the mapping
T∞� may be represented as

T∞� : NL∞(Ω) � u �−→
(
Tβ�u�

)

β∈Nn
∈ NL(Ω)N

n

. (4.38)

The meaning of this is that the usual situation encountered when dealing with classical, C∞-
smooth solution of (4.1), namely,

∀u ∈ C∞(Ω) a solution of (4.1), β ∈ N
n :

Dβ(T(x,D)u)(x) = Dβf(x), x ∈ Ω,
(4.39)
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remains valid, in a generalized sense, for any generalized solution u� ∈ NL∞(Ω) of (4.34).
That is,

∀β ∈ N
n :

Tβ�u� = Dβ�
(
T�u�

)
= Dβf.

(4.40)

The main result of this paper, concerning the existence of solutions of (4.34), is the following.

Theorem 4.2. Consider a nonlinear PDE of the form (4.1). If the nonlinear operator (4.9) satisfies
(4.7), then there exists some u� ∈ NL∞(Ω) that satisfies (4.34).

Proof. Let us express Ω as

Ω =
⋃

ν∈N

Cν, (4.41)

where, for ν ∈ N, the compact sets Cν are n-dimensional intervals

Cν = [aν, bν] (4.42)

with aν = (aν,1, . . . , aν,n), bν = (bν,1, . . . , bν,n) ∈ R
n and aν,j ≤ bν,j for every j = 1, . . . , n. We

assume that {Cν : ν ∈ N} is locally finite, that is,

∀x ∈ Ω :

∃V ⊆ Ω a neighborhood of x :

{ν ∈ N : Cν ∩ V /= ∅} is finite.

(4.43)

Such a partition of Ω exists, see for instance [25].
Fix ν ∈ N. To each x0 ∈ Cν we apply (4.7) so that we obtain

∀x0 ∈ Cν :

∃ξ(x0) = (ξα(x0)) ∈ R
N
n

, F∞(x0, ξ(x0)) =
(
Dβf(x0)

)

β∈Nn
:

∃δx0 , εx0 > 0 :

(1) F∞ : Bδx0 (x0) ×W1
x0 −→ R

N open

(2)
(
Dβf(x)

)

β∈Nn
∈ F∞

(
{x} ×W1

x0

)
, x ∈ Bδx0 (x0),

(4.44)

whereW1
εx0

is the neighborhood of ξ(x0) defined as

W1
x0 =

∏

|α|≤Mx0 ,1

Bεx0 (ξ
α(x0)) × R

N
n

(4.45)
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for M1 > m a sufficiently large integer. Note that our choice of integer M1 does not depend
on the set Cν or the point x0 ∈ Cν. Consider now a functionUx0 ∈ C∞(Ω) such that

∀α ∈ N
n :

DαUx0(x0) = ξ
α(x0).

(4.46)

From the continuity ofUx0 and (4.44) it follows that

∀x0 ∈ Cν :

∃δx0 > 0 :

∀x ∈ Bδx0 (x0),
∣∣β
∣∣ ≤M1 −m :

(1) F∞ : Bδx0 (x0) ×W1
x0 −→ R

N open,

(2) Dβf(x) − εx0 < TβUx0(x) < D
βf(x) + εx0 ,

(3) (DαUx0(x))α∈Nn ∈W1
x0 ,

(4)
(
Dβf(x)

)

β∈Nn
∈ F∞

(
{x} ×W1

x0

)
.

(4.47)

Since Cν is compact (4.47) may be strengthened to

∃δν > 0 :

∀x0 ∈ Cν, x ∈ Bδν(x0),
∣∣β
∣∣ ≤M1 −m :

(1) F∞ : Bδν(x0) ×W1
x0 −→ R

N open,

(2) Dβf(x) − εx0 < TβUx0(x) < D
βf(x) + εx0 ,

(3) (DαUx0(x))α∈Nn ∈W1
x0 ,

(4)
(
Dβf(x)

)

β∈Nn
∈ F∞

(
{x} ×W1

x0

)
.

(4.48)

Now subdivide Cν into locally finite, compact n-dimensional intervals Cν,1, . . . , Cν,Kν with
pairwise disjoint interiors such that each Cν,i has diameter not exceeding δν. Let aν,i denote
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the midpoint of Cν,i. Then, from (4.48), it follows that

∃Uν,i ∈ C∞(Ω), εν,i > 0 :

∀x ∈ Cν,i,
∣
∣β
∣
∣ ≤M1 −m :

(1) F∞ : intCν,i ×W1
ν,i −→ R

N open,

(2) Dβf(x) − εν,i < TβUν(x) < Dβf(x) + εν,i,

(3) (DαUν(x))α∈Nn ∈W1
ν,i,

(4)
(
Dβf(x)

)

β∈Nn
∈ F∞

(
{x} ×W1

ν,i

)
,

(4.49)

where

W1
ν,i =

∏

|α|≤Mν,1

Bεν(ξ
α(aν,i)) × R

N
n

. (4.50)

Now consider the function

V1 =
∑

ν∈N

(
Kν∑

i=1

χν,iUν,i

)

, (4.51)

with χν,i the characteristic function of intCν,i, the interior of Cν,i. Clearly we have V1 ∈ C∞(Ω\
Γ1) where Γ1 ⊂ Ω is the closed nowhere dense set

Γ1 = Ω \
(
⋃

ν∈N

(
Kν⋃

i=1

intCν,i

))

. (4.52)

Upon application of (4.49)we find

∀ν ∈ N, i = 1, . . . , Kν :

∀x ∈ intCν,i,
∣∣β
∣∣ ≤M1 −m :

Dβf(x) − εν,i < Dβ(T(x,D)V1)(x) < Dβf(x) + εν,i.

(4.53)

Furthermore,

∀ν ∈ N, i = 1, . . . , Kν :

∀x ∈ intCν,i, |α| ≤M1 :

λα1(x) < D
αV1(x) < μα1(x),

(4.54)
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where λα1 , μ
α
1 ∈ C0(Ω) are defined as

λα1(x) = ξ
α(aν,i) − εν,i if x ∈ Cν,i,

μα1(x) = ξ
α(aν,i) + εν,i if x ∈ Cν,i.

(4.55)

Clearly the functions λα1 and μ
α
1 satisfy

μα1(x) − λα1(x) = 2εν,i if x ∈ Cν,i. (4.56)

Continuing in this way, we may construct a sequence (Γn) of closed nowhere dense subsets
of Ω such that Γn ⊆ Γn+1 for each n ∈ N, a strictly increasing sequence of integers (Mn) and
functions Vn ∈ C∞(Ω \ Γn) such that

∀ν ∈ N, i = 1, . . . , Kν :

∀x ∈ intCν,i \ Γn,
∣∣β
∣∣ ≤Mn −m :

Dβf(x) − εν,i
n

< TβVn(x) < Dβf(x) +
εν,i
n
.

(4.57)

Furthermore, for each n ∈ N we have

∀|α| ≤Mn :

∃λαn, μαn ∈ C0(Ω \ Γn) :
∀x ∈ Ω \ Γn, ν ∈ N, i = 1, . . . , Kν :

(1) λαn(x) < D
αVn(x) < μαn(x),

(2) μαn(x) − λαn(x) <
εν,i
n
, x ∈ intCν,i \ Γn,

(3) μαn ≤ μαn+1 ≤ λαn+1 ≤ λαn.

(4.58)

Consider now the functions

un = (I ◦ S)(Vn) ∈ ML∞(Ω). (4.59)

From (4.57) as well as the monotonicity and idempotency of the operator I ◦S, it follows that
the sequence (Tun) converges to f inML∞(Ω). Furthermore, (4.58) implies that the sequence
(un) is a Cauchy sequence in ML∞(Ω). As such, it follows by Theorem 4.1 that there is some
u� ∈ NL∞(Ω) that satisfies (4.34).

It should be noted that the concept of generalized solution of nonlinear PDEs
introduced here is similar to many of those that are typical in the literature, at least as far
as the way in which the concept of a generalized solution is arrived at. In this regard, we may
recall a construction of generalized solutions of PDEs that is representative of many of those
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methods that are customary in the study of PDEs. In order to construct a generalized solution
of a nonlinear PDE

T(x,D)u(x) = f(x), x ∈ Ω ⊆ R
n (4.60)

one considers some relatively small spaceX of usual, sufficiently smooth functions onΩ, and
a space Y of functions onΩ such that f ∈ Y . With the partial differential operator T(x,D) one
associates a mapping

T : X −→ Y (4.61)

in the usual way, namely, for every u ∈ X one has

Tu(x) = T(x,D)u(x), x ∈ Ω. (4.62)

The spaces X and Y are equipped with uniform topologies, in fact, usually metrizable locally
convex linear space topologies. Themapping (4.61) is assumed to be suitably compatible with
the topologies on X and Y . In particular, T is supposed to be uniformly continuous, which
enables one to extend the mapping (4.61) in canonical way to the completions X� and Y� of
the spaces X and Y with respect to their respective uniform topologies. In this case, one ends
up with a mapping

T� : X� −→ Y�. (4.63)

A solution u� ∈ X� of the generalized equation

T�u� = f (4.64)

is now interpreted as a generalized solution of (4.60). Showing that such a generalized
solution exists is often a rather difficult task, and may involve highly nontrivial ideas from
function analysis and topology. Furthermore, a method that applies to a particular equation,
may fail completely if the equation is changed slightly. This is in contradistinction with the
generality and type independence of the solution method presented here. Moreover, one may
note that the sequence of approximating solutions obtained in the proof of Theorem 4.2 is
constructed using only basic properties of continuous, real-valued functions and elementary
topology of Euclidean space.

5. An Application

In this section we show how the general theory developed in Sections 3 and 4 may be applied
to particular equations, in fact, systems of equations. Furthermore, it is also demonstrated
how the techniques of the preceding sections may be adapted so as to also incorporate initial
and/or boundary conditions that may be associated with a given system of PDEs. In this way,
we come to appreciate yet another advantage of solving linear and nonlinear PDEs by the
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methods introduced in this paper, as well as in [5–7]. Namely, and in contradistinction with
the customary linear functional analytic methods, initial and/or boundary value problems
are solved by essentially the same techniques that apply to the free problem. Indeed, the
basic theory need only be adjusted in a minimal way in order to incorporate such additional
conditions.

In this regard, we consider the one-dimensional parametrically driven, damped
nonlinear Schrödinger equation

iψt + ψxx + 2
∣
∣ψ
∣
∣2φ = hψ∗e2it − iγψ, (5.1)

with ψ∗ denoting complex conjugation, which, upon setting ψ = u + iv, may be written as a
system of equations

−vt + uxx + 2u3 + 2v2u = hu cos(2t) + hv sin(2t) + γv,

ut + vxx + 2v3 + 2u2v = −hv cos(2t) + hu sin(2t) − γu,
(5.2)

subject to the initial condition

u(x, 0) = u0(x),

v(x, 0) = v0(x),
x ∈ R, (5.3)

where u0, v0 ∈ C∞(R). We will show that the initial value problem (5.2) and (5.3) admits a
generalized solution (u�, v�) ∈ NL∞(Ω)2, whereΩ = R × [0,∞). Furthermore, this solution is
shown to be a strongly generic weak solution of (5.2) in the following sense.

Definition 5.1. A pair of functions (u, v) ∈ L∞
loc(Ω)2 is a strongly generic weak solution of (5.2)

if there exists a closed nowhere dense set Γ ⊂ R× (0,∞) so that (u, v) satisfies (5.2)weakly on
(R × (0,∞)) \ Γ.

The motivation for this definition comes from systems theory. In this regard, recall [26]
that a property of a system defined on an open subset Ω of R

n is strongly generic if it holds on
an open and dense subset of Ω.

We may note that a large variety of nonlinear resonant phenomena in various physical
media is described by the system of equations (5.1). Among these, we may count the Faraday
resonance in fluid dynamics [27], instabilities in plasma [28], oscillons in granular materials
[29] and anisotropic XY model of ferromagnetism [30–33]. In these applications, it is often
the so-called soliton solutions that are of interest, and a lot of work has been carried out on
the analysis of such solutions, see for instance [34–36]. Here we are concerned with just the
basic existence and regularity results for solutions of the initial value problem (5.2) to (5.3),
for a large class of initial conditions. Of course, in case the initial data in (5.3) is analytic,
the Cauchy-Kovalevskaia Theorem guarantees that a solution exists, at least locally, while
the global version of that theorem [21] gives existence of a generalized solution, in a suitable
algebra of generalized functions, which is analytic everywhere except possibly on a closed
nowhere dense subset of Ω. However, in the case of arbitrary C∞-smooth initial values, we
are not aware of any general existence or regularity results.
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Before we consider the problem of existence of generalized solutions of (5.2) and (5.3),
let us express the problem in the notation of Section 4. In particular, we write the system of
equations (5.2) in the form

T(x, t,D)(u, v)(x, t) = 0(x, t), (x, t) ∈ Ω, (5.4)

where 0 denotes the two-dimensional vector valued function which is identically 0 on Ω.
As in Section 4, the operator T(x, t,D) is defined through a jointly continuous, C∞-smooth
mapping

F : Ω × R
10 −→ R

2 (5.5)

as

T(x, t,D)(u, v)(x, t) = F(x, t, . . . , Dαu(x, t), . . . , Dαv(x, t), . . .), |α| ≤ 2. (5.6)

In particular, the mapping F takes the form

F(x, t, ξ) =

(−ξ4 + ξ9 + 2ξ31 + 2ξ1ξ22 − hξ1 cos(2t) − hξ2 sin(2t) − γξ2
−ξ3 + ξ10 + 2ξ32 + 2ξ21ξ2 + hξ2 cos(2t) − hξ1 sin(2t) + γξ1

)

. (5.7)

With the nonlinear operator T(x, t,D) we may associate a mapping

T : ML∞(Ω)2 −→ ML∞(Ω)2, (5.8)

the components of which are defined as

Tj : ML∞(Ω)2 � (u, v) �−→ (I ◦ S)(Fj(·, ·, . . . ,Dαu, . . . ,Dαv, . . .)
) ∈ ML∞(Ω) (5.9)

for |α| ≤ 2 and j = 1, 2, where F1 and F2 are the components of the mapping (5.5).
Furthermore, we express the partial derivatives of T(u, v) through

∀β ∈ N
2 :

∀(u, v) ∈ ML∞(Ω)2 :

Dβ(Tj(u, v)
)
= Tβj (u, v), j = 1, 2.

(5.10)

Here, for β ∈ N
2 and j = 1, 2,

T
β

j : ML∞(Ω)2 −→ ML∞(Ω) (5.11)
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is defined as

T
β

j : ML∞(Ω)2 � (u, v) �−→ (I ◦ S)
(
F
β

j (·, ·, . . . ,Dαu, . . . ,Dαv, . . .)
)
∈ ML∞(Ω), (5.12)

where Fβj : Ω × R
2Mβ → R is the C∞-smooth mapping such that

Dβ(Fj(·, ·, . . . ., Dαu, . . . , Dαv, . . .)
)
(x, t) = Fβj (x, t, . . . ., D

αu(x, t), . . . , Dαv(x, t), . . .), (x, t) ∈ Ω
(5.13)

for every u ∈ C∞(Ω). Just as is done in Section 4, we may use the mappings (5.11) to obtain a
representation of the the operator T through the mappings

T∞ : ML∞(Ω)2 � (u, v) �−→
(
T
β

1 (u, v), T
β

2 (u, v)
)

β∈N2
∈ ML0(Ω)2N

2
,

D2 : ML∞(Ω)2 � (u, v) �−→
(
Dβu,Dρv

)

β,ρ∈N2
∈ ML∞(Ω)2N

2
.

(5.14)

In particular, the diagram

ML∞(Ω)2 T

T∞

ML∞ (Ω)2

D2

ML0 (Ω)2N
2

(5.15)

commutes.
We may associate with the mapping (5.5) the continuous mapping

F∞ : Ω × R
2N2 �−→ R

2N2 (5.16)

defined as

F∞
(
x, t,
(
ξα1, ξρ,2

)
β∈N2

)
=

⎛

⎝
F
β

1

(
x, t,
(
ξα,1, ξρ,2

)
α,ρ∈N2

)

F
β

2

(
x, t,
(
ξα,1, ξρ,2

)
α,ρ∈N2

)

⎞

⎠. (5.17)

Note that the mapping (5.8) is linear in the components corresponding to ut, vt, uxx and vxx.
Furthermore, F1 does not depend on the components corresponding to ut and vxx, while F2
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does not depend on the components corresponding to vt and uxx. From this it follows quite
easily that F∞ satisfies the following two-dimensional version of (4.7):

∀(x, t) ∈ Ω :

∃V ∈ V(x,t), ξ(x, t) ∈ R
2N2
, F∞(x, t, ξ(x, t)) = 0 :

∃W ∈ Vξ(x,t) :

F∞ : V ×W → R
N
n

open.

(5.18)

By the same arguments used in the proof of Theorem 4.1, which applies so single
equations, we obtain the following existence result for generalized solution of the system
of equations (5.2).

Theorem 5.2. IfML∞(Ω)2 is equipped with the product uniform convergence structure with respect
to the uniform convergence structure (3.9) on ML∞(Ω), then the mapping (5.8) is uniformly
continuous.

In view of Theorem 5.2, it follows that the mapping (5.8) extends uniquely to a
uniformly continuous mapping

T� :
(
ML∞(Ω)2

)� −→
(
ML∞(Ω)2

)�
, (5.19)

where (ML∞(Ω)2)
�
denotes the completion ofML∞(Ω)2. We may identify (ML∞(Ω)2)

�
in a

canonical way with the product of the completion NL∞(Ω) ofML∞(Ω). That is, there exists
a unique bijective uniformly continuous mapping

ι� :
(
ML∞(Ω)2

)� −→ NL∞(Ω)2 (5.20)

which extends the identity on ML∞(Ω)2. We will throughout use this identification, and
hence write

T� : NL∞(Ω)2 −→ NL∞(Ω)2 (5.21)

instead of (5.19). As in the general case considered in Section 4, we call any solution (u�, v�) ∈
NL∞(Ω)2 of the extended equation

T�
(
u�, v�

)
= 0 (5.22)
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a generalized solution of (5.1). Since the systems of PDEs (5.2) satisfies the two-dimensional
version (5.18) of (4.7)we obtain, by themethods of Theorem 4.2, the following basic existence
result.

Theorem 5.3. There exists some (u�, v�) ∈ NL∞(Ω)2 that satisfies (5.22).

In order to incorporate the initial condition (5.3) into the solution method, the way in
which approximations are constructed must be altered near t = 0. This can be done in a rather
straightforward way, as is seen next.

Theorem 5.4. For any u0, v0 ∈ C∞(R), there exists a solution (u�, v�) ∈ NL∞(Ω)2 of (5.22) that
satisfies

∀α = (α1, 0) ∈ N
2 :

∀x ∈ R :

(1) Dα�u�(x, 0) = Dα
xu0(x),

(2) Dα�v�(x, 0) = Dα
xv0(x),

(3) Dα�u�,Dα�v� are continuous at (x, 0).

(5.23)

Proof. We express Ω as

Ω =
⋃

ν∈Z×N

Iν, (5.24)

where, for ν = (ν1, ν2) ∈ Z × N

Iν = [ν1, ν1 + 1] × [ν2, ν2 + 1]. (5.25)

Consider an arbitrary but fixed set Iν. Since the mapping F∞ satisfies (5.18), it follows that

∀(x0, t0) ∈ Iν

∃ξ(x0, t0) =
(
ξαi (x0, t0)

) ∈ R
2N2
, F∞(x0, t0, ξ(x0, t0)) = 0 ∈ R

2N2
:

∃δ = δx0,t0 , ε = εx0,t0 > 0 :

(1) F∞ : Bδ(x0, t0) ×W1
ε (ξ(x0, t0)) −→ R

2N2
open,

(2) 0 ∈ F∞
(
(x, t) ×W1

ε (ξ(x0, t0))
)
, (x, t) ∈ Bδ(x0, t0),

(5.26)
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whereW1
ε (ξ(x0, t0)) is the neighborhood of ξ(x0, t0) defined as

W1
ε (ξ(x0, t0)) =

i=1,2∏

|α|≤M1

Bε
(
ξαi (x0, t0)

) × R
2N2

(5.27)

for M1 > 2 a sufficiently large integer. Note that our choice of the constant M1 does not
depend on the point (x0, t0), or the set Iν. If t0 = 0, we may chose ξ(x0, t0) in such a way that

∀α = (α1, 0) ∈ N
2 :

(1) ξα1 (x0, t0) = D
α1
x u0(x0),

(2) ξα2 (x0, t0) = D
α1
x v0(x0).

(5.28)

For each (x0, t0), let us fix ξ(x0, t0) ∈ R
2N2

in (5.26) so that (5.28) holds if t0 = 0. For (x0, t0) ∈ Iν
consider C∞-smooth functionsU = Ux0,t0 and V = Vx0,t0 on Ω such that

∀α ∈ N
2 :

(1) DαU(x0, t0) = ξα1 (x0, t0),

(2) DαV (x0, t0) = ξα2 (x0, t0).

(5.29)

In particular, if t0 = 0 we may set

U(x, t) = u0(x) + ϕ1
x0,t0

(t) +
α1,α2 /= 0∑

α=(α1,α2)∈N2

1
α1!α2!

tα2(x − x0)α1ξα1 (x0, t0),

V (x, t) = v0(x) + ϕ2
x0,t0

(t) +
α1,α2 /= 0∑

α=(α1,α2)∈N2

1
α1!α2!

tα2(x − x0)α1ξα2 (x0, t0),
(5.30)

where ϕ1
x0,t0

, ϕ2
x0,t0

∈ C∞(R) satisfy

∀α = (0, α2) ∈ N
2 :

(1) Dα2
t ϕ

1
x0,t0

(0) = ξα1 (x0, t0),

(2) Dα2
t ϕ

2
x0,t0

(0) = ξα2 (x0, t0).

(5.31)
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From the continuity of U,V and their derivatives, as well as the components Fβj of F∞, and
(5.26) it follows that

∀(x0, t0) ∈ Iν1,ν2 :
∃δ = δx0,t0 > 0, ε = εx0,t0 > 0 :

∀(x, t) ∈ Bδ(x0, t0),
∣
∣β
∣
∣ ≤M1 − 2, j = 1, 2 :

(1) F∞ : Bδ(x0, t0) ×W1
ε (x0, t0) −→ R

2N2
open,

(2) − 1 < DβTj(x, t,D)(U,V )(x, t) < 1,

(3) (DαU(x, t), DρV (x, t))α,ρ∈N2 ∈W1
ε (x0, t0),

(4) 0 ∈ F∞
(
(x, t) ×W1

ε (x0, t0)
)

(5.32)

Since Iν is compact, (5.32) may be strengthened to

∃δν > 0 :

∀(x0, t0) ∈ Iν :
∃ε = εx0,t0 > 0 :

∀(x, t) ∈ Bδν(x0, t0),
∣∣β
∣∣ ≤M1 − 2, j = 1, 2 :

(1) F∞ : Bδν(x0, t0) ×W1
ε (x0, t0) −→ R

2N2
open,

(2) − 1 < DβTj(x, t,D)(U,V )(x, t) < 1,

(3) (DαU(x, t), DρV (x, t))α,rho∈N2 ∈W1
ε (x0, t0),

(4) 0 ∈ F∞
(
(x, t) ×W1

ε (x0, t0)
)
.

(5.33)

Now write Iν as

Iν =
Nν⋃

k=1

(
Nν⋃

l=1

Iν,k,l

)

, (5.34)

whereNν >
√
2/δν and

Iν,k,l =
[
ν1 +

(k − 1)
Nν

, ν1 +
k

Nν

]
×
[
ν2 +

(l − 1)
Nν

, ν2 +
l

Nν

]
. (5.35)

Denote by aν,k,l the midpoint of the set Iν,k,l if l /= 1. Otherwise,

aν,k,l =
(
ν1 +

2k − 1
2Nν1,ν2

, 0
)
. (5.36)
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Then the functionsUν,k,l = Uaν1 ,ν2 ,k,l
and Vν,k,l = Vaν1 ,ν2 ,k,l satisfy

∃ε = εν,k,l > 0 :

∀(x, t) ∈ Iν1,ν2,k,l,
∣
∣β
∣
∣ ≤M1 − 2, j = 1, 2 :

(1) F∞ : Iν,k,l ×W1
ε (aν,k,l) −→ R

2N2
open,

(2) − 1 < DβTj(x, t,D)(Uν,k,l, Vν,k,l)(x, t) < 1,

(3) (DαUν,k,l(x, t), DρVν,k,l(x, t))α,rho∈N2 ∈W1
ε (aν,k,l),

(4) 0 ∈ F∞
(
(x, t) ×W1

ε (aν,k,l)
)
.

(5.37)

Set

Γ1 = Ω \
(
⋃

ν∈Z×N

(
Nν⋃

k=1

(
Nν⋃

l=1

int Iν,k,l

)))

,

U1 =

(
∑

ν∈Z×N

(
Nν∑

k=1

(
Nν∑

l=1

χν,k,lUν,k,l

)))

,

V1 =

(
∑

ν∈Z×N

(
Nν∑

k=1

(
Nν∑

l=1

χν,k,lVν,k,l

)))

,

(5.38)

where χν,k,l is the characteristic function of int Iν,k,l. Then, for j = 1, 2 and |β| ≤M1−2 we have

−1 ≤ Dβ(Tj(x, t,D)(U1, V1)
)
(x, t) ≤ 1, (x, t) ∈ Ω \ Γ1. (5.39)

Furthermore, for |α| ≤M1 we have

λα,11 (x, t) ≤ DαU1 ≤ μα,11 (x, t), (x, t) ∈ Ω \ Γ1, (5.40)

λα,21 (x, t) ≤ DαV1 ≤ μα,21 (x, t), (x, t) ∈ Ω \ Γ1, (5.41)

where λα,i1 , μ
α,i
1 ∈ C0(Ω \ Γ1), for i = 1, 2, are defined as

λα,i1 (x, t) = ξα,i(aν,k,l) − εν,k,l, (x, t) ∈ int Iν,k,l,

μα,i1 (x, t) = ξα,i(aν,k,l) + εν,k,l, (x, t) ∈ int Iν,k,l
(5.42)
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for α = (α1, α2)with α2 /= 0, otherwise

λα,11 (x, t) =

⎧
⎨

⎩

ξα,1(aν,k,l) − εν,k,l if (x, t) ∈ int Iν,k,l, l /= 1,

Dαu0(x) − ψν,k,l(t) if (x, t) ∈ int Iν,k,l, l = 1,

λα,12 (x, t) =

⎧
⎨

⎩

ξα,2(aν,k,l) − εν,k,l if (x, t) ∈ int Iν,k,l, l /= 1,

Dαu0(x) − ψν,k,l(t) if (x, t) ∈ int Iν,k,l, l = 1,

μα,11 (x, t) =

⎧
⎨

⎩

ξα,1(aν,k,l) + εν,k,l if (x, t) ∈ int Iν,k,l, l /= 1,

Dαu0(x) + ψν,k,l(t) if (x, t) ∈ int Iν,k,l, l = 1,

μα,12 (x, t) =

⎧
⎨

⎩

ξα,2(aν,k,l) + εν,k,l if (x, t) ∈ int Iν,k,l, l /= 1,

Dαu0(x) + ψν,k,l(t) if (x, t) ∈ int Iν,k,l, l = 1,

(5.43)

where ψν,k,l ∈ C0(R) is a suitable function that satisfies

ψν,k,l(0) = 0, ψν,k,l(t) > 0. (5.44)

Proceeding as in the proof of Theorem 4.2, we obtain a sequence (un, vn) ⊂ ML∞(Ω)2 such
that

− 1
n
≤ Tj(un, vn) ≤ 1

n
, j = 1, 2. (5.45)

Furthermore, for each i = 1, 2 and α ∈ N
2, we may construct sequences (λα,in ) and (μα,in ) in

ML0(Ω) so that, for all n ∈ N,

λα,in ≤ λα,in+1 ≤ μα,in+1 ≤ μα,in , (5.46)

0 ≤ μα,in (x, t) − λα,in (x, t) ≤ 1
n
, (x, t) ∈ Ω. (5.47)

Furthermore,

λα,1n ≤ Dαun ≤ μα,1n , (5.48)

λα,2n ≤ Dαvn ≤ μα,2n . (5.49)

Moreover, for α = (α1, 0) ∈ N
2, each of the functions λα,in and μα,in is continuous at every point

(x, 0) and satisfies

λα,in (x, 0) = μα,in (x, 0), x ∈ R. (5.50)
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Clearly the sequence (un, vn) is a Cauchy sequence in ML∞(Ω)2 and (T(un, vn)) converges
to 0 in ML∞(Ω)2. Therefore there exists some (u�, v�) ∈ NL∞(Ω)2 that satisfies (5.22).
Furthermore, (5.48) to (5.49) together with (5.50) implies that (5.23) holds.

Let us now consider the additional regularity properties that the solution (u�, v�) of
the initial value problem (5.2)-(5.3), constructed in Theorem 5.4, may satisfy. In particular,
we will show that this solution is in fact a strongly generic weak solution. In this regard, we
note that each approximation (un, vn) of (u�, v�) may be approximated by a sequence of C∞-
smooth functions onΩ. In particular, if Γn is the closed nowhere dense subset associated with
(un, vn) through (3.1), then, for everym ∈ N, there exists a function ϕm ∈ C∞(Ω) that satisfies

ϕm(x, t) =

⎧
⎨

⎩

1 if (x, t) ∈ Bn,m,
0 if (x, t) ∈ Cn,m,

(5.51)

where

Bn,m =
{
(x, t) ∈ Ω | ∀(x0, t0) ∈ Γn : ‖(x, t) − (x0, t0)‖ ≥ 1

m

}
,

Cn,m = cl
({

(x, t) ∈ Ω | ∃(x0, t0) ∈ Γn : ‖(x, t) − (x0, t0)‖ ≤ 1
2m

})
.

(5.52)

Clearly the functions un,m = unϕm and vn,m = vnϕm are C∞-smooth on Ω and satisfy

un,m(x, t) = un(x, t), (x, t) ∈ Bn,m,
vn,m(x, t) = vn(x, t), (x, t) ∈ Bn,m.

(5.53)

Furthermore,

Ω \ Γn = ∪m∈NBn,m, Γn = ∩m∈NCn,m (5.54)

so that the sequences (Dαun,m,D
αvn,m) converge uniformly on compact subsets of Ω \ Γn to

(Dαun,Dαvn) for each n ∈ N and α ∈ N
2.

Theorem 5.5. The generalized solution (u�, v�) of the initial value problem (5.2) and (5.3) belongs to
L∞
loc(Ω)2 and satisfies the system of equations (5.2) weakly on an open and dense subset of R× (0,∞).

Proof. Let (u�, v�) ∈ NL∞(Ω)2 be the generalized solution of the initial value problem (5.2)
and (5.3) constructed in Theorem 5.4. It follows by (5.40), (5.41) and the definition of the
functions λα,i1 , μ

α,i
1 , for i = 1, 2 and |α| ≤M1, that Dα�u�,Dα�v� ∈ L∞

loc(Ω) for |α| ≤M1.
Let ((un, vn)) ⊂ ML∞(Ω) be the Cauchy sequence converging to (u�, v�), and for each

n ∈ N, let ((un,m, vn,m)) ⊂ C∞(Ω)2 be the sequence associated with (un, vn) through (5.51)
to (5.54). From (5.47) to (5.49) it follows that, for each |α| ≤ 2, (Dαun(x, t)) and (Dαvn(x, t))
converge to Dα�u�(x, t) and Dα�v�(x, t), respectively, for each (x, t) ∈ Ω \ ∪n∈NΓn. We may
therefore select a strictly increasing sequence of integers (mn) so that, for each |α| ≤ 2 and
(x, t) ∈ Ω \ ∪n∈NΓn, the sequences (Dαun,mn(x, t)) and (Dαvn,mn(x, t)) converge to Dα�u�(x, t)



34 Abstract and Applied Analysis

and Dα�v�(x, t), respectively. Clearly, for |α| ≤ 2, the sequences (Dαun,mn) and (Dαvn,mn) are
pointwise bounded on Ω \ ∪n∈NΓn, which is a residual set. It then follows by (2.18) that

∃λ ∈ NL(Ω) :

∀|α| ≤ 2, n ∈ N :

− λ ≤ Dαun,mn ≤ λ.
(5.55)

Note that, since λ is lower semicontinuous and finite everywhere except on a closed nowhere
dense set Γ, it is locally integrable onΩ\Γ. Consider any ϕ ∈ C∞(Ω\Γ)with compact support
contained inΩ\Γ. Then, for |α| ≤ 2, (ϕDαun,mn) and (ϕDαvn,mn) converge pointwise to ϕDα�u�

and ϕDα�v�, respectively, onΩ\∪n∈NΓn, which is a set of full measure. Furthermore, it follows
by (5.55) that

∀|α| ≤ 2, n ∈ N :

−Mϕλ(x, t) ≤ Dαun,mn(x, t) ≤Mϕλ(x, t), (x, t) ∈ Ω \ Γ,
(5.56)

where

Mϕ = sup
{∣∣Dαϕ(x, t)

∣∣ : |α| ≤ 2, (x, t) ∈ Ω
}
. (5.57)

It therefore follows by the Lebesgue Dominated Convergence Theorem that, for |α| ≤ 2,

∫

Ω
ϕDαun,mn(x, t)dxdt −→

∫

Ω
ϕDα�u�(x, t)dxdt,

∫

Ω
ϕDαvn,mn(x, t)dxdt −→

∫

Ω
ϕDα�v�(x, t)dxdt.

(5.58)

In the same way, we obtain

∫

Ω
un,mnD

αϕ(x, t)dxdt −→
∫

Ω
u�Dαϕ(x, t)dxdt,

∫

Ω
vn,mnD

αϕ(x, t)dxdt −→
∫

Ω
v�Dαϕ(x, t)dxdt

(5.59)

so that, for |α| ≤ 2, Dα�u� and Dα�v� are the weak derivatives of u� and v�, respectively, on
Ω \ Γ.
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In the same way, it follows that (u�, v�) satisfies (5.2) weakly on Ω \ Γ. That is, for any
ϕ, ψ ∈ C∞(Ω)with compact support contained in Ω \ Γ, we have

∫

Ω
v�ϕtdxdt +

∫

Ω
u�ϕxxdxdt +

∫

Ω

(
2
(
u�
)3

+ 2
(
v�
)2
u�
)
ϕdxdt

=
∫

Ω

(
hu� cos(2t) + hv� sin(2t) + γv�

)
ϕdxdt,

−
∫

Ω
u�ϕtdxdt +

∫

Ω
v�ϕxxdxdt +

∫

Ω

(
2
(
v�
)3

+ 2
(
u�
)2
v�
)
ϕdxdt

=
∫

Ω

(
−hu� cos(2t) + hv� sin(2t) − γv�

)
ϕdxdt.

(5.60)

Note also that (u�, v�) has a trace on R×{0}, which satisfies the initial condition in the classical
sense.

It should be noted that the singularity set Γ associated with the strongly generic weak
solution (u�, v�) of the initial value problem (5.2) and (5.3) constructed in Theorem 5.5 may
have arbitrarily large positive Lebesgue measure. As such, the solution may exhibit rather
wild singularities across this set, which may represent certain chaotic phenomena in the
physical systems that the equations are supposed to model.

One may also observe that the techniques for the solution of the initial value problem
(5.2) and (5.3) applies also to the Schrödinger equation with different types of nonlinear
terms. Furthermore, one may relax the smoothness condition on the initial data to, say,

u0, v0 ∈ C∞(R \ Γ0) (5.61)

with Γ0 a countable and closed nowhere dense set in R. Of course, in this case the solution
would not be a strongly generic weak solution in the sense of Definition 5.1. However, the
following generalization of Definition 5.1 remains valid

∃Γ ⊂ Ω closed nowhere dense :

(1)
(
u�, v�

)
∈ L∞

loc(Ω \ Γ),

(2)
(
u�, v�

)
satisfies (5.2) weakly on Ω \ Γ.

(5.62)

6. Conclusion

We have constructed a space of generalized functions, the elements of which admit
generalized partial derivatives of all orders. Furthermore, it has been shown that this space
contains generalized solutions of a large class of nonlinear PDEs. Moreover, these generalized
solutions satisfy a blanket regularity property. In particular, each such generalized function
may be represented in the space NL(Ω)N

n

, through its generalized derivatives, as nearly
finite normal lower semicontinuous functions.
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As a demonstration of how the general theory may be applied to particular systems
of equations with associated initial and/or boundary values, we constructed generalized
solution of a parametrically driven damped nonlinear Schrödinger equation with an initial
condition. It is also shown that this solution satisfies the equations weakly on an open and
dense subset of the domain of definition of the system.
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