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1. Introduction and Preliminaries

The stability problem of functional equations originated from a question of Ulam [1]
concerning the stability of group homomorphisms. Hyers [2] gave a first affirmative partial
answer to the question of Ulam for Banach spaces. Hyers’ theorem was generalized by
Aoki [3] for additive mappings and by Rassias [4] for linear mappings by considering an
unbounded Cauchy difference. The paper of Rassias [4] has provided a lot of influence in
the development of what we call generalized Hyers-Ulam stability of functional equations.
A generalization of the Rassias theorem was obtained by Găvruţa [5] by replacing the
unbounded Cauchy difference by a general control function in the spirit of Rassias’ approach.
In 1982, Rassias [6] followed the innovative approach of the Rassias’ theorem [4] in which he
replaced the factor ‖x‖p + ‖y‖p by ‖x‖p · ‖y‖q for p, q ∈ R with p+q /= 1. The stability problems
of several functional equations have been extensively investigated by a number of authors
and there are many interesting results concerning this problem (see [4, 7–27]).

We recall a fundamental result in fixed point theory.
Let X be a set. A function d : X × X → [0,∞] is called a generalized metric on X if d

satisfies

(1) d(x, y) = 0 if and only if x = y;
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(2) d(x, y) = d(y, x) for all x, y ∈ X;

(3) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

Theorem 1.1 (see [28, 29]). Let (X, d) be a complete generalized metric space and let J : X → X
be a strictly contractive mapping with Lipschitz constant L < 1. Then for each given element x ∈ X,
either

d
(
Jnx, Jn+1x

)
= ∞ (1.1)

for all nonnegative integers n or there exists a positive integer n0 such that

(1) d(Jnx, Jn+1x) < ∞, for all n ≥ n0;

(2) the sequence {Jnx} converges to a fixed point y∗ of J ;

(3) y∗ is the unique fixed point of J in the set Y = {y ∈ X | d(Jn0x, y) < ∞};
(4) d(y, y∗) ≤ (1/(1 − L))d(y, Jy) for all y ∈ Y.

By the using fixed point method, the stability problems of several functional equations
have been extensively investigated by a number of authors (see [17, 30–33]).

This paper is organized as follows: in Sections 2 and 3, using the fixed point method,
we prove the generalized Hyers-Ulam stability of homomorphisms in C∗-algebras and of
derivations on C∗-algebras for the Jensen-type functional equation.

In Sections 4 and 5, using the fixed point method, we prove the generalized Hyers-
Ulam stability of homomorphisms in Lie C∗-algebras and of derivations on Lie C∗-algebras
for the Jensen-type functional equation.

2. Stability of Homomorphisms in C∗-Algebras

Throughout this section, assume that A is a C∗-algebra with norm ‖ · ‖A and that B is a C∗-
algebra with norm ‖ · ‖B.

For a given mapping f : A → B, we define

Dμf(x, y) := μf

(
x + y

2

)
+ μf

(
x − y

2

)
− f(μx) (2.1)

for all μ ∈ T
1 := {ν ∈ C : |ν| = 1} and all x, y ∈ A.

Note that a C-linear mappingH : A → B is called a homomorphism in C∗-algebras ifH
satisfies H(xy) = H(x)H(y) andH(x∗) = H(x)∗ for all x, y ∈ A.

We prove the generalized Hyers-Ulam stability of homomorphisms in C∗-algebras for
the functional equation Dμf(x, y) = 0.

Theorem 2.1. Let f : A → B be a mapping for which there exists a function ϕ : A2 → [0,∞) such
that

∥∥Dμf(x, y)
∥∥
B ≤ ϕ(x, y), (2.2)

∥∥f(xy) − f(x)f(y)
∥∥
B ≤ ϕ(x, y), (2.3)

∥∥f(x∗) − f(x)∗
∥∥
B ≤ ϕ(x, x) (2.4)
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for all μ ∈ T
1 and all x, y ∈ A. If there exists an L < 1 such that ϕ(x, y) ≤ 2Lϕ(x/2, y/2) for all

x, y ∈ A, then there exists a unique C∗-algebra homomorphism H : A → B such that

∥
∥f(x) −H(x)

∥
∥
B ≤ L

1 − L
ϕ(x, 0) (2.5)

for all x ∈ A.

Proof. It follows from ϕ(x, y) ≤ 2Lϕ(x/2, y/2) that

lim
j→∞

2−jϕ
(
2jx, 2jy

)
= 0 (2.6)

for all x, y ∈ A.
Consider the set

X := {g : A −→ B} (2.7)

and introduce the generalized metric on X:

d(g, h) = inf
{
C ∈ R+ :

∥∥g(x) − h(x)
∥∥
B ≤ Cϕ(x, 0), ∀x ∈ A

}
. (2.8)

It is easy to show that (X, d) is complete.
Now we consider the linear mapping J : X → X such that

Jg(x) :=
1
2
g(2x) (2.9)

for all x ∈ A.
By [28, Theorem 3.1],

d(Jg, Jh) ≤ Ld(g, h) (2.10)

for all g, h ∈ X.
Letting μ = 1 and y = 0 in (2.2), we get

∥∥∥∥2f
(
x

2

)
− f(x)

∥∥∥∥
B

≤ ϕ(x, 0) (2.11)

for all x ∈ A. So

∥∥∥∥f(x) −
1
2
f(2x)

∥∥∥∥
B

≤ 1
2
ϕ(2x, 0) ≤ Lϕ(x, 0) (2.12)

for all x ∈ A.Hence d(f, Jf) ≤ L.
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By Theorem 1.1, there exists a mapping H : A → B such that

(1) H is a fixed point of J, that is,

H(2x) = 2H(x) (2.13)

for all x ∈ A. The mapping H is a unique fixed point of J in the set

Y =
{
g ∈ X : d(f, g) < ∞}

. (2.14)

This implies that H is a unique mapping satisfying (2.13) such that there exists
C ∈ (0,∞) satisfying

∥
∥H(x) − f(x)

∥
∥
B ≤ Cϕ(x, 0) (2.15)

for all x ∈ A.

(2) d(Jnf,H) → 0 as n → ∞. This implies the equality

lim
n→∞

f(2nx)
2n

= H(x) (2.16)

for all x ∈ A.

(3) d(f,H) ≤ (1/(1 − L))d(f, Jf),which implies the inequality

d(f,H) ≤ L

1 − L
. (2.17)

This implies that the inequality (2.5) holds.

It follows from (2.2), (2.6), and (2.16) that

∥∥∥∥H
(
x + y

2

)
+H

(
x − y

2

)
−H(x)

∥∥
∥∥
B

= lim
n→∞

1
2n

∥∥f
(
2n−1(x + y)

)
+ f

(
2n−1(x − y)

) − f
(
2nx

)∥∥
B

≤ lim
n→∞

1
2n

ϕ
(
2nx, 2ny

)
= 0

(2.18)

for all x, y ∈ A. So

H

(
x + y

2

)
+H

(
x − y

2

)
= H(x) (2.19)

for all x, y ∈ A. Letting z = (x + y)/2 and w = (x − y)/2 in (2.19), we get

H(z) +H(w) = H(z +w) (2.20)
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for all z,w ∈ A. So the mapping H : A → B is Cauchy additive, that is, H(z +w) = H(z) +
H(w) for all z,w ∈ A.

Letting y = x in (2.2), we get

μf(x) = f(μx) (2.21)

for all μ ∈ T
1 and all x ∈ A. By a similar method to above, we get

μH(x) = H(μx) (2.22)

for all μ ∈ T
1 and all x ∈ A. Thus one can show that the mapping H : A → B is C-linear.

It follows from (2.3) that

∥∥H(xy) −H(x)H(y)
∥∥
B = lim

n→∞
1
4n

∥∥f
(
4nxy

) − f
(
2nx

)
f
(
2ny

)∥∥
B

≤ lim
n→∞

1
4n

ϕ
(
2nx, 2ny

) ≤ lim
n→∞

1
2n

ϕ
(
2nx, 2ny

)
= 0

(2.23)

for all x, y ∈ A. So

H(xy) = H(x)H(y) (2.24)

for all x, y ∈ A.
It follows from (2.4) that

∥∥H
(
x∗) −H(x)∗

∥∥
B = lim

n→∞
1
2n

∥∥f
(
2nx∗) − f

(
2nx

)∗∥∥
B

≤ lim
n→∞

1
2n

ϕ
(
2nx, 2nx

)
= 0

(2.25)

for all x ∈ A. So

H
(
x∗) = H(x)∗ (2.26)

for all x ∈ A.
Thus H : A → B is a C∗-algebra homomorphism satisfying (2.5), as desired.

Corollary 2.2. Let 0 < r < 1 and θ be nonnegative real numbers, and let f : A → B be a mapping
such that

∥∥Dμf(x, y)
∥∥
B ≤ θ

(‖x‖rA + ‖y‖rA
)
, (2.27)

∥∥f(xy) − f(x)f(y)
∥∥
B ≤ θ

(‖x‖rA + ‖y‖rA
)
, (2.28)

∥∥f
(
x∗) − f(x)∗

∥∥
B ≤ 2θ‖x‖rA (2.29)



6 Abstract and Applied Analysis

for all μ ∈ T
1 and all x, y ∈ A. Then there exists a unique C∗-algebra homomorphism H : A → B

such that

∥
∥f(x) −H(x)

∥
∥
B ≤ 2rθ

2 − 2r
‖x‖rA (2.30)

for all x ∈ A.

Proof. The proof follows from Theorem 2.1 by taking

ϕ(x, y) := θ
(‖x‖rA + ‖y‖rA

)
(2.31)

for all x, y ∈ A. Then L= 2r−1 and we get the desired result.

Theorem 2.3. Let f : A → B be a mapping for which there exists a function ϕ : A2 → [0,∞)
satisfying (2.2), (2.3), and (2.4). If there exists an L < 1 such that ϕ(x, y) ≤ (1/2)Lϕ(2x, 2y) for all
x, y ∈ A, then there exists a unique C∗-algebra homomorphism H : A → B such that

∥∥f(x) −H(x)
∥∥
B ≤ L

2 − 2L
ϕ(x, 0) (2.32)

for all x ∈ A.

Proof. We consider the linear mapping J : X → X such that

Jg(x) := 2g
(
x

2

)
(2.33)

for all x ∈ A.
It follows from (2.11) that

∥∥∥∥f(x) − 2f
(
x

2

)∥
∥∥∥
B

≤ ϕ

(
x

2
, 0
)

≤ L

2
ϕ(x, 0) (2.34)

for all x ∈ A.Hence d(f, Jf) ≤ L/2.
By Theorem 1.1, there exists a mapping H : A → B such that

(1) H is a fixed point of J, that is,

H(2x) = 2H(x) (2.35)

for all x ∈ A. The mapping H is a unique fixed point of J in the set

Y =
{
g ∈ X : d(f, g) < ∞}

. (2.36)
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This implies that H is a unique mapping satisfying (2.35) such that there exists
C ∈ (0,∞) satisfying

∥
∥H(x) − f(x)

∥
∥
B ≤ Cϕ(x, 0) (2.37)

for all x ∈ A.

(2) d(Jnf,H) → 0 as n → ∞. This implies the equality

lim
n→∞

2nf
(

x

2n

)
= H(x) (2.38)

for all x ∈ A.

(3) d(f,H) ≤ (1/(1 − L))d(f, Jf),which implies the inequality

d(f,H) ≤ L

2 − 2L
, (2.39)

which implies that the inequality (2.32) holds.

The rest of the proof is similar to the proof of Theorem 2.1.

Corollary 2.4. Let r > 2 and θ be nonnegative real numbers, and let f : A → B be a mapping
satisfying (2.27), (2.28) and (2.29). Then there exists a unique C∗-algebra homomorphism H : A →
B such that

∥∥f(x) −H(x)
∥∥
B ≤ θ

2r − 2
‖x‖rA (2.40)

for all x ∈ A.

Proof. The proof follows from Theorem 2.3 by taking

ϕ(x, y) := θ
(‖x‖rA + ‖y‖rA

)
(2.41)

for all x, y ∈ A. Then L= 21−r and we get the desired result.

Theorem 2.5. Let f : A → B be an odd mapping for which there exists a function ϕ : A2 → [0,∞)
satisfying (2.2), (2.3), (2.4) and (2.6). If there exists an L < 1 such that ϕ(x, 3x) ≤ 2Lϕ(x/2, 3x/2)
for all x ∈ A, then there exists a unique C∗-algebra homomorphism H : A → B such that

∥∥f(x) −H(x)
∥∥
B ≤ 1

2 − 2L
ϕ(x, 3x) (2.42)

for all x ∈ A.
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Proof. Consider the set

X := {g : A −→ B} (2.43)

and introduce the generalized metric on X:

d(g, h) = inf
{
C ∈ R+ :

∥
∥g(x) − h(x)

∥
∥
B ≤ Cϕ(x, 3x), ∀x ∈ A

}
. (2.44)

It is easy to show that (X, d) is complete.
Now we consider the linear mapping J : X → X such that

Jg(x) :=
1
2
g(2x) (2.45)

for all x ∈ A.
By [28, Theorem 3.1],

d(Jg, Jh) ≤ Ld(g, h) (2.46)

for all g, h ∈ X.
Letting μ = 1 and relpacing y by 3x in (2.2), we get

∥∥f(2x) − 2f(x)
∥∥
B ≤ ϕ(x, 3x) (2.47)

for all x ∈ A. So
∥∥∥∥f(x) −

1
2
f(2x)

∥∥∥∥
B

≤ 1
2
ϕ(x, 3x) (2.48)

for all x ∈ A.Hence d(f, Jf) ≤ 1/2.
By Theorem 1.1, there exists a mapping H : A → B such that

(1) H is a fixed point of J, that is,

H(2x) = 2H(x) (2.49)

for all x ∈ A. The mapping H is a unique fixed point of J in the set

Y =
{
g ∈ X : d(f, g) < ∞}

. (2.50)

This implies that H is a unique mapping satisfying (2.49) such that there exists
C ∈ (0,∞) satisfying

∥∥H(x) − f(x)
∥∥
B ≤ Cϕ(x, 3x) (2.51)

for all x ∈ A.
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(2) d(Jnf,H) → 0 as n → ∞. This implies the equality

lim
n→∞

f(2nx)
2n

= H(x) (2.52)

for all x ∈ A.

(3) d(f,H) ≤ (1/(1 − L))d(f, Jf),which implies the inequality

d(f,H) ≤ 1
2 − 2L

. (2.53)

This implies that the inequality (2.42) holds.

The rest of the proof is similar to the proof of Theorem 2.1.

Corollary 2.6. Let 0 < r < 1/2 and θ be nonnegative real numbers, and let f : A → B be an odd
mapping such that

∥∥Dμf(x, y)
∥∥
B ≤ θ · ‖x‖rA · ‖y‖rA,

∥∥f(xy) − f(x)f(y)
∥∥
B ≤ θ · ‖x‖rA · ‖y‖rA,

∥∥f
(
x∗) − f(x)∗

∥∥
B ≤ θ‖x‖2rA

(2.54)

for all μ ∈ T
1 and all x, y ∈ A. Then there exists a unique C∗-algebra homomorphism H : A → B

such that

∥∥f(x) −H(x)
∥∥
B ≤ 3rθ

2 − 22r
‖x‖2rA (2.55)

for all x ∈ A.

Proof. The proof follows from Theorem 2.5 by taking

ϕ(x, y) := θ · ‖x‖rA · ‖y‖rA (2.56)

for all x, y ∈ A. Then L= 22r−1 and we get the desired result.

Theorem 2.7. Let f : A → B be an odd mapping for which there exists a function ϕ : A2 → [0,∞)
satisfying (2.2), (2.3) and (2.4). If there exists an L < 1 such that ϕ(x, 3x) ≤ (1/2)Lϕ(2x, 6x) for
all x ∈ A, then there exists a unique C∗-algebra homomorphism H : A → B such that

∥∥f(x) −H(x)
∥∥
B ≤ L

2 − 2L
ϕ(x, 3x) (2.57)

for all x ∈ A.
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Proof. We consider the linear mapping J : X → X such that

Jg(x) := 2g
(
x

2

)
(2.58)

for all x ∈ A.
It follows from (2.47) that

∥
∥
∥
∥f(x) − 2f

(
x

2

)∥
∥
∥
∥
B

≤ ϕ

(
x

2
,
3x
2

)
≤ L

2
ϕ(x, 3x) (2.59)

for all x ∈ A.Hence d(f, Jf) ≤ L/2.
By Theorem 1.1, there exists a mapping H : A → B such that

(1) H is a fixed point of J, that is,

H(2x) = 2H(x) (2.60)

for all x ∈ A. The mapping H is a unique fixed point of J in the set

Y =
{
g ∈ X : d(f, g) < ∞}

. (2.61)

This implies that H is a unique mapping satisfying (2.60) such that there exists
C ∈ (0,∞) satisfying

∥∥H(x) − f(x)
∥∥
B ≤ Cϕ(x, 3x) (2.62)

for all x ∈ A.

(2) d(Jnf,H) → 0 as n → ∞. This implies the equality

lim
n→∞

2nf
(

x

2n

)
= H(x) (2.63)

for all x ∈ A.

(3) d(f,H) ≤ (1/(1 − L))d(f, Jf),which implies the inequality

d(f,H) ≤ L

2 − 2L
, (2.64)

which implies that the inequality (2.57) holds.

The rest of the proof is similar to the proof of Theorem 2.1.
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Corollary 2.8. Let r > 1 and θ be nonnegative real numbers, and let f : A → B be an odd mapping
satisfying (2.54). Then there exists a unique C∗-algebra homomorphism H : A → B such that

∥
∥f(x) −H(x)

∥
∥
B ≤ θ

22r − 2
‖x‖2rA (2.65)

for all x ∈ A.

Proof. The proof follows from Theorem 2.7 by taking

ϕ(x, y) := θ · ‖x‖rA · ‖y‖rA (2.66)

for all x, y ∈ A. Then L= 21−2r and we get the desired result.

3. Stability of Derivations on C∗-Algebras

Throughout this section, assume that A is a C∗-algebra with norm ‖ · ‖A.
Note that a C-linear mapping δ : A → A is called a derivation on A if δ satisfies

δ(xy) = δ(x)y + xδ(y) for all x, y ∈ A.
We prove the generalized Hyers-Ulam stability of derivations on C∗-algebras for the

functional equation Dμf(x, y) = 0.

Theorem 3.1. Let f : A → A be a mapping for which there exists a function ϕ : A2 → [0,∞) such
that

∥∥Dμf(x, y)
∥∥
A ≤ ϕ(x, y), (3.1)

∥∥f(xy) − f(x)y − xf(y)
∥∥
A ≤ ϕ(x, y) (3.2)

for all μ ∈ T
1 and all x, y ∈ A. If there exists an L < 1 such that ϕ(x, y) ≤ 2Lϕ(x/2, y/2) for all

x, y ∈ A. Then there exists a unique derivation δ : A → A such that

∥∥f(x) − δ(x)
∥∥
A ≤ L

1 − L
ϕ(x, 0) (3.3)

for all x ∈ A.

Proof. By the same reasoning as the proof of Theorem 2.1, there exists a unique involutive
C-linear mapping δ : A → A satisfying (3.3). The mapping δ : A → A is given by

δ(x) = lim
n→∞

f(2nx)
2n

(3.4)

for all x ∈ A.
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It follows from (3.2) that

∥
∥δ(xy) − δ(x)y − xδ(y)

∥
∥
A = lim

n→∞
1
4n

∥
∥f

(
4nxy

) − f
(
2nx

) · 2ny − 2nxf
(
2ny

)∥∥
A

≤ lim
n→∞

1
4n

ϕ
(
2nx, 2ny

) ≤ lim
n→∞

1
2n

ϕ
(
2nx, 2ny

)
= 0

(3.5)

for all x, y ∈ A. So

δ(xy) = δ(x)y + xδ(y) (3.6)

for all x, y ∈ A. Thus δ : A → A is a derivation satisfying (3.3).

Corollary 3.2. Let 0 < r < 1 and θ be nonnegative real numbers, and let f : A → A be a mapping
such that

∥∥Dμf(x, y)
∥∥
A ≤ θ

(‖x‖rA + ‖y‖rA
)
, (3.7)

∥∥f(xy) − f(x)y − xf(y)
∥∥
A ≤ θ

(‖x‖rA + ‖y‖rA
)

(3.8)

for all μ ∈ T
1 and all x, y ∈ A. Then there exists a unique derivation δ : A → A such that

∥∥f(x) − δ(x)
∥∥
A ≤ 2rθ

2 − 2r
‖x‖rA (3.9)

for all x ∈ A.

Proof. The proof follows from Theorem 3.1 by taking

ϕ(x, y) := θ
(‖x‖rA + ‖y‖rA

)
(3.10)

for all x, y ∈ A. Then L= 2r−1 and we get the desired result.

Theorem 3.3. Let f : A → A be a mapping for which there exists a function ϕ : A2 → [0,∞)
satisfying (3.1) and (3.2). If there exists an L < 1 such that ϕ(x, y) ≤ (1/2)Lϕ(2x, 2x) for all
x, y ∈ A, then there exists a unique derivation δ : A → A such that

∥∥f(x) − δ(x)
∥∥
A ≤ L

2 − 2L
ϕ(x, 0) (3.11)

for all x ∈ A.

Proof. The proof is similar to the proofs of Theorems 2.3 and 3.1.
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Corollary 3.4. Let r > 2 and θ be nonnegative real numbers, and let f : A → A be a mapping
satisfying (3.7) and (3.8). Then there exists a unique derivation δ : A → A such that

∥
∥f(x) − δ(x)

∥
∥
A ≤ θ

2r − 2
‖x‖rA (3.12)

for all x ∈ A.

Proof. The proof follows from Theorem 3.3 by taking

ϕ(x, y) := θ
(‖x‖rA + ‖y‖rA

)
(3.13)

for all x, y ∈ A. Then L= 21−r and we get the desired result.

Remark 3.5. For inequalities controlled by the product of powers of norms, one can obtain
similar results to Theorems 2.5 and 2.7 and Corollaries 2.6 and 2.8.

4. Stability of Homomorphisms in Lie C∗-Algebras

A C∗-algebra C, endowed with the Lie product [x, y] := (xy − yx)/2 on C, is called a Lie
C∗-algebra (see [13–15]).

Definition 4.1. Let A and B be Lie C∗-algebras. A C-linear mappingH : A → B is called a Lie
C∗-algebra homomorphism ifH([x, y]) = [H(x),H(y)] for all x, y ∈ A.

Throughout this section, assume that A is a Lie C∗-algebra with norm ‖ · ‖A and that B
is a Lie C∗-algebra with norm ‖ · ‖B.

We prove the generalized Hyers-Ulam stability of homomorphisms in Lie C∗-algebras
for the functional equation Dμf(x, y) = 0.

Theorem 4.2. Let f : A → B be a mapping for which there exists a function ϕ : A2 → [0,∞)
satisfying (2.2) such that

∥∥f([x, y]) − [
f(x), f(y)

]∥∥
B ≤ ϕ(x, y) (4.1)

for all x, y ∈ A. If there exists an L < 1 such that ϕ(x, y) ≤ 2Lϕ(x/2, y/2) for all x, y ∈ A, then
there exists a unique Lie C∗-algebra homomorphism H : A → B satisfying (2.5).

Proof. By the same reasoning as the proof of Theorem 2.1, there exists a unique C-linear
mapping δ : A → A satisfying (2.5). The mapping H : A → B is given by

H(x) = lim
n→∞

f(2nx)
2n

(4.2)

for all x ∈ A.
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It follows from (4.1) that

∥
∥H

(
[x, y]

) − [
H(x),H(y)

]∥∥
B = lim

n→∞
1
4n

∥
∥f

(
4n[x, y]

) − [
f
(
2nx

)
, f

(
2ny

)]∥∥
B

≤ lim
n→∞

1
4n

ϕ
(
2nx, 2ny

) ≤ lim
n→∞

1
2n

ϕ
(
2nx, 2ny

)
= 0

(4.3)

for all x, y ∈ A. So

H
(
[x, y]

)
=
[
H(x),H(y)

]
(4.4)

for all x, y ∈ A.
Thus H : A → B is a Lie C∗-algebra homomorphism satisfying (2.5), as desired.

Corollary 4.3. Let 0 < r < 1 and θ be nonnegative real numbers, and let f : A → B be a mapping
satisfying (2.27) such that

∥∥f
(
[x, y]

) − [
f(x), f(y)

]∥∥
B ≤ θ

(‖x‖rA + ‖y‖rA
)

(4.5)

for all x, y ∈ A. Then there exists a unique Lie C∗-algebra homomorphism H : A → B satisfying
(2.30).

Proof. The proof follows from Theorem 4.2 by taking

ϕ(x, y) := θ
(‖x‖rA + ‖y‖rA

)
(4.6)

for all x, y ∈ A. Then L= 2r−1 and we get the desired result.

Theorem 4.4. Let f : A → B be a mapping for which there exists a function ϕ : A2 → [0,∞)
satisfying (2.2) and (4.1). If there exists an L < 1 such that ϕ(x, y) ≤ (1/2)Lϕ(2x, 2y) for all
x, y ∈ A, then there exists a unique Lie C∗-algebra homomorphism H : A → B satisfying (2.32).

Proof. The proof is similar to the proofs of Theorems 2.3 and 4.2.

Corollary 4.5. Let r > 2 and θ be nonnegative real numbers, and let f : A → B be a mapping
satisfying (2.27) and (4.5). Then there exists a unique Lie C∗-algebra homomorphism H : A → B
satisfying (2.40).

Proof. The proof follows from Theorem 4.4 by taking

ϕ(x, y) := θ
(‖x‖rA + ‖y‖rA

)
(4.7)

for all x, y ∈ A. Then L= 21−r and we get the desired result.

Remark 4.6. For inequalities controlled by the product of powers of norms, one can obtain
similar results to Theorems 2.5 and 2.7 and Corollaries 2.6 and 2.8.
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5. Stability of Lie Derivations on C∗-Algebras

Definition 5.1. Let A be a Lie C∗-algebra. A C-linear mapping δ : A → A is called a Lie
derivation if δ([x, y]) = [δ(x), y] + [x, δ(y)] for all x, y ∈ A.

Throughout this section, assume that A is a Lie C∗-algebra with norm ‖ · ‖A.
We prove the generalized Hyers-Ulam stability of derivations on Lie C∗-algebras for

the functional equation Dμf(x, y) = 0.

Theorem 5.2. Let f : A → A be a mapping for which there exists a function ϕ : A2 → [0,∞)
satisfying (3.1) such that

∥
∥f

(
[x, y]

) − [
f(x), y

] − [
x, f(y)

]∥∥
A ≤ ϕ(x, y) (5.1)

for all x, y ∈ A. If there exists an L < 1 such that ϕ(x, y) ≤ 2Lϕ(x/2, y/2) for all x, y ∈ A. Then
there exists a unique Lie derivation δ : A → A satisfying (3.3).

Proof. By the same reasoning as the proof of Theorem 2.1, there exists a unique involutive
C-linear mapping δ : A → A satisfying (3.3). The mapping δ : A → A is given by

δ(x) = lim
n→∞

f(2nx)
2n

(5.2)

for all x ∈ A.
It follows from (5.1) that

∥∥δ
(
[x, y]

) − [
δ(x), y

] − [
x, δ(y)

]∥∥
A

= lim
n→∞

1
4n

∥∥f
(
4n[x, y]

) − [
f
(
2nx

)
, 2ny

] − [
2nx, f

(
2ny

)]∥∥
A

≤ lim
n→∞

1
4n

ϕ
(
2nx, 2ny

) ≤ lim
n→∞

1
2n

ϕ
(
2nx, 2ny

)
= 0

(5.3)

for all x, y ∈ A. So

δ
(
[x, y]

)
=
[
δ(x), y

]
+ [x, δ(y)] (5.4)

for all x, y ∈ A. Thus δ : A → A is a derivation satisfying (3.3).

Corollary 5.3. Let 0 < r < 1 and θ be nonnegative real numbers, and let f : A → A be a mapping
satisfying (3.7) such that

∥∥f
(
[x, y]

) − [
f(x), y

] − [
x, f(y)

]∥∥
A ≤ θ

(‖x‖rA + ‖y‖rA
)

(5.5)

for all x, y ∈ A. Then there exists a unique Lie derivation δ : A → A satisfying (3.9).
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Proof. The proof follows from Theorem 5.2 by taking

ϕ(x, y) := θ
(‖x‖rA + ‖y‖rA

)
(5.6)

for all x, y ∈ A. Then L= 2r−1 and we get the desired result.

Theorem 5.4. Let f : A → A be a mapping for which there exists a function ϕ : A2 → [0,∞)
satisfying (3.1) and (5.1). If there exists an L < 1 such that ϕ(x, y) ≤ (1/2)Lϕ(2x, 2y) for all
x, y ∈ A, then there exists a unique Lie derivation δ : A → A satisfying (3.11).

Proof. The proof is similar to the proofs of Theorems 2.3 and 5.2.

Corollary 5.5. Let r > 2 and θ be nonnegative real numbers, and let f : A → A be a mapping
satisfying (3.7) and (5.5). Then there exists a unique Lie derivation δ : A → A satisfying (3.12).

Proof. The proof follows from Theorem 5.4 by taking

ϕ(x, y) := θ
(‖x‖rA + ‖y‖rA

)
(5.7)

for all x, y ∈ A. Then L= 21−r and we get the desired result.

Remark 5.6. For inequalities controlled by the product of powers of norms, one can obtain
similar results to Theorems 2.5 and 2.7 and Corollaries 2.6 and 2.8.
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