Open Access
2015 Numerical Studies for Fractional Functional Differential Equations with Delay Based on BDF-Type Shifted Chebyshev Approximations
V. G. Pimenov, A. S. Hendy
Abstr. Appl. Anal. 2015: 1-12 (2015). DOI: 10.1155/2015/510875

Abstract

Fractional functional differential equations with delay (FDDEs) have recently played a significant role in modeling of many real areas of sciences such as physics, engineering, biology, medicine, and economics. FDDEs often cannot be solved analytically so the approximate and numerical methods should be adapted to solve these types of equations. In this paper we consider a new method of backward differentiation formula- (BDF-) type for solving FDDEs. This approach is based on the interval approximation of the true solution using the Clenshaw and Curtis formula that is based on the truncated shifted Chebyshev polynomials. It is shown that the new approach can be reformulated in an equivalent way as a Runge-Kutta method and the Butcher tableau of this method is given. Estimation of local and global truncating errors is deduced and this leads to the proof of the convergence for the proposed method. Illustrative examples of FDDEs are included to demonstrate the validity and applicability of the proposed approach.

Citation

Download Citation

V. G. Pimenov. A. S. Hendy. "Numerical Studies for Fractional Functional Differential Equations with Delay Based on BDF-Type Shifted Chebyshev Approximations." Abstr. Appl. Anal. 2015 1 - 12, 2015. https://doi.org/10.1155/2015/510875

Information

Published: 2015
First available in Project Euclid: 15 April 2015

zbMATH: 1352.65173
MathSciNet: MR3335430
Digital Object Identifier: 10.1155/2015/510875

Rights: Copyright © 2015 Hindawi

Vol.2015 • 2015
Back to Top