Open Access
2000 A Picard-Maclaurin theorem for initial value PDEs
G. Edgar Parker, James S. Sochacki
Abstr. Appl. Anal. 5(1): 47-63 (2000). DOI: 10.1155/S1085337500000063

Abstract

In 1988, Parker and Sochacki announced a theorem which proved that the Picard iteration, properly modified, generates the Taylor series solution to any ordinary differential equation (ODE) on n with a polynomial generator. In this paper, we present an analogous theorem for partial differential equations (PDEs) with polynomial generators and analytic initial conditions. Since the domain of a solution of a PDE is a subset of n , we identify one component of the domain to achieve the analogy with ODEs. The generator for the PDE must be a polynomial and autonomous with respect to this component, and no partial derivative with respect to this component can appear in the domain of the generator. The initial conditions must be given in the designated component at zero and must be analytic in the nondesignated components. The power series solution of such a PDE, whose existence is guaranteed by the Cauchy theorem, can be generated to arbitrary degree by Picard iteration. As in the ODE case these conditions can be met, for a broad class of PDEs, through polynomial projections.

Citation

Download Citation

G. Edgar Parker. James S. Sochacki. "A Picard-Maclaurin theorem for initial value PDEs." Abstr. Appl. Anal. 5 (1) 47 - 63, 2000. https://doi.org/10.1155/S1085337500000063

Information

Published: 2000
First available in Project Euclid: 10 April 2003

zbMATH: 0987.35006
MathSciNet: MR1821729
Digital Object Identifier: 10.1155/S1085337500000063

Subjects:
Primary: 35A05 , 35A35
Secondary: 35C10 , 35F25 , 35G10 , 35G25

Rights: Copyright © 2000 Hindawi

Vol.5 • No. 1 • 2000
Back to Top