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Abstract. We consider a Riemannian manifold M (dimM > 3), which is
flat or has negative sectional curvature. We suppose that there is a closed and
connected subgroup G of Iso(M) such that dim(M/G) = 2. Then we study
some topological properties of M and the orbits of the action of G on M.

1. Introduction

Let M™ be a connected and complete Riemannian manifold of dimension 7, and
G be a closed and connected subgroup of the Lie group of all isometries of M. If
x € M then we denote by G(z) = {gx ; g € G} the orbit containing .

If max{dim G(z) ; v € M} = n — k, then M is called a C-G-manifold (G-
manifold of cohomogeneity k) and we will denote it by Coh(G, M) = k. If M
is a Cx-G-manifold then the orbit space M /G = {G(z) ; x € M} is a topolog-
ical space of dimension k. When k is small, we expect close relations between
topological properties of M and the orbits of the action of G on M. If M is a
Cp-G-manifold then the action of G on M is transitive, so M is a homogeneous
G-manifold and it is diffeomorphic to G/G, (where x € M and G, = {g €
G ; gr = z}). Thus, topological properties of homogeneous G-manifolds are
closely related to Lie group theory. If M is a homogeneous GG-manifold of non-
positive curvature, it is diffeomorphic to R™ x T"2, ny +ng = n ([20]). The study
of C'1-G-manifolds goes back to 1957 and a paper due to Mostert [14]. Mostert
characterized the orbit space of Cj- G-manifolds, when G is compact. Later,
other mathematicians generalized the Mostert’s theorem to G-manifolds with non-
compact G. There are many interesting results on topological properties of the
orbits of C-G-manifolds under conditions on the sectional curvature of M. If M
is a C'1-G-manifold of negative curvature then it is proved (see [17]) that either M
is simply connected or the fundamental group of M is isomorphic to Z? for some
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positive integer p. In the later case, if p > 1 then each orbit is diffeomorphic to
R 1P x TP, n = dimM, and M is diffeomorphic to R"™P x T?. If p = 1, then
there is an orbit diffeomorphic to S! and the other orbits are covered by S*~2 x R.
Topological properties of flat C';-G-manifolds have been studied in [13].

In the present article, I summarize some of my results [9-13] about Co-G-manifolds
which are flat or have negative curvatures.

2. Flat C5-G-manifolds

In the following, M™ is a Riemannian manifold of dimension n, GG is a closed and
connected subgroup of Iso(M), m: M — M /G denotes the projection on to the
orbit space. If G, H C Iso(M) and for each x € M, G(z) = H(z), then we say
that G and H are orbit equivalent on M and we denote itby G ~ H.

Fact 2.1 (See [2,18]). Let M be a Riemannian manifold and M be the Riemannian
universal covering of M by the covering map k: M — M, and let G be a closed
and connected subgroup of Iso(M). Then there is a connected covering G for G
such that G acts isometrically on M and the following assertions are true

1) Coh(G, M) =Coh(G, M)
2) If D = G(x) is a G-orbit in M then k(D) is a G-orbit in M, and each
G-orbit in M is equal to k(D) for some G-orbit D in M

3) If A is the deck transformation group of the covering k: M — M, then for
each § € A and each g € G, dog = god. Thus 6 maps G-orbits in M on to
G-orbits.

If M is a Ci-G-manifold, then there are two types of points in M called principal
and singular points (for definition and details about singular and principal points,
we refer to [2, 8]). If x is a principal (singular) point then 7(z) is an interior
(boundary) point of M /G, the orbit G(x) is called a principal (singular) orbit and
dim G(z) = n — m (dim G(z) < n — m). The union of all principal orbits is an
open and dense subset of M.

Theorem 1 ([13]). a) If G is a closed and connected subgroup of Iso(R"™)
such that R" is a C1-G-manifold, then either each principal orbit is iso-
metric to R"™' and there is not singular orbit, or each principal orbit is
diffeomorphic to S*™"~1 x R™, for some m > 0 and there is a unique
singular orbit isometric to R™.

b) If G is a closed and connected subgroup of Iso(M) and M is a flat C1-G-
manifold then there is a non-negative integer | such that w1 (M) = Z.
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Theorem 2 ([20]). If M is a homogeneous Riemannian manifold of non-positive
curvature, then it is diffeomorphic to T x R" for some non-negative integers m, t,
where T™ denotes the m-torus.

Let G be a connected subgroup of Iso(IR™) and d, e be positive integers such that
d + e = n. If G is not compact and it is a subgroup of SO(d) x R€, then we say
that G is d-helicoidical on R™. Let

K ={Ae€8S0(d); (A,b) € G,for someb € R°}

T={beR®; (Ab) € G,forsome A € SO(d)}

If v = (71, 22) € (R? — {0}) x R®, T(22) = R and K (1) = S*1(|z1]), then
G(z) is called a d-helix in R".
Let G be a closed and connected subgroup of Iso(R™). We say that G has compact

(or helicoidical) factor, if there is an integer 0 < m < n and G; C Iso(R"™™),
G2 C Iso(R™), such that

1) G5 is compact (or helicoidical on R™)
2) G~ GQ X G1
3) For some(so each) z € R"™™, Gy (z) = R"™"™.

Theorem 3. Let M™, n > 3, be a complete connected non-simply connected and
Sflat Riemannian manifold, which is a Co-G-manifold under the action of a closed
and connected Lie group G of isometries. Then one of the following is true

a) m (M) = Z and each principal orbit is isometric to S"~2(c), for some
¢ > 0 (c depends on orbits).
b) There is a positive integer I, such that m (M) = 7! and one of the following
is true:
bl) There is a positive integer m, 2 < m < n, such that each principal
orbit is covered by N™~2(c) x R"™™, where N™~2(c) is a homoge-
neous hypersurface of S™~1(c) ( ¢ > 0 depends on orbits). There is
a unique orbit diffeomorphic to T' x R*~™~,
b2) Each principal orbit is covered by ST x R"™"=2, for some positive
integer r.
b3) Each principal orbit is covered by H x R™™™, such that H is a helix
in R™. There is an orbit diffeomorphic to T' x R, for some non-
negative integer t.
¢) Each orbit is diffeomorphic to Rt x T, for some nonnegative integer t (t=
n — | — 2, if the orbit is principal).
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Sketch of the proof: M = R" is the universal covering of M. Consider G as in
Fact 2.1, and let k: R™ — M be the covering map, and A be the deck transforma-
tion group of the covering k: R — M (i.e, w1 (M) is isomorphic to A). We can
show that one of the following is true

1) Gis compact or it has compact factor on R"
2) G is helicoidical or it has helicoidical factor on R™
3) All G-orbits are euclidean.

We consider 1), 2) and 3) separately.

DIfG is compact, we get part a) of the theorem (see [10]). If G is not compact
but has compact factor, there are subgroups G of Iso(R”~") and G5 of Iso(R™),
for some positive integer m < n, such that Go is compact, G acts transitively on
R"™™ and G ~ G’g X G’l. Since Gg is compact it has a fixed point in R™, which
without lose of generality we assume that the origin of R™ is a fixed point of Go
(i.e, Gy C SO(m)). So, R™ is a Cy-Go-manifold. If m = 2 then G4 is trivial and
all 3 orbits are euclidean (isometric to R”~2) which we will consider in the case 3).
Ifm > 2 put F = {z € R ; Go(z) = z}. F is a totally geodesic submanifold
of R™, so it is isomorphic to R¥, for some k < m. Since dimF < 2 (see [11],
Lemma 2.6), then F' = {o} or F' is isometric to R. Suppose F' = {o} and put
W= {0} xR"™ CR™x R*™, D =Fk(W). Since W is a G-orbit, D must
be a G-orbit. Therefore, D is a flat homogeneous Riemannian manifold which
is diffeomorphic to R"~™~! x T! for some integer [, so 71(D) = Z!. W is the
unique G-orbit with dimension 7 — m. Then A(W) = W and A = 7, (D) = Z!.
Therefore, m (M) = Z!. If 0 # x5 € R™ then Go(xz) C S™ (|a|) and
S™=1(|x]) is a Cy-Go-manifold. Thus Ga(z9) is a homogeneous hypersurface of
S™=1(]z2|), which we denote it by N™~2(|z3|). Therefore, each principal orbit in
M is covered by N™~2(¢c) x R™™™ for some ¢ > 0 related to orbits. These yield
to part bl) of the theorem. Now, suppose that F' is isometric to R and put A =
FxR"™™ C R™xR" ™ and B = k(A). Since A is a C;-G-manifold, Bisa C}-
G-manifold. Since B is flat, by Theorem 1, there is a non-negative integer ! such
that 7 (B) = Z!. Consider a point x = (12, 71) € R™ x R"™™, If x5 € F then
G(z) = {xa} x R"™™ = R"™™ If g5 € R™ — F, then G () = Go(a2) x R,
with dimég(xg) > 1, so by dimensional reasons for each x9 € F, there is 2}, € F'
such that §({zo} x R"™™) = {24} x R"™. Thus A(A) = Aand m; (M) = A =
m(B) = Z'. Let & = (x9,21) € R™ x R™ ™ be a principal orbit. Each g € G
is a rotation around the line F', so Gg(mg) is a sphere included in a hyperplane of
R™ which is perpendicular to F. Thus, G(z) is isometric to S 2(c) for some
positive number ¢, and G/(z) must be isometric to S”2(c) x R*™™. If we put
m — 2 = r, then we get part b2) of the theorem.
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2) Let m(< n) be a positive integer and G~ G2 X G1 such that G2 be helicoidical
on R™ and G1 be transitive on R"~"". If m = 2, then (G5 is trivial and G orbits are
euclidean, which is the case 3). If m > 2, then Gg is orbit equivalent (on R™) to a
subgroup of SO(d) x R™~4 for some positive integer d. Put

= {A €50(d); (A,b) € Gy for some b € R™~¢}
= {beR™ %, (A,b) € Gy forsome A € SO(d)}.

Then, either all Gg orbits (so G orbits) are euclidean (which is the case 3)), or one
of the following is true (see [8])

1) d > 1, each principal Go-orbit in R™ is diffeomorphic to S41 x R™~d-1
and the other GQ orbits of R™ are isometric to R™ %1 The union of all
orbits which are isometric to R™ =4~ is a submanifold W of R™, such that
W is isometric to R™ %, Go(W) = W and Coh(Gy, W) = 1.

1) d > 2 and each principal Gio-orbit of R™ is isometric to N4~2(c) x R4,
Where N2 (c) is a homogeneous hypersurface of S~!(c) (¢ > 0). There
is a unique G’g—orbit V in R™, which is isometric to R™~¢.

II) d > 1 and each principal Go-orbit in R™ is isometric to a d-helix in R™,

There is a unique Go-orbit V isometric to R™ 4,

We consider I), II), III) separately.
I)Put D = W xR" ™ and B = k(D). Since Coh(Ga, W) = 1, then Coh(G, W x
R"™™™) = 1. Thus B is a flat cohomogeneity one GG-manifold, so by Theorem 1,
there is a non-negative integer [ such that 71 (D) = Z!. Now let (z2,z1) € R™ x
R™™ If x5 € W, then G(z) = Ga(axz) x G1(x1) is isometric to R 4~1 x
R = R* 41 and if 29 € R™ — W, then G(z) = Go(xz) x Gi(x1) is
diffeomorphic to S¥~1 x Rm~4=1 x R*~™ = §4-1 x R"~4~1 Since each § € A
maps G-orbits of R™ x R"~™ on to G-orbits , and the G-orbits in D = W x R"~™
are not isometric to G-orbits in (R”™ — W) x R"™™ then A(D) = D. Thus

(M) =A =7 (B) = 7.
Since principal G-orbits of R" are diffeomorphic to S¥1 x R"~4~1 then we get
part b2) of the theorem.
) Let P =V x R" ™ and C = k(P). P is the unique G-orbit of R™ which is
isometric to R™~4 x R"~™ ~ R"~4 Thus C is a flat G-orbit in M, and it must be
diffeomorphic to T! x R"~9~!, for some non-negative integer [. Since each § € A
maps G-orbits on to G-orbits, we get from uniqueness of P that A(P) = P. Thus
7T1(M) =A= 7T1(C) = Zl.

Therefore, we get part bl) of the theorem.
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IIT) From uniqueness of V' we can prove in the same way as IT) that 71 (M) = Z/,
for some positive integer [, and there is a unique G-orbit in M diffeomorphic to
T! x R" for some integer r. Thus we get part b3) of the theorem.

3) Consider a G-orbit B in M. There is a G-orbit D in R™ such that B = k(D).
Since D is flat then B is flat and homogeneous, and it must be diffeomorphic to
R* x T! for some integers ¢, [. This is part c) of the theorem.

3. C5-G-manifolds of Negative Curvature

If M is a Riemannian manifold and 0 € Iso(M), the squared displacement func-
tion d2: M — M is defined by

d3(z) = d(z, o).

Fact 3.1 (see [5]). If M is a simply connected Riemannian manifold of negative
curvature and § € Iso(M ), then one of the followings is true

1) d?; has no minimum point.

2) Minimum point set of d% is equal to the fixed point set of 4.

3) minimum point set of d% is the image of a geodesic ~ translated by J (i.e.,

there is a positive number ¢( such that for all ¢, 6((t)) = v(t + to)).

The isometries 1), 2), and 3) are called parabolic, elliptic and axial, respectively.

We recall (see [S]) that infinity M (co) of a simply connected Riemannian mani-
fold M of nonpositive curvature is the classes of asymptotic geodesics. For each
geodesic v we denote by [v] the asymptotic class of geodesics containing . If
x € M, then there is a unique (up to parametrization) geodesic . in the class [7]
containing z, and there is a unique hypersurface S, containing = and perpendicular
to all elements of [y]. Sy is called a horosphere.

Fact 3.2 (see [3,5]).
a) Let M be a simply connected Riemannian manifold of negative curvature.
1) If g is an axial isometry of M, then the geodesic «y with the property g(v) =
7y is unique.
2) If g is a parabolic isometry of M, then there is a unique class of asymptotic
geodesics [] such that g[y] = [7].

b) Let (G be a connected and solvable Lie subgroup of isometries of a simply con-
nected and negatively curved Riemannian manifold M. Then one of the followings
is true

1) Fix(G, M) # 0.

2) There is a unique G-invariant geodesic.

3) There is a unique class of asymptotic geodesics [y] such that G[y] = [7].
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Corollary 1 ([12, 18]). If M is a simply connected Riemannian manifold of neg-
ative curvature and G is a closed and connected subgroup of Iso(M) such that
Fix(G, M) = 0, then there is at most one totally geodesic G-orbit in M.

Corollary 2. If M is a negatively curved, non-simply connected, Riemannian man-
ifold and M is the universal covering of M, then for each deck transformation o
there is a geodesic v in M such that o~y = .

Proof: Let zop € M and [o] € w1 (M, xo). Suppose that [a] is the corresponding
element of ¢ in the canonical isomorphism between A and 71 (M, z¢) (see [15]
p. 186). Let B: [0,1] — M be a geodesic segment such that 3(0) = 5(1) = xo and
[8] = []. Let k(%) = 20 and 3 be the unique lift of 3 to M such that B( )=z It
follows from the elementary properties of covering spaces that (z) = 6(1). Now,
if 7y is the extension of geodesic segment ﬁ to a geodesic in M then § (v)=~ N

Lemma 1 ([11]). Let M be a Riemannian manifold of negative curvature, n =
dimM > 3, and M be its universal covering. If there is a geodesic v on M and
an element § in the center of the deck transformation group A, such that 6y = -,
then M is diffeomorphic to one of the following spaces

S' x R* 1, B? x R"?2
where B2 is the mobius band.

Theorem 4 ([11]). Let M"™*2 be a complete negatively curved and non-simply
connected Riemannian manifold which is of cohomogeneity two under the action
of a closed and connected Lie subgroup of isometries. If Fix(G, M) # (), then

a) M is diffeomorphic to S' x R""! or B% x R"(B? is the mobius band)
b) Fix(G, M) is diffeomorphic to S!
¢) Each principal orbit is diffeomorphic to S™.

Remark 1. By Theorem 3.7 a) in [17], if M is a non-simply connected and com-
plete Riemannian manifold of negative curvature, which is of cohomogeneity one
under the action of a connected and closed subgroup of isometries, and if there
is not any singular orbit, then there are positive integers p, s such that M is dif-
feomorphic to RP x R**! and each orbit is diffeomorphic to RP x R®, p + s =
dim M — 1.

Theorem 5 ([12]). Let M™, n > 3, be a complete negatively curved Riemannian
manifold and G be a closed, connected and non-semisimple subgroup of isometries
of M™. If M is a cohomogeneity two G-manifold such that the singular orbits (if
there are any) are fixed points of G. Then one of the following is true

1) M is simply connected (diffeomorphic to R™).
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2) M is diffeomorphic to S' x R~ or B? x R"~2(B? is the mobious band).
Each principal orbit is diffeomorphic to S*~2. Union of singular orbits
Fix(G, M) is diffeomorphic to S'.

3) M is diffeomorphic to S' x R? or B% x R. All orbits are diffeomorphic to
St.

4) m (M) = ZP for some positive integer p, and all orbits are diffeomorphic
to R"=27P x TP,

Sketch of the proof: Following Fact 2.1, let M be the universal Riemannian cov-
ering manifold of M with the deck transformation group A and let G be the corre-
sponding connected covering of G which acts isometrically and by cohomogeneity
two on M . If Fix(G, M) # 0 then Fix(G, M) # 0, so by Theorem 4, we get the
parts 1) or 2) of the theorem. Now, suppose that le(G M ) (0. By assumptlons
of the theorem, if there is a singualr orbit, it must be a fixed point. So all G-orbits in
M must be (n—2)-dimensional. Since G is non-semisimple, G is non- semisimple.

Let H be a solvable normal subgroup of G and put N = Fix(H, M ) We consider
the following two cases separately

a) N =0, b) N # 0.

a) By Fact 3.2 b), one of the following is true:

a-i) There is a unique geodesic y such that H(vy) = .
a-ii) There is a unique class of asymptotic geodesics [y] such that H[y] = [v].

a-i) From normality of H in G and uniqueness of v, we get that G(v) = 4. Since
Fix(G, M) = ( then ~ is a G-orbit in M. But all orbits are (n — 2)-dimensional
and the orbit v is of dimension one. Thus all orbits are of dimension one and
n—2=1. Each § € A maps G-orbits onto G-orbits. So o(y)isa G-orbit. Since
by Corollary 1, 7 is the unique geodesic orbit, then () = ~. Thus Ay = ~ and
m1(M) = Z (see [4], Theorem 3.4, §261). Now, by Lemma 1, M is diffeomorphic
to S' x R? or B? x R. Since all G-orbits of M are regular (and diffeomorphic to
each other) and the G-orbit % is diffeomorphic to v/Z = R/Z = S, all G-orbits
are diffeomorphic to S*. This is part 3) of the theorem.

a-ii) By Corollary 2, each 6 € A is axial. Consider a 6 € A and Let \ be the
unique geodesic in M such that ¢ (A) = A. Since the elements of A and G are
commutative, for each g € G we have

6(gA) = g(6A) = gA.

Since A\ with the property d(A) = A is unique, we get that gA = A. So Ais a
G-orbit, and we get the part 3) of the theorem in a similar way in a-i).
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b) N is a nontrivial totally geodesic submanifold of M. If g € G. h € H and
z € N, then
g 'hg(z) == = hy(x) = g(x) = g(x) € N.
Thus G(IN) = N. All orbits are of dimension n — 2. So if x € N, then
n—2=dimG(z) < dimN < dimM =n = dimN =n—2 or n— 1.

Now, consider two cases dim/N = n and dim/N = n + 1 separately.
b-j) dimN =n — 2.
In this case, N is a G-orbit. If n — 2 = 1, in a similar way in (a-i) we get part
(3) of the theorem. Suppose n — 2 > 2 and put N7 = x(N). By Corollary 1, N
is the unique totally geodesic G-orbit in M. Thus, for each § € A, § (N) = N,
so N1 = N/A. But NV is a totally geodesic G-orbit in M, so it must be simply
connected (since by Kobayashi’s theorem in [6] homogeneous manifolds of neg-
ative curvature are simply connected). Therefore, A is trivial and M is simply
connected. This is the part 1) of the theorem.
b-jj) dimN = n — 1 Since all orbits are of dimension n — 2, N is a negatively
curved cohomogeneity one G-manifold. Consider following two cases:

b-jj-1) There isa § € A and 2 € M such that 6G(z) # G(x).

b-jj-2) Foreach § € A and z € M, 6G(z) = G(x).
b-jj-1) From the fact that § maps orbits on to orbits, we get that 6G(z) = G(y),
y € M (ie., G(z) N G(y) = 0). By Proposition 4.2 in [1], the minimum point set
of the following function is at most the image of a geodesic

fs: M =R, fs(z) = d*(z,6(x)).

So we can find a geodesic v such that the image of v is not the minimum point
set of fs and v(0) € G(z), v(1) € G(y). Put g(t) = f5(y(t)). Since the ele-
ments of A and G are commutative, s is constant along orbits ( because fs(gz) =
d*(gz,8gx) = d*(gx,géx) = d*(x,0x) = fs(x)). Since 6(v(0)) € G(y(1)),
then f5(57(0)) = f5(¥(1)). Thus

9(0) = f5(+(0)) = d*(7(0),5(7(0))) = d*(5(7(0)), 6*(7(0)))
= f5(67(0)) = f5((1)) = g(1).

Since g is strictly convex (see [1]), it has a unique minimum point ¢y € (0, 1).
Therefore, G(7(to)) is the minimum point set of f5, which must be a geodesic.
Then G(7(to)) is a (geodesic) one dimensional G-orbit. Then in a similar way in
a-i) we get part 3) of the theorem.

b-jj-2) Put N1 = x(N). Since foreach § € A, §(N) = N then (M) = 71 (Ny).
Nj is a cohomogeneity one (G-manifold of negative curvature, without singular



242 Reza Mirzaie

orbits. So, by Remark 1, each G-orbit in Ny is diffeomorphic to T? x R, p + s =
dimN — 1 = n — 2, and N is diffeomorphic to TP x R*T!. These yield to part 4)
of the theorem.

4. C3-G-manifolds of Constant Negative Curvature

Theorem 6. Let M"(c), n > 3, be a complete Riemannian manifold of constant
sectional curvature ¢ < 0 and let G be a connected and closed Lie subgroup of
isometries which acts by cohomogeneity two on M. Then one of the following is
true
a) M is simply connected, i.e, M = H"(c)
b) Each orbit is diffeomorphic to R™ x T"~2=™ for some nonnegative integer
m, and M is a union of totally geodesic cohomogeneiy one Riemannian
G-submanifolds
¢) m1(M) = Z and either there is an orbit diffeomorphic to S* or Fix(G, M) =
Sl
d) 7 (M) = ZF for some positive integer k, and M is a union of the following
two types of orbits
d1) The orbits which are diffeomophic to R™ = x T* for some positive in-
teger m. Union of this type of orbits is a totally geodesic submanifold
of M
d2) The orbits covered by S*~2~™ x R™.

Sketch of the proof: H"(c) is the universal Riemannian covering manifold of M.
Let A be the deck transformation group and G be the corresponding connected
covering of GG, which acts isometrically and by cohomogeneity two on H"(c) (as
mentioned in Fact 2.1). By the main theorem of [18], we have three cases below

1) G has a fixed point.
ii) G has a unique nontrivial totally geodesic orbit.
iii) All orbits are included in horospheres centered at the same point at the in-
finity.
We study each case separately.
) Let F = {x € H"(c); G(z) = z}. If dimF > 2, then the cohomogene-

ity of the action of G on H "(c) is > 3 (see [11]), which is a contradiction. If
dim(F') = 1, then F is the image of a geodesic A. Since each § in A commutes
with elements of G we get A(X\) = \. So 7y (M) = Z. The set B = F/A (which
is diffeomorphic to S') is equal to Fix(G, M). This is part c) of the theorem. If
dim(F') = 0, then F' is a one point set, so M is simply connected and we get part

a) of the theorem.
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ii) We get from uniqueness of P that A(P) = P. If dimP = 1, then P is a
geodesic and we get part c) of the theorem in the same way as i). If dimP > 1,
then k(P) is homogeneous and of negative curvature. Then it is simply connected
and the covering map k: P — k(P) must be trivial. Therefore, the covering map
H™(c) — M is trivial and M is simply connected (part a) of the theorem).

iii) Let (; be a one-parameter family of horospheres, such that G(Q;) = Q(t) (see
[18]). Since the action of Gon H "(c) is of cohomogeneity two, we can show that
for each ¢ the action of G on @ is of cohomogeneity one. So one of the following
cases is true ([13])

1) Each orbitin Q;, t € R, is isometric to R7—2

2) There is m < n — 2 such that one orbit of Q¢, t € R, is isometric to R™,
and the other orbits are diffeomorphic to S*~27™ x R™,

1) Consider an orbit D in M. We have D = k(V), where V is a G-orbit in
H"(c). Since V is isometric to R"~2 and D is flat (and homogeneous). So it
is diffeomorphic to R™ x T"~2~. We can show that for each t, there is a G-
orbit V; in @y, such that T" = | J, V; is a totally geodesic cohomogeneity one G-
submanifold of H™(c). Therefore, k(T) is a totally geodesic cohomogeneity one
G-submanifold of M. Since H"(c) is a union of such submanifols 7", we get part
b) of the theorem.

2) Let V; be the orbit in (); which is isometric to R"*. Then the set N = Ut Vi is
a totally geodesic G-submanifold of H"(c). So N = k(N V) is a totally geodesic
G-submanifold of M. Since dimN = dim V; + 1, then N is a cohomogeneity one
G-submanifold. H™(¢) = N |J(H"(¢) — N) is a union of two types of orbits.
Orbits in N which are isometric to R"2, and the orbits in (H"(c) — N) which
are diffeomorphic to R™ x S"~2-™, Since each § in A maps orbits to orbits, by
dimensional reasons we have

A(N)=N,  A(H"(¢c)—N)=H"(c)— N.
Therefore, we can show that one of the parts (a) or (c) of the theorem is true, or we
have

H” H"(c
M = =< U
H"(c)—N

The orbits of N /A(=N) are dlffeomorphlc to R" x Tk and the orbits in X
are covered by R™ x S"~27™_ Thus we get part d) of the theorem.
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