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Abstract. We consider a Riemannian manifold M (dimM ≥ 3), which is
flat or has negative sectional curvature. We suppose that there is a closed and
connected subgroup G of Iso(M) such that dim(M/G) = 2. Then we study
some topological properties of M and the orbits of the action of G on M .

1. Introduction

Let Mn be a connected and complete Riemannian manifold of dimension n, and
G be a closed and connected subgroup of the Lie group of all isometries of M . If
x ∈M then we denote by G(x) = {gx ; g ∈ G} the orbit containing x.
If max{dimG(x) ; x ∈ M} = n − k, then M is called a Ck-G-manifold (G-
manifold of cohomogeneity k) and we will denote it by Coh(G,M) = k. If M
is a Ck-G-manifold then the orbit space M/G = {G(x) ; x ∈ M} is a topolog-
ical space of dimension k. When k is small, we expect close relations between
topological properties of M and the orbits of the action of G on M . If M is a
C0-G-manifold then the action of G on M is transitive, so M is a homogeneous
G-manifold and it is diffeomorphic to G/Gx (where x ∈ M and Gx = {g ∈
G ; gx = x}). Thus, topological properties of homogeneous G-manifolds are
closely related to Lie group theory. If M is a homogeneous G-manifold of non-
positive curvature, it is diffeomorphic to Rn1×Tn2 , n1 +n2 = n ([20]). The study
of C1-G-manifolds goes back to 1957 and a paper due to Mostert [14]. Mostert
characterized the orbit space of C1- G-manifolds, when G is compact. Later,
other mathematicians generalized the Mostert’s theorem to G-manifolds with non-
compact G. There are many interesting results on topological properties of the
orbits of C1-G-manifolds under conditions on the sectional curvature of M . If M
is a C1-G-manifold of negative curvature then it is proved (see [17]) that either M
is simply connected or the fundamental group of M is isomorphic to Zp for some
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positive integer p. In the later case, if p > 1 then each orbit is diffeomorphic to
Rn−1−p × Tp, n = dimM , and M is diffeomorphic to Rn−p × Tp. If p = 1, then
there is an orbit diffeomorphic to S1 and the other orbits are covered by Sn−2×R.
Topological properties of flat C1-G-manifolds have been studied in [13].
In the present article, I summarize some of my results [9-13] aboutC2-G-manifolds
which are flat or have negative curvatures.

2. Flat C2-G-manifolds

In the following, Mn is a Riemannian manifold of dimension n, G is a closed and
connected subgroup of Iso(M), π: M → M/G denotes the projection on to the
orbit space. If G,H ⊂ Iso(M) and for each x ∈ M , G(x) = H(x), then we say
that G and H are orbit equivalent on M and we denote it by G ' H .

Fact 2.1 (See [2,18]). LetM be a Riemannian manifold and M̂ be the Riemannian
universal covering of M by the covering map k : M̂ → M , and let G be a closed
and connected subgroup of Iso(M). Then there is a connected covering Ĝ for G
such that Ĝ acts isometrically on M̂ and the following assertions are true

1) Coh(G,M) =Coh(Ĝ, M̂)

2) If D = Ĝ(x) is a Ĝ-orbit in M̂ then k(D) is a G-orbit in M , and each
G-orbit in M is equal to k(D) for some Ĝ-orbit D in M̂

3) If ∆ is the deck transformation group of the covering k: M̂ →M , then for
each δ ∈ ∆ and each g ∈ Ĝ, δog = goδ. Thus δ maps Ĝ-orbits in M̂ on to
Ĝ-orbits.

If M is a Ck-G-manifold, then there are two types of points in M called principal
and singular points (for definition and details about singular and principal points,
we refer to [2, 8]). If x is a principal (singular) point then π(x) is an interior
(boundary) point of M/G, the orbit G(x) is called a principal (singular) orbit and
dimG(x) = n −m (dimG(x) ≤ n −m). The union of all principal orbits is an
open and dense subset of M .

Theorem 1 ([13]). a) If G is a closed and connected subgroup of Iso(Rn)
such that Rn is a C1-G-manifold, then either each principal orbit is iso-
metric to Rn−1 and there is not singular orbit, or each principal orbit is
diffeomorphic to Sn−m−1 × Rm, for some m ≥ 0 and there is a unique
singular orbit isometric to Rm.

b) If G is a closed and connected subgroup of Iso(M) and M is a flat C1-G-
manifold then there is a non-negative integer l such that π1(M) = Zl.



Cohomogeneity Two Riemannian Manifolds of Non-Positive Curvature 235

Theorem 2 ([20]). If M is a homogeneous Riemannian manifold of non-positive
curvature, then it is diffeomorphic to Tm×Rr for some non-negative integersm, t,
where Tm denotes the m-torus.

Let G be a connected subgroup of Iso(Rn) and d, e be positive integers such that
d + e = n. If G is not compact and it is a subgroup of SO(d) × Re, then we say
that G is d-helicoidical on Rn. Let

K = {A ∈ SO(d) ; (A, b) ∈ G, for some b ∈ Re}

T = {b ∈ Re ; (A, b) ∈ G, for someA ∈ SO(d)}

If x = (x1, x2) ∈ (Rd − {o}) × Re, T(x2) = Re and K(x1) = Sd−1(|x1|), then
G(x) is called a d-helix in Rn.

Let G be a closed and connected subgroup of Iso(Rn). We say that G has compact
(or helicoidical) factor, if there is an integer 0 < m < n and G1 ⊂ Iso(Rn−m),
G2 ⊂ Iso(Rm), such that

1) G2 is compact ( or helicoidical on Rm)
2) G ' G2 ×G1

3) For some(so each) x ∈ Rn−m, G1(x) = Rn−m.

Theorem 3. Let Mn, n ≥ 3, be a complete connected non-simply connected and
flat Riemannian manifold, which is a C2-G-manifold under the action of a closed
and connected Lie group G of isometries. Then one of the following is true

a) π1(M) = Z and each principal orbit is isometric to Sn−2(c), for some
c > 0 (c depends on orbits).

b) There is a positive integer l, such that π1(M) = Zl and one of the following
is true:

b1) There is a positive integer m, 2 < m < n, such that each principal
orbit is covered by Nm−2(c)×Rn−m, where Nm−2(c) is a homoge-
neous hypersurface of Sm−1(c) ( c > 0 depends on orbits). There is
a unique orbit diffeomorphic to Tl × Rn−m−l.

b2) Each principal orbit is covered by Sr × Rn−r−2, for some positive
integer r.

b3) Each principal orbit is covered by H ×Rn−m, such that H is a helix
in Rm. There is an orbit diffeomorphic to Tl × Rt, for some non-
negative integer t.

c) Each orbit is diffeomorphic to Rt×Tl, for some nonnegative integer t (t =
n− l − 2, if the orbit is principal).
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Sketch of the proof: M̂ = Rn is the universal covering of M . Consider Ĝ as in
Fact 2.1, and let k: Rn →M be the covering map, and ∆ be the deck transforma-
tion group of the covering k : Rn → M (i.e, π1(M) is isomorphic to ∆). We can
show that one of the following is true

1) Ĝ is compact or it has compact factor on Rn

2) Ĝ is helicoidical or it has helicoidical factor on Rn

3) All Ĝ-orbits are euclidean.

We consider 1), 2) and 3) separately.

1) If Ĝ is compact, we get part a) of the theorem (see [10]). If Ĝ is not compact
but has compact factor, there are subgroups Ĝ1 of Iso(Rn−m) and Ĝ2 of Iso(Rm),
for some positive integer m < n, such that Ĝ2 is compact, Ĝ1 acts transitively on
Rn−m and Ĝ ' Ĝ2 × Ĝ1. Since Ĝ2 is compact it has a fixed point in Rm, which
without lose of generality we assume that the origin of Rm is a fixed point of Ĝ2

(i.e, Ĝ2 ⊂ SO(m)). So, Rm is a C2-Ĝ2-manifold. If m = 2 then Ĝ2 is trivial and
all Ĝ orbits are euclidean (isometric to Rn−2) which we will consider in the case 3).
If m > 2, put F = {x ∈ Rm ; Ĝ2(x) = x}. F is a totally geodesic submanifold
of Rn, so it is isomorphic to Rk, for some k < m. Since dimF < 2 (see [11],
Lemma 2.6), then F = {o} or F is isometric to R. Suppose F = {o} and put
W = {o} × Rn−m ⊂ Rm × Rn−m, D = k(W ). Since W is a Ĝ-orbit, D must
be a G-orbit. Therefore, D is a flat homogeneous Riemannian manifold which
is diffeomorphic to Rn−m−l × Tl for some integer l, so π1(D) = Zl. W is the
unique Ĝ-orbit with dimension n−m. Then ∆(W ) = W and ∆ = π1(D) = Zl.
Therefore, π1(M) = Zl. If o 6= x2 ∈ Rm then Ĝ2(x2) ⊂ Sm−1(|x2|) and
Sm−1(|x2|) is a C1-Ĝ2-manifold. Thus Ĝ2(x2) is a homogeneous hypersurface of
Sm−1(|x2|), which we denote it by Nm−2(|x2|). Therefore, each principal orbit in
M is covered by Nm−2(c) × Rn−m for some c > 0 related to orbits. These yield
to part b1) of the theorem. Now, suppose that F is isometric to R and put A =

F×Rn−m ⊂ Rm×Rn−m andB = k(A). SinceA is aC1-Ĝ-manifold,B is aC1-
G-manifold. Since B is flat, by Theorem 1, there is a non-negative integer l such
that π1(B) = Zl. Consider a point x = (x2, x1) ∈ Rm × Rn−m. If x2 ∈ F then
Ĝ(x) = {x2}×Rn−m ∼= Rn−m. If x2 ∈ Rm−F , then Ĝ(x) = Ĝ2(x2)×Rn−m,
with dimĜ2(x2) ≥ 1, so by dimensional reasons for each x2 ∈ F , there is x′2 ∈ F
such that δ({x2}×Rn−m) = {x′2}×Rn−m. Thus ∆(A) = A and π1(M) = ∆ =

π1(B) = Zl. Let x = (x2, x1) ∈ Rm × Rn−m be a principal orbit. Each g ∈ Ĝ2

is a rotation around the line F , so Ĝ2(x2) is a sphere included in a hyperplane of
Rm which is perpendicular to F . Thus, Ĝ(x2) is isometric to Sm−2(c) for some
positive number c, and Ĝ(x) must be isometric to Sm−2(c) × Rn−m. If we put
m− 2 = r, then we get part b2) of the theorem.
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2) Letm(≤ n) be a positive integer and Ĝ ' Ĝ2× Ĝ1 such that Ĝ2 be helicoidical
on Rm and Ĝ1 be transitive on Rn−m. If m = 2, then G2 is trivial and Ĝ orbits are
euclidean, which is the case 3). If m > 2, then Ĝ2 is orbit equivalent (on Rm) to a
subgroup of SO(d)× Rm−d for some positive integer d. Put

K = {A ∈ SO(d) ; (A, b) ∈ Ĝ2 for some b ∈ Rm−d}
T = {b ∈ Rm−d ; (A, b) ∈ Ĝ2 for some A ∈ SO(d)}.

Then, either all Ĝ2 orbits (so Ĝ orbits) are euclidean (which is the case 3)), or one
of the following is true (see [8])

I) d > 1, each principal Ĝ2-orbit in Rm is diffeomorphic to Sd−1 × Rm−d−1

and the other Ĝ2-orbits of Rm are isometric to Rm−d−1. The union of all
orbits which are isometric to Rm−d−1 is a submanifold W of Rm, such that
W is isometric to Rm−d, Ĝ2(W ) = W and Coh(Ĝ2,W ) = 1.

II) d > 2 and each principal Ĝ2-orbit of Rm is isometric to Nd−2(c)×Rm−d.
Where Nd−2(c) is a homogeneous hypersurface of Sd−1(c) (c > 0). There
is a unique Ĝ2-orbit V in Rm, which is isometric to Rm−d.

III) d > 1 and each principal Ĝ2-orbit in Rm is isometric to a d-helix in Rm.
There is a unique Ĝ2-orbit V isometric to Rm−d.

We consider I), II), III) separately.
I) PutD = W×Rn−m andB = k(D). Since Coh(Ĝ2,W ) = 1, then Coh(Ĝ,W×
Rn−m) = 1. Thus B is a flat cohomogeneity one G-manifold, so by Theorem 1,
there is a non-negative integer l such that π1(D) = Zl. Now let (x2, x1) ∈ Rm ×
Rn−m. If x2 ∈ W , then Ĝ(x) = Ĝ2(x2) × Ĝ1(x1) is isometric to Rm−d−1 ×
Rn−m = Rn−d−1, and if x2 ∈ Rm − W , then Ĝ(x) = Ĝ2(x2) × Ĝ1(x1) is
diffeomorphic to Sd−1 × Rm−d−1 × Rn−m = Sd−1 × Rn−d−1. Since each δ ∈ ∆

maps Ĝ-orbits of Rm×Rn−m on to Ĝ-orbits , and the Ĝ-orbits inD = W×Rn−m
are not isometric to Ĝ-orbits in (Rm −W )× Rn−m, then ∆(D) = D. Thus

π1(M) = ∆ = π1(B) = Zl.

Since principal Ĝ-orbits of Rn are diffeomorphic to Sd−1 × Rn−d−1 then we get
part b2) of the theorem.
II) Let P = V × Rn−m and C = k(P ). P is the unique Ĝ-orbit of Rn which is
isometric to Rm−d×Rn−m ' Rn−d. Thus C is a flat G-orbit in M , and it must be
diffeomorphic to Tl ×Rn−d−l, for some non-negative integer l. Since each δ ∈ ∆

maps Ĝ-orbits on to Ĝ-orbits, we get from uniqueness of P that ∆(P ) = P . Thus

π1(M) = ∆ = π1(C) = Zl.

Therefore, we get part b1) of the theorem.
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III) From uniqueness of V we can prove in the same way as II) that π1(M) = Zl,
for some positive integer l, and there is a unique G-orbit in M diffeomorphic to
Tl × Rr for some integer r. Thus we get part b3) of the theorem.
3) Consider a G-orbit B in M . There is a Ĝ-orbit D in Rn such that B = k(D).
Since D is flat then B is flat and homogeneous, and it must be diffeomorphic to
Rt × Tl for some integers t, l. This is part c) of the theorem.

3. C2-G-manifolds of Negative Curvature

If M is a Riemannian manifold and δ ∈ Iso(M), the squared displacement func-
tion d2

δ : M →M is defined by

d2
δ(x) = d(x, δx).

Fact 3.1 (see [5]). If M is a simply connected Riemannian manifold of negative
curvature and δ ∈ Iso(M), then one of the followings is true

1) d2
δ has no minimum point.

2) Minimum point set of d2
δ is equal to the fixed point set of δ.

3) minimum point set of d2
δ is the image of a geodesic γ translated by δ (i.e.,

there is a positive number t0 such that for all t, δ(γ(t)) = γ(t+ t0)).

The isometries 1), 2), and 3) are called parabolic, elliptic and axial, respectively.
We recall (see [5]) that infinity M(∞) of a simply connected Riemannian mani-
fold M of nonpositive curvature is the classes of asymptotic geodesics. For each
geodesic γ we denote by [γ] the asymptotic class of geodesics containing γ. If
x ∈ M , then there is a unique (up to parametrization) geodesic γx in the class [γ]
containing x, and there is a unique hypersurface Sx containing x and perpendicular
to all elements of [γ]. Sx is called a horosphere.
Fact 3.2 (see [3, 5]).
a) Let M be a simply connected Riemannian manifold of negative curvature.

1) If g is an axial isometry ofM , then the geodesic γ with the property g(γ) =
γ is unique.

2) If g is a parabolic isometry of M , then there is a unique class of asymptotic
geodesics [γ] such that g[γ] = [γ].

b) Let G be a connected and solvable Lie subgroup of isometries of a simply con-
nected and negatively curved Riemannian manifoldM . Then one of the followings
is true

1) Fix(G,M) 6= ∅.
2) There is a unique G-invariant geodesic.
3) There is a unique class of asymptotic geodesics [γ] such that G[γ] = [γ].



Cohomogeneity Two Riemannian Manifolds of Non-Positive Curvature 239

Corollary 1 ([12, 18]). If M is a simply connected Riemannian manifold of neg-
ative curvature and G is a closed and connected subgroup of Iso(M) such that
Fix(G,M) = ∅, then there is at most one totally geodesic G-orbit in M .

Corollary 2. IfM is a negatively curved, non-simply connected, Riemannian man-
ifold and M̃ is the universal covering of M , then for each deck transformation δ
there is a geodesic γ in M̃ such that δγ = γ.

Proof: Let x0 ∈ M and [α] ∈ π1(M,x0). Suppose that [α] is the corresponding
element of δ in the canonical isomorphism between ∆ and π1(M,x0) (see [15]
p. 186). Let β: [0, 1]→M be a geodesic segment such that β(0) = β(1) = x0 and
[β] = [α]. Let κ(x̃) = x0 and β̃ be the unique lift of β to M̃ such that β̃(0) = x̃. It
follows from the elementary properties of covering spaces that δ(x̃) = β̃(1). Now,
if γ is the extension of geodesic segment β̃ to a geodesic in M̃ then δ(γ) = γ. �

Lemma 1 ([11]). Let M be a Riemannian manifold of negative curvature, n =

dimM ≥ 3, and M̃ be its universal covering. If there is a geodesic γ on M̃ and
an element δ in the center of the deck transformation group ∆, such that δγ = γ,
then M is diffeomorphic to one of the following spaces

S1 × Rn−1, B2 × Rn−2

where B2 is the mobius band.

Theorem 4 ([11]). Let Mn+2 be a complete negatively curved and non-simply
connected Riemannian manifold which is of cohomogeneity two under the action
of a closed and connected Lie subgroup of isometries. If Fix(G,M) 6= ∅, then

a) M is diffeomorphic to S1 × Rn+1 or B2 × Rn(B2 is the mobius band)

b) Fix(G,M) is diffeomorphic to S1

c) Each principal orbit is diffeomorphic to Sn.

Remark 1. By Theorem 3.7 a) in [17], if M is a non-simply connected and com-
plete Riemannian manifold of negative curvature, which is of cohomogeneity one
under the action of a connected and closed subgroup of isometries, and if there
is not any singular orbit, then there are positive integers p, s such that M is dif-
feomorphic to Rp × Rs+1 and each orbit is diffeomorphic to Rp × Rs, p + s =
dimM − 1.

Theorem 5 ([12]). Let Mn, n ≥ 3, be a complete negatively curved Riemannian
manifold andG be a closed, connected and non-semisimple subgroup of isometries
of Mn. If M is a cohomogeneity two G-manifold such that the singular orbits (if
there are any) are fixed points of G. Then one of the following is true

1) M is simply connected (diffeomorphic to Rn).
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2) M is diffeomorphic to S1 ×Rn−1 or B2 ×Rn−2(B2 is the mobious band).
Each principal orbit is diffeomorphic to Sn−2. Union of singular orbits
Fix(G,M) is diffeomorphic to S1.

3) M is diffeomorphic to S1 × R2 or B2 × R. All orbits are diffeomorphic to
S1.

4) π1(M) = Zp for some positive integer p, and all orbits are diffeomorphic
to Rn−2−p × Tp.

Sketch of the proof: Following Fact 2.1, let M̃ be the universal Riemannian cov-
ering manifold of M with the deck transformation group ∆ and let G̃ be the corre-
sponding connected covering ofG which acts isometrically and by cohomogeneity
two on M̃ . If Fix(G̃, M̃) 6= ∅ then Fix(G,M) 6= ∅, so by Theorem 4, we get the
parts 1) or 2) of the theorem. Now, suppose that Fix(G̃, M̃) = ∅. By assumptions
of the theorem, if there is a singualr orbit, it must be a fixed point. So all G̃-orbits in
M̃ must be (n−2)-dimensional. SinceG is non-semisimple, G̃ is non-semisimple.
Let H be a solvable normal subgroup of G̃ and put N = Fix(H, M̃). We consider
the following two cases separately

a) N = ∅, b) N 6= ∅.

a) By Fact 3.2 b), one of the following is true:

a-i) There is a unique geodesic γ such that H(γ) = γ.
a-ii) There is a unique class of asymptotic geodesics [γ] such that H[γ] = [γ].

a-i) From normality of H in G̃ and uniqueness of γ, we get that G̃(γ) = γ. Since
Fix(G̃, M̃) = ∅ then γ is a G̃-orbit in M̃ . But all orbits are (n − 2)-dimensional
and the orbit γ is of dimension one. Thus all orbits are of dimension one and
n− 2 = 1. Each δ ∈ ∆ maps G̃-orbits onto G̃-orbits. So δ(γ) is a G̃-orbit. Since
by Corollary 1, γ is the unique geodesic orbit, then δ(γ) = γ. Thus ∆γ = γ and
π1(M) = Z (see [4], Theorem 3.4, §261). Now, by Lemma 1, M is diffeomorphic
to S1 × R2 or B2 × R. Since all G-orbits of M are regular (and diffeomorphic to
each other) and the G-orbit γ

∆ is diffeomorphic to γ/Z = R/Z = S1, all G-orbits
are diffeomorphic to S1. This is part 3) of the theorem.
a-ii) By Corollary 2, each δ ∈ ∆ is axial. Consider a δ ∈ ∆ and Let λ be the
unique geodesic in M̃ such that δ(λ) = λ. Since the elements of ∆ and G̃ are
commutative, for each g ∈ G̃ we have

δ(gλ) = g(δλ) = gλ.

Since λ with the property δ(λ) = λ is unique, we get that gλ = λ. So λ is a
G̃-orbit, and we get the part 3) of the theorem in a similar way in a-i).
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b) N is a nontrivial totally geodesic submanifold of M̃ . If g ∈ G̃, h ∈ H and
x ∈ N , then

g−1hg(x) = x⇒ hg(x) = g(x)⇒ g(x) ∈ N.
Thus G̃(N) = N . All orbits are of dimension n− 2. So if x ∈ N , then

n− 2 = dimG̃(x) ≤ dimN < dimM̃ = n⇒ dimN = n− 2 or n− 1.

Now, consider two cases dimN = n and dimN = n+ 1 separately.
b-j) dimN = n− 2.
In this case, N is a G̃-orbit. If n − 2 = 1, in a similar way in (a-i) we get part
(3) of the theorem. Suppose n − 2 ≥ 2 and put N1 = κ(N). By Corollary 1, N
is the unique totally geodesic G̃-orbit in M̃ . Thus, for each δ ∈ ∆, δ(N) = N ,
so N1 = N/∆. But N1 is a totally geodesic G-orbit in M , so it must be simply
connected (since by Kobayashi’s theorem in [6] homogeneous manifolds of neg-
ative curvature are simply connected). Therefore, ∆ is trivial and M is simply
connected. This is the part 1) of the theorem.
b-jj) dimN = n − 1 Since all orbits are of dimension n − 2, N is a negatively
curved cohomogeneity one G̃-manifold. Consider following two cases:

b-jj-1) There is a δ ∈ ∆ and x ∈ M̃ such that δG̃(x) 6= G̃(x).

b-jj-2) For each δ ∈ ∆ and x ∈ M̃ , δG̃(x) = G̃(x).

b-jj-1) From the fact that δ maps orbits on to orbits, we get that δG̃(x) = G̃(y),
y ∈ M̃ (i.e., G̃(x) ∩ G̃(y) = ∅). By Proposition 4.2 in [1], the minimum point set
of the following function is at most the image of a geodesic

fδ : M̃ → R, fδ(x) = d2(x, δ(x)).

So we can find a geodesic γ such that the image of γ is not the minimum point
set of fδ and γ(0) ∈ G(x), γ(1) ∈ G(y). Put g(t) = fδ(γ(t)). Since the ele-
ments of ∆ and G̃ are commutative, fδ is constant along orbits ( because fδ(gx) =
d2(gx, δgx) = d2(gx, gδx) = d2(x, δx) = fδ(x)). Since δ(γ(0)) ∈ G(γ(1)),
then fδ(δγ(0)) = fδ(γ(1)). Thus

g(0) = fδ(γ(0)) = d2(γ(0), δ(γ(0))) = d2(δ(γ(0)), δ2(γ(0)))

= fδ(δγ(0)) = fδ(γ(1)) = g(1).

Since g is strictly convex (see [1]), it has a unique minimum point t0 ∈ (0, 1).
Therefore, G̃(γ(t0)) is the minimum point set of fδ, which must be a geodesic.
Then G̃(γ(t0)) is a (geodesic) one dimensional G̃-orbit. Then in a similar way in
a-i) we get part 3) of the theorem.
b-jj-2) Put N1 = κ(N). Since for each δ ∈ ∆, δ(N) = N then π1(M) = π1(N1).
N1 is a cohomogeneity one G-manifold of negative curvature, without singular
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orbits. So, by Remark 1, each G-orbit in N1 is diffeomorphic to Tp ×Rs, p+ s =
dimN − 1 = n− 2, and N1 is diffeomorphic to Tp ×Rs+1. These yield to part 4)
of the theorem.

4. C2-G-manifolds of Constant Negative Curvature

Theorem 6. Let Mn(c), n ≥ 3, be a complete Riemannian manifold of constant
sectional curvature c < 0 and let G be a connected and closed Lie subgroup of
isometries which acts by cohomogeneity two on M . Then one of the following is
true

a) M is simply connected, i.e, M = Hn(c)

b) Each orbit is diffeomorphic to Rm×Tn−2−m, for some nonnegative integer
m, and M is a union of totally geodesic cohomogeneiy one Riemannian
G-submanifolds

c) π1(M) = Z and either there is an orbit diffeomorphic to S1 or Fix(G,M)=
S1

d) π1(M) = Zk for some positive integer k, and M is a union of the following
two types of orbits

d1) The orbits which are diffeomophic to Rm−k×Tk for some positive in-
teger m. Union of this type of orbits is a totally geodesic submanifold
of M

d2) The orbits covered by Sn−2−m × Rm.

Sketch of the proof: Hn(c) is the universal Riemannian covering manifold of M .
Let ∆ be the deck transformation group and G̃ be the corresponding connected
covering of G, which acts isometrically and by cohomogeneity two on Hn(c) (as
mentioned in Fact 2.1). By the main theorem of [18], we have three cases below

i) G̃ has a fixed point.
ii) G̃ has a unique nontrivial totally geodesic orbit.

iii) All orbits are included in horospheres centered at the same point at the in-
finity.

We study each case separately.
i) Let F = {x ∈ Hn(c) ; G̃(x) = x}. If dimF ≥ 2, then the cohomogene-
ity of the action of G̃ on Hn(c) is ≥ 3 (see [11]), which is a contradiction. If
dim(F ) = 1, then F is the image of a geodesic λ. Since each δ in ∆ commutes
with elements of G̃ we get ∆(λ) = λ. So π1(M) = Z. The set B = F/∆ (which
is diffeomorphic to S1) is equal to Fix(G,M). This is part c) of the theorem. If
dim(F ) = 0, then F is a one point set, so M is simply connected and we get part
a) of the theorem.



Cohomogeneity Two Riemannian Manifolds of Non-Positive Curvature 243

ii) We get from uniqueness of P that ∆(P ) = P . If dimP = 1, then P is a
geodesic and we get part c) of the theorem in the same way as i). If dimP > 1,
then k(P ) is homogeneous and of negative curvature. Then it is simply connected
and the covering map k : P → k(P ) must be trivial. Therefore, the covering map
Hn(c)→M is trivial and M is simply connected (part a) of the theorem).
iii) LetQt be a one-parameter family of horospheres, such that G̃(Qt) = Q(t) (see
[18]). Since the action of G̃ on Hn(c) is of cohomogeneity two, we can show that
for each t the action of G̃ on Qt is of cohomogeneity one. So one of the following
cases is true ([13])

1) Each orbit in Qt, t ∈ R, is isometric to Rn−2

2) There is m < n − 2 such that one orbit of Qt, t ∈ R, is isometric to Rm,
and the other orbits are diffeomorphic to Sn−2−m × Rm.

1) Consider an orbit D in M . We have D = k(V ), where V is a G̃-orbit in
Hn(c). Since V is isometric to Rn−2 and D is flat (and homogeneous). So it
is diffeomorphic to Rm × Tn−2−m. We can show that for each t, there is a G̃-
orbit Vt in Qt, such that T =

⋃
t Vt is a totally geodesic cohomogeneity one G̃-

submanifold of Hn(c). Therefore, k(T ) is a totally geodesic cohomogeneity one
G-submanifold of M . Since Hn(c) is a union of such submanifols T , we get part
b) of the theorem.
2) Let Vt be the orbit in Qt which is isometric to Rm. Then the set Ñ =

⋃
t Vt is

a totally geodesic G̃-submanifold of Hn(c). So N = k(Ñ) is a totally geodesic
G-submanifold of M . Since dimÑ = dimVt + 1, then Ñ is a cohomogeneity one
G̃-submanifold. Hn(c) = Ñ

⋃
(Hn(c) − Ñ) is a union of two types of orbits.

Orbits in Ñ which are isometric to Rn−2, and the orbits in (Hn(c) − Ñ) which
are diffeomorphic to Rm × Sn−2−m. Since each δ in ∆ maps orbits to orbits, by
dimensional reasons we have

∆(Ñ) = Ñ , ∆(Hn(c)− Ñ) = Hn(c)− Ñ .
Therefore, we can show that one of the parts (a) or (c) of the theorem is true, or we
have

M =
Hn(c)

∆
=
Ñ

∆

⋃ Hn(c)− Ñ
∆

·

The orbits of Ñ/∆(=N ) are diffeomorphic to Rr × Tk and the orbits in Hn(c)−Ñ
∆

are covered by Rm × Sn−2−m. Thus we get part d) of the theorem.
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