
C H A P T E R  8 

The Wishart Distribution 

The Wishart distribution arises in a natural way as a matrix generalization 
of the chi-square distribution. If X,,. . . , X,, are independent with C(4) = 

N(0, l), then C;T* has a chi-square distribution with n degrees of freedom. 
When the are random vectors rather than real-valued random variables 
say Xi E RP with C(X> = N(0, I,), one possible way to generalize the 
above sum of squares is to form the p X p positive semidefinite matrix 
S = C;X, x. Essentially, this representation of S is used to define a Wishart 
distribution. As with the definition of the multivariate normal distribution, 
our definition of the Wishart distribution is not in terms of a density 
function and allows for Wishart distributions that are singular. In fact, most 
of the properties of the Wishart distribution are derived without reference to 
densities by exploiting the representation of the Wishart in terms of normal 
random vectors. For example, the distribution of a partitioned Wishart 
matrix is obtained by using properties of conditioned normal random 
vectors. 

After formally defining the Wishart distribution, the characteristic func- 
tion and convolution properties of the Wishart are derived. Certain gener- 
alized quadratic forms in normal random vectors are shown to have Wishart 
distributions and the basic decomposition of the Wishart into submatrices is 
given. The remainder of the chapter is concerned with the noncentral 
Wishart distribution in the rank one case and certain distributions that arise 
in connection with likelihood ratio tests. 

8.1. BASIC PROPERTIES 

The Wishart distribution, or more precisely, the family of Wishart distribu- 
tions, is indexed by a p X p positive semidefinite symmetric matrix Z, by a 



dimension parameter p ,  and by a degrees of freedom parameter n.  Formally, 
we have the following definition. 

Definition 8.1. A random p x p symmetric matrix S has a Wishart distri- 
bution with parameters Z, p ,  and n if there exist independent random 
vectors X, , .  . . , X, in RP such that C ( X , )  = N(0,  Z ) ,  i = 1,. . . , n and 

In this case, we write C ( S )  = W ( Z ,  p ,  n ) .  

In the above definition, p and n are positive integers and Z is a p X p 
positive semidefinite matrix. When p = 1, it is clear that the Wishart 
distribution is just a chi-square distribution with n degrees of freedom and 
scale parameter Z 2 0. When Z = 0,  then X, = 0 with probability one, so 
S = 0 with probability one. Since C;X,X; is positive semidefinite, the 
Wishart distribution has all of its mass on the set of positive semidefinite 
matrices. In an abuse of notation, we often write 

when C ( S )  = W ( Z ,  p ,  n ) .  As distributional questions are the primary con- 
cern in this chapter, this abuse causes no technical problems. If X E Cp, , 
has rows Xi, .  . . , XA, it is clear that C ( X )  = N(0, I ,  @ Z )  and X'X  = 

L;tXIXl!. Thus if C ( S )  = W ( Z ,  p ,  n ) ,  then C ( S )  = C ( X ' X )  where C ( X )  = 

N(0,  I ,  €3 Z )  in CP,?. Also, the converse statement is clear. Some further 
properties of the Wishart distribution follow. 

Proposition 8.1. If C ( S )  = W ( Z ,  p ,  n )  and A is an r  x p matrix, then 
C ( A S A f )  = W ( A Z A f ,  r ,  n ) .  

Proof: SinceC(S)= W ( Z , p , n ) ,  

where C ( X )  = N(0,  I ,  8 Z )  in Cp, ,. Thus C(ASA ' )  = C(AX'XA')  = 

C [ ( ( I ,  8 A ) X ) ' ( I ,  8 A ) X ] .  But Y = ( I ,  @ A ) X  satisfies C ( Y )  = 

N(0,  I ,  @ ( A Z A ' ) )  in Cr,. and C ( Y f Y )  = C ( A S A f ) .  The conclusion follows 
from the definition of the Wishart distribution. 
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One consequence of Proposition 8.1 is that, for fixed p and n, the family 
of distributions {W(& p, n)lE > 0) can be generated from the W(I,, p, n) 
distribution and p X p matrices. Here, the notation Z >, 0 (Z > 0) means 
that Z is positive semidefinite (positive definite). To see this, if C(S) = 

W(I,, p, n) and Z = AA', then 

In particular, the family {W(Z, p, n)(Z > 0) is generated by the W(I,, p, n) 
distribution and the group GI, acting on S, by A(S) = ASA'. Many proofs 
are simplified by using the above representation of the Wishart distribution. 
The question of the nonsingularity of the Wishart distribution is a good 
example. If C(S) = W(2, p, n), then S has a nonsingular Wishart distribu- 
tion if S is positive definite with probability one. 

Proposition 8.2. Suppose C(S) = W(Z, p, n). Then S has a nonsingular 
Wishart distribution iff n > p and Z > 0. If S has a nonsingular Wishart 
distribution, then S has a density with respect to the measure v(dS) = 

dS/I S I (P+ ')I2 given by 

Here, o (p ,  n) is the Wishart constant defined in Example 5.1. 

Proof. Represent the W(Z, p, n) distribution as C(AS,A') where C(S,) = 

W(I,, p, n) and AA' = Z. Obviously, the rank of A is the rank of Z and 
Z > 0 iff rank of 2 is p. If n < p, then by Proposition 7.1, if C(X,) = 

N(0, I,), i = 1,. . . , n, the rank of C;&,X is n with probability one. Thus 
S, = C; Xi ,X has rank n, which is less than p, and S = AS, A' has rank less 
than p with probability one. Also, if the rank of Z is r < p, then A has rank 
r so AS, A' has rank at most r no matter what n happens to be. Therefore, if 
n < p or if Z is singular, then S is singular with probability one. Now, 
consider the case when n >, p and Z is positive definite. Then S, = C;X,,X 
has rank p with probability one by Proposition 7.1, and A has rank p. 
Therefore, S = AS, A' has rank p with probability one. 

When Z > 0, the density of X E f?,, is 

when C(X) = N(0, In 8 Z). When n >, p, it follows from Proposition 7.6 
that the density of S with respect to v(dS) isp(SJZ). 



Recall that the natural inner product on S,, when S, is regarded as a 
subspace of C,, , , is 

The mean vector, covariance, and characteristic function of a Wishart 
distribution on the inner product space (S,, ( . , .)) are given next. 

Proposition 8.3. Suppose C(S) = W(2, p, n) on (S,, ( . , .)). Then 

(i) &S = n2. 

(ii) Cov(S) = 2nZ 8 2.  
(iii) +(A) = &exp[i(A, S)] = II, - ~ ~ Z A I - " ' ~ .  

Proof. To prove (i) write S = CT4X where C ( 4 )  = N(0, Z), and XI,. . . , 
X, are independent. Since &X,X; = 2,  it is clear that &S = nZ. For (ii), the 
independence of XI,. . . , Xn implies that 

Cov(S) = Cov C 4q = C Cov( X i y )  = n Cov( XI Xi) i: i : 
where XI XI is the outer product of XI relative to the standard inner 
product on RP. Since C(Xl) = C(CZ) where C(Z) = N(0, I,) and CC' = 2 ,  
it follows from Proposition 2.24 that Cov(Xl XI) = 2 2  8 2. Thus (ii) 
holds. To establish (iii), first write C'AC = r D r '  where A E S,, CC' = 2 ,  
r E a,, and D is a diagonal matrix with diagonal entries A,, . . . , A,. Then 

Again, C(Xl) = C(CZ) where C(Z) = N(0, I,). Also, C(I'Z) = C(Z) for 
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r E Op. Therefore, 
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[(A) = & exp[iX;AXl] = &exp[iZfCfACZ] 

where Z,, . . . , Zp are the coordinates of Z. Since Z,, . . . , Zp are independent 
with C(Zj) = N(0,  I), Z; has a X: distribution and we have 

The next to the last equality is a consequence of Proposition 1.35. Thus (iii) 
holds. 

Proposition 8.4. If C (S,) = W(2,  p, n,) for i = 1,2 and if S, and S2 are 
independent, then I?(S, + S,) = W(Z, p, n, + n,). 

Prooj An application of (iii) of Proposition 8.3 yields this convolution 
result. Specifically, 

@(A) = & exp[i(A, S, + S,)] = n & exp i(A, 3) 
j= 1 

The uniqueness of characteristic functions shows that C(S, + S,) = 

W(Z, p, n, + n,). 

It should be emphasized that ( . , .) is not what we might call the 
standard inner product on Sp when Sp is regarded as a [ p ( p  + 1)/2]- 
dimensional coordinate space. For example, if p = 2, and S, T E Sp, then 

(S, T)  = trST = s l , t l l  + s2,t2, + 2sI2t,, 

while the three-dimensional coordinate space inner product between S and 



T would be s l , t l ,  + s2,t2, + s12tl,. In this connection, equation (ii) of 
Proposition 8.3 means that 

cov((A, S ) ,  (B, S))  = 2n(A, ( 2  8 Z)B) 

= 2n(A, ZBZ) = 2n tr(AZBZ), 

that is, (ii) depends on the inner product ( . , .) on Sp and is not valid for 
other inner products. 

In Chapter 3, quadratic forms in normal random vectors were shown to 
have chi-square distributions under certain conditions. Similar results are 
available for generalized quadratic forms and the Wishart distribution. The 
following proposition is not the most general possible, but suffices in most 
situations. 

Proposition 8.5. Consider X E Cp, where C(X) = N(p, Q 8 2). Let S = 

X'PX where P is n x n and positive semidefinite, and write P = A2 with A 
positive semidefinite. If AQA is a rank k orthogonal projection and if 
Pp = 0, then 

Proof: With Y = AX, it is clear that S = Y'Y and 

Since %(A) = %(P)  and Pp = 0, Ap = 0 so 

By assumption, B = AQA is a rank k orthogonal projection. Also, S = Y'Y 
= Y'BY + Yf(I - B)Y, and C((I - B)Y) = N(0,O 8 Z) so Yf(I - B)Y is 
zero with probability one. Thus it remains to show that if C(Y) = N(0, B 8 
Z) where B is a rank k orthogonal projection, then S = Y'BY has a 
W(Z, p, k )  distribution. Without loss of generality (make an orthogonal 
transformation), 

Partitioning Y into Y, : k X p and Y2 : (n - k) X p, it follows that S = Y;Y, 



308 THE WISHART DISTRIBUTION 

and 

Thus C ( S )  = W ( 2 ,  p ,  k ) .  

+ Example 8.1. We again return to the multivariate normal linear 
mode1 introduced in Example 4.4. Consider X E C,, with 

where p is an element of the subspace M G C, , ,  defined by 

= { X I X  E C p , n ,  x = Z B ,  B E Cp,  k ) .  

Here, Z is an n x k matrix of rank k and it is assumed that 
n - k 2 p.  With P, = Z(Z'Z) - ' z ' ,  PM = P, 8 I, is the orthogonal 
projection onto M and Q M  = Q ,  @ I,, Q ,  = I  - P,, is the orthogo- 
nal projection onto M I  . We know that 

is the maximum likelihood estimator of p. As demonstrated in 
Example 4.4, the maximum likelihood estimator of Z is found by 
maximizing 

Since n - k >, p,  x'Q,x has rank p with probability one. When 
X'Q, X has rank p,  Example 7.10 shows that 

is the maximum likelihood estimator of Z. The conditions of 
Proposition 8.5 are easily checked to verify that S = X'Q,X has a 
W(Z, p ,  n  - k )  distribution. In summary, for the multivariate lin- 
ear model, f i  = P,X and 5 = n-'X'Q,X are the maximum likeli- 
hood estimators of p and Z. Further, f i  and 2 are independent and 

e ( & )  = ~ ( z ,  p ,  n  - k ) .  # 



PROPOSITION 8.6 

8.2. PARTITIONING A WISHART MATRIX 

The partitioning of the Wishart distribution considered here is motivated 
partly by the transformation described in Proposition 5.8. If C ( S )  = 

W ( Z ,  p ,  n )  where n 2 p, partition S  as 

where S,, = S; ,  and let 

Here, Sij is pi X pj for i ,  j = 1,2 sop,  + p, = p.  The primary result of t h s  
section describes the joint distribution of ( S , ,  . ,, S,,, S,,) when 2 is nonsin- 
gular. This joint distribution is derived by representing the Wishart distribu- 
tion in terms of the normal distribution. Since C ( S )  = W ( Z ,  p ,  n ) ,  S  = X'X 
where C ( X )  = N(0, In 8 2) .  Discarding a set of Lebesgue measure zero, X 
is assumed to take values in %, the set of all n  x p  matrices of rankp. With 

it is clear that 

Thus 

where 

is an orthogonal projection of rank n - p,  for each value of X, when 
X  E %. To obtain the desired result for the Wishart distribution, it is useful 
to first give the joint distribution of ( Q X , ,  PX , ,  X,). 

Proposition 8.6. The joint distribution of ( Q X , ,  P X , ,  X , )  can be described 
as follows. Conditional on X,, QXl  and PX,  are independent with 
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Also, 

Proof: From Example 3.1, the conditional distribution of XI given X2, say 
c ( X , l x , > ,  is 

Thus conditional on X,, the random vector 

is a linear transformation of X I .  Thus W has a normal distribution with 
mean vector 

Q@IPI ,,-,, 
( r e  iP ] 2 I  = ( i Z 2 2 2 1 )  

since QX, = 0 and PX, = X,. Also, using the calculational rules for parti- 
tioned linear transformations, the covariance of W is 

since QP = 0. The conditional independence and conditional distribution of 
Q X ,  and PX,  follow immediately. That X, has the claimed marginal 
distribution is obvious. 

Proposition 8.7. Suppose C ( S )  = W(2 ,  p ,  n )  with n >, p  and Z > 0. Parti- 
tion S  into S,,, i, j = 1,2, where S,, is pi x p,, p ,  + p, = p, and partition Z 
similarly. With S , , . ,  = S , ,  - S I 2 S ~ ' S 2 , ,  S , , . ,  and (S,,, S,,) are stochasti- 
cally independent. Further, 



PROPOSITION 8.7 

and conditional on S,,, 

The marginal distribution of S,, is W(E,,, p,, n ) .  

Proof. In the notation of Proposition 8.6, consider X E % with C ( X )  = 

N(0,  I, @ 2 )  and S = X'X. Then S,, = Z X ,  for i, j = 1, 2 and 
S , , , ,  = X;QX,. Since PX,  = X,  and S,, = X;X, ,  we see that S2, = 

( PX,  )'XI = X; P X ,  , and conditional on X,, 

To show that S , , . ,  and (S,,, S,,) are independent, it suffices to show that 

for bounded measurable functions f and h with the appropriate domains of 
definition. Using Proposition 8.6, we argue as follows. For fixed X,, QX,  
and P X ,  are independent so S , ,  . , = XiQQX, and S,, = X;PX, are condi- 
tionally independent. Also, 

and Q is a rank n - p, orthogonal projection. By Proposition 8.5, 
C (x ;QX, l  x2) = W ( E , ,  . ,, p , ,  n - p,) for each X, so X;QXl and X2 are 
independent. Conditioning on X,, we have 

Therefore, S ,  , . , and (S,,, S2,) are stochastically independent. To describe 
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the joint distribution of S2, and S2,, again condition on X2. Then 

and this conditional distribution depends on X2 only through Sz2 = X;X2. 
Thus 

That S2, has the claimed marginal distribution is obvious. 

By simply permuting the indices in Proposition 8.7, we obtain the 
following proposition. 

Proposition 8.8. With the notation and assumptions of Proposition 8.7, let 
S2,., = S,, - S2,Sfi1~,,. Then S,,., and (S,,, S,,) are stochastically inde- 
pendent and 

C(S22.I) = W(222.1, P2, n -PI) .  

Conditional on S, , , 

and the marginal distribution of S, ,  is W(Z,,, p, ,  n). 

Proposition 8.7 is one of the most useful results for deriving distributions 
of functions of Wishart matrices. Applications occur in this and the remain- 
ing chapters. For example, the following assertion provides a simple proof 
of the distribution of Hotelling's-T2, discussed in the next chapter. 

Proposition 8.9. Suppose So has a nonsingular Wishart distribution, say 
W(2, p, n), and let A be an r x p matrix of rank r. Then 

e((as;'ar)') = W ( ( A Z - ~ A ~ ) - ' ,  r ,  n - p + r ) .  

Proof: First, an invariance argument shows that it is sufficient to consider 
the case when Z = I .  More precisely, write E = B2 with B > 0 and let 
C = AB-'. With S = B-'s,B-', C(S) = W(I, p, n) and the assertion is 
that 



PROPOSITION 8.9 

Now, let '4' = C'(CC')-'/2, SO the assertion becomes 

c((*'s-'*)-I) = W(I,, r ,  n - p  + r ) .  

However, \k is p X r and satisfies \kf'4' = I,-that is, * is a linear isometry. 
Since C( r 'S r )  = e ( S )  for all r E BP, 

Choose T so that 

For this choice of r ,  the matrix (P'I"S-'I'\k)-' is just the inverse of the 
r x r upper left corner of S-I, and this matrix is 

where V is r x r. By Proposition 8.7, 

since C(S) = W(I, p, n). This establishes the assertion of the proposition. 

When r = 1 in Proposition 8.9, the matrix A' is nonzero vector, say 
A' = a E Rp. In this case, 

when C(S) = W(2, p, n). Another decomposition result for the Wishart 
distribution, which is sometimes useful, follows. 

Lemma 8.10. Suppose S has a nonsingular Wishart distribution, say C(S) 
= W(Z, p, n), and let S = TT' where T E G;. Then the density of T with 
respect to the left invariant measure v(dT) = dT/Iltli is 
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where S,, is pi x p,, p, + p2 = p, then S, ,  = TIIT; , ,  S,,  = TllT;l,  and 
S2, ., = T2,Ti2. Further, the pair (T I , ,  T,,) is independent of T2, and 

Proof. The expression for the density of T  is a consequence of Proposition 
7.5, and a bit of algebra shows that S , ,  = TI ,Ti,, S12 = TI  ,Ti,, and S2,. , = 

T2,Ti2. The independence of ( T I , ,  T2,) and T2, follows from Proposition 8.8 
and the fact that the mapping between S  and T  is one-to-one and onto. 
Also, 

Since S l l  and T I ,  are one-to-one functions of each other and S12 = TIIT;, ,  

~ ~ T l , T ; l I T l l )  = N ( T I I T ; I ~ , ' ~ I ~ ~  T I IT ; ,  @ 2 2 2 . 1 ) .  

Thus 

and T I ,  is fixed. 

Proposition 8.11. Suppose S  has a nonsingular Wishart distribution with 
C ( S )  = W ( 2 ,  p, n )  and assume that 2 is diagonal with diagonal elements 
a l l , .  . . , a,,. If S  = TT' with T  E G:, then the random variables {tijli > j }  
are mutually independent and 

C (ti ,)  = N(0,  a,,) for i  > j 

and 



PROPOSITION 8.1 1 

ProoJ: First, partition S, 2 ,  and T as 

where S,, is 1 x 1. Since Z,, = 0, the conditional distribution of T,, given 
TI, does not depend on TI, and 8,, has diagonal elements a,,, . . . , a,,. It 
follows from Proposition 8.10 that t, ,, Ti,, and T,, are mutually indepen- 
dent and 

The elements of T,, are t,,, t,,, . . . , t,,, and since Z,, is diagonal, these are 
independent with 

C(til) = N(0, a,,), i = 2,. . . , p .  

Also. 

and 

The conclusion of the proposition follows by an induction argument on the 
dimension parameter p. 

When C(S) = W(Z, p, n) is a nonsingular Wishart distribution, the 
random variable JSI is called the generalized variance. The distribution of IS\ 
is easily derived using Proposition 8.1 1. First, write Z = B2 with B > 0 and 
let S, = B-'SB-'. Then C(S,) = W(I ,  p, n) and IS1 = IZIIS,I. Also, if 
TT' = S,, T E G: ,  then C(ti) = X Z , - i +  , for i = 1,. . . , p,  and t,,, . . . , tpp 
are mutually independent. Thus 

P 

c(Isl) = ~ ( l ~ l l s l l )  = e(ImllTTfl) = E ( 1 x 1 ~  t i )  

Therefore, the distribution of IS1 is the same as the constant 1x1 times a 
product of p independent chi-square random variables with n - i + 1 
degrees of freedom for i = 1,. . . , p. 
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8.3. THE NONCENTRAL WISHART DISTRIBUTION 

Just as the Wishart distribution is a matrix generalization of the chi-square 
distribution, the noncentral Wishart distribution is a matrix analog of the 
noncentral chi-square distribution. Also, the noncentral Wishart distribu- 
tion arises in a natural way in the study of distributional properties of test 
statistics in multivariate analysis. 

Definition 8.2. Let X  E Cp, have a normal distribution N ( p ,  In €3 2 ) .  A 
random matrix S  E Sp has a noncentral Wishart distribution with parame- 
ters 2 ,  p, n ,  and A  = p'p if C ( S )  = C ( X r X ) .  In this case, we write 
C ( S )  = W ( Z ,  p, n;  A). 

In thls definition, it is not obvious that the distribution of X'X depends 
on p  only through A  = p'p. However, an invariance argument establishes 
this. The group 8, acts nn C P , ,  by sending x into T x  for x  E CP,, and 
r E 8,. A maximal invariant under t h s  action is x'x. When C ( X )  = 

N ( p ,  In €3 Z ) ,  C( I 'X)  = N ( r p ,  In €3 2 )  and we know the distribution of 
X'X depends only on a maximal invariant parameter. But the group action 
on the parameter space is ( p ,  Z )  -+ ( r p ,  2 )  and a maximal invariant is 
obviously (p'p,  Z ) .  Thus the distribution of X'X depends only on (p'p,  2). 

When A  = 0, the noncentral Wishart distribution is just the W ( Z ,  p, n )  
distribution. Let Xi,. . . , Xi be the rows of X  in the above definition so 
X,,. . . , Xn are independent and C ( X , )  = N ( p i ,  Z )  where p;,. . . , ph are the 
rows of p. Obviously, 

where Ai = pipi. Thus S, = XiX,', i = 1 , .  . . , n ,  are independent and it is 
clear that, if S  = X'X, then 

In other words, the noncentral Wishart distribution with n  degrees of 
freedom can be represented as the convolution of n  noncentral Wishart 
distributions each with one degree of freedom. This argument shows that, if 
C(S , )  = W ( Z ,  p, n,; A i )  for i = 1,2 and if S ,  and S, are independent, then 
C ( S ,  + S,) = W ( Z ,  p, n ,  + n,, A, + A,). Since 



it follows that 

GS = nZ + A 

when C(S) = W(Z, p ,  n; A). Also, 

but an explicit expression for Cov(S,) is not needed here. As with the 
central Wishart distribution, it is not difficult to prove that, when C(S) = 

W(Z, p, n; A), then S is positive definite with probability one iff n > p and 
Z > 0. Further, it is clear that if C(S) = W(Z, p, n; A) and A is an r x p 
matrix, then C(ASA') = W(AZAf, r, n; AAA'). The next result provides an 
expression for the density function of S in a special case. 

Proposition 8.12. Suppose t ( S )  = W(2, p, n; A) where n > p and Z > 0, 
and assume that A has rank one, say A = 1/17! with 17 E RP. The density of S 
with respect to v(dS) = dS/lS~(p+') /~ is given by 

where p(SIZ) is the density of a W(Z, p, n) distribution given in Proposi- 
tion 8.2 and the function H is defined in Example 7.13. 

Proof. Consider X E CP,., with C(X) = N(p, In 8 Z)  where p E 4,. and 
p'p = A. Since S = X'X 1s a maximal invariant under the action of 8, on 
Cp, ., the results of Example 7.15 show that the density of S with respect to 
the measure vo(dS) = (&)"pa (n, p) l~ l (" -p- ' ) /~  dS is 

Here, f is the density of X and p, is the unique invariant probability 
measure on 8,. The density of X is 

Substituting this into the expression for h(S) and doing a bit of algebra 
shows that the density p,(SIZ, A) with respect to v is 
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The problem is now to evaluate the integral over On. It is here where we use 
the assumption that A has rank one. Since A = p'p, p must have rank one so 
p = [q' where5 E Rn, 11511 = 1, and q E RP, A = qq'. Since 11511 = 1,E = r,el 
for some I?, E On where E ,  E Rn is the first unit vector. Setting u = 

(TJ 'Z- 'SZ- '~ )~ /~ ,  XZ-lq = U&E, for some r2 E On as UE, and XZ-'q have 
the same length. Therefore, 

The right and left invariance of po was used in the third to the last equality 
and y,, is the (1,l) element of I?. The function H was evaluated in Example 
7.13. Therefore, when A = qq', 

The final result of this section is the analog of Proposition 8.5 for the 
noncentral Wishart distribution. 

Proposition 8.13. Consider X E ep, where C(X) = N ( p ,  Q @ 2 )  and let 
S = X'PX where P 2 0 is n X n.  Write P = with A >, 0. If B = A Q A  is 
a rank k orthogonal projection and if AQPp = Ap,  then 

Proof: The proof of t h s  result is quite similar to that of Proposition 8.5 
and is left to the reader. 

It should be noted that there is not an analog of Proposition 8.7 for the 
noncentral Wishart distribution, at least as far as I know. Certainly, 
Proposition 8.7 is false as stated when S is noncentral Wishart. 

8.4. DISTRIBUTIONS RELATED TO LIKELIHOOD RATIO TESTS 

In the next two chapters, statistics that are the ratio of determinants of 
Wishart matrices arise as tests statistics related to likelihood ratio tests. 



DISTRIBUTIONS RELATED TO LIKELIHOOD RATIO TESTS .. 319 

Since the techniques for deriving the distributions of these statistics are 
intimately connected with properties of the Wishart distribution, we have 
chosen to treat this topic here rather than interrupt the flow of the 
succeeding chapters with such considerations. 

Let X  E C,,, and S  E Sp+ be independent and suppose that C ( X )  = 

N ( p ,  I, @ 2 )  and C ( S )  = W ( 2 ,  p, n )  where n  > p and Z  > 0. We are 
interested in deriving the distribution of the random variable 

for some special values of the mean matrix p  of X. The argument below 
shows that the distribution of U  depends on ( p ,  Z )  only through 
Z- ' /2p 'pZ- ' /2  where 2'12 is the positive definite square root of Z. Let 
S  = 2 ' / 2 ~ , 2 ' / 2  and Y  = Then S ,  and Y  are independent, C ( S , )  = 

W ( I ,  p, n) ,  and C ( Y )  = N ( p Z - ' / 2 ,  I, @ I,). Also, 

U =  IS1 = 
IS11 

IS + XfXI IS, + Y'Y1 ' 

However, the discussion of the previous section shows that Y'Y has a 
noncentral Wishart distribution, say C ( Y ' Y )  = W ( I ,  p, n;  A )  where A = 

2-1 /2p 'p2-1 /2 .  In the following discussion we take Z = I, and denote the 
distribution of U by 

where A  = p'p. When p  = 0, the notation 

is used. In the case that p = 1, 

where C ( S )  = x;. Since C ( X )  = N ( p ,  I,), C ( X f X )  = X i ( A )  where A  = 

p'p 2 0. Thus 
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When X',(A) and Xi are independent, the distribution of the ratio 

is called a noncentral F distribution with parameters m, n, and A.  When 
A = 0, the distribution of F(m, n; 0) is denoted by F,, and is simply called 
an F distribution with (m, n) degrees of freedom. It should be noted that 
this usage is not standard as the above ratio has not been normalized by the 
constant n/m. At times, the relationship between the F distribution and the 
beta distribution is useful. It is not difficult to show that, when and Xi 
are independent, the random variable 

2 

v =  X n  

x t  + x', 

has a beta distribution with parameters n/2 and m/2, and this is written as 
C(V) = $(n/2, m/2). In other words, V has a density on (0,l) given by 

where a = n/2 and /3 = m/2. More generally, the distribution of the 
random variable 

is called a noncentral beta distribution and the notation C(V(A)) = 

$(n/2, m/2; A) is used. In summary, when p = 1, 

where A = pfp 2 0. 
Now, we consider the distribution of U when m = 1. In this case, 

C(Xf) = N(pf, I p )  where X' E RP and 

The last equality follows from Proposition 1.35. 



PROPOSITION 8.14 

Proposition 8.14. When m = 1, 

where 6  = pp' 2 0. 

Proof. It must be shown that 

C ( X S - ' X ' )  = F ( p ,  n  - p  + 1 , 6 )  

For X fixed, X  t 0, Proposition 8.10 shows that 

XX' (,, j = xi-,+ 1 

when C ( S )  = W ( 1 ,  p ,  n ) .  Since this distribution does not depend on X, we 
have that ( X X '  ) /XS- 'x '  and XX' are independent. Further, 

since C ( X ' )  = N ( p t ,  I,). Thus 

The next step in studying C ( U )  is the case when m > 1, p > 1 ,  but 
(1. = 0. 

Proposition 8.15. Suppose X  and S  are independent where C ( S )  = 

W ( I ,  p ,  n )  and C ( X )  = N(0, I ,  @ I,). Then 

where U,,  . . . , Urn are independent and C ( q )  = % ( ( n  - p  + i ) / 2 ,  p/2).  

Proof. The proof is by induction on m and, when m = 1, we know 

C ( u )  = $8 ( ( n  - p + 1 ) / 2 ,  p / 2 ) .  
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Since X'X = C;"X,X,' where X has rows Xi, .  . . , Xh,  

The first claim is that 

and 

are independent random variables. Since X I , .  . . , X, are independent and 
independent of S ,  to show U, and W are independent, it suffices to show 
that U,  and S  + X,X;  are independent. To do ths, Proposition 7.19 is 
applicable. The group GI, acts on ( S ,  X I )  by 

A ( S ,  X I )  = ( A S A ' ,  A X , )  

and the induced group action on T = S  + X , X ;  sends T into ATA'.  The 
induced group action is clearly transitive. Obviously, T is an equivariant 
function and also U ,  is an invariant function under the group action on 
( S ,  X I ) .  That T is a sufficient statistic for the parametric family generated 
by GI, and the fixed joint distribution of ( S ,  X I )  is easily checked via the 
factorization criterion. By Proposition 7.19, U,  and S  + X , X i  are indepen- 
dent. Therefore. 

where Ul and W are independent and 

However, C ( S  + X , X ; )  = W ( I ,  p ,  n + 1 )  and the induction hypothesis ap- 
plied to W yields 



PROPOSITION 8.16 

where W , ,  . . . , W m - ,  are independent with 

Setting U, = w;- ,, i = 2 , .  . . , m ,  we have 

where U,,  . . . , Um are independent and 

The above proof shows that q's are given by 

and that these random variables are independent. Since C(S + C;-'X,X;) 
= W(I, p ,  n + i - I), Proposition 8.14 yields 

In the special case that A has rank one, the distribution of U can be derived 
by an argument similar to that in the proof of Proposition 8.15. 

Proposition 8.16. Suppose X and S are independent where C(S) = 

W(I, p ,  n) and C(X) = N ( p ,  I,  @ I,). Assume that p  = 517' with 5 E Rm, 
11511 = 1, and 17 € R P .  Then 

where U, , . . . , Urn are independent, 

and 

n - p + m  p  e(um) = a (  2 T ;  I V ) .  
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Proof. Let E, be the mth standard unit in Rm. Then r.$ = E, for some 
r E 6, as 11511 = 11&,11. Since 

and C(I'X) = N(E,TJ', I, @ I,), we can take ,$ = E, without loss of general- 
ity. As in the proof of Proposition 8.15, XrX = C;"&y where XI,. . . , X, 
are independent. Obviously, C(X,) = N(0, I,), i = 1,. . . , m - 1, and 
C(X,) = N(q, I,). Now, write U = ll;"U, where 

The argument given in the proof of Proposition 8.15 shows that 

and {S + XI Xi, X2, . . . , X,) are independent. The assumption that XI has 
mean zero is essential here in order to verify the sufficiency condition 
necessary to apply Proposition 7.19. Since U2, . . . , Urn are functions of 
{ S  + X,X;, X,,. . . , X,), U, is independent of {U,,. . . , U,). Now, we sim- 
ply repeat this argument m - 1 times to conclude that U,,. . . , Urn are 
independent, keeping in mind that XI,. . . , Xm-, all have mean zero, but X, 
need not have mean zero. As noted earlier, 

By Proposition 8.14, 

Now, we return to the case when p = 0. In terms of the notation 
C(U) = U(n, m ,  p), Proposition 8.14 asserts that 



Further, Proposition 8.15 can be written 

where thls equation means that the distribution U(n, m, p )  can be repre- 
sented as the distribution of the product of m independent random variables 
with distribution U(n + i - 1, 1, p )  for i = 1,. . . , m. An alternative repre- 
sentation of U(n, m, p )  in terms of p independent random variables when 
m >, p follows. If m >, p and 

with C(S) = W(I, p,  n) and C(X) = N(0, I, 8 I,), the matrix T = X'X 
has a nonsingular Wishart distribution, C(T) = W(I, p,  m). The following 
technical result provides the basic step for decomposing U(n, m, p )  into a 
product of p independent factors. 

Proposition 8.17. Partition S into Sij where Sij is pi x p,, i, j = 1,2, and 
p ,  + p2 = p. Partition T similarly and let 

Then the five random vectors S, ,, TI ,, S2,. ,, 7722.1~ and Z are mutually 
independent. Further, 

Proof: Since S and T are independent by assumption, (S,,, S,,, S,,. ,) and 
(T,,, TI,, T,,. , )  are independent. Also, Proposition 8.8 shows that (S,,, S,,) 
and S,, . , are independent with 

and 

Similar remarks hold for (TI,, TI,) and T2, ., with n replaced by m. Thus the 
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four random vectors (S , , ,  S,,), S,,.,, (T I , ,  TI,), and T,,. , are mutually 
independent. Since Z is a function of (S, ,, S,,) and ( T I , ,  TI,), the proposi- 
tion follows if we show that Z is independent of the vector (S , , ,  T,,). 
Conditional on ( S ,  ,, TI ,), 

Let A ( B )  be the positive definite square root of S ,  ,(TI ,). With V = A-IS,, 
and W = B-IT,,, 

Also. 

where 

However, Q is easily shown to be an orthogonal projection of rank p,. By 
Proposition 8.5, 

~ ( Z I ( S , , >  T I , ) )  = W(I7 P2,  P I )  

for each value of ( S , ,  , TI  ,). Therefore, Z is independent of ( S ,  ,, TI  ,) and 
the proof is complete. 

Proposition 8.18. If m 2 p, then. 

Proof: By definition, 



with n 2 p. In the notation of Proposition 8.17, partition S and T with 
p ,  = 1 andp, = p - 1. Then Sl l ,  Til, S22.,, T22.1, and 

are mutually independent. However, 

and 

Thus 

and the two factors on the right side of this equality are independent by 
Proposition 8.17. Obviously, 

Since C(T2,.,) = W(I, p - 1, m - l), C(Z) = W ( I ,  p - 1, l), and T2,,, 
and Z are independent, it follows that 

Therefore, 

which implies the relation 

Now, an easy induction argument establishes 
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which implies that 

and this completes the proof. 

Combining Propositions 8.15 and 8.18 leads to the following. 

Proposition 8.19. If m >, p, then 

Proof: For arbitrary m, Proposition 8.15 yields 

where this notation means that the distribution U(n, m, p )  can be repre- 
sented as the product of m independent beta-random variables with the 
factors in the product having a %((n - p + i)/2, p/2) distribution. Since 

Proposition 8.18 implies that 

Applying Proposition 8.15 to U(n - p + m, p, m) yields 

which is the distribution U(n, m, p). 

In practice, the relationship U(n, m, p )  = U(n - p + m, p, m) shows 
that it is sufficient to deal with the case that m < p when tabulating the 
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distribution U(n, m ,  p). Rather accurate approximations to the percentage 
points of the distribution U(n, m, p )  are available and these are discussed 
in detail in Anderson (1958, Chapter 8). This topic is not pursued further 
here. 

PROBLEMS 

1. Suppose S is W(Z,2, n), n >, 2, Z > 0. Show that the density of 
r = s,,/ 6 can be written as 

where p = ol,/ \iG and + is defined as follows. Let XI and X2 be 
independent chi-square random variables each with n degrees of 
freedom. Then $(t)  = G e ~ p [ t ( X , X , ) ~ / ~ l  for It1 < 1. Using this repre- 
sentation, prove that p(r1p) has a monotone.likelihood ratio. 

2. The gamma distribution with parameters a > 0 and X > 0, denoted by 
G(a, A), has the density 

with respect to Lebesgue measure on (0, a). 

(i) Show the characteristic function of t h s  distribution is (1 - iAt)-*. 
(ii) Show that a G(n/2,2) distribution is that of a X i  distribution. 

3. The above problem suggests that it is natural to view the gamma 
family as an extension of the chi-squared family by allowing nonin- 
tegral degrees of freedom. Since the W(Z, p ,  n) distribution is a 
generalization of the chi-squared distribution, it is reasonable to ask if 
we can define a Wishart distribution for nonintegral degrees of free- 
dom. One way to pose this question is to ask for what values of a is 
Ga(A) = II, - 2iAIa, A E S,, a characteristic function. (We have taken 
Z = I, for convenience). 

(i) Using Proposition 8.3 and Problem 7.1, show that +a is a 
characteristic function for a = 1/2,. . . , ( p  - 1)/2 and all real 
a > ( p  - 1)/2. Give the density that corresponds to $a for 
a > ( p - 1)/2. W(Ip, p ,  2a) denotes such a distribution. 

(ii) For any Z >, 0 and the values of a given in (i), show that 
$,(ZA), A E S,, is a characteristic function. 
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4. Let S be a random element of the inner product space (S,, ( . , a)) 
where ( . , .) is the usual trace inner product on Sp. Say that S has an 
0,-invariant distribution if C(S) = C(I'ST') for each r E 0,. Assume 
S has an 8,-invariant distribution. 

(i) Assuming &S exists, show that &S = cIp where c = &s,,  and s,, 
is the i, j element of S. 

(ii) Let D E Sp be diagonal with diagonal elements d l , .  . . , dp. Show 
that var((D, S))  = (y - p)Cd? + P(Cfdl)2 where y = var(s,,) 
and P = cov(s, , , s,, ). 

(iii) For A E S,, show that var((A, S))  = (y - P)(A, A) + 
P(IP, A),. From this conclude that Cov(S) = ( y - P)  I, 8 I, + 
PI, q I,. 

5. Suppose S E S; has a density f with respect to Lebesgue measure dS 
restricted to S;. For each n > p ,  show there exists a random matrix 
X E C,,, that has a density with respect to Lebesgue measure on Cp, , 
and C(X'X) = C(S). 

6. Show that Proposition 8.4 holds for all n,, n, equal to 1,2,. . . , p - 1 
or any real number greater than p - 1. 

7. (The inverse Wishart distribution.) Say that a positive definite S E S; 
has an inverse Wishart distribution with parameters A, p ,  and v if 
C(S-I) = w(A-I, p ,  v + p - 1). Here A E S; and v is a positive 
integer. The notation C(S) = IW(A, p ,  v)  signifies that C(SP')  = 

w(A-', p, v + p - 1). 

(i) If C(S) = IW(A, p ,  v) and A is r x p of rank r, show that 
C(ASAf) = IW(AAAf, r, v). 

(ii) If C(S) = IW(I,, p ,  v) and I' E Op, show that C(rSI") = C(S). 
(iii) If C(S) = IW(A, p ,  v), show that &(S) = ( V  - 2)-'A. Show 

that Cov(S) has the form c,A 8 A + c,AU A-what are c, and 
c,? 

(iv) Now, partition S into S , ,  : q x q, SI2 : q X r, and S2, : r x r 
with S as in (iii). Show that C(S,,) = IW('A,,, q, v). Also show 
that C(S,,.,) = IW(A2,,,, r, v + q). 

8. (The matric t distribution.) Suppose X is N(0,  I, 8 I,) and S is 
W(I,, p, m), m >, p. Let S-'/, denote the inverse of the positive 
definite square root of S. When S and X are independent, the matrix 
T = XS-'I2 is said to have a matric t distribution and is denoted by 
C(T) = T(m - p + 1, I,, I,). 
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(i) Show that the density of T with respect to Lebesgue measure on 
C,, , is given by 

Also, show that C(T) = C(rTAf) for r E 8, and A E 8,. Using 
this, show GT = 0 and Cov(T) = c,I, €3 I, when these exist. 
Here, c, is a constant equal to the variance of any element of T. 

(ii) Suppose V is IW(I,, p ,  v) and that T given V is N(0, I, 8 V). 
Show that the unconditional distribution of T is T(v, I,, I,). 

(iii) Using Problem 7 and (ii), show that if T is T(v, I,, I,), and TI, is 
the k x q upper left-hand corner of T, then TI, is T(v, Ik, Iq). 

9. (Multivariate F distribution.) Suppose S, is W(I,, p, m) (for m = 

1,2,. . . ) and is independent of S2, which is W(I,, p ,  v + p - 1) (for 
v = 1,2,. . . ). The matrix F = S; '/2S, SF 'I2 has a matric F distribu- 
tion that is denoted by F(m, v, I,). 

(i) If S is IW(I,, p, v) and V given S is W(S, p ,  m), show that the 
unconditional distribution of V is F(m, v ,  I,). 

(ii) Suppose T is T(v, I,, I,). Show that T'T is F(r ,  v, I,). 
(iii) When r 2 p, show that the F(r,  v, I,) distribution has a density 

with respect to dF/I F I(,+ ')I2 given by 

(iv) For r > p ,  show that, if F is F(r,  v, I,), then F-' is F(v + p - 
1, r - p + 1, I,). 

(v) If F is F(r,  v, I,) and Fll is the q X q upper left block of F, use 
(ii) to show that Fll is F(r,  v, Iq). 

(vi) Suppose Xis N(0, I, 8 I,) with r < p and S is W(I,, p ,  m) with 
m >, p ,  X and S independent. Show that XS-'x' is F (p ,  m - p 
+ 1, I,). 

10. (Multivariate beta distribution.) Let S, and S2 be independent and 
suppose C(Si) = W(I,,, p ,  m,), i = 1,2, with m, + m, > p. The ran- 
dom matrix B = ( S ,  + S2)- '/2S,(S, + S,)- 'I2 has a p-dimensional 
multivariate beta distribution with parameters m, and m,. This is 
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written C(B) = B(m,, m,, I,) (when p = 1, this is the univariate beta 
distribution with parameters m,/2 and m2/2). 

(i) If B is B(m,, m,, I,) show that C(I'Brf) = C(B) for all r E 8,. 
Use Example 7.16 to conclude that C(B) = C(qD9')  where 
9 E Op is uniform and is independent of the diagonal matrix D 
with elements A ,  2 . . > A, > 0. The distribution of D is de- 
termined by specifying the distribution of A,, . . . , A, and this is 
the distribution of the ordered roots of (S, + S2)-'/2S,(S, + 
S2)- 

(ii) With S, and S, as in the definition of B, show that S:/2(Sl + 
s,)-'s,"~ is B(m,, m,, I,). 

(iii) Suppose F is F(m, v, I,). Use (i) and (ii) to show that ( I  + F ) -  
is B ( p  + v - 1, m, I,) and F ( I  + F ) - '  is B(m, p + v - 1, I,). 

(iv) Suppose that X is N(0, I, @J I,) and that it is independent of S, 
which is W(Ip, p ,  m). When r 6 p and m > p, show that X(S + 
XfX)-'X' is B(p,  r + m - p, I,). 

(v) If B is B(m,, m,, I,) and m, 2 p ,  show that det(B) is distrib- 
uted as U(m,, m,, p )  in the notation of Section 7.4. 

NOTES AND REFERENCES 

1. The Wishart distribution was first derived in Wishart (1928). 

2. For some alternative discussions of the Wishart distribution, see Ander- 
son (1958), Dempster (1969), Rao (1973), and Muirhead (1982). 

3. The density function of the noncentral Wishart distribution in the 
general case is obtained by "evaluating" 

(see the proof of Proposition 8.12). The problem of evaluating 

for A E en,, has received much attention since the paper of James 
(1954). Anderson (1946) first gave the noncentral Wishart density when 
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p has rank 1 or rank 2. Much of the theory surrounding the evaluation 
of 4 and series expansions for 4 can be found in Muirhead (1982). 

4. Wilks (1932) first proved Proposition 8.15 by calculating all the mo- 
ments of U and showing these matched the moments of nU,. Anderson 
(1958) also uses the moment method to find the distribution of U. This 
method was used by Box (1949) to provide asymptotic expansions for 
the distribution of U (see Anderson, 1958, Chapter 8). 
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