
C H A P T E R  5 

Matrix Factorizations 
and Jacobians 

This chapter contains a collection of results concerning the factorization of 
matrices and the Jacobians of certain transformations on Euclidean spaces. 
The factorizations and Jacobians established here do have some intrinsic 
interest. Rather than interrupt the flow of later material to present these 
results, we have chosen to collect them together for easy reference. The 
reader is asked to mentally file the results and await their application in 
future chapters. 

5.1. MATRIX FACTORIZATIONS 

We begin by fixing some notation. As usual, Rn denotes n-dimensional 
coordinate space and C,,. is the space of n X m real matrices. The linear 
space of n x n symmetric real matrices, a subspace of C,, ., is denoted byS,. 
If S E Sn, we write S > 0 to mean S is positive definite and S > 0 means 
that S is positive semidefinite. 

Recall that %, , is the set of all n x p linear isometries of RP into Rn, that 
is, Q E Gp, , iff Q'Q = Ip .  Also, if T E Cn ,, then T = {ti,) is lower triangu- 
lar if ti, = 0 for i < j. The set of all n ~ ' n  lower triangular matrices with 
tii > 0, i = 1,. . . , n, is denoted by G ; .  The dependence of G: on the 
dimension n is usually clear from context. A matrix U E C,,, is upper 
triangular if U' is lower triangular and G& denotes the set of all n x n 
upper triangular matrices with positive diagonal elements. 
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Our first result shows that G: and G: are closed under matrix multipli- 
cation and matrix inverse. In other words, G; and G t  are groups of 
matrices with the group operation being matrix multiplication. 

Proposition 5.1. If T = (ti,) E G:, then T-' E G: and the ith diagonal 
element of T-' is l/t,,, i = 1,. . . , n. If Tl and T2 E G:, then TIT2 E G:. 

ProoJ To prove the first assertion, we proceed by induction on n. Assume 
the result is true for integers 1,2,. . . , n - 1. When T is n X n, partition T as 

where TI, is (n - 1) X (n - I), T2, is 1 x (n - I), and t,, is the (n, n) 
diagonal element of T. In order to be T-', the matrix 

must satisfy the equation TA = I,. Thus 

SO A l l  = Ti1,  a,, = l/t,,, and 

The induction hypothesis implies that T i 1  is lower triangular with diagonal 
elements l/t,,, i = 1,. . . , n - 1. Thus the first assertion holds. The second 
assertion follows easily from the definition of matrix multiplication. 

Arguing in exactly the same way, G: is closed under matrix inverse and 
matrix multiplication. The first factorization result in this chapter is next. 

Proposition 5.2. Suppose A E C,, , where p g n and A has rank p. Then 
A = 'kU where 'k E $,, and U E G: is p x p. Further, 'k and U are 
unique. 

ProoJ The idea of the proof is to apply the Gram-Schmidt orthogonaliza- 
tion procedure to the columns of the matrix A. Let a,, .  . . , a, be the 
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columns of A so ai E Rn, i = 1,. . . , p. Since A is of rank p, the vectors 
a, ,  . . . , a, are linearly independent. Let {b,, . . . , b,) be the orthonormal set 
of vectors obtained by applying the Gram-Schmidt process to a,,  . . . , a, in 
the order 1,2,. . . , p. Thus the matrix \k with columns b,,. . . , b, is an 
element of %,, as \kf\k = I,. Since span{a,,. . . , a i )  = span{b,,. . . , b,) for 
i = 1,. . . , p, bja, = 0 if j > i, and an examination of the Gram-Schmidt 
Process shows that bja, > 0 for i = 1,. . . , p. Thus the matrix U = +'A is an 
element of G:, and 

But \k\kf is the orthogonal projection onto span{b,,. . . , b,) = span{a,,. . . , 
a,) so \k\kfA = A, as 9 \ k f  is the identity transformation on its range. T h s  
establishes the first assertion. For the uniqueness of \k and U, assume that 
A = \k,U, for \k, E 5$, , and U, E G:. Then \k,Ul = \kU, which implies 
that q'q, = UU;'. Since A is of rank p, Ul must have rank p so %(A) = 

%(\k,) = %(\k). Therefore, \k,\k;\k = 9 since 9,\k; is the orthogonal pro- 
jection onto its range. Thus \kf\k,\k;9 = I,-that is, \kf\k1 is a p.X p 
orthogonal matrix. Therefore, UU;' = Pf\k, is an orthogonal matrix and 
UU; ' E G&. However, a bit of reflection shows that the only matrix that is 
both orthogonal and an element of G: is I,. Thus U = Ul so \k = \kl as U 
has rank p. 17 

The main statistical application of Proposition 5.2 is the decomposition 
of the random matrix Y discussed in Example 2.3. This decomposition is 
used to give a derivation of the Wishart density function and, under certain 
assumptions on the distribution of Y = \kU, it can be proved that 9 and U 
are independent. The above decomposition also has some numerical appli- 
cations. For example, the proof of Proposition 5.2 shows that if A = \kU, 
then the orthogonal projection onto the range of A is *\kt = A(AfA)-'A'. 
Hence this projection can be computed without computing (AfA)-'. Also, if 
p = n and A = \kU, then A-' = Up'*'. Thus to compute A-I, we need 
only to compute U- ' and this computation can be done iteratively, as the 
proof of Proposition 5.1 shows. 

Our next hecomposition result establishes a one-to-one correspondence 
between positive definite matrices and elements of G;. First, a property of 
positive definite matrices is needed. 

Proposition 5.3. For S E S, and S > 0, partition S as 
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where S, ,  and S,, are both square matrices. Then S, , ,  S,,, S , ,  - S,,S,;'S,,, 
and SZ2 - s ~ ~ s ; ~ s ~ ~  are all positive definite. 

Proof. For x E RP, partition x into y and z to be comformable with the 
partition of S. Then, for x * 0, 

0 < x'Sx = yfS , ,y  + 2zfS2,y + zfS2,z. 

For y * 0 and z = 0, x t 0 so yfS , ,y  > 0, which shows that S , ,  > 0. 
Similarly, S,, > 0. For y * 0 and z = - SG'S,, y ,  

0 < x'Sx = y ' ( ~ , ,  - s,,s,-,'s,,) y ,  

which shows that S, ,  - s,,s&'s,, > 0. Similarly, S,, - S,,S,'S,, > 0. 

Proposition 5.4. If S > 0, then S = TT' for a unique element T E Gg. 

Proof. First, we establish the existence of T and then prove it is unique. 
The proof is by induction on dimension. If S E S, with S > 0, partition S 
as 

where S, ,  is ( p  - 1 )  x ( p  - 1 )  and S,, E (0, oo). By the induction hypothe- 
sis, S, ,  = TIIT ' , ,  for T I ,  E G;. Consider the equation 

which is to be solved for T,, : 1 x ( p  - 1 )  and T,, E (0, oo). This leads to 
the two equations T2,T;, = S,, and T,,T,', + T z  .= S,,. Thus TZ1 = 

s21(T;1)-1, SO 

Therefore, TA = S2, - s,,s;'S,,, whch is positive by Proposition 5.3. 
Hence, T,, = (S,, - S2,S,1~,,) ' /2 is the solution for T,, > 0. Ths  shows 
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that S = TT' for some T E G:. For uniqueness, if S = TT' = TIT;,  then 
T; 'TTf(T; ) - '  = I, so T;'T is an orthogonal matrix. But T r l T  E G: and 
the only matrix that is both orthogonal and in Gg is I,. Hence, TC'T = I, 
and uniqueness follows. 

Let S; denote the set of p X p positive definite matrices. Proposition 5.4 
shows that the function F: G: + 5; defined by F ( T )  = TT' is both 
one-to-one and onto. Of course, the existence of F-' : S; + G$ is also part 
of the content of Proposition 5.4. For TI E G:, the uniqueness part of 
Proposition 5.4 yields F-' (TIST;)  = T , F - ' ( s ) .  T h s  relationship is used 
later in this chapter. It is clear that the above result holds for G: replaced 
by G:. In other words, every S E S,f has a unique decomposition S = UU' 
for U E G;. 

Proposition 5.5. Suppose A E ep, where p G n and A has rank p.  Then 
A = \kS where \k E %, and S is positive definite. Furthermore, \k and S 
are unique. 

Proof. Since A has rank p ,  A'A has rank p and is positive definite. Let S be 
the positive definite square root of A'A, so A'A = SS. From Proposition 
1.3 1, there exists a linear isometry \k E 3, such that A = \kS. To establish 
the uniqueness of \I/ and S, suppose that A = \kS = \k ,S,  where \k, \k, E 

%, ,,., and S and S,  are both positive definite. Then % ( A )  = 4. (\k) = % (\k,). 
As in the proof of Proposition 5.2, this implies that \k'\k,\k;\k = I, since 
\kl\k; is the orthogonal projection onto %(\k,) = %(\k). Therefore, SS;' = 

*''PI is a p x p orthogonal matrix so the eigenvalues of SS; ' are all on the 
unit circle in the complex plane. But the eigenvalues of SS; ' are the same 
as the eigenvalues of s ' / ~ s ; ' S ' / ~  (see Proposition 1.39) where S 1 / 2  is the 
positive definite square root of S. Since S1/2S;'S' /2  is positive definite, the 
eigenvalues of S ' / 2 ~ ; ' S ' / 2  are all positive. Therefore, the eigenvalues of 
~1/2s; 1 ~ 1 ~  must all be equal to one, as this is the only point of intersection 
of (0, oo) with the unit circle in the complex plane. Since the only p x p 
matrix with all eigenvalues equal to one is the identity, S'/2S;'S'/2 = I 

P 
S  = S, .  Since S is nonsingular, \k = \k,. 

The factorizations established this far were concerned with writing one 
matrix as the product of two other matrices with special properties. The 
results below are concerned with factorizations for two or more matrices. 
Statistical applications of these factorizations occur in later chapters. 

Proposition 5.6. Suppose A is a p X p positive definite matrix and B is a 
p x p symmetric matrix. There exists a nonsingular p x p matrix C and a 
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p X p diagonal matrix D such that A = CC' and B = CDC'. The diagonal 
elements of D are the eigenvalues of A-'B. 

Proof. Let All2 be the positive definite square root of A and A - ' I 2  = 

By the spectral theorem for matrices, there exists a p  x p orthogo- 
nal matrix r such that r ' A - ' / 2 ~ A - 1 / 2 r  = D is diagonal (see Proposition 
1.49, and the eigenvalues of A -  ' l2BA-  'I2 are the diagonal elements of D. 
Let C = A 1 l 2 r .  Then CC' = A ' / ~ I ' I ' ' A ' / ~  = A and CDC' = B. Since the 
eigenvalues of A -  '/,BA- 'I2 are the same as the eigenvalues of A- 'B ,  the 
proof is complete. 

Proposition 5.7. Suppose S is a p x p positive definite matrix and partition 
S as 

where S , ,  is p ,  x p ,  and S,, is p, x p, with p ,  6 p,. Then there exist 
nonsingular matrices Aii of dimension pi X pi, i = 1,2, such that Ai,Sii A:, = 

I,#, i = 1,2, and A ,  ,S,, A;, = (DO) where D is a p ,  X p ,  diagonal matrix 
and 0 is a p ,  x ( p, - p ,) matrix of zeroes. The diagonal elements of D 2  are 
the eigenvalues of S,'S12S,;'S2, where S,, = S;,, and these eigenvalues are 
all in the interval [0, 11. 

Proof. Since S is positive definite, S , ,  and S,, are positive definite. Let 
s,'(~ and be the positive definite square roots of S , ,  and S,,. Using 
Proposition 1.46, write the matrix s,'/~s,,s,;'/~ in the form 

where r is a p , x p ,  orthogonal matrix, D is a p ,  x p , diagonal matrix, and 
9 is a p ,  x p2 linear isometry. The p ,  rows of 9 form an orthonormal set in 
RP2 and p, - p ,  orthonormal vectors can be adjoined to '3' to obtain a 
p2 x p, orthogonal matrix 9, whose first p ,  rows are the rows of '3'. It is 
clear that 

D 9  = (DO)+, 

where 0 is a p ,  x ( p, - p , )  matrix of zeroes. Set A, ,  = '3''s; ' I 2  and 
A,, = 9 ,~ , ; ' /~  so A,,Si,Aii = Ipz for i = 1,2. Obviously, A,,S,,A;, = (DO). 

Since s, ' /~S,,SG'/~ = r D 9 ,  



so the eigenvalues of S, ' / 2 ~ , 2 ~ ~ ' ~ 2 , ~ ,  'I2 are the diagonal elements of D ~ .  
Since the eigenvalues of s,'/~s,~sG's~,s,'/~ are the same as the eigen- 
values of S;'S12S,-,1S2,, it remains to show that these eigenvalues are in [0, 
11. By Proposition 5.3, S,,  - S I 2 S ~ ' S 2 ,  is positive definite so Ipl  - 
S;'/~S,~S;'S~,S,'/~ is positive definite. Thus for x E RPI, 

0 6 x'~,'~~s~~s,-,'s~~s,'~~x 6 x'x, 

which implies that (see Proposition 1.44) the eigenvalues of 
S;'/~S,,S;'S~,S,'/~ are in the interval [O,  11. 

It is shown later that the eigenvalues of s;'s,,s&'s~, are related to the 
angles between two subspaces of RP. However, it is also shown that these 
eigenvalues have a direct statistical interpretation in terms of correlation 
coefficients, and this establishes the connection between canonical correla- 
tion coefficients and angles between subspaces. The final decomposition 
result in this section provides a useful result for evaluating integrals over the 
space of p X p positive definite matrices. 

Proposition 5.8. Let 5: denote the space of p x p positive definite matrices. 
For S E S;, partition S as 

where S,, is pi x p,, i = 1,2, S,, is p ,  x p,, and S,, = S;,. The function f 
defined on 5; to S i  X 5; X epz, by 

is a one-to-one onto function. The function h on 5,: x SL X epz,P,  to Spi 
given by 

is the inverse off. 

Proof. It is routine to verify that f 0 h is the identity function on Si x SL 
x ep2,P1 and h 0 f is the identity function on 5;. This implies the assertions 
of the proposition. 
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5.2. JACOBIANS 

Jacobians provide the basic technical tool for describing how multivariate 
integrals over open subsets of Rn transform under a change of variable. To 
describe the situation more precisely, let B, and B ,  be fixed open subsets of 
Rn and let g  be a one-to-one onto mapping from B, to B , .  Recall that the 
differential of g, assuming the differential exists, is a function D, defined on 
B, that takes values in en. and satisfies 

lim 
I l d x  + 6 )  - g ( x )  - Dg(x)611 

11611 
= 0 

S+O 

for each x  E B,. Here 6  is a vector in Rn chosen small enough so that 
x  + 6  E B,. Also, D g ( x ) 6  is the matrix D,(x)  applied to the vector 6, and 
1 )  . 1 1  denotes the standard norm on Rn. Let g , ,  . . . , gn denote the coordinate 
functions of the vector valued function g. It is well known that the matrix 
D,(x )  is given by 

In other words, the ( i ,  j) element of the matrix D,(x )  is the partial 
derivative of g, with respect to x, evaluated at x  E B,. The Jacobian of g  is 
defined by 

so the Jacobian is the absolute value of the determinant of Dg. A formal 
statement of the change of variables theorem goes as follows. Consider any 
real valued Bore1 measurable function f  defined on the open set B ,  such that 

where dy means Lebesgue measure. Introduce the change of variables 
y  = g ( x ) ,  x  E Bo in the integral jBl f ( y )  dy. Then the change of variables 
theorem asserts that 
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An alternative way to express (5.1) is by the formal expression 

(5.2) d ( g ( x ) )  = J,(x)  dx ,  x E B,. 

To give a precise meaning to (5.2), proceed as follows. For each Bore1 
measurable function h defined on B, such that jBol h(x)l  J,(x) dx < + co, 
define 

and define 

I , ( h )  = h ( x ) d ( g ( x ) )  = h ( g l ( x ) )  dx. 
Bo g(B0) 

Then (5.2) means that I l ( h )  = 12(h )  for all h such that I,(lhJ) < + co. To 
show that (5.1) and the equality of I ,  and I ,  are equivalent, simply set 
f = h o g - ' s o f ~ g = h . T h u s I , ( h ) = I , ( h ) i f f  

since B ,  = g(B,). 
One property of Jacobians that is often useful in simplifying computa- 

tions is the following. Let B,, B , ,  and B, be open subsets of Rn, suppose g, 
is a one-to-one onto map from Bo to B l ,  and suppose DgI exists. Also, 
suppose g, is a one-to-one onto map from Bl to B, and assume that Dg2 
exists. Then, g, 0 g, is a one-to-one onto map from Bo to B, and it is not 
difficult to show that 

Of course, the right-hand side of this equality means the matrix product of 
Dg2(g , (x ) )  and Dgl(x) .  From this equality, it follows that 

In particular, if B, = B, and g, = g; I ,  then g, g, = g; ' o g, is the identity 
function on B, so its Jacobian is one. Thus 

1 = J,,.,,(x> = J , ~ ( ~ I ( X ) ) J , , ( X ) ,  X Bo 
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and 
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We now turn to the problem of explicitly computing some Jacobians that 
are needed later. The first few results present Jacobians for linear transfor- 
mations. 

Proposition 5.9. Let A be an n x n nonsingular matrix and define g on Rn 
to Rn by g(x) = A(x). Then Jg(x) = Idet(A)I for x E Rn. 

Proof. We must compute the differential matrix of g. It is clear that the ith 
coordinate function off is g, where 

Here A = {a,,} and x has coordinates x,, . . . , x,. Thus 

agi -(x) = a,, ax, 

so Dg(x) = {a,,}. Thus J,(x) = Idet(A)I. 

Proposition 5.10. Let A be an n x n nonsingular matrix and let B be a 
p x p nonsingular matrix. Define g on the np-dimensional coordinate space 
c,, n to e p ,  n by 

g (X)  = AXB' = (A 8 B)X. 

Then Jg(X) = ldet AlPldet BIn. 

Proof. First note that A 8 B = (I, 8 B)(A €3 I,). Setting g,(X) = (A 8 
1,)X and g,(X) = (I, 8 B)X, it is sufficient to verify that 

J,,(X) = (det Alp 

and 

Jg2(X) = ldet BIn. 
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Let x,,  . . . , x, be the columns of the n x p matrix X so xi E Rn. Form the 
np-dimensional vector 

Since(A @ I,)XhascolumnsAx,, ..., Ax,, thematrixofA @ I, as alinear 
transformation on [XI is 

where the elements not indicated are zero. Clearly, the determinant of this 
matrix is (det A)P since A occurs p times on the diagonal. Since the 
determinant of a linear transformation is independent of a matrix represen- 
tation, we have that 

d e t ( ~  @ I,) = (det A)'. 

Applying Proposition 5.9, it follows that 

Jg,(X) = ldet Alp. 

Using the rows instead of the columns, we find that 

det(In @ B) = (det B)",  

Jg2(X) = ldet BIn. 

Proposition 5.11. Let A be a p X p nonsingular matrix and define the 
function g on the linear space Sp of p x p real symmetric matrices by 

g (S)  = ASA' = (A @ A)S. 

Then Jg(S) = ldet Alp+'. 
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Proof. The result of the previous proposition shows that det(A 8 A) = 

(det A),, when A 8 A is regarded as a linear transformation on t,,,. 
However, ths  result is not applicable to the current case since we are 
considering the restriction of A 8 A to the subspace Sp of eP,,. 

To establish the present result, write A = r ,Dr2  where I?, and r, are 
p x p orthogonal matrices and D is a diagonal matrix with positive diagonal 
elements (see Proposition 1.47). Then, 

ASA' = (A 8 A)S = (I?, 8 I',)(D 8 D)(I', 8 r 2 ) S  

so the linear transformation A 8 A has been decomposed into the composi- 
tion of three linear transformations, two of which are determined by 
orthogonal matrices. 

We now claim that if r is a p  x p orthogonal matrix and g, is defined on 
SP by 

then J,, = 1. To see this, let ( . , .) be the natural inner product on gp , ,  
restricted to S,, that is, let 

Then 

Therefore, r 8 r is an orthogonal transformation on the inner product 
space (S,, ( . , a ) ) ,  so the determinant of this linear transformation on Sp is 
+ 1. Thus g, is a linear transformation that is also orthogonal so J,, = 1 and 
the claim is established. 

The next claim is that if D is a p X p diagonal matrix with positive 
diagonal elements and g, is defined on S, by 

then Jg2 = (det D)p+'. In the [ p ( p  + 1)/2]-dimensional space S,, let sij, 
1 < j < i p, denote the coordinates of S. Then it is routine to show that 
the ( i ,  j) coordinate function of g, is g,, ij(S) = A,Aj.si, where A,, . . . , A, are 
the diagonal elements of D. Thus the matrix of the linear transformation g, 
is a [ p( p + 1)/2] x [ p(  p + 1)/2] diagonal matrix with diagonal entries 
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X,X, for 1 < j < i < p. Hence the determinant of this matrix is the product 
of the A,hj for 1 < j < i < p. A bit of calculation shows this determinant is 
(IIh ,)P+'. Since det D = HA,, the second claim is established. 

To complete the proof, note that 

g(S)  = ASA' = (I', @ T,)(D @ D) ( r2  @ r 2 ) S  = h I ( h 2 ( h 3 ( s ) ) )  

where h,(S) = (I?, @ I?,)S, h,(S) = (D @ D)S, and h,(S) = (I?, @ r,)S. 
A direct argument shows that 

But JhI = 1 = Jh, and Jh2 = (det D)P+'. Since A = r,DI?,, ldet A[ = det D, 
which entails Jg = ldet Alp". 

Proposition 5.12. Let M be the linear space of p X p skew-symmetric 
matrices and define g on M to M by 

g(S)  = ASA' 

where A is a p  x p nonsingular matrix. Then Jg(S) = ldet Alp-'. 

Proof The proof is similar to that of Proposition 5.1 1 and is left to the 
reader. 

Proposition 5.13. Let G: be the set of p x p lower triangular matrices with 
positive diagonal elements and let A be a fixed element of G:. The function 
g defined on G; to G; by 

g(T)  = AT, T E G; 

has a Jacobian given by J,(T) = nfai, where a,, ,  . . . , a,, are the diagonal 
elements of A. 

Proof The set G; is an open subset of [ i p ( p  + l)]-dimensional coordi- 
nate space and g is a one-to-one onto function by Proposition 5.1. For 
T E G:, form the vector [TI with coordinates t,,, t,,, t,,, t,,,. . . , tpp and 
write the coordinate functions of g in the same order. Then the matrix of 
partial derivatives is lower triangular with diagonal elements 
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a, , ,  a33,.  . . , a,, where aii occurs i times on the diagonal. Thus the 
determinant of this matrix of partial derivatives is l-Ifaii so Jg = nfa:,. 

Proposition 5.14. In the notation of Proposition 5.13, define g on G: to 
G; by 

g ( T )  = TB, T E G; 

where B  is a fixed element of G: . Then J g ( T )  = IIfb:-'+ ' where b ,  , , . . . , b,, 
are the diagonal elements of B. 

ProoJ: The proof is similar to that of Proposition 5.13 and is omitted. 

Proposition 5.15. Let G: be the set of all p X p upper triangular matrices 
with positive diagonal elements. For fixed elements A and B  of G:, define g  
by 

Then, 

where a, , ,  . . . , a,, and b, , ,  . . . , b,, are diagonal elements of A and B. 

ProoJ: The proof is similar to that given for lower triangular matrices and 
is left to the reader. 

Thus far, only Jacobians of linear transformations have been computed 
explicitly, and, of course, these Jacobians have been constant functions. In 
the next proposition, the Jacobian of the nonlinear transformation de- 
scribed in Proposition 5.8 is computed. 

Proposition 5.16. Let p ,  and p, be positive integers and set p = p, + p2. 
Using the notation of Proposition 5.8, define h on S: x SA X Cp,,,, to S; 
by 

Then Jh(All ,  A,,, A,,) = (det 
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Proof. For notational convenience, set S = h(A,,, A,,, A,,) and partition 
S as 

where Sii is pi x pi, i, j = 1,2. The partial derivatives of the elements of S, 
as functions of the elements of A,,, A,, and A,,, need to be computed. Since 
S,, = A,, + A,,A,,A;,, the matrix of partial derivatives of thep,(p,  + 1)/2 
elements of S,, with respect to thep , (p ,  + 1)/2 elements of A,, is just the 
[ p ,( p I + 1)/2]-dimensional identity matrix. Since S,, = A,, A,,, the matrix 
of partial derivatives of thep,p, elements of S,, with respect to the elements 
of A,, is the p ,  p, X p ,  p, zero matrix. Also, since S,, = A,,, the partial 
derivative of elements of S,, with respect to the elements of A,, or A,, are 
all zero and the matrix of partial derivatives of the p,(p, + 1)/2 elements 
of S,, with respect to the p,(p, + 1)/2 elements of A,, is the identity 
matrix. Thus the matrix of partial derivatives has the form 

All A,, A,, 

Sll I ,  - - 1: r ]  s 2 2  

so the determinant of this matrix is just the determinant of the p ,  p, X p ,  p, 
matrix B, which must be found. However, B is the matrix of partial 
derivatives of the elements of S,, with respect to the elements of A,, where 
S,, = A,,A,,. Hence the determinant of B is just the Jacobian of the 
transformation g(A,,) = A,,A,, with A,, fixed. This Jacobian is (det A,,)Pl 
by Proposition 5.10. 

As an application of Proposition 5.16, a special integral over the space 
5; is now evaluated. 

+ Example 5.1. Let dS denote Lebesgue measure on the set 5;. The 
integral below arises in our discussion of the Wishart distribution. 
For a positive integer p and a real number r > p - 1, let 

In this example, the constant c(r, p )  is calculated. When p = 1, 
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S; = (0, oo) so for r > 0, 

where T(r/2) is the gamma function evaluated at r/2. The first 
claim is that 

for r > p and p >, 1. To verify this claim, consider S E S>, and 
partition S as 

where S, ,  E S;, S2, E (0, oo), and S12 is p X 1. Introduce the 
change of variables 

where A,, E S;, AZ2 E (0, a), and A,, E RP. By Proposition 5.16, 
the Jacobian of this transformation is A!2. Since det S = det(S,, - 
~ , , ~ , ; ' ~ ; , ) d e t  S2, = (det A,,)A2,, we have 

Integrating with respect to A,, yields 

Substituting this into the second integral expression for c(r, p + 1) 



PROPOSITION 5.16 

and then integrating on A,, shows that 

This establishes the first claim. Now, it is an easy matter to solve for 
c(r, p). A bit of manipulation shows that with 

for p = 1,2,. . . , and r > p - 1, the equation 

c( r ,  p + 1) = ( 2 ~ ) ~ / , c ( r ,  l ) c ( r  - 1, p )  

is satisfied. Further, 

Uniqueness of the solution to the above equation is clear. In 
summary, 

and this is valid for p = 1,2,. . . and r > p - .I. The restriction that 
r be greater than p - 1 is necessary so that T[(r - p + 1)/2] be 
well defined. It is not difficult to show that the above integral is 
+ oo if r 6 p - 1. Now, set w ( r ,  p) = l/c(r, p) so 

is a density function on 5;. When r is an integer, r 2 p, f turns out 
to be the density of the Wishart distribution. + 

Proposition 5.4 shows that there is a one-to-one correspondence between 
elements of 5; and elements of G;. More precisely, the function g defined 
on G; by 

g ( T )  = TT', T E G; 

is one-to-one and onto S,i. It is clear that g has a differential since each 
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coordinate function of g is a polynomial in the elements of T. One way to 
find the Jacobian of g is to simply compute the matrix of partial derivatives 
and then find its determinant. As motivation for some considerations in the 
next chapter, a different derivation of the Jacobian of g is given here. The 
first observation is as follows. 

Proposition 5.17. Let dS denote Lebesgue measure on $5; and consider the 
measure p on S; gven by p(dS) = ~S/ ISI (P+ ' ) /~ .  For each Bore1 measur- 
able function f on S;, whch is integrable with respect to p, and for each 
nonsingular matrix A, 

Proof. Set B = ASA'. By Proposition 5.11, the Jacobian of this transforma- 
tion on S; to S; is ldet Alp+'. Thus 

The result of Proposition 5.17 is often paraphrased by saying that the 
measure p is invariant under each of the transformations g, defined on $5; 
by g,(S) = ASA'. The following calculation gives a heuristic proof of this 
result: 

- - ldet Alp+' dS - - dS 
~ A A ' I ( P + ' ) / ~  I S I ( P + ' ) / ~  I S ~ ( P +  ')I2 = ~ ( d s ) .  

In fact, a similar calculation suggests that p is the only invariant measure in 
S; (up to multiplication of p by a positive constant). Consider a measure v 
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of the form v ( d S )  = h ( S )  dS where h is a positive Borel measurable 
function and dS is Lebesgue measure. In order that v be invariant, we must 
have 

so h should satisfy the equation 

since g A ( S )  = ASA' and ldet Alp+' = IAA'I(P+')/2. Set S = I,, B = AA', 
and c = h(Ip) .  Then 

where c is a positive constant. Making t h s  argument rigorous is one of the 
topics treated in the next chapter. 

The calculation of the Jacobian of g on G; to S; is next. 

Proposition 5.18. For g ( T )  = TT', T E G;, 

where t , , ,  . . . , tpp are the diagonal elements of T 

Proof: The Jacobian J, is the unique continuous function defined on G ;  
that satisfies the equation 

for all Borel measurable functions f for which the integral over Sl exists. 
But the left-hand side of this equation is invariant under the replacement of 
f ( S )  by f (ASA') for any nonsingularp x p matrix. Thus the right-hand side 
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must have the same property. In particular, for A E G:, we have 

In this second integral, we make the change of variable T = A-'B for 
A E G: fixed and B E G:. By Proposition 5.12, the Jacobian of this 
transformation is l / l 7 [ ~ : ~  where a,,, . . I ,  a, are the diagonal elements of A. 
Thus 

Since this must hold fox all Bore1 measurable f and since Jg is a continuous 
function, it follows that for all T E G; and A E G;, 

Setting A = T and noting that IT1 = n f t i i ,  we have 

Thus J,(T) is a constant k times nftlq-'+I. Hence 

To evaluate the constant k, pick 

f (S )  = 1 ~ 1 ' / ~ e x ~ [ - f  t r s ] ,  r > p - 1 

But 
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where c ( r ,  p )  is defined in Example 5.1. However, 

so k = 2P. The evaluation of the last integral is carried out by noting that tii  
ranges from 0  to ca and t i ,  for j < i ranges from - ca to w.  Thus the 
integral is a product of p ( p  + 1) /2  integrals on R ,  each of which is easy to 
evaluate. 

A by-product of t h s  proof is that 

is a density function on G:. Since the density h factors into a product of 
densities, the elements of T, ti, for j < i, are independent. Clearly, 

t? ( t i , )  = N ( 0 , l )  for j < i 

and 

C ( t : ' )  = ~ 2 , - i + l  

when r  is the integer n 2 p. 

Proposition 5.19. Define g  on GG to S; by g ( U )  = UU'. Then J,(U) is 
given by 

where u , , ,  . . . , up, are the diagonal elements of U. 

Pro05 The proof is essentially the same as the proof of Proposition 5.18 
and is left to the reader. 

The technique used to prove Proposition 5.18 is an important one. Given 
g  on G; to S;, the idea of the proof was to write down the equation the 
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Jacobian satisfies, namely, 

for all integrable f .  Since this equation must hold for all integrable f ,  J, is 
uniquely defined (up to sets of Lebesgue measure zero) by this equation. It 
is clear that any property satisfied by the left-hand integral must also be 
satisfied by the right-hand integral and this was used to characterize J,. In 
particular, it was noted that the left-hand integral remained the same iff (S) 
was replaced by f (ASA') for an nonsingular A. For A E G;, this led to the 
equation 

which determined J,. It should be noted that only Jacobians of the linear 
transformations discussed in Propositions 5.1 1 and 5.13 were used to 
determine the Jacobian of the nonlinear transformation g. Arguments 
similar to this are used throughout Chapter 6 to derive invariant integrals 
(measures) on matrix groups and spaces that are acted upon by matrix 
groups. 

PROBLEMS 

1. Given A E eP, with rank(A) = p, show that A = 9 T  where 9 E 5, 
and T  E G;. Prove that 9 and T  are unique. 

2. Define the function F on S l  to G$ as follows. For each S E S:, F(S) 
is the unique element in G; such that S = F(S)(F(S))'. Show that 
F(TSTf) = TF(S) for T  E G$ and S E 5;. 

3. Given S E S;, show there exists a unique U E G: such that S = UU'. 

4. For S E S;, partition S as 

where Sij is pi X p,, i, j = 1,2. Assume for definiteness that p ,  < p,. 
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Show that S can be written as 

P (DO) I(: g,); (;: = (  ( D O  Ip; 

where A, is p, X p, and nonsingular, D is p ,  x p ,  and diagonal with 
diagonal elements in [0, 1). 

5. Let C;, , be those elements in ep,, that have rank p. Define F on 
$, , X G& to C;,, by F(\k, U) = \kU. 

(i) Show that F is one-to-one onto, and describe the inverse of F. 
(ii) For I' E 0, and T E G;, define @ T on e;,, to e;, , by 

( r  @ T)A = rAT'. Show that (I? @ T)F(\k, U) = F(r\k, UT'). 
Also, show that F- ' ((r  @ T)A) = (r\k, UT') where FP'(A) = 

(*, U). 

6. Let B, and B, be open sets in Rn and fix x, E B,. Suppose g maps B, 
into B1 and g(x) = g(x,) + A(x - x,) + R(x - x,) where A is an 
n X n matrix and R ( . )  is a function that satisfies 

llR(u)Il 0. lim - = 
u-0 llull 

Prove that A = Dg(xo) so Jg(xo) = Idet(A)I. 

7. Let V be the linear coordinate space of all p x p lower triangular real 
matrices so V is of dimension p ( p  + 1)/2. Let Sp be the linear 
coordinate space of all p x p real symmetric matrices so 5, is also of 
dimension p (  p + 1)/2. 

(i) Show that G ;  is an open subset of V. 

(ii) Define g on G; to Sp by g(T) = TT'. For fixed To E G;, show 
that g(T) = g(To) + L(T - To) + (T - T,)(T - To)' where L is 
defined on V to Sp by L(x) = xTd + T,x', x E V. Also show 
that R(T - To) = (T - T,)(T - To)' satisfies 

IIR(x)ll lim - - - 0. 
x+O llxll 

(iii) Prove by induction that det L = 2PIIftlq-'+' where t,,,. . . , tpp 
are the diagonal elements of To. 

(iv) Using (iii) and Problem 6, show that Jg(T) = 2Pnftiq-'+ '. (This 
is just Proposition 5.18). 
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8. When S is a positive definite matrix, partition S and S -  as 

Show that 

s" = ( s , ,  - s ~ ~ s G ~ ~ ~ ~ ) - ~  

s12 = - s ~ I s  s-1 
12 22 

and verify the identity 
s-1s sll = ~ 2 2 ~  s-l 

22 21 21 1 1  * 

9. In coordinate space RP, partition x as x = (:), and for Z > 0, parti- 
tion Z : p x p conformably as 

Define the inner product (., .) on RP by ( u ,  v )  = u'Z-lv. 
(i) Show that the matrix 

defines an orthogonal projection in the inner product (., .). 
What is % ( P ) ?  

(ii) Show that the identity 

is the same as the identity 

where ( x ,  x )  = 1 1 ~ 1 1 ~  and x = (i). 
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(iii) For a random vector 

with C ( X )  = N(0, Z), Z > 0, use part (ii) to gve a direct proof 
via densities that the conditional distribution of Y given Z is 
N(Z,2%2'Z> 21, - Z12Z221221). 

10. Verify the equation 

where c(r, p) is given in Example 5.1. Here, r is real, r > p - 1 

NOTES AND REFERENCES 

1. Other matrix factorizations of interest in statistical problems can be 
found in Anderson (1958), Rao (1973), and Muirhead (1982). Many 
matrix factorizations can be viewed as results that give a maximal 
invariant under the action of a group-a topic discussed in detail in 
Chapter 7. 

2. Only the most elementary facts concerning the transformation of mea- 
sures under a change of variable have been given in the second section. 
The Jacobians of other transformations that occur naturally in statisti- 
cal problems can be found in Deemer and Olkin (1951), Anderson 
(1958), James (1954), Farrell (1976), and Muirhead (1982). Some of 
these transformations involve functions defined on manifolds (rather 
than open subsets of R") and the corresponding Jacobian calculations 
require a knowledge of differential forms on manifolds. Otherwise, the 
manipulations just look like magic that somehow yields answers we do 
not know how to check. Unfortunately, the amount of mathematics 
behind these calculations is substantial. The mastery of this material is 
no mean feat. Farrell (1976) provides one treatment of the calculus of 
differential forms. James (1954) and Muirhead (1982) contain some 
background material and references. 

3. I have found Lang (1969, Part Six, Global Analysis) to be a very 
readable introduction to differential forms and manifolds. 
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