
C H A P T E R  3 

The Normal Distribution 
on a Vector Space 

The univariate normal distribution occupies a central position in the statisti- 
cal theory of analyzing random samples consisting of one-dimensional 
observations. This situation is even more pronounced in multivariate analy- 
sis due to the paucity of analytically tractable multivariate distributions- 
one notable exception being the multivariate normal distribution. Ordin- 
arily, the nonsingular multivariate normal distribution is defined on Rn by 
specifying the density function of the distribution with respect to Lebesgue 
measure. For our purposes, this procedure poses some problems. First, it is 
desirable to have a definition that does not require the covariance to be 
nonsingular. In addition, we have not, as yet, constructed what will be 
called Lebesgue measure on a finite dimensional inner product space. The 
definition of the multivariate normal distribution we have chosen cir- 
cumvents the above technical difficulties by specifying the distribution of 
each linear function of the random vector. Of course, ths  necessitates a 
proof that such normal distributions exist. 

After defining the normal distribution in a finite dimensional vector 
space and establishing some basic properties of the normal distribution, we 
derive the distribution of a quadratic form in a normal random vector. 
Conditions for the independence of two quadratic forms are then presented 
followed by a discussion of conditional distributions for normal random 
vectors. The chapter ends with a derivation of Lebesgue measure on a finite 
dimensional vector space and of the density function of a nonsingular 
normal distribution on a vector space. 
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3.1. THE NORMAL DISTRIBUTION 

Recall that a random variable Zo E R has a normal distribution with mean 
zero and variance one if the density function of Zo is 

with respect to Lebesgue measure. We write C(Zo) = N(0,l) when Zo has 
density p. More generally, a random variable Z E R has a normal distribu- 
tion with mean p E R and variance u2 > 0 if C(Z) = C(uZo + p)  where 
C(Zo) = N(0,l). In this case, we write C(Z) = N(p, u2). When u2 = 0, the 
distribution N(p, u2)  is to be interpreted as the distribution degenerate at p. 
If C(Z) = N(p, a2) ,  then the characteristic function of Z is easily shown to 
be 

The phrase "Z has a normal distribution" means that for some p and some 
a > 0, C(Z) = N(p, u2). If Z,, . . . , Zk are independent with C(Zj) = 

N(pj, a;), then C(ZajZ,) = N(Z9pj ,  Z$a;). To see this, consider the 
characteristic function 

Thus the characteristic function of Za,ZJ is that of a normal distribution 
with mean Za,p, and variance 2 4 ~ ; .  In summary, linear combinations of 
independent normal random variables are normal. 

We are now in a position to define the normal distribution on a finite 
dimensional inner product space (V, (., .)). 

Definition 3.1. A random vector X E V has a normal distribution if, for 
each x E V, the random variable (x, X)  has a normal distribution on R. 

To show that a normal distribution exists on (V, ( - ,  .)), let {x,, . . . , x , )  be 
an orthonormal basis for (V, (., .)). Also, let Z,,. . . , Z, be independent 
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N(0, 1) random variables. Then X = ZZixi is a random vector and (x, X) = 

Z(x, x,)Z,, which is a linear combination of independent normals. Thus 
(x, X) has a normal distribution for each x E V. Since &(x, X) = 

Z(x,, x)GZ, = 0, the mean vector of Xis  0 E V. Also, 

2 
var(x, X) = var(Z(x, x , ) ~ , )  = Z(x ,  x,)  var(Z,) = Z(x ,  = (x ,  x ) .  

Therefore, Cov(X) = I E C(V, V). The particular normal distribution we 
have constructed on (V, (., .)) has mean zero and covariance equal to the 
identity linear transformation. 

Now, we want to describe all the normal distributions on (V, (., .)). The 
first result in thls direction shows that linear transformations of normal 
random vectors are again normal random vectors. 

Proposition 3.1. Suppose X has a normal distribution on (V, (., .)) and let 
A E C(V, W), W, E W. Then AX + w, has a normal distribution on 
( W , [ . ,  -1). 

Proof. It must be shown that, for each w E W, [w, AX + w,] has a normal 
distribution on R. But [w, AX + w,,] = [w, AX] + [w, w,] = (A'w, X) + 
[w, w,]. By assumption, (A'w, X) is normal. Since [w, w,] is a constant, 
( A'w, X) + [w, w,] is normal. 

If X has a normal distribution on (V, (., .)) with mean zero and covari- 
ance I, consider A E C(V, V) and p E V. Then AX + p has a normal 
distribution on (V, (., .)) and we know &(AX + p) = A(&X) + p = p and 
Cov(AX + p) = A Cov(X) A' = AA'. However, every positive semidefinite 
linear transformation Z can be expressed as AA' (take A to be the positive 
semidefinite square root of 2). Thus given p E V and a positive sernidefinite 
Z, there is a random vector that has a normal distribution in V with mean 
vector p and covariance Z. If X has such a distribution, we write C(X) = 

N(p, 2) .  To show that all the normal distributions on V have been de- 
scribed, suppose X E V has a normal distribution. Since (x, X) is normal 
on R, var(x, X) exists for each x E V. Thus p = EX and Z = Cov(X) both 
exist and C(X) = N(p, 2) .  Also, C((x, X)) = N((x, p), (x, Ex)) for x E V. 
Hence the characteristic function of (x, X) is 

Setting t = 1, we obtain the characteristic function of X: 

Summarizing this discussion yields the following. 
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Proposition 3.2. Given p E V and a positive semidefinite Z E C(V, V), 
there exists a random vector X E V with distribution N ( p ,  2 )  and char- 
acteristic function 

Conversely, if X has a normal distribution on V, then with p = GX and 
Z = Cov(X), C(X) = N(p, 2 )  and the characteristic function of Xis  given 
by t. 

Consider random vectors Xi with values in (v, (., -),) for i = 1,2. Then 
{XI, X,) is a random vector in the direct sum Vl @ V,. The inner product 
on V, @ V2 is [ . , . ] where 

u,, 0, E V, and v,, u, E V,. If Cov(X,) = Zii, i = 1,2, exists, then 
&{XI, X,) = {p,, p2) where pi = GX,, i = 1,2. Also, 

as defined in Chapter 2 and Z,, = Z;,. 

Proposition 3.3. If {XI, X,) has a normal distribution on V, @ V,, then XI 
and X, are independent iff Z,, = 0. 

Proof. If XI and X, are independent, then clearly Z,, = 0. Conversely, if 
Z,, = 0, the characteristic function of {XI, X,) is 
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since Z , ,  = Z; ,  = 0. However, for v ,  E V, ,  ( v , ,  X I ) ,  = [ (v l ,O) , (X l ,  X,)], 
which has a normal distribution for all u ,  E V, .  Thus C ( X I )  = N ( p , ,  8 ,) on 
V ,  and similarly C ( X , )  = N(p, ,  Z , )  on V,. The characteristic function of 
( X I ,  X,) is just the product of the characteristic functions of X I  and X,. 
Thus independence follows and the proof is complete. 

The result of Proposition 3.3 is often paraphrased as "for normal random 
vectors, XI  and X, are independent iff they are uncorrelated." A useful 
consequence of Proposition 3.3 is shown in Proposition 3.4. 

Proposition 3.4. Suppose C ( X )  = N ( p ,  Z )  on ( V ,  (- ,  .)), and consider 
A E C ( V ,  W , ) ,  B E C ( V ,  W,) where ( W , , [ . ,  . I , )  and (W, ,[ . ,  .I,) are inner 
product spaces. A X  and BX are independent iff AZB' = 0. 

Prooc We apply the previous proposition to XI  = A X  and X, = BX.  That 
( X I ,  X,) has a normal distribution on W, @ W ,  follows from 

and the normality of ( x ,  X )  for all x E V.  However, 

= (A 'w, ,  ZB'w,) 

= [ w , ,  AZB'w,], .  

Thus XI  = A X  and X, = BX are uncorrelated iff A 2  B' = 0. Since ( X I ,  X,) 
has a normal distribution, the condition AZB'  = 0 is equivalent to the 
independence of X I  and X,. 

One special case of Proposition 3.4 is worthy of mention. If C ( X )  = 

N ( p ,  I )  on ( V ,  ( a ,  -)) and P is an orthogonal projection in C(V,  V ) ,  then PX 
and ( I  - P ) X  are independent since P ( I  - P )  = 0. Also, it should be 
mentioned that the result of Proposition 3.3 extends to the case of k random 
vectors-that is, if ( X I ,  X,, . . . , X,) has a normal distribution on the direct 
sum space V ,  @ V, @ . . @ V k ,  then X I ,  X,, . . . , X, are independent iff Xi 
and X, are uncorrelated for all i * j. The proof of this is essentially the same 
as that given for the case of k = 2 and is left to the reader. 
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A particularly useful result for the multivariate normal distribution is the 
following. 

Proposition 3.5. Suppose C(X) = N(p, Z) on the n-dimensional vector 
space (V, ( a ,  -)). Write Z = C;A,x,n xi in spectral form, and let X, = 

(xi, X), i = 1,. . . , n. Then XI,. . . , X, are independent random variables 
that have a normal distribution on R with &X, = (x,, p) and var(X,) = Xi, 
i = 1,. . . , n. In particular, if Z = I,  then for any orthonormal basis {x,, . . . , 
x,) for V, the random variables = (xi, X) are independent and normal 
with FX, = (xi, p) and var(&) = 1. 

Proof. For any scalars a, , .  . . , a, in R, C;ai& = C;ai(xi, X) = 

(C;alxi, X), which has a normal distribution. Thus the random vector 
2 E Rn with coordinates XI,. . . , X, has a normal distribution in the coordi- 
nate vector space Rn. Thus XI,. . . , X, are independent iff they are uncorre- 
lated. However, 

Thus independence follows. It is clear that each is normal with G X ,  = 

(x l ,p )  and var(X,) = A,, i = 1 ,..., n.  When Z = I, then C;X,OX, = I for 
any orthonormal basis x,,  . . . , x,. This completes the proof. q 

The following is a technical discussion having to do with representations 
of the normal distribution that are useful when establishing properties of the 
normal distribution. It seems preferable to dispose of the issues here rather 
than repeat the same argument in a variety of contexts later. Suppose 
X E (V, (., .)) has a normal distribution, say C(X) = N(p, Z), and let Q be 
the probability distribution of X on (V, (., -)). If we are interested in the 
distribution of some function of X, say f (X)  E (W, [., a]), then the underly- 
ing space on which X is defined is irrelevant since the distribution Q 
determines the distribution of f(X)-that is, if B E %(W), then 

Therefore, if Y is another random vector in (V,(., .)) with C(X) = C(Y), 
then f (X) and f(Y) have the same distribution. At times, it is convenient to 
represent C(X) by C(CZ + p) where C(Z) = N(0, I) and CC' = Z. Thus 
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C(X) = C(CZ + p) SO f (X)  and f(CZ + p) have the same distribution. A 
slightly more subtle point arises when we discuss the independence of two 
functions of X, say f ,(X) and f2( X), taking values in ( W,, [ . , - 1  , )  and 
( W2, [ - , . ] ,). To show that independence of f,( X) and f2(X) depends only 
on Q, consider B, E $(K) for i = 1,2. Then independence is equivalent to 

But both of these probabilities can be calculated from Q: 

and 

Again, if C(Y) = C(X), then f ,(X) and f2(X) are independent iff f,(Y) 
and f2(Y) are independent. More generally, if we are trying to prove 
something about the random vector X, C(X) = N(p, Z), and if what we are 
trying to prove depends only on the distribution Q, of X, then we can 
represent X by any other random vector Y as long as C(Y) = C(X). In 
particular, we can take Y = CZ + p where C(Z) = N(0, I )  and CC' = 2. 
This representation of Xis  often used in what follows. 

3.2. QUADRATIC FORMS 

The problem in this section is to derive, or at least describe, the distribution 
of (X, AX) where X E (V, ( a ,  .)), A is self-adjoint in C(V, V) and C(X) = 

N(p, 2). First, consider the special case of Z = I, and by the spectral 
theorem, write A = C;X,x,Ox,. Thus 

(X, AX) = (x, (C;X,xi~x,) X) = C;hi(xi, x ) ~  

But X, = (xi, X), i = 1,. . . , n ,  are independent since Z = I (Proposition 
3.5) and C(X,) = N((x,, p), 1). Thus our first task is to derive the distribu- 
tion of Xf when C(X,) = N((x,, p), 1). 

Recall that a random variable Z has a chi-square distribution with rn 
degrees of freedom, written C(Z) = Xi, if Z has a density on (0, oo) given 
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Here m is a positive integer and r(-) is the gamma function. The character- 
istic function of a Xi random variable is easily shown to be 

Thus, if C(Z,) = C(Zz) = X i ,  and Z, and Z2 are independent, then 

Therefore, C(Z, + Z,) = xi+, .  This argument clearly extends to more 
than two factors. In particular, if C(Z) = X i ,  then, for independent ran- 
dom variables Z,, . . . , Zm with C(Z,) = x:, C(C;"Z,) = C(Z). It is not 
difficult to show that if C(X) = N(0,l) on R, then C(X2) = x:. However, 
if C(X) = N(a, 1) on R, the distribution of X2 is a bit harder to derive. To 
ths  end, we make the following definition. 

Definition 3.2. 'Let pm, m = 1,2,. . . , be the density of a Xi random 
variable and, for A 2 0, let 

For A = 0, q, = 1 and q, = 0 for j > 0. A random variable with density 

is said to have a noncentral chi-square distribution with m degrees of freedom 
and noncentrality parameter A. 1f-z has such a distribution, we write 
C(Z> = xi(A>. 

When A = 0, it is clear that C(xi(0)) = The weights q,, j = 0,1,. . . , 
are Poisson probabilities with parameter A/2 (the reason for the 2 becomes 
clear in a bit). The characteristic function of a xi(A) random variable is 



calculated as follows: 

From this expression for the characteristic function, it follows that if 
C(Zi) = xi , (h , ) ,  i = 1,2, with Z1 and Z2 independent, then C(Z, + Z,) = 

Xi,+m,(A, + h2). This result clearly extends to the sum of k independent 
noncentral chl-square variables. The reason for introducing the noncentral 
chi-square distribution is provided in the next result. 

Proposition 3.6. Suppose C(X) = N(a, 1) on R. Then C(x2)  = x?(a2). 

Proof: The proof consists of calculating the characteristic function of X2. 
A justification of the change of variable in the calculation below can be 
given using contour integration. The characteristic function of x2 is 

O 0 1  
Gexp(itx2) = exp[itx2 - f (x  - a)'] dx 

- m  2a 
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By the uniqueness of characteristic functions, C(x2)  = x:(a2). 

Proposition 3.7. Suppose the random vector X in (V, (., .)) has a N(p, I) 
distribution. If A E C(V, V) is an orthogonal projection of rank k, then 
c((x9 AX)) = x2k((p, AP)). 

Proof. Let {x,, . . . , x,) be an orthonormal basis for the range of A. Thus 
A = Cfxinxi and 

(X, AX) = C;(x,, x ) ~ .  

But the random variables (xi, x ) ~ ,  i = 1,. . . , k, are independent (Proposi- 
tion 3.5) and, by Proposition 3.6, C(X,~)  = x:((xi, p)2). From the additive 
property of independent noncentral chi-square variables, 

Noting that (p, Ap) = c:(x,, p)2, the proof is complete. q 

When C(X) = N(p, Z), the distribution of the quadratic form (X, AX), 
with A self-adjoint, is reasonably complicated, but there is something that 
can be said. Let B be the positive semidefinite square root of Z and assume 
that p E CtL(2). Thus p E %(B) since %(B) = CtL(Z). Therefore, for some 
vector r E V, p = Br. Thus C(X) = C(BY) where C(Y) = N(r, I) and it 
suffices to describe the distribution of (BY, ABY) = (Y, BABY). Since A 
and B are self-adjoint, BAB is self-adjoint. Write BAB in spectral form: 

BAB = Z;hlx,Ox, 

where {x,, . . . , x,) is an orthonormal basis for (V, (., .)). Then 



and the random variables (x,, Y), i = 1,. . . , n ,  are independent with 
C((x,, Y)2) = x:((x,, T ) ~ ) .  It follows that the quadratic form (Y, BABY) 
has the same distribution as a linear combination of independent noncentral 
chi-square random variables. Symbolically, 

In general not much more can be said about this distribution without some 
assumptions concerning the eigenvalues A,, . . . , A,. However, when BAB is 
an orthogonal projection of rank k, then Proposition 3.7 is applicable and 

In summary, we have the following. 

Proposition 3.8. Suppose C(X) = N(p, Z) where p E %(X), and let B be 
the positive semidefinite square root of 2. If A is self-adjoint and BAB is a 
rank k orthogonal projection, then 

We can use a slightly different set of assumptions and reach the same 
conclusion as Proposition 3.8, as follows. 

Proposition 3.9. Suppose C(X) = N(p, 2 )  and let B be the positive semi- 
definite square root of Z. Write p = p,  + p2 where p, E % ( 2 )  and p2  E 

%(2). If A is a self-adjoint such that Ap2 = 0 and BAB is a rank k 
orthogonal projection, then 

Pro05 S i n c e A p 2 = 0 , ( X , A X ) = ( X - p , , A ( X - p , ) ) . L e t Y = X - p ,  
so C(Y) = N(pl, Z) and C((X, AX)) = C((Y, AY)). Since p, E %(Z), 
Proposition 3.8 shows that 

However, (p, Ap) = (p,, Ap,) as Ap2 = 0. 

3.3. INDEPENDENCE OF QUADRATIC FORMS 

Thus far, necessary and sufficient conditions for the independence of 
different linear transformations of a normal random vector have been given 
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and the distribution of a quadratic form in a normal random vector has 
been described. In this section, we give sufficient conditions for the indepen- 
dence of different quadratic forms in normal random vectors. 

Suppose X  E ( V , ( . ,  .)) has an N(p,  Z )  distribution and consider two 
self-adjoint linear transformations, A,, i = 1,2, on V  to V. To discuss the 
independence of ( X ,  A , X )  and ( X ,  A,X), it is convenient to first reduce 
the discussion to the case when p = 0  and Z  = I. Let B  be the positive 
semidefinite square root of 2 so if C ( Y )  = N(0, I ) ,  then C ( X )  = C(BY + 
p) .  Thus it suffices to discuss the independence of ( B Y  + p ,  A , (BY + p ) )  
and ( B Y  + p ,  A,(BY + p ) )  when C ( Y )  = N(0, I ) .  However, 

( B Y  + p ,  A , (BY + p) )  = ( Y ,  BA,BY) + 2(BAip, Y )  + ( p ,  A l p )  

for i = 1,2. Let C, = BA,B, i = 1,2, and let x,  = 2BA,p. Then we want to 
know conditions under whch ( Y ,  C ,Y)  + ( x , ,  Y )  and ( Y ,  C,Y) + (x , ,  Y )  
are independent when C ( Y )  = N(0, I ) .  Clearly, the constants ( p ,  A,p), 
i = 1,2, do not affect the independence of the two quadratic forms. It is t h s  
problem, in reduced form, that is treated now. Before stating the principal 
result, the following technical proposition is needed. 

Proposition 3.10. For self-adjoint linear transformations A, and A,  on 
( V ,  ( . , . )) to (V,( .  , . )), the following are equivalent: 

(i) A,A, = 0. 

(ii) % ( A , )  I % ( A 2 ) .  

Proof. If A,A2 = 0, then A,A2x = 0  for all x  E V so % ( A 2 )  c % ( A I ) .  
Since % ( A , )  I % ( A , ) ,  %(A , )  I %(A, ) .  Conversely, if % ( A 1 )  I % ( A 2 ) ,  
then % ( A 2 )  C %(A1)' = % ( A I )  and this implies that A,A,x = 0  for all 
x  E V. Therefore, A,A2 = 0. 

Proposition 3.11. Let Y  E (V,  (., .)) have a N(0, I )  distribution and sup- 
pose Z, = ( Y ,  A ,Y)  + ( x i ,  Y )  where A, is self-adjoint and x,  E V ,  i = 1,2. 
If A,A2 = 0, A,x2 = 0, A2x,  = 0, and ( x , , ~ , )  = 0, then 2, and 2, are 
independent random variables. 

Proof. The idea of the proof is to show that 2, and 2, are functions of two 
different independent random vectors. To this end, let P, be the orthogonal 
projection onto % ( A i )  for i = 1,2. It is clear that PiA,Pi = A, for i = 1,2. 
Thus 2, = (Ply ,  A,P,Y) + (x , ,  Y )  for i = 1,2. The random vector 
( P ,  Y,  ( x , ,  Y ) )  takes values in the direct sum V  @ R and 2, is a function of 
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t h s  vector. Also, {P,Y, (x,, Y)) takes values in V $ R and Z2 is a function 
of t h s  vector. The remainder of the proof is devoted to showing that 
{Ply,  (x,,  Y)) and {P,Y, (x2, Y)) are independent random vectors. T h s  is 
done by verifying that the random vectors are jointly normal and that they 
are uncorrelated. Let [., . ]  denote the induced inner product on the direct 
sum V @ R. The inner product of the vector {{ y,, a,), {y,, a,)) in (V $ R) 
@ (V @ R)  with {{P,Y,(x,, Y)), {P2Y,(x,, Y))) is 

which has a normal distribution since Y is normal. Thus {{Ply, (x,,  Y)), 
{P,Y, (x,, Y))) has a normal distribution. The independence of these two 
vectors follows from the calculation below, whch shows the vectors are 
uncorrelated. For {y,, cu,) E V @ R and {y2, a,) E V @ R, 

However, PIP, = 0 since % ( A , )  I %(A2). Also, P2xI = 0 as x, E %(A2) 
and, similarly, P,x2 = 0. Further, (x,, x2) = 0 by assumption. Thus the 
above covariance is zero so 2, and 2, are independent. 

A useful consequence of Proposition 3.1 1 is Proposition 3.12. 

Proposition 3.12. Suppose C(X) = N ( p ,  2 )  on (V, (. , -)) and let C,, i = 

1,2, be self-adjoint linear transformations. If C,ZC, = 0, then (X, C,X) 
and (X, C2X) are independent. 

Proot Let B denote the positive semidefinite square root of 2,  and 
suppose C(Y) = N(0, I ) .  It suffices to show that Z,  = (BY + p, C,(BY + 
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p ) )  is independent of Z ,  = ( B Y  + p ,  C,(BY + p ) )  since C ( X )  = C(BY + 
p) .  But 

zl = ( Y ,  BCiBY)  + 2(BC,p, Y )  + ( p ,  C,p) 

for i = 1,2. Proposition 3.11 can now be applied with A, = BC,B and 
xi = 2BC,p for i = 1,2. Since 2 = BB, A ,A,  = BClBBC2B = BC,ZC2B = 

0 as C,ZC2 = 0 by assumption. Also, A,x ,  = 2BC,BBC2p = 2BC,2C2p = 

0. Similarly, A 2 x ,  = 0 and ( x , ,  x,)  = 4(BC,p, BC,p) = 4(p,  ClZC2p)  = 0. 
Thus ( Y ,  B C I B Y )  + 2(BC,p, Y )  and ( Y ,  BC2BY)  + 2(BC2p, Y )  are inde- 
pendent. Hence Z, and 2, are independent. 

The results of this section are general enough to handle most situations 
that arise when dealing with quadratic forms. However, in some cases we 
need a sufficient condition for the independence of k quadratic forms. An 
examination of the proof of Proposition 3.11 shows that when C ( Y )  = 

N(0, I ) ,  the quadratic forms 2, = (Y, A I Y )  + ( x , ,  Y ) ,  i = 1 , .  . . , k, are mu- 
tually independent if, for each i * j ,  A,A, = 0, A,xJ = 0, AJxI  = 0,  and 
( x , ,  x , )  = 0. The details of this verification are left to the reader. 

3.4. CONDITIONAL DISTRIBUTIONS 

The basic result of this section gives the conditional distribution of one 
normal random vector given another normal random vector. It is t h s  result 
that underlies many of the important distributional and independence 
properties of the normal and related distributions that are established in 
later chapters. 

Consider random vectors XI E ( y ,  (., .),), i = 1,2, and assume that the 
random vector { X I ,  X,) in the direct sum V, @ V2 has a normal distribution 
with mean vector { p l ,  p,) E Vl  @ V2 and covariance given by 

Thus C(X,)  = N(p, ,  Z, , )  on ( y ,  (., a ) , )  for i = 1,2. The conditional distri- 
bution of XI given X, = x ,  E V, is described in the next result. 

Proposition 3.13. Let C(XlIX2 = x,) denote the conditional distribution 
of XI given X, = x,. Then, under the above normality assumptions, 

Here, Z;  denotes the generalized inverse of Z,,. 
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Proof. The proof consists of calculating the conditional characteristic 
function of XI given X2 = x,. To do this, first note that XI - Z12Z&X2 and 
X, are jointly normal on Vl $ V2 and are uncorrelated by Proposition 2.17. 
Thus XI - Z12Z& X, and X2 are independent. Therefore, for x E V,, 

where the last equality follows from the independence of X2 and XI - 
CI2Z, X,. However, it is clear that 

as XI - Zl2Z,X2 is normal on V, and has the given mean vector and 
covariance (Proposition 2.17). Thus 

The uniqueness of characteristic functions yields the desired conclusion. 

For normal random vectors, X, E ( y ,  (., .),), i = 1,2, Proposition 3.13 
shows that the conditional mean of XI given X2 = x2 is an affine function of 
x, (affine means a linear transformation, plus a constant vector so zero does 
not necessarily get mapped into zero). In other words, 

Further, the conditional covariance of XI does not depend on the value of 
X,. Also, this conditional covariance is the same as the unconditional 
covariance of the normal random vector XI - ZI2Z,X2. Of course, the 
specification of the conditional mean vector and covariance specifies the 
conditional distribution of X, gven X2 = x, as t h s  conditional distribution 
is normal. 
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+ Example 3.1. Let W,, . . . , Wn be independent coordinate random 
vectors in RP where RP has the usual inner product. Assume that 
e(v) = N(p, 2) SO p E RP is the coordinate mean vector of each 
U: and Z is the p x p covariance matrix of each q. Form the 
random matrix X E % , n  with rows y, i = 1,. . . , n. We know that 

&X = ep' 

and 

where e E Rn is the vector of ones. To show X has a normal 
distribution on the inner product space (Cp, ,,, ( . , .)), it must be 
verified that for each A E C,,,, ( A ,  X)  has a normal distribution. 
To do this, let the rows of A be a;, . . . , a:, a i  E RP. Then 

n 

(A, X) = tr AX' = a:l.t/; 
1 

However, a : y  has a normal distribution on R since C(v) = 

N ( p ,  2 )  on RP. Also, since W,,. . . , Wn are independent, a;W,,. . . , 
aLWn are independent. Since a linear combination of independent 
normal random variables is normal, (A, X) has a normal distribu- 
tion for each A E Cp, ,,. Thus 

on the inner product space ( G p ,  ,,, ( . , . )). We now want to describe 
the conditional distribution of the first q columns of X given the last 
r columns of X where q + r = p. After some relabeling and a bit of 
manipulation, this conditional distribution follows from Proposition 
3.13. Partition each y into I: and Z, where I: E R4 consists of the 
first q coordinates of y and Z, E Rr consists of the last r coordi- 
nates of y .  Let XI E Cq,n have rows Y;,. . . , Y,' and let X2 E Cr, 
have rows Z;,  . . . , Z,',. Also, partition p  into p1 E Rq and p2 E Rr  so 
G I :  = pl  and GZ, = p2, i = 1,. . . , n. Further, partition the covari- 
ance matrix Z of each y so that 

C O V { ~ ,  Z; )  = (;:: ;::I 
where Z,, = Z;,. From the independence of W,, . . . , W,, it follows 
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that 

and (XI ,  X2) has a normal distribution on C,, $ C,, with mean 
vector (ep',, ep;) and 

Now, Proposition 3.13 is directly applicable to {XI, X2) where we 
make the parameter correspondence 

P; ++ 

i = 1,2 

and 

Zij * In @ Xij. 

Therefore, the conditional distribution of X, given X2 = x2 E C,, is 
normal with mean vector 

and 

C0v(X1~x2 = x,) 

However, it is not difficult to show that (In @ Z2,)-= In @ Z,. 
Using the manipulation rules for Kronecker products, we have 

and 

C 0 v ( x 1 ~ x 2  = x,) = In @ (XI, - ZI2',2,,). 

This result is used in a variety of contexts in later chapters. 4 



120 THE NORMAL DISTRIBUTION ON A VECTOR SPACE 

3.5. THE DENSITY OF THE NORMAL DISTRIBUTION 

The problem considered here is how to define the density function of a 
nonsingular normal distribution on an inner product space (V, (., .)). By 
nonsingular, we mean that the covariance of the distribution is nonsingular. 
To motivate the technical considerations given below, the density function 
of a nonsingular normal distribution is first given for the standard coordi- 
nate space Rn with the usual inner product. 

Consider a random vector X in Rn with coordinates XI, .  . . , X, and 
assume that XI,. . . , X, are independent with C(X,) = N(0,l). The symbol 
dx denotes Lebesgue measure on Rn. Since XI,.  . . , X, are independent, the 
joint density of XI,. . . , X, in Rn is just the product of the marginal 
densities, that is, X has a density with respect to dx given by 

where x E Rn has coordinates x, ,  . . . , x,. Thus 

and x'x is just the inner product of x with x in Rn. To derive the density of 
an arbitrary nonsingular normal distribution in Rn,  let A be an n x n 
nonsingular matrix and set Y = AX + p where p E Rn. Since C ( X )  = 

N(0, I,), C(Y) = N(p, Z) where Z = AA' is positive definite. Thus X = 

Apl (Y  - p) and the Jacobian of the nonsingular linear transformation on 
Rn to Rn sending x into A 1 ( x  - p) is (det(AP ')I where ( . ( denotes absolute 
value. Therefore, the density function of Y with respect to dy is 

= ~ d e t ( ~ - ' ) l p ( ~ - ' ( y  - p)) = (det ~ ) - ' / ~ ( 2 7 7 ) - " / ~  

= (det ~ ) - ' / ~ ( 2 . r r ) - ~ / ~ e x ~ [ - f ( y  - p)'.Z-'(y - p)]. 

Thus we have the density function with respect to dy of any nonsiilgular 
normal distribution on Rn. Of course, this expression makes no sense when 
Z is singular. 

Now, suppose Y is a random vector in an n-dimensional vector space 
(V, (., .)) and C(Y) = N(p, 2 )  where Z is positive definite. The expression 
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for y E V, certainly makes sense and it is tempting to call this the density 
function of Y E ( V ,  ( 0 ,  .)). The problem is: What is the measure on (V ,  (. , .)) 
with respect to which p, is a density? In other words, what is the analog of 
Lebesgue measure on (V ,  (., .))? To answer the question, we now show that 
there is a natural measure on ( V ,  (. , .)), which is constructed from Lebesgue 
measure on Rn, and p, is the density function of Y with respect to this 
measure. 

The details of the construction of "Lebesgue measure" on an n- dimen- 
sional inner product space (V ,  (., .)) follow. First, we review some basic 
topological notions for ( V , ( . ,  -)). Recall that Sr(xo)  = {xlllx - xoll < r }  is 
called the open ball of radius r with center x,. A set B G V is called open if, 
for each x,  E B, there is an r > 0  such that Sr(xo) c B. Since all inner 
products on V are related by positive definite linear transformations, the 
definition of open does not depend on the given inner product. A set is 
closed iff its complement is open and a set if bounded iff it is contained in 
Sr(0) for some r > 0 .  Just as in Rn, a set is compact iff it is closed and 
bounded (see Rudin, 1953, for the definition and characterization of com- 
pact sets in R n ) .  As with openness, the definitions and characterizations of 
closedness, boundedness, and compactness do not depend on the particular 
inner product on V. Let 1 denote standard Lebesgue measure on Rn. To 
move 1 over to the space V ,  let x , , .  . . , xn be a fixed orthonormal basis in 
( V ,  ( . , . )) and define the linear transformation T on R" to V by 

where a  E Rn has coordinates a , ,  . . . , a, .  Clearly, T is one-to-one, onto, and 
maps open, closed, bounded, and compact sets of Rn into open, closed, 
bounded, and compact sets of V.  Also, T- '  on V to Rn maps x E V into the 
vector with coordinates ( x i ,  x ) ,  i = 1 , .  . . , n .  Now, define the measure v, on 
Borel sets B E % ( V )  by 

Notice that v,(B + x )  = l ( T 1 ( B  + x ) )  = I ( T - ' ( B )  + T - ' x )  = l ( T - ' ( B ) )  
= v , (B)  since Lebesgue measure is invariant under translations. Also, 
v O ( B )  < + cc if B is a compact set. T h s  leads to the following definition. 

Definition 3.3. A nonzero measure v  defined on the Borel sets % ( V )  of 
( V ,  (. , .)) is invariant if: 

(i) v ( B  + x )  = v ( B )  for x E V and B E % ( V ) .  

(ii) v ( B )  < + cc for all compact sets B. 
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The measure v, defined above is invariant and it is shown that, if v is any 
invariant measure on %(I/), then v = cv, for some constant c > 0. Condi- 
tion (ii) of Definition 3.3 relates the topology of V to the measure v. The 
measure that counts the number of points in a set satisfies (i) but not (ii) of 
Definition 3.3 and this measure is not equal to a positive constant times v,. 

Before characterizing the measure v,, it is now shown that vo is a 
dominating measure for the density function of a nonsingular normal 
distribution on (V, (., .)). 

Proposition 3.14. Suppose C(Y) = N(p, 2 )  on the inner product space 
(V7 (. , .)) where 2 is nonsingular. The density function of Y with respect to 
the measure vo is given by 

p ( y )  = (2~)-""(det 2)- '/ 'exp[-f(y - p, Z P 1 ( y  - p))] 

for y E V. 

ProoJ: It must be shown that, for each Bore1 set B, 

where IB is the indicator function of the set B. From the definition of the 
measure v,, it follows that (see Lehrnann, 1959, p. 38) 

Let X = T-'(Y) E Rn so X is a random vector with coordinates (xi, Y), 
i = 1,. . . , n.  Thus X has a normal distribution in Rn with mean vector 
T-l(p) and covariance matrix [Z] where [Z] is the matrix of Z in the given 
orthonormal basis x,,  . . . , x,. Therefore, 
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The last equality follows since 1,-,(,,(a) = I,(T(a)) and 

Thus 

We now want to show that the measure v,, constructed from Lebesgue 
measure on Rn, is the unique translation invariant measure that satisfies 

Let X+ be the collection of all bounded non-negative Bore1 measurable 
functions defined on V that satisfy the following: given f E X+, there is a 
compact set B such that f (0)  = 0 if v G B. If v is any invariant measure on 
V and f E X+, then jf (v)v(dv) < + oo since f is bounded and the v-mea- 
sure of every compact set is finite. It is clear that, if v ,  and v, are invariant 
measures such that 

\ f(v)vl(do) = /f(v)vl(dv) for a u f ~  X+, 

then v ,  = v,. From the definition of an invariant measure, we also have 
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for all f E X+ and x E V. Furthermore, the definition of vo shows that 

for all f E X+. Here, we have used the linearity of T and the invariance of 
Lebesgue measure under multiplication of the argument of integration by a 
minus one. 

Proposition 3.15. If v is an invariant measure on %(V), then there exists a 
positive constant c such that v = cvo. 

ProoJ: For f ,  g E X+, we have 

= / f ( ~ ) ~ o ( ~ ~ ~ j ~ ( ~ ) ~ ( d ~ ) .  

Therefore. 

for all f, g E XLt. Fix f E Xi such that /f(w)vo(dw) = 1 and set c 

= J/(x)v(dx). Then 
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for all g E CXt. The constant c cannot be zero as the measure v is not zero. 
Thus c > 0 and v = cv,. 

The measure v, is called the Lebesgue measure on V and is henceforth 
denoted by do or dx, as is the Lebesgue measure on Rn. It is possible to 
show that v, does not depend on the particular orthonormal basis used to 
define it by using a Jacobian argument in Rn. However, the argument given 
above contains more information than ths. In fact, some minor technical 
modifications of the proof of Proposition 3.15 yield the uniqueness (up to a 
positive constant) of invariant measures on locally compact topological 
groups. Thls topic is discussed in detail in Chapter 6. 

An application of Proposition 3.14 to the situation treated in Example 
3.1 follows. 

+ Example 3.2. For independent coordinate random vectors y. E 

RP, i = 1,. . . , n, with C ( y )  = N(p, Z), form the random matrix 
X E Cp, ,, with rows y.', i = I , .  . . , n. As shown in Example 3.1, 

c ( X )  = N(epf, I,, 8 2 )  

on the inner product space (Cp,,, ( . , .)), where e E Rn is the 
vector of ones. Let dX denote Lebesgue measure on the vector space 
Cp, , . If ): is nonsingular, then I, 8 Z is nonsingular and (I, 8 8 ) -  ' 
= I, 8 Z-I. Thus when Z is nonsingular, the density of X with 
respect to dX is 

It is shown in Chapter 5 that det(I,, 8 Z) = (det 2)". Since the 
inner product ( . , .) is given by the trace, the density p can be 
written 

However, t h s  form of the density is somewhat less revealing, from a 
statistical point of view, than (3.1). In order to make this statement 
more precise and to motivate some future statistical considerations, 
we now thnk of p E RP and Z as unknown parameters. Thus, we 
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can write (3.1) as 

where p  ranges over RP and B  ranges over all p X p positive definite 
matrices. Thus we have a parametric family of densities for the 
distribution of the random vector X. As a first step in analyzing t h s  
parametric family, let 

It is clear that M is ap-dimensional linear subspace of C,, , and M is 
simply the space of possible values for the mean vector of X. Let 
P, = ( l / n ) e e f  so P, is the orthogonal projection onto span(e) G R n .  
Thus Pe 8 I, is an orthogonal projection and it is easily verified that 
the range of P, @ I, is M. Therefore, the orthogonal projection onto 
M is Pe 8 I,. Let Q ,  = In - P, so Q ,  8 I, is the orthogonal projec- 
tion onto M I  and ( Q ,  8 I,)(P, 8 I,) = 0. We now decompose X  
into the part of X  in M and the part of X  in M I  -that is, write 
X  = ( P ,  8 I,)X + ( Q ,  8 I,)X. Substituting t h s  into the exponen- 
tial part of (3.2) and using the relation (Pe  8 I,)(I, 8 Z ) ( Q ,  8 I,) 
= 0, we have 

= ( P e X  - ep', ( I ,  8 2- ' )(P,x  - ep ' ) )  + ~ ~ Q , x B - ' ( Q , x ) ~  

= ( P e X  - ep', ( I ,  8 Z - ' ) ( P , x  - ep ' ) )  + t r x f ~ , x B - ' .  

Thus the density p ( X I p ,  Z )  is a function of the pair PeX and 
X f Q e  X  so P, X  and X'Q, X  is a sufficient statistic for the parametric 
family (3.2). Proposition 3.4 shows that ( P ,  8 I,)X and ( Q ,  8 I,) X  
are independent since ( P ,  8 I,)(I, 8 Z ) ( Q ,  8 I,) = ( P e e e )  €3 Z  = 

0 as PeQe = 0. Therefore, PeX and X'Q,X are independent since 
P,X = ( P ,  8 I,)X and X'QeX = ( ( Q ,  8 I ,)X) '((Q, 8 I , )X) .  To 
interpret the sufficient statistic in terms of the original random 
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vectors W,,. . . , Wn,  first note that 

where W = ( l / n ) Z V  is the sample mean. Also, 

The quantity ( l / n ) X r Q e X  is often called the sample covariance 
matrix. Since e W r  and Ware one-to-one functions of each other, we 
have that the sample mean and sample covariance matrix form a 
sufficient statistic and they are independent. It is clear that 

The distribution of X I Q e X ,  commonly called the Wishart distribu- 
tion, is derived later. The procedure of decomposing X  into the 
projection onto the mean space (the subspace M) and the projec- 
tion onto the orthogonal complement of the mean space is funda- 
mental in multivariate analysis as in univariate statistical analysis. 
In fact, this procedure is at the heart of analyzing linear models-a 
topic to be considered in the next chapter. + 

PROBLEMS 

1. Suppose X I , .  . . , Xn are independent with values in (V, (. , -)) and 
C ( 4 . )  = N ( p i ,  Ai), i = 1 , .  . ., n .  Show that C ( Z 4 )  = N ( Z p i ,  Z A , ) .  

2. Let X  and Y  be random vectors in R n  with a joint normal distribution 
given by 

where p  is a scalar. Show that Ipl G 1 and the covariance is positive 
definite iff Ipl < 1. Let Q ( Y )  = I, - ( Y ' Y ) - ' Y Y ' .  Prove that W = 

X ' Q ( Y ) X  has the distribution of (1 - p2)X; - ,  (the constant 1 - p2 

times a chi-squared random variable with n  - 1 degrees of freedom). 
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3. When X E Rn and C( X) = N(0, Z) with Z nonsingular, then C(X) = 

C(CZ) where C(Z) = N(0, I,) and CC' = 2. Hence, C(C-'X) = 
C(Z) so C-' transforms X into a vector of i.i.d. N(0,l) random 
variables. There are many C- "s that do this. The problem at hand 
concerns the construction of one such C-'. Given any p x p positive 
definite matrix A, p >, 2, partition A as 

where a , ,  E R1, A,, = A;, E RP-'. Define T,(A) by 

(i) Partition Z : n X n as A is partitioned and set X(') = T,(Z)X. 
Show that 

where Xi1) = Z,, - Z,,Z,,/a,,. 

(ii) For k = 1,2,. . . , n - 2, define x (~+ ' )  by 

Prove that 

for some positive definite Xik+ ' ) .  

(iii) For k = 0,. . . , n - 2, let 

where T(O) = T,(Z). With T = T("-,). . . T(O), show that X("-') 
= TX and Cov(Xin-I)) = I,. Also, show that T is lower triangu- 
lar and Z - = T'T. 
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4. Suppose X E R~ has coordinates XI and X2, and has a density 

- e x -  ( x  + x ) ]  if xIx2 > 0 
p ( x ) =  77 

otherwise 

s o p  is zero in the second and fourth quadrants. Show XI and X2 are 
both normal but X is not normal. 

5. Let XI,. . . , Xn be i.i.d. N(p, a 2 )  random variables. Show that U = 

- q)2 and W = ZX, are independent. What is the distribution 
of U? 

6. For X E (V,(., 0 ) )  with C(X) = N(0, I), suppose (X, AX) and 
(X, BX) are independent. If A and B are both positive semidefinite, 
prove that AB = 0. Hint: Show that tr AB = 0 by using 
cov{(X, AX),(X, BX)) = 0. Then use the positive semidefiniteness 
and tr AB = 0 to conclude that AB = 0. 

The method used to define the normal distribution on (V,( . ,  .)) 
consisted of three steps: (i) first, an N(0, 1) distribution was defined on 
R'; (ii) next, if C(Z) = N(0, l), then W is N(p, a 2 )  if C(W) = C(uZ 
+ p); and (iii) X with values in (V, ( a ,  .)) is normal if (x, X) is normal 
on R' for each x E V. It is natural to ask if this procedure can be used 
to define other types of distributions on (V, (., -)). Here is an attempt 
for the Cauchy distribution. For X E R', say Z is standard Cauchy 
(which we write as C(Z) = C(0,l)) if the density of Z is 

Say W has a Cauchy distribution on R' if C(W) = C(aZ + p )  for 
some p E R1 and a > 0-in this case write C(W) = C(p, a). Finally, 
say X E (V, (., -)) is Cauchy if (x, X) is Cauchy on R'. 

(i) Let W,, . . . , Wn be independent C(p,, a,), j = 1,. . . , n.  Show that 
C(Za,q.) = C(Za .p ., ZJa,la,). Hint: The characteristic function 

J !  

of a C(0, 1) distribution is exp[ - It1 1, t E R'. 

(ii) Let Z,,.  . . , Z, be i.i.d. C(0,l) and let x,,. . . , x, be any basis for 
(V,(., .)). Show X = ZZjxj has a Cauchy distribution on 
(V , ( . ,  .I). 

8. Consider a density on R' given by 

f ( u )  = [mt - '+ (u / t )~ (d r )  
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where C#I is the density of an N(0, l )  distribution and G  is a distribution 
function with G(0) = 0. The distribution defined by f is called a scale 
mixture of normals. 

(i) Let Z,  be N(0, l )  and let R  be independent of Z,  with C ( R )  = G. 
Show that U  = RZ, has f as its density function. 

If C ( Y )  = C(cU) for some c  > 0, we can say that Y has a type-f 
distribution. 

(ii) In (V ,  (., .)), suppose C ( Z )  = N(0, I )  and form X  = RZ where R  
and Z  are independent and C ( R )  = G. For each x  E V ,  show 
( x ,  X )  has a type-f distribution. 

Remark. The distribution of X  in (V ,  (., .)) provides a possible vector 
space generalization of a type-f distribution on R'. 

9. In the notation of Example 3.1, assume that p = 0  so C ( X )  = N(0, In 
@ 2 )  on (ep, ., ( . , .)I. Also, 

where C, ,  , ,  = C,,  - 2,2C;1Z2,. Show that the conditional distribu- 
tion of XiX, given X2 is the same as the conditional distribution of 
Xi XI given Xi X2 . 

10. The map T  of Section 3.5 has been defined on Rn to ( V , ( . ,  .)) by 
Ta = C;a,x, where x, , .  . . , x ,  is an orthonormal basis for ( V , ( . ,  .)). 
Also, we have defined v, by v,(B) = I ( T - ' ( B ) )  for B  E % ( V ) .  Con- 
sider another orthonormal basis y,, . . . , y, for ( V ( . ,  .)) and define TI 
by T,a = CTa, y,, a  E Rn. Define v ,  by v , ( B )  = I(T; ' ( B ) )  for B  E 

% ( V ) .  Prove that v, = v,. 

11. The measure v, in Problem 10 depends on the inner product (. , .) on 
V. Suppose [., - 1  is another inner product given by [ x ,  y ]  = ( x ,  Ay)  
where A  > 0. Let v,  be the measure constructed on ( V ,  [ . ,  . I )  in the 
same manner that v, was constructed on ( V ,  (., .)). Show that v,  = cv, 
where c  = (det(A))1/2. 

12. Consider the space Sp of p  X p  symmetric matrices with the inner 
product given by ( S , ,  S2)  = tr S,S2. Show that the density function of 
an N(0, I )  distribution on (S,, ( . , .)) with respect to the measure v, 
is 

where S  = ( s i j ) ,  i, j = 1,. . . , p. Explain your answer (what is v,)? 



NOTES AND REFERENCES 131 

13. Consider XI,. . . , X,, which are i.i.d. N(p, Z) on RP. Let X E C p , ,  
have rows Xi,. . . , XA so C(X) = N(epf, I, 8 2).  Assume that 2 has 
the form 

where a 2  > 0 and - l / (p  - 1) < p < 1 so Z is positive definite. Such 
a covariance matrix is said to have intraclass covariance structure. 

(i) On RP, let A = (l/p)e,e; where e l  E RP is the vector of ones. 
Show that a positive definite covariance matrix has intraclass covari- 
ance structure iff Z = aA + p ( I  - A) for some positive scalars a and 
p. In this case 2-I = a-IA + p - ' ( I  - A). 

(ii) Using the notation and methods of Example 3.2, show that when 
(p, a2,  p) are unknown parameters, then (X, tr AXfQeX, tr ( I  - 
A) XfQe X) is a sufficient statistic. 

NOTES AND REFERENCES 

1. A coordinate treatment of the normal distribution similar to the treat- 
ment given here can be found in Muirhead (1982). 

2. Examples 3.1 and 3.2 indicate some of the advantages of vector space 
techniques over coordinate techniques. For comparison, the reader may 
find it instructive to formulate coordinate versions of these examples. 

3. The converse of Proposition 3.11 is true. The only proof I know involves 
characteristic functions. For a discussion of this, see Srivastava and 
Khatri (1979, p. 64). 
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