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Order determination in general vector

autoregressions

Bent Nielsen1

University of Oxford

Abstract: In the application of autoregressive models the order of the model
is often estimated using either a sequence of likelihood ratio tests, a likeli-
hood based information criterion, or a residual based test. The properties of
such procedures has been discussed extensively under the assumption that the
characteristic roots of the autoregression are stationary. While non-stationary
situations have also been considered the results in the literature depend on
conditions to the characteristic roots. It is here shown that these methods for
lag length determination can be used regardless of the assumption to the char-
acteristic roots and also in the presence of deterministic terms. The proofs are
based on methods developed by C. Z. Wei in his joint work with T. L. Lai.

1. Introduction

Order determination for stationary autoregressive time series has been discussed
extensively in the literature. The three prevailing methods are either to test re-
dundance of the last lag using a likelihood based test, to estimate the lag length
consistently using an information criteria, or to investigate the residuals of a fitted
model with respect to autocorrelation. It is shown that these methods can be used
regardless of any assumptions to the characteristic roots. This is important in ap-
plications, as the question of lag length can be addressed without having to locate
the characteristic roots.

The statistical model is given by a p-dimensional time series Xt of length K +T
satisfying a Kth order vector autoregressive equation

(1.1) Xt =
K∑

l=1

AlXt−l + µDt + εt, t = 1, . . . , T,

conditional on the initial values X0, . . . , X1−K . The effective sample will remain
X1, . . . , XT when discussing autoregressions with k < K to allow comparison of
likelihood values. The component Dt is a vector of deterministic terms such as a
constant, a linear trend, or seasonal dummies. For the sake of defining a likeli-
hood function it is initially assumed that the innovations, (εt), are independently,
identically normal, Np(0, Ω), distributed and independent of the initial values.

The aim is to determine the largest non-trivial order for the time series, k0 say
with 0 ≤ k0 ≤ K, so Ak0 �= 0 and Aj = 0 for j > k0. Three approaches are available
of which the first is based on a likelihood ratio test for Ak = 0 where 1 ≤ k ≤ K.
The log likelihood ratio test statistic is

LR (Ak = 0) = T log det Ω̂k−1 − T log det Ω̂k,
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where Ω̂k−j is the conditional maximum likelihood estimator based on the observa-
tions X1, . . . , XT given the initial values, see (3.2) below. The statistic LR is proved
to be asymptotically χ2 under the hypothesis k0 < k, generalising results for the
purely non-explosive case. Since the result does not depend on the characteristic
roots, it can be used for lag length determination before locating the characteristic
roots.

The second approach is to estimate k0 by the argument k̂ that maximises a
penalised likelihood, or equivalently, minimises an information criteria of the type

(1.2) Φj = log det Ω̂j + j
f (T )

T
, j = 0, . . . , K.

In the literature there are several candidates for the penalty function f . Akaike
has f(T ) = 2p2, Schwarz [23] has f(T ) = p2 log T while Hannan and Quinn
[10] and Quinn [22] have f(T ) = 2p2 log log T . For stationary processes with-
out deterministic components it has been shown that the estimator k̂ is weakly
consistent if f(T ) = o(T ) and f(T ) → ∞ as T increases, while Hannan and
Quinn show, for p = 1, that strong consistency is obtained if f(T ) = o(T ) and
lim infT→∞ f(T )/ log log T > 2, while strong consistency cannot be obtained if
lim supT→∞ f(T )/ log log T < 2. In other words the estimators of Hannan and
Quinn and of Schwarz are consistent while Akaike’s estimator is inconsistent. Some
generalisations to non-explosive processes have been given by for instance Paulsen
[20], Pötscher [21] and Tsay [24]. Pötscher also considered the purely explosive
case but did not obtain a common feasible rate for f(T ) for the explosive and the
non-explosive case. In the following consistency is shown for a penalty function
f(T ) not depending on the characteristic roots, showing that the penalised likeli-
hood approach also can be applied to lag length determination prior to locating the
characteristic roots.

A third approach is a residual based mis-specification test. This is implemented
in particular in econometric computer packages. In a first step the residuals, ε̂t

say, are computed from the model (1.1) with k − 1 lags, say. In a second step an
auxillary regression is considered where ε̂t is regressed on lagged values as well as the
regressors in equation (1.1). It is argued that a test based on the squared multiple
correlation arising from the auxillary regression is asymptotically equivalent to the
above mentioned likelihood ratio test statistic also in the general case.

Like the work of Pötscher [21] the proofs in this paper are based on the joint work
of C. Z. Wei and T. L. Lai on the strong consistency of least squares estimators
in autoregressions, see for instance Lai and Wei [15]. As pointed out in Pötscher’s
Remark 1 to his Theorem 3.3 these results are not quite strong enough to facilitate
common feasible rates for the penalty function. Two important ingredients in the
presented proofs are therefore an algebraic decomposition exploiting partitioned
inversion along with a generalisation of Lai and Wei’s work given by Nielsen [17].
Whereas the former paper is concerned with showing that the least squares estima-
tor for the autoregressive estimator is consistent, the latter paper provides a more
detailed discussion of the rate of consistency as well as it allows deterministic terms
in the autoregression.

The following notation is used throughout the paper: For a quadratic matrix α let
tr(α) denote the trace and λ(α) the set of eigenvalues, so that |λ(α)| < 1 means that
all eigenvalues have absolute value less than one. When α is also symmetric then
λmin(α) and λmax(α) denote the smallest and the largest eigenvalue respectively.
The abbreviations a.s. and P are used for properties holding almost surely and in
probability, respectively.
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2. Results

Before presenting the results the assumptions and notation is set up. Then the
results follow for the three approaches.

2.1. Assumptions and notation

The asymptotic analysis is to a large extent based on results of Lai and Wei [15]
with appropriate modifications to the situation with deterministic terms in Nielsen
[17]. Following that analysis the assumption to the innovations of independence
and normality made above can be relaxed so that the sequence of innovations
(εt) is a martingale difference sequence with respect to an increasing sequence of
σ-fields (Ft), that is: the innovations X1−k, . . . , X0 are F0-measurable and εt is
Ft-measurable with E(εt|Ft−1)

a.s.= 0, which is assumed to satisfy

(2.1) sup
t

E{(ε′tεt)λ/2|Ft−1}
a.s.
< ∞ for some λ > 4.

To establish an asymptotic theory for the LR-statistic it is assumed that

(2.2) E (εtε
′
t|Ft−1)

a.s.= Ω,

where Ω is positive definite. For the asymptotic theory for the information criteria
this can be relaxed to

(2.3) lim inf
t→∞

λminE (εtε
′
t|Ft−1)

a.s.
> 0.

The deterministic term Dt is a vector of terms such as a constant, a linear
trend, or periodic functions like seasonal dummies. Inspired by Johansen [13] the
deterministic terms are required to satisfy the difference equation

(2.4) Dt = DDt−1,

where D has characteristic roots on the complex unit circle. For example,

D =
(

1 0
1 −1

)
with D0 =

(
1
1

)

will generate a constant and a dummy for a biannual frequency. The deterministic
term Dt is assumed to have linearly independent coordinates. That is:

(2.5) |λ (D)| = 1, rank (D1, . . . , DdimD) = dimD.

In the analysis it is convenient to introduce the companion form

(2.6)
(

Xt

Dt

)
=
(

B µ
0 D

)(
Xt−1

Dt−1

)
+
(

et

0

)
,

where Xt−1 = (X ′
t−1, . . . , X

′
t−k+1)

′ and

B =
{

A1 · · ·Ak−2 Ak−1

Ip(k−2) 0

}
, ι =

{
Ip

0(k−2)p×p

}
, µ = ιµD, et = ιεt.

The process Xt can be decomposed using a similarity transformation. Following
Herstein ([11], p. 308) there exists a regular, real matrix M that block-diagonalises
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B so that MBM−1 = diag(U,V,W) is a real block diagonal matrix where the
eigenvalues of the diagonal blocks U,V,W satisfy |λ(U)| < 1, |λ(V)| = 1, and
|λ(W)| > 1. Any of the blocks U,V,W can be empty matrices, so if for instance
|λ(B)| < 1 then U = B and dimV = dimW = 0. The process Xt can therefore be
decomposed as

(2.7) MXt =


 Ut

Vt

Wt


 =


U 0 0 µU

0 V 0 µV

0 0 W µW






Ut−1

Vt−1

Wt−1

Dt


+


 eU,t

eV,t

eW,t


 .

Finally, there exists a constant µ̃U , see Nielsen ([17], Lemma 2.1), so

(2.8) Ut = Ũt + µ̃UDt where Ũt = UŨt−1 + eU,t.

2.2. Likelihood ratio test statistics

The likelihood ratio test statistic is known to be asymptotically χ2 in the stationary
case where |λ(B)| < 1 and D = 1, see Lütkepohl ([16], Section 4.2.2). Here the result
is shown to hold regardless of the assumptions to B and D. Thus, the likelihood
ratio test can be used before locating the charateristic roots.

Theorem 2.1. Suppose Assumptions (2.1), (2.2), (2.5) are satisfied and k0 < k.
Then LR(Ak = 0) is asymptotically χ2(p2).

Since the likelihood ratio test statistic is based on partial correlations it follows
from Theorem 2.1 that partial correlograms that are computed from partial cor-
relograms can be used regardless of the location of the characteristic roots. Often
correlograms are, however, based on the Yule-Walker estimators, which assume sta-
tionarity. For non-stationary autoregressions that can lead to misleading inference.
Nielsen [18] provides a more detailed discussion.

Remark 2.2. The fourth order moment condition, λ > 4, in Assumption (2.1) is
used twice in the proof. First, to ensure that the residuals from regressing εt on
the explosive term Wt−1 do not depend asymptotically on Wt−1. As discussed in
Remark 3.7 it suffices that λ > 2 if either of the following conditions hold:

(I,a) dimW = 0.
(I,b) dimW > 0 and εt independent, identically distributed.

Secondly, to ensure that εtεt−1 has second moments when applying a Central Limit
Theorem. As discussed in Remark 3.12, it suffice that λ > 2 if

(II) the innovations εt are independent.

The test statistic considered above is for a hypothesis concerning a single lag.
This can be generalised to a hypothesis concerning several lags, m say, where k +
m − 1 ≤ K.

Theorem 2.3. Suppose Assumptions (2.1), (2.2), (2.5) are satisfied and k0 < k.
Then LR(Ak = · · · = Ak+m−1 = 0) is asymptotically χ2(p2m).

2.3. Information criteria

The next two results concern consistency of a lag length estimator arising from use
of information criterions. The proof has two distinct parts. First, it is argued that
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the lag length estimator k̂ is not under-estimating, and, secondly, that it is not
over-estimating. The first part is the easy one to establish. This result holds for all
of the penalty functions discussed in the introduction under weak conditions to the
innovations.

Theorem 2.4. Suppose Assumptions (2.1), (2.3), (2.5) are satisfied with λ > 2

only and f(T ) = o(T ). Then lim infT→∞ k̂
a.s.
≥ k0.

This result has previously been established in the univariate case without deter-
ministic terms so p = dim X = 1 and dimD = 0 by Pötscher (1989, Theorem 3.3).
For the purely explosive case |λ(B)| > 1 his Theorem 3.2 shows the above result
under the weaker condition f(T ) = o(T 2). A version holding in probabilty has been
shown for the non-explosive case |λ(B)| ≤ 1 and D = 1 by Paulsen [20] and Tsay
[24].

Results showing that the lag length is not overestimating are harder to estab-
lish. Various weak and strong results can be obtained depending on the number of
conditions that are imposed.

Theorem 2.5. Suppose Assumptions (2.1), (2.5) are satisfied. Then

(i) If f(T ) → ∞ and Assumption (2.2) holds then P(k̂ ≤ k0) → 1.

(ii) If f(T )/ log T → ∞ and Assumption (2.3) holds then lim sup
T→∞

k̂
a.s.
≤ k0.

(iii) If f(T )/{(log log T )1/2(log T )1/2} → ∞, Assumption (2.3) holds, and the pa-
rameters satisfy the condition (A) that V and D have no common eigenvalues

then lim sup
T→∞

k̂
a.s.
≤ k0.

(iv) If f(T )/ log log T → ∞, Assumption (2.3) holds, and either (B) dimD = 0

with V = 1 or (C) dimV = 0 then lim sup
T→∞

k̂
a.s.
≤ k0.

(v) Suppose Assumption (2.2) holds, and either (B) or (C) holds then

(a) If lim infT→∞(2 log log T )−1f(T )
a.s.
> p2 then lim sup

T→∞
k̂

a.s.
≤ k0.

(b) If lim supT→∞(2 log log T )−1f(T )
a.s.
< 1 then k̂

a.s.
� k0.

By combining Theorems 2.4, 2.5 consistency results can be obtained. For instance
Theorem 2.4 in combination with Theorem 2.5(i) shows that k̂

P→ k0 if the penalty
function satisfies f(T ) → ∞ and f(T ) = o(T ). This includes Hannan and Quinn’s
and Schwarz’s penalty functions, but excludes that of Akaike as usually found.
Likewise, Theorem 2.4 in combination with Theorem 2.5(ii) show that k̂

a.s.→ k0 if
the penalty function satisfies f(T )/ log T → ∞ and f(T ) = o(T ). These results
are the first to present conditions to the penalty function ensuring consistency that
are not depending on the parameter B and D. This implies that the information
criteria can be used before locating the charateristic roots.

It remains an open problem, however, to establish strong consistency of the
Schwarz and the Hannan-Quinn estimators for general values of V and D. Theorem
2.4 combined with Theorem 2.5(iii) shows that the Schwarz estimator is strongly
consistent when (A) holds so V and D have no common eigenvalues. Theorem 2.4
combined with Theorem 2.5(v) shows that the Hannan-Quinn estimator is strongly
consistent when either (B) dimD = 0 with V = 1 or (C) dimV = 0 holds. This
is the first strong consistency result for the Hannan-Quinn estimator in the non-
stationary case.



98 B. Nielsen

Remark 2.6. In Theorem 2.5 the fourth order moment condition λ > 4 in As-
sumption (2.1) can be relaxed to λ > 2 under certain condions to the parameters.
Recall the conditions stated in Remark 2.2 which are

(I,a) dimW = 0.
(I,b) dimW > 0 and εt independent, identically distributed.
(II) the innovations εt are independent.

As discussed in Remark 3.13 it holds:
Result (i) can be relaxed if (II) holds along with either (I,a) or (I,b).
Results (ii), (iii), (iv) can be relaxed if (I,a) holds.
Result (v) cannot be relaxed with the present proof.

A number of related results are available in the literature.
The weak consistency results in (i) has been shown for the non-explosive case

|λ(B)| ≤ 1 and D = 1 by Paulsen [20] and Tsay [24].
The (log log T )1/2(log T )1/2 rate discussed in Theorem 2.5(iii) and Remark 2.6(iii)

is an improvement over the log T rates discussed by for instance Pötscher [21]
and Wei [25]. These authors discuss the univariate case without deterministic
terms so p = dimX = 1 and dimD = 0, in which case V and D trivially
have no common eigenvalues. First, Pötscher ([21], Theorem 3.1) shows an under-
estimation result for rates satisfying f(T )/ log T → ∞ in the non-explosive case
so |λ(B)| ≤ 1, hence dimW = 0, but with Assumption (2.3) replaced by the
weaker condition that lim infT→∞ T−1

∑T
t=1 E(ε2

t |Ft−1)
a.s.→ 0. Pötcher’s Theorem

3.2 concerning under-estimation in the purely explosive case so |λ(B)| > 1 requires
lim infT→∞ f(T )/T > 0 a.s. with just λ > 2 in Assumption (2.1). The Remark 1 to
his Theorem 3.3 points out that his results do not provide a common feasibility rate
for autoregressions with both explosive and non-explosive roots in that f(T ) = o(T )
is required for the over-estimation result, whereas lim infT→∞ f(T )/T > 0 a.s. is
required for the under-estimation results. Secondly, Theorem 3.6 of Wei [25] goes a
step further in showing the over-estimation result for the rate f(T ) = log T for the
non-explosive case so dimW = 0.

The optimal log log T rates in (v) were originally suggested by Hannan and Quinn
[10] and Quinn [22] for the case where |λ(B)| < 1, dimD = 0. A full generalisa-
tion cannot be made at present as the proof hinges on proving that the smallest
eigenvalue of the average of the squared residual from regressing Vt−1 on Dt, that
is T−1−η

∑T
t=1(Vt−1|Dt)(Vt−1|Dt)′, has positive limit points for some η > 0. This

result can only be established in two special cases: first, if dimV = 0 the issue
is irrelevant, and secondly, if V = 1 and dimD = 0 this follows from the law of
iterated logarithms by Donsker and Varadhan [6]. A more detailed discussion is
given in Lemma 3.5(iv) in the Appendix.

The strong log log T rate in Theorem 2.5(iv) and Remark 2.6(iv) has previ-
ously been established in the purely stable, univariate case without determin-
istic terms, so p = dim X = 1 and dimD = 0 and |λ(B)| < 1, and hence
dimW = 0, see Pötscher ([21], Theorem 3.4). Once again, his result only requires
lim infT→∞ T−1

∑T
t=1 E(ε2

t |Ft−1) → 0 a.s. instead of Assumption 2.3.

2.4. Residual based mis-specification testing

The third approach is to fit the model (1.1) with k−1 lags and analyse the residuals
for autocorrelation of order up to m. The maximal lag length parameter K is here
required to be at least k − 1. This is done in two steps. First the residuals ε̂t are
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found for the regression (1.1) with t = 1, . . . , T and k − 1 lags. In the second step
ε̂t is analysed in an auxillary regression for t = m + 1, . . . , T, where ε̂t is regressed
on ε̂t−1, . . . , ε̂t−m as well as the original regressors Xt−1 = (X ′

t−1, . . . , X
′
t−k+1)

′

and Dt. The original regressors are included to mimic the above likelihood analysis
where Xt−1, Dt are partialled out from Xt and Xt−k. A test based on the squared
sample correlation of the variables in the auxillary regression is asymptotically
equivalent to the likelihood ratio tests, so the degrees of freedom do not include the
dimension of Xt−1, Dt. In the multivariate case, p > 1, the test can be implemented
in three ways, using either a simultaneous test, a marginal test or a conditional test.

The joint test, is based on the test statistic tr(TR2), where R2 is the squared
sample multiple correlation of ε̂t and (ε̂′t−1, . . . , ε̂

′
t−m,X′

t−1, D
′
t)

′.
The other two tests are based on a q-dimensional subset of the p components of

εt. As the equations in the model equation (1.1) can be permuted there is no loss
of generality in focussing on the first q components. Thus, partition

εt =
(

εt,1

εt,2

)
, Xt =

(
Xt,1

Xt,2

)
,

where εt,1 and Xt,1 are q-dimensional.
The marginal model consists of the first q equations of (1.1), that is Xt,1 given

Xt−1, Dt. The marginal test is then based on the squared sample multiple correla-
tion, R2

marg say, of ε̂t,1 and (ε̂′t−1,1, . . . , ε̂
′
t−m,1,X

′
t−1, D

′
t).

The conditional model consists of the first q equations of (1.1) given Xt,2, that
is Xt,1 given Xt,2,Xt−1, Dt. The conditional test is based on the squared sample
multiple correlation, R2

cond say, of ε̂t,1 and (ε̂′t−1,1, . . . , ε̂
′
t−m,1, X

′
t,2,X

′
t−1, D

′
t).

The following asymptotic result can be established.

Theorem 2.7. Suppose Assumptions (2.1), (2.2), (2.5) are satisfied and k0 < k.
Then tr(TR2) is asymptotically χ2(p2m), while tr(TR2

marg) and tr(TR2
cond) are as-

ymptotically χ2(q2m).

Sometimes these test are implemented so that the auxillary regression is carried
out for t = 1, . . . , T rather than t = m+1, . . . , T with the convention that ε̂0 = · · · =
ε̂1−m = 0. Variants of the tests have been considered, in particular for the univariate
case, by Durbin [7], Godfrey [8], Breusch [3] and Pagan [19]. Those variants have
been argued to be score/Lagrange multiplier type tests and asymptotic theory has
been established for the stationary case |λ(B)| < 1.

3. Proofs

The likelihood ratio test statistic for testing Ak = 0 is given by

LR (Ak = 0) = −T log det(Ω̂−1
k−1Ω̂k)

= −T log det{Ip − Ω̂−1
k−1(Ω̂k−1 − Ω̂k)},(3.1)

where Ω̂k and Ω̂k−1 represent the unrestricted and restricted maximum likelihood
estimators for the variance matrix defined below. In the following first some notation
is introduced. Then comes an asymptotic analysis of Ω̂k−1 and Ω̂k−1−Ω̂k and finally
proofs of the main theorems follow.
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3.1. Notation

It is convenient to introduce some notation to handle Ω̂k−1 as well as Ω̂k−1 − Ω̂k.
Thus, let the residuals from the partial regressions of Xt and Xt−k on Xt−1 =
(X ′

t−1, . . . , X
′
t−k+1)

′ and the deterministic components Dt be denoted

(Xt|Xt−1, Dt) , (Xt−k|Xt−1, Dt) .

When the hypothesis, Ak = 0, is satisfied then (Xt|Xt−1, Dt) = (εt|Xt−1, Dt) and
therefore the restricted variance estimator is given by

(3.2) Ω̂k−1 =
1
T

T∑
t=1

(εt|Xt−1, Dt) (εt|Xt−1, Dt)
′
.

Most of the analysis in the proof relates to Ω̂k−1 − Ω̂k so it is helpful to define

Q (Zt) =
T∑

t=1

εtZ
′
t

(
T∑

t=1

ZtZ
′
t

)−1 T∑
t=1

Ztε
′
t,

for any time series Zt. It follows that T (Ω̂k−1 − Ω̂k) = Q(Xt−k|Xt−1, Dt). Occa-
sionally the following notation will be used: For a matrix α let α⊗2 = αα′.

3.2. Asymptotic analysis of Ω̂k−1

Asymptotic expressions for the restricted least squares variance estimator Ω̂k−1 are
given by Nielsen ([17], Corollary 2.6, Theorem 2.8):

Lemma 3.1. Suppose Ak = 0 and that the Assumptions (2.1), (2.3), (2.5) are
satisfied with λ > 2. Then, for all ξ < 1 − 2/λ it holds

Ω̂k−1
a.s.=

1
T

T∑
t=1

εtε
′
t + o(T−ξ),

If in addition Assumption (2.2) is satisfied then for all ζ < min(ξ, 1/2) it holds

Ω̂k−1
a.s.= Ω + o(T−ζ).

3.3. Asymptotic analysis of Ω̂k−1 − Ω̂k

The analysis of the term Ω̂k−1 − Ω̂k is specific to the order selection problem. For
the sake of finding the asymptotic distribution of the likelihood ratio test statistic
the aim is to express Ω̂k−1 − Ω̂k in terms of a stationary process Yt as

(3.3) T (Ω̂k−1 − Ω̂k) = Q (Xt−k|Xt−1, Dt) = Q(Yt−1) + oP(1),

which in turn can be proved to be asymptotically χ2 by a Central Limit Theorem.
The result (3.3) reduces trivially to an equality with Yt−1 = εt−1 when testing
A1 = 0, so only the case k > 1 will need consideration in the remainder of this
subsection. On the way to prove the above result some related expressions holding
under weaker assumptions emerge which can be used for proving the consistency
results for the estimator of the lag length, k̂.

In the following Ω̂k−1− Ω̂k is first decomposed into seven terms. It is then shown
that the three leading term can be written as Q(Yt−1) as in (3.3) and that the
remaining four terms are asymptotically vanishing.



Order determination 101

3.3.1. Decomposition of Ω̂k−1 − Ω̂k

The first decomposition is a purely algebraic result based on the formula for parti-
tioned inversion.

Lemma 3.2. Suppose Ak = 0. Then it holds

Q (Xt−k|Xt−1, Dt) = Q (Xt−2|Dt) − Q (Xt−1|Dt) + Q (εt−1|Xt−2, Dt) .

Proof of Lemma 3.2. By the formula for partitioned inversion it holds

(3.4) Q

(
Xt−1

Xt−k

∣∣∣∣Dt

)
= Q (Xt−k|Xt−1, Dt) + Q (Xt−1|Dt) ,

of which T (Ω̂k−1 − Ω̂k) = Q (Xt−k|Xt−1, Dt) is the first term on the left. Noting
that (X′

t−1, X
′
t−k)′ = (X ′

t−1,X
′
t−2)

′ a repeated use of the formula for partitioned
inversion shows

(3.5) Q

(
Xt−1

Xt−k

∣∣∣∣Dt

)
= Q

(
Xt−1

Xt−2

∣∣∣∣Dt

)
= Q (Xt−1|Xt−2, Dt) + Q (Xt−2|Dt) .

Due to the model equation (1.1) with Ak = 0 and the property Dt = DDt−1 it
follows (Xt−1|Xt−2, Dt) = (εt−1|Xt−2, Dt). The desired expression then arise by
rearranging the above expressions.

Asymptotic arguments are now needed. These arguments rely on Nielsen [17]
which in turn represents a generalisation of the arguments of Lai and Wei [15].
The second step is therefore an asymptotic decomposition of the first two terms in
Lemma 3.2 using that the processes Ut, Vt, Wt are asymptotically uncorrelated.

Lemma 3.3. Suppose Ak = 0 and that the Assumptions (2.1), (2.3), (2.5) are
satisfied with λ > 2. Then, for j = 1, 2,

(3.6) Q (Xt−j |Dt)
a.s.= Q (Ut−j |Dt) + Q (Vt−j |Dt) + Q (Wt−j |Dt) + o (1) .

Proof of Lemma 3.3. Since MXt = (Ut, Vt, Wt), see (2.7), it suffices to argue that
the processes Ut, Vt and Wt are asymptotically uncorrelated so that the off-diagonal
elements of

∑T
t=1(Xt−j |Dt)(Xt−j |Dt)′ can be ignored in the asymptotic argument.

This follows from Nielsen ([17], Theorem 6.4, 9.1, 9.2, 9.4), see also the summary
in Table 2 of that paper.

3.3.2. Eliminating explosive terms and regressors in stationary terms

In combination Lemmas 3.2, 3.3 show that

T (Ω̂k−1 − Ω̂k) a.s.= Q (εt−1|Xt−2, Dt) + Q (Ut−2|Dt) − Q (Ut−1|Dt)
+Q (Vt−2|Dt) − Q (Vt−1|Dt) + Q (Wt−2|Dt) − Q (Wt−1|Dt) + o (1) .

Under mild conditions this can be reduced further so as to eliminate the terms
involving the explosive component Wt as well as the regressors in the terms involving
the stationary component Ut.
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Lemma 3.4. Suppose Ak = 0 and that the Assumptions (2.1), (2.3), (2.5) are
satisfied, with λ > 2. Then,

(3.7) T (Ω̂k−1 − Ω̂k) a.s.= Q (εt−1) + Q(Ũt−2) − Q(Ũt−1) + Rε + RV + o (1) ,

where

(3.8) Rε = Q (εt−1|Xt−2, Dt) − Q (εt−1) , RV = Q (Vt−2|Dt) − Q (Vt−1|Dt) .

Proof of Lemma 3.4. It suffices to prove, for j = 1, 2,

Q (Ut−j |Dt)
a.s.= Q(Ũt−j) + o (1) ,(3.9)

Q (Wt−2|Dt) − Q (Wt−1|Dt)
a.s.= o (1) .(3.10)

First, consider (3.9). Because of (2.8) then (Ut−j |Dt) = (Ũt−j |Dt). According to
Nielsen ([17], Theorem 6.4) it holds for any η > 0 that

(
T∑

t=1

DtD
′
t

)−1/2 T∑
t=1

DtŨ
′
t−j

(
T∑

t=1

Ũt−jŨ
′
t−j

)−1/2

a.s.= o(T η−1/2),

while Theorem 6.2 of the above paper shows T−1
∑T

t=1 Ũt−jŨ
′
t−j has positive defi-

nite limit points. This implies

T∑
t=1

(Ũt−j |Dt)(Ũt−j |Dt)′
a.s.=

T∑
t=1

Ũt−jŨ
′
t−j

{
1 + o

(
T 2η−1

)}
.

Theorem 2.4 of the above paper shows
∑T

t=1 εtD
′
t(
∑T

t=1 DtD
′
t)

−1/2 = o(T η) imply-
ing

T∑
t=1

εt(Ũt−j |Dt)′
a.s.=

T∑
t=1

εtŨ
′
t−j + o(T 2η).

That theorem also shows
∑T

t=1 εtŨ
′
t−j(

∑T
t=1 Ũt−jŨ

′
t−j)

−1/2 = o(T η). In combina-
tion these results show the desired result.

Secondly, consider (3.10). Note first that Wt−1 = WWt−2 + µW Dt−1 + eW,t−1

by (2.7) while Dt−1 = D−1Dt, implying (Wt−1|Dt) = (WWt−2 + eW,t−1|Dt). This
gives rise to the expansions

T∑
t=1

(Wt−1|Dt)
⊗2 =

T∑
t=1

(WWt−2|Dt)
⊗2 (1 + fT ) ,

T∑
t=1

(Wt−1|Dt) εt =
T∑

t=1

(WWt−2|Dt) εt + cT ,

where fT = O(d−1/2
T aT ) + d−1

T bT and

aT = d
−1/2
T

T∑
t=1

(WWt−2|Dt) eW,t−1, bT =
T∑

t=1

(eW,t−1|Dt)
⊗2

,

cT =
T∑

t=1

(eW,t−1|Dt) εt, dT =
T∑

t=1

(WWt−2|Dt)
⊗2

.
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Using Nielsen ([17], Theorems 2.4, 6.2, 6.4) it is seen that

bT
a.s.= O(T ), cT

a.s.= o(T 1/2+η).

It follows from Nielsen ([17], Theorems 2.4, 9.1 and Corollary 7.2) that

Q (Wt−j |Dt)
a.s.= o (T ) , aT

a.s.= o(T 1/2), d−1
T

a.s.= o
(
ρ−T

)
,

for some ρ > 0. This implies that fT is exponentially decreasing. The desired result
follows by expanding Q(Wt−1|Dt) in terms of Q(Wt−2|Dt) as[

Q (Wt−2|Dt) + d
−1/2
T cT O {Q (Wt−2|Dt)}1/2 + c′T d−1

T cT

]
(1 + fT ) ,

and using the established orders of magnitude.

3.3.3. Eliminating unit root terms and regressors in innovation terms

The terms RV and Rε defined in (3.8) are now shown to vanish asymptotically. At
first, consider RV defined in (3.8), which consists of the terms involving the unit
root components Vt. Several results are given, of which the strongest result for RV

can only be established for certain values of the parameters.

Lemma 3.5. Suppose Ak = 0 and that the Assumptions (2.1), (2.3), (2.5) are
satisfied with λ > 2. Then

(i) RV
a.s.= O(log T ),

(ii) RV = oP(1) if also Assumption (2.2) holds,
(iii) RV

a.s.= O{(log log T )1/2(log T )1/2} if (A) D and V have no common eigen-
values,

(iv) RV
a.s.= o(1) if (B) dimD = 0 and V = 1,

(v) RV = 0 if (C) dimV = 0.

Proof of Lemma 3.5. (i) This follows since Q(Vt−j |Dt)
a.s.= O(log T ) according to

Nielsen ([17], Theorem 2.4).
(ii) The type of argument for (3.10) in the proof of Lemma 3.4 can be used.

Replacing W with V throughout, the asymptotic properties of aT , bT , cT , dT have
to be explored. For bT , cT the argument is the same so, for all η > 0,

bT
a.s.= O(T ), cT

a.s.= o(T 1/2+η),

whereas using Nielsen ([17], Theorems 2.4) for aT and the techniques of Chan and
Wei [5] for dT shows, for all η > 0,

aT
a.s.= o (T η) , d−1

T = oP(T−1−4η),

so fT = oP(T−4η). Since Q(Vt−j |Dt)
a.s.= O(log T ) as established in (i) the desired

result follows by expanding Q(Vt−1|Dt) in terms of Q(Vt−2|Dt).
(iii) Define the vector St−1 = (V ′

t−1, D
′
t)

′. By partitioned inversion it holds

Q (St−1) = Q (Vt−1|Dt) + Q (Dt) .

By an invariance argument Dt can be replaced by Dt−j and thus it follows

RV = Q (Vt−2|Dt) − Q (Vt−1|Dt) = Q (St−2) − Q (St−1) .
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Due to (2.4) and (2.7) the process St−1 satisfies St = SSt−1 + eS,t for a matrix S
with eigenvalues of length one and eS t = (e′V,t, 0

′)′. It then follows that

T∑
t=1

εtS
′
t−1 =

T∑
t=1

εt

(
S′

t−2S
′ + e′S,t−1

)
.

Inserting this expression into Q(St−1) shows

Q (St−1) =
T∑

t=1

εtS
′
t−1

(
T∑

t=1

S⊗2
t−1

)−1 T∑
t=1

St−1ε
′
t = QA + QB + QC + Q′

C ,

where
QA = Q1Q2Q

′
1, QB = Q4Q3Q

′
3Q

′
4, QC = Q1Q

1/2
2 Q′

3Q
′
4,

are defined in terms of the statistics

Q1 =
T∑

t=1

εte
′
S,t−1, Q2 =

(
T∑

t=1

S⊗2
t−1

)−1

,

Q3 =

(
T∑

t=1

S⊗2
t−2

)1/2

S

(
T∑

t=1

S⊗2
t−1

)−1/2

, Q4 =
T∑

t=1

εtS
′
t−2

(
T∑

t=1

S⊗2
t−2

)−1/2

.

The orders of magnitude of these follow from a series of results in Nielsen [17].
Theorem 6.1 and Lemma 6.3 imply Q1

a.s.= O{(T log log T )1/2}. Theorem 8.3 shows
Q2

a.s.= O(T−1) when D and V have no common eigenvalues. Lemma 8.7(ii) shows
Q⊗2

3 − I
a.s.= O{T−1/2(log T )1/2}. Theorem 2.4 shows Q4

a.s.= O{(log T )1/2}. Noting
that Q(St−2) = Q4Q

′
4 this in turn implies

QA = O(log log T ), QB = Q(St−2) + O{T−1/2(log T )3/2},
QC = O{(log log T )1/2(log T )1/2},

and the desired result follows.
(iv) Donsker and Varadhan’s [6] Law of the Iterated Logarithm for the integrated

squared Brownian motion states

lim inf
T→∞

log log T

T 2

∫ T

0

B2
udu

a.s.=
1
4
.

Now use either the argument in (ii) with d−1
T

a.s.= O(T−2 log log T ) or the argument
in (iii) with Q2

a.s.= O(T−2 log log T ) so QA, QB , QC are all o(1).
(v) This follows by construction.

Now, consider Rε defined in (3.8). By showing that this vanishes it follows that
the regressors can be excluded asymptotically in the term involving the lagged
innovations εt−1. A fourth order moment condition is now needed in Assumption
(2.1).

Lemma 3.6. Suppose Ak = 0 and that the Assumptions (2.1), (2.3), (2.5) are
satisfied, now with λ > 4. Then

Rε = Q (εt−1|Xt−2, Dt) − Q (εt−1)
a.s.= o (1) .
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Proof of Lemma 3.6. Define the vector St = (X′
t−2, D

′
t)

′. According to Nielsen
([17], Theorem 2.4) it holds that, for any η > 0, the terms

(3.11)

(
T∑

t=1

StS
′
t

)−1/2 T∑
t=1

Stε
′
t,

(
T∑

t=1

StS
′
t

)−1/2 T∑
t=1

Stε
′
t−1

are o(T 1/4−η) when indeed λ > 4. It then holds that

T∑
t=1

εtε
′
t−1 −

T∑
t=1

εtS
′
t

(
T∑

t=1

StS
′
t

)−1 T∑
t=1

Stε
′
t−1

a.s.=
T∑

t=1

εtε
′
t−1 + o(T 1/2−η),

T∑
t=1

εt−1ε
′
t−1 −

T∑
t=1

εt−1S
′
t

(
T∑

t=1

StS
′
t

)−1 T∑
t=1

Stε
′
t−1

a.s.=
T∑

t=1

εt−1ε
′
t−1 + o(T 1−η),

where the requirement λ > 4 is only needed in the first case. Theorems 2.5, 6.1 of
the above paper show T−1

∑T
t=1 εt−1ε

′
t−1 has positive definite limit points while∑T

t=1 εtε
′
t−1(

∑T
t=1 εt−1ε

′
t−1)

−1/2 = o(T η). Combine these results.

Remark 3.7. In Lemma 3.6 a fourth moment condition comes in through the
requirement that λ > 4 in Assumption (2.1). This can be relaxed to λ > 2 under
one of two alternative assumptions.

(I,a) If dimW = 0 then the terms in (3.11) are o(T η), see Nielsen ([17], Theo-
rem 2.4), and the main result holds.

(I,b) If dimW > 0 but the innovations εt are independently, identically distrib-
uted then terms of the type (

∑T
t=1 Wt−1W

′
t−1)

−1/2
∑T

t=1 Wt−1ε
′
t converge in

distribution, see Anderson [1] and the result of the Theorem holds, albeit only
in probability.

3.3.4. The leading term of Ω̂k−1 − Ω̂k

First the order of magnitude the leading term in (3.7) is established in an almost
sure sense. This can be done under weak moment conditions. Subsequently the
distribution of the leading term is investigated.

Lemma 3.8. Suppose Ak = 0 and that the Assumptions (2.1), (2.3) are satisfied
with λ > 2. Define ET = T−1

∑T
t=1 εtε

′
t. Then

lim supT→∞(2 log log T )−1tr[{Q(εt−1) + Q(Ũt−2) − Q(Ũt−1)}E−1
T ] a.s.= O(1).

Proof of Lemma 3.8. This follows by noting that the sequence Ω̂−1
k−1 is relatively

compact with positive definite limiting points due to Lemma 3.1 and Lai and Wei
([15], Theorem 2) and otherwise following the argument in the proof of Pötscher
([21], Theorem 3.4).

When it comes to analysing the distribution of the leading term in (3.7) it is
convenient to show that it can be written as a single quadratic form Q(Yt−1) for
some process Yt−1. This argument requires two steps, of which the first is concerned
with the convergence properties of T−1

∑T
t=1 Ũt−1Ũ

′
t−1. As the argument involves

a variance matrix, the Assumption (2.2) is now called upon.
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Lemma 3.9. Suppose Ak = 0 and that the Assumptions (2.1), (2.2) are satisfied
with λ > 2. Let MU be the matrix defined by eU,t = MUεt in (2.7) and define

F =
∞∑

t=0

UtMUΩM ′
U (Ut)′.

Then for all ζ < min(1 − 2/λ, 1/2) it holds

1
T

T∑
t=1

ŨtŨ
′
t

a.s.= F + o
(
T−ζ

)
.

Proof of Lemma 3.9. Following the proof of Lai and Wei ([15], Theorem 2), the
equation (2.8) shows

T∑
t=1

ŨtŨ
′
t

a.s.= U

(
T∑

t=1

ŨtŨ
′
t − ŨT Ũ ′

T + Ũ0Ũ
′
0

)
U′

+MU

T∑
t=1

εtε
′
tM

′
U + O

(
T∑

t=1

Ũt−1ε
′
t

)
.

Due to Nielsen ([17], Theorems 2.4, 5.1, Example 6.5) both
∑T

t=1 Ũt−1ε
′
t and ŨT Ũ ′

T

are o(T 1−ζ). Note that Assumption (2.5) is not needed as Ũt does not involve
deterministic terms. Denoting FT = T−1

∑T
t=1 ŨtŨ

′
t it follows from Lemma 3.1

that
FT − UFT U′ a.s.= MUΩM ′

U + o(T−ζ).

This equation has a unique solution FT =
∑∞

t=0 Ut{MUEM ′
U + o(T−ζ)}(Ut)′,

see Anderson and Moore ([2], p. 336), which in turn equals F + o(T−ζ) since the
maximal eigenvalue of UU′ is less than one.

The leading term in (3.7) is now written as a single quadratic form Q(Yt−1).

Lemma 3.10. Suppose Ak = 0 and that the Assumptions (2.1), (2.2) are satisfied
with λ > 2. Then there exists an {(p + dim U)× p}-matrix C with full column rank
so

Q (εt−1) + Q(Ũt−2) − Q(Ũt−1)
a.s.= Q (Yt−1) + o (1) ,

where Yt is the process C ′(ε′t, U
′
t−1)

′.

Proof of Lemma 3.10. The idea is to exploit that the asymptotic covariance for
Zt−1 = (Ũ ′

t−2, ε
′
t−1)

′ is diagonal with elements F, Ω. By the above Lemmas 3.1, 3.9
then, for some η > 0,

Q (εt−1) + Q(Ũt−2)

=
T∑

t=1

εt

(
Ũt−2

εt−1

)′{ T∑
t=1

(
Ũt−2Ũ

′
t−2 0

0 εt−1ε
′
t−1

)}−1 T∑
t=1

(
Ũt−2

εt−1

)
ε′t(3.12)

a.s.=
1
T

T∑
t=1

εt

(
Ũt−2

εt−1

)′(
F 0
0 Ω

)−1 T∑
t=1

(
Ũt−2

εt−1

)
ε′t{1 + o(T−η)}

As discussed in Section 2 then Ũt−1 = UŨt−2 + MUεt−1 for some matrix MU with
full column rank. In particular Ũt−1 = C ′

⊥(Ũ ′
t−2, ε

′
t−1)

′ where the {(p + dim U) ×
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dim U}-matrix C⊥ = (U, MU )′ has full column rank. Therefore a {(p+dim U)×p}-
matrix C can be chosen with full column rank so the matrix (C, C⊥) is regular and

C ′
(

F 0
0 Ω

)
C⊥ = 0.

The sequences T−1
∑T

t=1 Ũt−1Ũ
′
t−1 and T−1

∑T
t=1 Ũt−2Ũ

′
t−2 will have the same

limit, F, while T−1
∑T

t=1 Yt−1Y
′
t−1 will converge to a positive definite matrix G.

It then holds (
C ′

⊥
C ′

)(
F 0
0 Ω

)
(C⊥, C) =

(
F 0
0 G

)
.

Pre- and post-multiplying the middle matrix in (3.12) with (C⊥, C)(C⊥, C)−1 and
its transpose then implies

Q (εt−1) + Q(Ũt−2)
a.s.=

{
Q(Ũt−1) + Q (Yt−1)

}
{1 + o(T−η)}.

Theorem 2.4 of Nielsen (2005) implies Q(Ũt−1) and Q(Yt−1) are o(T η), which gives
the desired result.

The asymptotic distribution of the leading term Q(Yt−1) now follows.

Lemma 3.11. Suppose Ak = 0 and that the Assumptions (2.1), (2.2), (2.3) are
satisfied with λ > 4. Then

(i) 1 ≤ lim supT→∞(2 log log T )−1tr{Q(Yt−1)Ω−1} ≤ p2 a.s.

(ii) tr{Q(Yt−1)Ω−1} D→ χ2(p2).

Proof of Lemma 3.11. (i) This follows from the Law of Iterated Logarithms by
Heyde and Scott ([12], Corollary 2) and Hannan ([9], p. 1076-1077). See Quinn [22]
for details.

(ii) This follows from Brown and Eagleson’s [4] Central Limit Theorem. This
requires existence of second moments of εtYt−1.

Remark 3.12. The proof of Lemma 3.11 actually only requires the existence of
fourth moments, which is slightly weaker than the stated condition of λ > 4 in
Assumption (2.1). In Lemma 3.11(ii) this can be relaxed to a second moment con-
dition if for instance:
(II) the innovations εt are independent.

3.4. Proofs of results for likelihood ratio test statistics

Proof of Theorem 2.1. Consider the formula (3.1). The term Ω̂k−1 was dealt with
in Lemma 3.1. As for the term T (Ω̂k−1 − Ω̂k) consider two cases.

When k = 1 then T (Ω̂k−1 − Ω̂k) = Q(εt−1).
When k > 1 apply the expansion in Lemma 3.4. The term RV vanishes due to

Lemma 3.5(ii) when Assumption (2.2) is satisfied. The term Rε vanishes due to
Lemma 3.6 when λ > 4 in Assumption (2.1). Due to Lemma 3.10 the leading term
is now Q(Yt−1), provided Assumption (2.2) holds.

For any k the desired χ2-distribution now arises from Lemma 3.11(ii) provided
Assumptions (2.2), (2.1) are satisfied with λ > 4.
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Proof of Theorem 2.3. Note first that T (Ω̂k−1 − Ω̂k+m−1) can be written as
Q(X̃t−k−m+1

t−k |Xt−1, Dt) where X̃t−b
t−a = (X ′

t−a, . . . , X ′
t−b)

′. Consider now the proof
of the decomposition in Lemma 3.2. Using first (3.4) and then (3.5) repeatedly it
is seen that

T
(
Ω̂k−1 − Ω̂k+m−1

)
= Q

(
Xt−1

X̃t−k−m+1
t−k

∣∣∣∣Dt

)
− Q (Xt−1|Dt)

=
m∑

j=1

Q
(
εt−j |Xt−m

t−j−1,Xt−m−1, Dt

)
+ Q (Xt−m−1|Dt) − Q (Xt−1|Dt) .

As in the proof of Theorem 2.1 the Lemmas 3.4, 3.5(ii), 3.6 show that the leading
terms reduce to

T
(
Ω̂k−1 − Ω̂k+m−1

)
=

m∑
j=1

Q (εt−j) + Q
(
Ũt−m−1

)
− Q

(
Ũt−1

)
+ oP (1) ,

when k0 < k. A slight generalisation of Lemma 3.10 is needed, using that the as-
ymptotic covariance for Zt−1 = (Ũ ′

t−m−1, ε
′
t−1, . . . , ε

′
t−m)′ is diagonal with elements

F, Ω, . . . ,Ω. A {(mp + dim U) × mp}-matrix C can then be found giving rise to a
process Yt−1 = C ′Zt−1. The argument is completed using a Central Limit Theorem
as in the proof of Lemma 3.11(ii).

3.5. Proofs of results for information criteria

Proof of Theorem 2.4. Consider j < k0. The condition f(T ) = o(T ) implies

Φj − Φk0 = log det{I + (Ω̂j − Ω̂k0)Ω̂
−1
k0

} + o (1) .

Lemma 3.1 shows that Ω̂k0

a.s.→ Ω, so it suffices that lim inf
T→∞

λmax(Ω̂j−Ω̂k0) is positive.

Defining Yt=(X ′
t−1, . . . , X

′
t−j+1)

′ and Zt = (X ′
t−j , . . . , X

′
t−k0

)′ it holds

Ω̂j − Ω̂k0 =


T−1/2

T∑
t=1

Xt (Zt−1|Yt−1, Dt)
′
{

T∑
t=1

(Zt−1|Yt−1, Dt)
⊗2

}−1/2


⊗2

.

Define Ay = A1, . . . , Aj and Az = Aj+1, . . . , Ak0 noting that Ak0 �= 0. Then it
holds Xt = AyYt + AzZt + µDt + εt. Therefore Ω̂j − Ω̂k0 equals

T−1/2
T∑

t=1

εt (Zt−1|Yt−1, Dt)
′
{

T∑
t=1

(Zt−1|Yt−1, Dt)
⊗2

}−1/2

+Az

{
T−1

T∑
t=1

(Zt−1|Yt−1, Dt)
⊗2

}1/2

.

The first term is of order o(1) a.s. by Nielsen ([17], Theorem 2.4). As for the second
term it holds that lim infT→∞ λmin{T−1

∑T
t=1(Xt−1|Dt)⊗2} > 0 a.s. according to

Nielsen ([17], Corollary 9.5). As a consequence the limit points of T−1
∑T

t=1(Zt−1|
Yt−1, Dt)⊗2 are positive definite. Since Az �= 0 then lim infT→∞ λmin(Ω̂j−Ω̂k0) > 0
and therefore lim infT→∞ k̂ ≥ k0 a.s.
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Proof of Theorem 2.5. Consider now k0 < j ≤ K. It then holds

Φj+1 − Φj = log det(Ω̂j+1Ω̂−1
j ) + T−1f (T )

= log det{Ip − (Ω̂j − Ω̂j+1)Ω̂−1
j } + T−1f (T ) .

A Taylor expansion shows

Φj+1 − Φj
a.s.= −tr{(Ω̂j − Ω̂j+1)Ω̂−1

j } + T−1f (T ) + o[{(Ω̂j − Ω̂j+1)Ω̂−1
j }2].

Lemma 3.1 shows that Ω̂j is consistent, while Lemma 3.4 gives the expansion

T (Ω̂j−1 − Ω̂j)
a.s.= Q (εt−1) + Q(Ũt−2) − Q(Ũt−1) + Rε + RV + o (1) .

To complete the proof it has to be shown that Φj+1−Φj has a positive limiting value.
This holds if T (Ω̂j−1 − Ω̂j) = o{g(T )} for some function g(T ) so f(T )/g(T ) → ∞.

(i) The term RV vanishes due to Lemma 3.5(ii) when Assumption (2.2) is
satisfied. The term Rε vanishes due to Lemma 3.6 when λ > 4 in Assumption (2.1).
Due to Lemma 3.10 the leading term is Q(Yt−1), provided Assumption (2.2) holds.
This is OP(1) by Lemma 3.11(ii) provided Assumptions (2.1), (2.2) are satisfied
with λ > 4.

(ii) The term RV is O(log T ) due to Lemma 3.5(i). The term Rε vanishes
due to Lemma 3.6 when λ > 4 in Assumption (2.1). Due to Lemma 3.8 the leading
term is O(log log T ).

(iii) Under (A) that V and D have no common eigenvalues then RV is
O{(log T )1/2(log log T )1/2} due to Lemma 3.5(iii). The argument of (ii) can then
be followed.

(iv) Under (B) that dimD = 0 with V = 1 then RV is o(1) due to Lemma
3.5(iv), whereas under (C) that dimV = 0 then RV = 0. while it is o(1) under (B)
dimD = 0 with V = 1 due to Lemma 3.5(iv). The argument of (ii) can then be
followed.

(v) The terms RV and Rε vanish as in (iv). As in (i) the leading term is
Q(Yt−1) by Lemma 3.10 provided Assumption (2.2) holds. This is of the desired
order of magnitude by Lemma 3.11(i) provided Assumptions (2.2), (2.1) are satisfied
with λ > 4.

Remark 3.13. The condition λ > 4 in Theorem 2.5 can be relaxed as follows.

(i) It is used first in Lemma 3.6 and can be relaxed under (I,a) or (I,b) as
this is a result holding in probability, see Remark 3.7. It is used secondly in Lemma
3.11(ii) and can be relaxed under (II), see Remark 3.12.

(ii), (iii), (iv) It is only used in Lemma 3.6 and can only be relaxed under
(I,a) as this is a result holding almost surely, see Remark 3.7.

(v) It is indeed required in Lemma 3.11(i).

3.6. Proof of results for residual based tests

Proof. It suffices to show how the residual based test statistics relate to the likeli-
hood ratio test statistics.

In the joint test the squared sample multiple correlation R2 of ε̂t and the vector
Zt−1 = (ε̂′t−1, . . . , ε̂

′
t−m,X′

t−1, D
′
t)′ is considered, recalling that Xt−1 is defined as

(X ′
t−1, . . . , X

′
t−k+1)

′. The key to the result is that

ε̂t−j = Xt−j − B̂Xt−j−1 − µ̂D−j−1Dt,
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where B̂, µ̂ are least squares estimators based on (1.1) for the full sample t =
1, . . . , T. Due to the inclusion of Xt−1 as regressor it follows that Zt−1 = NZ̃t−1

where Z̃t−1 = (Xt−1, . . . , Xt−k−m+1, Dt) and the square matrix N is based on
B̂, µ̂ and is invertible with probability one. By the invariance of sample multiple
correlations to linear transformations then R2 can be computed from ε̂t and Z̃t−1.
By the same type of manipulation as in Lemma 3.2 it follows that

Q̂
(
Z̃t−1

)
=

T∑
t=m+1

ε̂tZ̃
′
t−1

(
T∑

t=m+1

Z̃⊗2
t−1

)−1 T∑
t=m+1

Z̃t−1ε̂
′
t

can be written as

(3.13) Q̂
(
Z̃t−1

)
= Q̂ (Xt−k, . . . , Xt−k−m+1|Xt−1, Dt) + Q̂ (Xt−1, Dt) .

Since the first term in (3.13) includes the regressors Xt−1, Dt then ε̂t can be
replaced by εt. Thus, apart from starting the regression at t = m + 1 instead of
t = 1 this term is the same as Q(Xt−k, . . . , Xt−k−m+1|Xt−1, Dt). It therefore has
the same asymptotic properties as T (Ω̂k−1 − Ω̂k+m−1), which was studied in the
proof of Theorem 2.3.

The second term in (3.13) vanishes asymptotically. This is because the residuals
ε̂t are orthogonal to Xt−1, Dt when evaluated over t = 1, . . . , T. A tedious analysis
shows that this orthogonality holds asymptotically when evaluated over t = m +
1, . . . , T.

For the marginal test the argument is the same. The main difference is that the
residuals are now

ε̂t−j,marg = Xt−j,1 − B̂margXt−j−1 − µ̂margD−j−1Dt.

Once again the inclusion of Xt−1 as regressor implies that the vector Zt−1,marg

defined as (ε̂′t−1, . . . , ε̂
′
t−m,X′

t−1, D
′
t)′ can be replaced by the above Z̃t−1. So the

statistic Q̂(Z̃t−1) is replaced by a statistic based on ε̂t,marg, but the same Z̃t−1.
For the conditional test the residuals are of the type

ε̂t−j,cond = Xt−j,1 − B̂condXt−j−1 − µ̂condD−j−1Dt − ω̂Xt−j,2.

The same argument applies as for the marginal test.
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