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SUFFICIENT CONDITIONS FOR STRASSEN’S
ADDITIVITY CONJECTURE

ZACH TEITLER

Abstract. We give a sufficient condition for the strong symmet-
ric version of Strassen’s additivity conjecture: the Waring rank of

a sum of forms in independent variables is the sum of their ranks,

and every Waring decomposition of the sum is a sum of decom-
positions of the summands. We give additional sufficient criteria

for the additivity of Waring ranks and a sufficient criterion for
additivity of cactus ranks and decompositions.

The Waring rank rk(F ) of a homogeneous polynomial F of degree d is the
least number of terms r in an expression for F as a linear combination of
dth powers of linear forms, F = c1�

d
1 + · · ·+ cr�

d
r . Higher Waring rank corre-

sponds to higher complexity. For general introductions see, for example, [13],
[14], [26]; for discussion of applications see, for example, [11], [16]. We work
over C, that is, our homogeneous polynomials have complex coefficients. Since
we work over C we may rescale each �i to make the scalars ci unnecessary.
An expression F = �d1 + · · · + �dr is called a power sum decomposition of F .
A power sum decomposition with r = rk(F ) is called a Waring decomposition.
Homogeneous polynomials of degree d are henceforth called forms of degree d,
or briefly d-forms.

We write F (x) for a polynomial in the tuple of variables x= (x1, . . . , xn).
Suppose that F1(x1), . . . , Fk(xk) are forms of degree d in independent tuples
x1, . . . ,xk and F (x1, . . . ,xk) = F1(x1) + · · ·+ Fk(xk). Then clearly rk(F ) ≤
rk(F1) + · · · + rk(Fk), as adding together Waring decompositions (minimal
power sum decompositions) of the Fi’s gives a power sum decomposition of F .

Question 1. With notation as above, is rk(F ) = rk(F1) + · · ·+ rk(Fk)?
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We give sufficient conditions for this equality to hold.
Strassen’s additivity conjecture [25] asserts a similar statement for tensors.

Waring rank of homogeneous forms is equivalent to symmetric rank of sym-
metric tensors. So this question is asking for a symmetric version of Strassen’s
additivity conjecture.

One might ask if, further, every Waring decomposition for F is a sum of
Waring decompositions of the Fi, each using only the variables xi. Explicitly,
in a Waring decomposition F =

∑
�dj , we ask whether it is the case that each

linear form �j involves variables from only one tuple xi. If this holds, the
�dj that involve variables from xi must necessarily sum to Fi. It fails for

quadratic forms—for example, x2 + y2 = (cx + sy)2 + (sx − cy)2 whenever
c2 + s2 = 1—but the question remains open for higher degree forms.

Question 2. With notation as above, is every Waring decomposition of
F given by a sum of Waring decompositions of the Fi’s?

The symmetric version of Strassen’s additivity conjecture has recently been
shown to hold in a number of cases. When all of the Fi are monomials a
positive answer to Question 1 is given in [9]. When all but one of the Fi has
the simple form xd

i , or when the number of summands is k = 2 and each F1, F2

is a binary form, Question 1 has a positive answer [8]. These cases and many
more are treated in a more uniform manner in [6], which introduces the notion
of “e-computability” and shows it provides a sufficient condition for Question 1
to have a positive answer. Very recently a positive answer to Question 2 for
certain forms Fi has been given in [10, Theorem 4.6, Theorem 5.1].

We give a simple sufficient condition for the additivity of Waring rank and
Waring decompositions to hold, that is, for Question 1 and Question 2 to
both have positive answers. The condition is surprisingly simple: it is just
that equality should hold in a certain well-known lower bound for Waring
rank, the catalecticant bound.

The catalecticant bound for Waring rank has been known since the 19th
century, see discussion and a precise statement below. However it seems to
never have been noticed that when equality holds, a consequence is additivity
of ranks as in Strassen’s conjecture.

Equality in the catalecticant bound is a special condition, but it holds
for various classes of forms, including general binary forms, general forms of
low rank, general quartic forms in n≤ 6 variables, and general plane conics,
quartics, sextics, and octics; see Section 1.1.

Our first main result, involving Waring rank and the catalecticant bound,
is described in Section 1. The underlying idea is very simple and yields a
number of immediate generalizations, described in the subsequent sections.
In Section 2, we consider other bounds for Waring rank, obtaining addi-
tional sufficient conditions for a positive answer to Question 1. In partic-
ular, we describe in some detail a very recently discovered lower bound due
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to Carlini–Guo–Ventura. In Section 3, we return to the catalecticant bound,
which is also a bound for cactus rank. We obtain a sufficient condition for
a positive answer to the analogues of Question 1 and Question 2 for cactus
rank.

The Waring ranks of monomials and sums of monomials in independent
variables are known [9], cactus ranks of monomials are known [23], and border
ranks of monomials have been found recently as well [20]. However, cactus
ranks and border ranks of sums of monomials in independent variables are
not known. We determine these in special cases in Example 3.5 and Exam-
ple 3.6.

1. Additivity of Waring rank

The general strategy for giving a positive answer to Question 1 is very
simple. Suppose that A and B are functions of homogeneous forms satisfying
the following conditions:

(1) A(F )≥B(F ) for every F ,
(2) A is subadditive, meaning A(F +G)≤A(F )+A(G) for all d-forms F and

G, and
(3) B is additive on forms in independent variables, meaning B(F + G) =

B(F ) +B(G) when F and G are d-forms in independent variables.

Given all this, when F1, . . . , Fk are d-forms in independent variables such
that A(Fi) =B(Fi) for each i, then A is also additive on the Fi: A(

∑
Fi) =∑

A(Fi).
The notion of “e-computability” fits into this framework, see [6, Corol-

lary 3.4, Definition 3.5].
In this section A is Waring rank and B is the catalecticant bound, described

next. In Section 2, we keep Waring rank as A, and vary B. In Section 3, we
return to the catalecticant bound for B, and change A to cactus rank.

Remark 1.1. See [26] for an exposition of lower bounds for generalized
ranks, from which the interested reader may formulate sufficient conditions
for Strassen-like additivity results in many more cases.

1.1. Catalecticant bound. For a form F of degree d, we denote by
Derivs(F ) the vector space spanned by the partial derivatives of F of all
orders, including F itself. It is a graded finite-dimensional vector space; let
Derivs(F )a denote the ath graded piece, that is, the space of a-forms spanned
by the (d−a)th derivatives of F . Recall the following very well-known bound
for Waring rank.

Proposition 1.2 (Classical). For every a, 0 ≤ a ≤ d, we have rk(F ) ≥
dimDerivs(F )a.
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Indeed, if F =
∑

ci�
d
i , then ∂F/∂xj =

∑
dcimi,j�

d−1
i for some constants

mi,j , explicitly mi,j is the coefficient of xj in �i. By induction Derivs(F )a
is contained in the span of �a1 , . . . , �

a
r , so has dimension at most r. This

bound dates back to the 19th century; it is sometimes called the catalecti-
cant bound for Waring rank. For more on this, including the name “catalec-
ticant”, see, for example, [26, Section 2.1], [24, pp. 49–50], [13, Lecture 11],
[18].

We are interested in the case that equality holds. Equality in the above
bound is a fairly special condition, but it does occur. We do not classify all
cases where equality holds, but we list several here.

Example 1.3. Fix n and d. For 1 ≤ r ≤ n the rank-r Fermat-type
polynomial F = xd

1 + · · · + xd
r has rank rk(F ) = r = dimDerivs(F )a for all

1≤ a≤ d− 1. In particular, this holds for every quadratic form for a= 1.

Example 1.4. By well-known facts about binary forms (see, for example,
[14, Section 1.3]) if F = F (x, y) is a binary form of degree d and rank r =
rk(F ) ≤ �d+2

2 �, then rk(F ) = dimDerivs(F )a for r − 1 ≤ a ≤ d + 1 − r. In
particular, if F = F (x, y) is a general binary form of degree d then rk(F ) =
�d+2

2 �= dimDerivs(F )� d
2 �
.

Remark 1.5. We say that a statement holds for a general form of some
type if the statement holds for every element in a Zariski open and dense
subset of the set of forms of that type.

For example, a general form of degree d in n variables x1, . . . , xn is an
element of a Zariski open and dense subset of the vector space parametrizing
all forms of degree d in the n variables given. It is equivalent to say that the
form has general coefficients.

Recall that if �1, . . . , �r are general linear forms in n variables and F =
�d1 + · · ·+ �dr then for 0≤ a≤ d we have

dimDerivs(F )a =min

{(
n+ a− 1

n− 1

)
,

(
n+ d− a− 1

n− 1

)
, r

}
,

see [14, Lemma 1.17]. (Here, general means that the r-tuple (�1, . . . , �r) is an
element of a Zariski open and dense subset of the rth Cartesian power of the
vector space of linear forms.)

Proposition 1.6. Fix integers n, d, a with 1 ≤ a ≤ d − 1. Let r be an
integer, 1≤ r ≤min{

(
n+a−1
n−1

)
,
(
n+d−a−1

n−1

)
}. Let F be a general form of rank r,

of degree d in n variables. Then rk(F ) = dimDerivs(F )a.

Proof. Immediate. �

Recall the Alexander–Hirschowitz theorem (see, for example, [14, Corol-
lary 1.62]): If F is a general form of degree d in n variables then rk(F ) =
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� 1
n

(
n+d−1
n−1

)
�, with the following exceptions. If d= 2, then rk(F ) = n (instead

of �(n + 1)/2�); if (n,d) = (3,4), (4,4), (5,4), (5,3) then rk(F ) = 6,10,15,8,

respectively (instead of 5, 9, 14, 7, respectively).

And recall that if F is a general form of degree d in n variables then for

0≤ a≤ d we have

dimDerivs(F )a =min

{(
n+ a− 1

n− 1

)
,

(
n+ d− a− 1

n− 1

)}
,

see [14, Proposition 3.12].

Example 1.7. Equality holds in the catalecticant bound with a = 2 for

general quartics in n≤ 6 variables. That is, if F is a general form of degree

4 in n ≤ 6 variables, then rk(F ) = dimDerivs(F )2. See [19] for very inter-

esting geometry arising from Waring decompositions of general quartics in 3

variables.

Note that the rank of a general form of degree 4 in n≥ 7 variables is strictly

greater than dimDerivs(F )2. For n = 7, the rank of a general 4-form is 30

while the dimension of the space of derivatives is 28.

Example 1.8. Equality holds in the catalecticant bound for general plane

conics, quartics, sextics, and octics. That is, if F is a general form in n= 3

variables of even degree d = 2a, 1 ≤ a ≤ 4, then rk(F ) = dimDerivs(F )a.

(The conic case follows by the earlier example on Fermat-type and quadratic

forms, and the quartic case is already in the previous example.) See [19], [22,

Theorem 1.7] for more on the geometry of Waring decompositions of these

curves.

1.2. Catalecticant condition for additivity of Waring rank. Now we

prove our first main result, showing that Questions 1 and 2 both have positive

answers when the bounds rk(Fi)≥ dimDerivs(Fi)a are in fact equalities.

Theorem 1.9. Let F1(x1), . . . , Fk(xk) be homogeneous forms of degree d

in independent tuples of variables x1, . . . ,xk and let F = F1 + · · ·+ Fk. Sup-

pose there is an a, 1 ≤ a ≤ d − 1, such that for each i, 1 ≤ i ≤ k, rk(Fi) =

dimDerivs(Fi)a. Then rk(F ) = dimDerivs(F )a = rk(F1) + · · ·+ rk(Fk).

If in addition a≥ 2 then furthermore every Waring decomposition of F is

a sum of Waring decompositions of the Fi’s. That is, if F = �d1 + · · ·+ �dr with

r = rk(F ), then each �j only involves variables from one tuple xi, and the �j
that involve variables from xi give a Waring decomposition of Fi.
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Proof. Observe that Derivs(F )a = Derivs(F1)a ⊕ · · · ⊕ Derivs(Fk)a. (See,
for example, [2, Section 2.8].) We have

rk(F )≥ dimDerivs(F1 + · · ·+ Fk)a

=

k∑
i=1

dimDerivs(Fi)a

=

k∑
i=1

rk(Fi)

≥ rk(F1 + · · ·+ Fk).

This shows that rk(F ) is equal to dimDerivs(F )a and to the sum of the rk(Fi).
Next suppose F =

∑r
j=1 �

d
j . The space Derivs(F )a is contained in the span

of the �aj , and since Derivs(F )a has dimension equal to the number r of the
�aj , it follows that for every 1≤ j ≤ r, �aj ∈Derivs(F )a.

Since Derivs(F )a is the direct sum of the subspaces Derivs(Fi)a, and all the
forms in Derivs(Fi)a involve only the variables in the tuple xi, the forms in
Derivs(F )a have no mixed terms involving variables from more than one tuple.
It follows that each �j involves variables from at most one tuple, otherwise,
for a≥ 2, �aj would have mixed terms. �

Corollary 1.10. Let d ≥ 3 and let n1, . . . , nk be positive integers,
x1, . . . ,xk independent tuples of variables with each |xi| = ni. For each i,

1≤ i≤ k let Fi be a general d-form of rank at most
(
ni+�d/2�−1

ni−1

)
in the vari-

ables xi. Then rk(F1 + · · ·+Fk) =
∑

rk(Fi) and every Waring decomposition
of F1 + · · ·+ Fk is a sum of Waring decompositions of the Fi.

Pedro Macias Marques and Elisa Postinghel very generously shared the
following ideas with me. The first statement is a partial converse to Theo-
rem 1.9.

Proposition 1.11 (Macias Marques, Postinghel). Let F = F1 + · · ·+ Fk

where F1(x1), . . . , Fk(xk) are homogeneous forms of degree d in independent
tuples of variables x1, . . . ,xk. Suppose there is an a, 1≤ a≤ d− 1, such that
rk(F ) = dimDerivs(F )a. Then for each i, 1≤ i≤ k, rk(Fi) = dimDerivs(Fi)a.

Proof. For each i, dimDerivs(Fi)a ≤ rk(Fi), and

k∑
i=1

dimDerivs(Fi)a ≤
k∑

i=1

rk(Fi)

≤ rk(F )

= dimDerivs(F )a =

k∑
i=1

dimDerivs(Fi)a.

So all the inequalities are in fact equalities. �
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Now we have the following extension of Theorem 1.9.

Corollary 1.12 (Macias Marques, Postinghel). Let F = F1 + · · · + Fk

where F1(x1), . . . , Fk(xk) are homogeneous forms of degree d in independent
tuples of variables x1, . . . ,xk. Suppose there is an a, 1 ≤ a ≤ d − 1, such
that rk(F1) = dimDerivs(F1)a+1 and, for 2≤ i≤ k, rk(Fi) = dimDerivs(Fi).
Then rk(F ) = dimDerivs(F )a + 1= rk(F1) + · · ·+ rk(Fk).

Proof. We have

dimDerivs(F )a ≤ rk(F )

≤ rk(F1) + · · ·+ rk(Fk)

=

(
k∑

i=1

dimDerivs(Fi)a

)
+ 1= dimDerivs(F )a + 1.

The case rk(F ) = dimDerivs(F )a is ruled out since the converse given above
would imply rk(F1) = dimDerivs(F1)a. So rk(F )> dimDerivs(F )a. �

2. Further bounds for Waring rank

We review a bound for Waring rank described in [7]. We show it is additive
on forms in independent variables, so we can use this bound to describe a
sufficient condition for a positive answer to Question 1. Then we recall a
lower bound for Waring rank from [17] and observe that it is also additive on
forms in independent variables.

Recall the following common notation (see, for example, [17], [5], [26]):
Let V be a finite dimensional vector space with basis x = (x1, . . . , xn), let
S = S(V ) = C[x] be the symmetric algebra on V and the polynomial ring
on x, and let T = S(V ∗) = C[∂1, . . . , ∂n] be the symmetric algebra on V ∗,
which we regard as a polynomial ring in the dual variables ∂i. We let T
act on S by differentiation, each ∂i acting as ∂

∂xi
. A d-form F ∈ SdV = Sd

defines a hypersurface in PT1 or for that matter a (honest) function on the
affine space T1. Let F⊥ = {Θ ∈ T : ΘF = 0}, the apolar (or annihilating)
ideal of F . Since F is homogeneous, the ideal F⊥ is homogeneous. Note
that Derivs(F ) ∼= T/F⊥ as a vector space and, with reversed grading, as a
T -module.

2.1. Affine subspace bound. The following is the bound for Waring rank
described by Carlini, Guo, and Ventura [7].

Theorem 2.1 ([7]). Let 1≤ p≤ n be an integer, F be a form in n+ 1 vari-
ables x0, . . . , xn and let Fk denote ∂F/∂xk. If for all λk ∈C, with 1≤ k ≤ p,
we have rk(F0+

∑p
k=1 λkFk)≥m and F1, F2, . . . , Fp are linearly independent,

then rk(F )≥m+ p.
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Before anything else, we present a slight generalization with a simple proof.
Our proof is not substantially different from the proof of [7], but we give a
more coordinate-free presentation.

In the following, a linear subspace is a subspace in the usual sense, passing
through the origin. An affine subspace is a translation of a linear subspace; it
may or may not pass through the origin. A non-linear affine subspace is an
affine subspace that does not pass through the origin.

Recall the familiar fact that every affine line meets at least one coordinate
hyperplane. A slight generalization of this will be useful.

Proposition 2.2. Let V ⊆ span{v1, . . . , vr}. Suppose W ⊆ V is a p-
dimensional non-linear affine subspace. Then there is a w ∈W that can be
written as a linear combination of at most r− p of the vi.

Proof. It is immediate if p= 0 and follows by induction for p > 0. �

Now the Carlini–Guo–Ventura lower bound for Waring rank is the case
a= d−1 of the following statement. Let us denote minrank(W ) =min{rk(G) :
G ∈W}.

Theorem 2.3. Let F be a form of degree d. Then for all 1≤ a≤ d− 1,

rk(F )≥max
{
dim(W ) +minrank(W ) : 0 /∈W ⊂Derivs(F )a

}
,

the maximum taken over all nonlinear affine subspaces.

Proof. If F = �d1 + · · ·+ �dr , then Derivs(F )a ⊆ span{�a1 , . . . , �ar}. Every non-
linear affine subspace W ⊂ Derivs(F )a of dimension p must contain a point
which is a linear combination of at most r − p of the �ai , hence is a point of
rank at most r− p. Thus, minrank(W )≤ r− dim(W ). �

Remark 2.4. The catalecticant bound is the special case where W is an ar-
bitrary non-linear affine hyperplane, so dimW is equal to dimDerivs(F )a−1,
and minrank(W )≥ 1. In particular, when equality holds in the catalecticant
bound then equality holds in the bound of Theorem 2.3.

Here are some examples where equality holds in the bound of Theorem 2.3
but not in the catalecticant bound. The first example is due to Carlini–Guo–
Ventura and was in fact the motivating example for the development of their
bound.

Example 2.5 ([7]). Let F = x(y21 + · · ·+ y2n−1 + ynx). Let F0 = ∂F/∂x=
y21 + · · ·+ y2n−1 + 2ynx. For 1 ≤ i ≤ n let Fi = ∂F/∂yi, so Fi = 2xyi for 1 ≤
i ≤ n − 1 and Fn = x2. Note F0, . . . , Fn are linearly independent since no
two of them share any monomials. Let W0 be the span of F1, . . . , Fn and let
W = F0 +W0. Elements of W are of the form

y21 + · · ·+ y2n−1 + x(2yn + λ1y1 + · · ·+ λn−1yn−1 + λnx)
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which can be rewritten as

y21 + · · ·+ y2n−1 + xL,

where y1, . . . , yn−1, x,L are linearly independent linear forms. So this qua-
dratic form has rank n + 1. Hence, rkF ≥ 2n + 1. It is easy to see that
rkF ≤ 2n+ 1, see [7]. So rkF = 2n+ 1 is determined and equality holds in
the bound of Theorem 2.3 with a= 2.

Example 2.6. Kleppe [15] and De Paris [12] showed that every ternary
quartic has rank at most 7, and Kleppe showed that rank 7 is attained by a
ternary quartic of the form y2(x2 + yz), consisting of a smooth conic plus a
doubled tangent line. We are in a position to give an alternative to Kleppe’s
proof that F = y2(x2+yz) has rank 7. It is easy to see rk(F )≤ 7 (rk(x2y2) = 3
and rk(y3z) = 4). Note that

∂F

∂y
+ λ

∂F

∂x
+ μ

∂F

∂z
= 2x2y+ y2(3z + 2λx+ μy) = 2x2y+ y2L

giving a 2 dimensional affine space of ternary cubics of rank 5. So rk(F )≥ 7.
Thus, rk(F ) = 7 is determined and equality holds in the bound of Theorem 2.3
with a= 3.

Remark 2.7. The maximum ranks for ternary cubics, quartics, and quin-
tics are each attained by binomials: in the cubic case, it is well known that
x2y + y2z has rank 5, the maximum; for quartics, the binomial x2y2 + y3z
is discussed in the example above; and [4, Theorem 18] shows that the quin-
tic binomial xyz3 + y4z attains the maximum rank. Binomials are not the
only forms that have the maximum value for rank. Nevertheless, it would be
interesting to determine the ranks of all binomials.

Remark 2.8. The above x2y2 + y3z is not the only ternary quartic of
rank 7; see [15, Theorem 3.6], which asserts that ternary quartics F with
a certain property have rank 7. The condition is that (F⊥)2 must be 1-
dimensional and spanned by the square of a linear form. Kleppe does not give
an example of such a form, and it is perhaps not immediately obvious that
such a form exists. For the above F = y2(x2+ yz), (F⊥)2 contains the square

∂2
z = ∂2

∂z2 , but (F⊥)2 is 3-dimensional. Alessandro De Paris kindly pointed

this out to me along with the (not unique) example G= (x+ y)4+(x3+ y3)z.
It is easy to see that rk(G) ≤ rk((x + y)4) + rk(x3z − z3) + rk(y3z + z3) =

1 + 3 + 3 = 7. And one can check that (G⊥)2 is spanned by ∂2
z = ∂2

∂z2 , so
Kleppe’s theorem shows rk(G) = 7. Alternatively, rk(G)≥ 7 follows from [4,
Corollary 8].

One can easily check that equality does not hold in the catalecticant bound
in the above examples.
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Theorem 2.9. Let d≥ 3, let F1(x1), . . . , Fk(xk) be d-forms in independent
tuples of variables x1, . . . ,xk, and let F = F1+ · · ·+Fk. Suppose that for each
i, 1≤ i≤ k, equality holds in the bound of Theorem 2.3 for rk(Fi) with a= 2.
Then equality holds in the bound of Theorem 2.3 for rk(F ) with a = 2, and
rk(F ) = rk(F1) + · · ·+ rk(Fk).

Proof. For each i let Wi ⊂Derivs(Fi)2 be a pi-dimensional nonlinear affine
subspace and let mi be an integer such that rk(G)≥mi for all G ∈Wi, and
mi + pi = rk(Fi). Let W = W1 × · · · ×Wk ⊂ Derivs(F )2. Let p = dimW =∑

dimWi =
∑

pi. Suppose G =
∑

Gi ∈ W , each Gi ∈ Wi. Since the Gi

are quadratic forms in independent variables xi, we have rk(G) =
∑

rk(Gi).
So rk(G) ≥ m =

∑
mi. Hence, rk(F ) ≥ m + p =

∑
(mi + pi) =

∑
rk(Fi) ≥

rk(F ). �

If the symmetric version of Strassen’s additivity conjecture holds for all
forms in degree a, then 2 in the above theorem can be replaced by a.

2.2. Singularities. In this section, we observe that additivity of Waring
ranks is implied by equality in a lower bound for Waring rank in terms of
singularities given in [17].

For F and for 0≤ a≤ d−1, we let Σa(F ) = {p ∈ T1 : multp(F )> a}, the set
of points at which F vanishes with multiplicity strictly greater than a. This
is an algebraic set defined by the common vanishing of the ath derivatives
of F , but we will ignore the scheme structure. Note Σ0(F ) is the affine cone
over the hypersurface defined by F and Σ1(F ) is the singular locus of this
cone. Recall that F is called concise with respect to x, or simply concise, if
F cannot be written as a form in fewer variables, even after a linear change
of coordinates: explicitly, if F ∈ SdW for some W ⊆ V , then W = V . The
following are equivalent: F is concise; the projective hypersurface defined by
F is not a cone; Σd−1(F ) is supported only at the origin in T1; (F

⊥)1 = 0;
Derivs(F )1 = S1. See [5], [2, Section 2.2]. Note that in the context of practical
computation the last two conditions are easily checked by linear algebra.

Now the lower bound for Waring rank in terms of singularities is the fol-
lowing.

Theorem 2.10 ([17]). Suppose F ∈ SdV is concise and 1≤ a≤ d−1. Then
rk(F )≥ dimDerivs(F )d−a +dimΣa(F ).

(In [17], the notation Σa(F ) refers to the projective locus which leads to
a +1 in the statement of the bound.) Here are some forms F which attain
equality in this bound:

(1) x1y1z1 + · · ·+ xnynzn [17, Proposition 7.1],
(2) x(y21 + · · ·+ y2n) and x(y21 + · · ·+ y2n + x2) [17, Proposition 7.2].

When equality holds, Strassen’s additivity conjecture follows.
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Theorem 2.11. Suppose that x1, . . . ,xk are independent tuples of variables.
For each i, 1 ≤ i ≤ k, let Vi be the vector space with basis xi. For each i,
1 ≤ i ≤ k, let Fi(xi) be a d-form which is concise with respect to xi. Let

F = F1 + · · ·+ Fk and let V =
⊕k

i=1 Vi. We consider Σa(Fi)⊂ Vi for each i
and Σa(F )⊂ V .

Let 1≤ a≤ d− 1 be such that for each i,

rk(Fi) = dimDerivs(Fi)d−a +dimΣa(Fi).

Then F = F1 + · · ·+ Fk is concise with respect to x= (x1, . . . ,xk) and

rk(F ) = dimDerivs(F )d−a +dimΣa(F ) =

k∑
i=1

rk(Fi).

Proof. Note that Σa(F ) is the Cartesian product of the Σa(Fi). So
dimΣa(

∑
Fi) =

∑
dimΣa(Fi). The rest is just as before. �

2.3. Other ranks. See [26] for an exposition of other ranks which are gener-
alizations of Waring rank or variations on Waring rank, such as simultaneous
rank and multihomogeneous rank. In each case, the notion of rank is sub-
additive and has various lower bounds that are additive on forms (or linear
spaces of forms) in independent variables; we leave it to the reader to for-
mulate sufficient conditions for the analogous additivity conjectures for these
generalized ranks, similar to the above results.

3. Cactus rank

We recall the notion of cactus rank and give a sufficient condition for a
positive answer to the analogous version of Question 2.

Definition 3.1. Let F ∈ Sd be a d-form. A closed scheme Z ⊂ PV = PS1

is apolar to F if the saturated ideal I = I(Z) satisfies I ⊆ F⊥.

Definition 3.2. For a closed subscheme in projective space X ⊆ PW the
span of X , denoted span(X)⊆ PW , is the reduced projective linear subspace
spanned by X , that is, the smallest reduced projective linear subspace con-
taining X as a subscheme. Equivalently, span(X) is the projective linear
subspace defined by the vanishing of the linear forms in the ideal I(X). We
write span′(X)⊆W for the affine cone over span(X).

The Apolarity lemma states that Z is apolar to F if and only if the point
[F ] ∈ PSd lies in the linear span of the scheme νd(Z), where νd : PS1 → PSd

is the Veronese map. See, for example, [21, pp. 280] (and references therein),
[14, Theorem 5.3], [22, Section 1.3], [26, Section 4.1].

When Z = {[�1], . . . , [�r]} is a reduced zero-dimensional scheme it follows
that Z is apolar to F if and only if F =

∑
ci�

d
i for some scalars ci. So

the Waring rank rk(F ) is equal to the minimum degree of a reduced zero-
dimensional apolar scheme to F .
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Definition 3.3. The cactus rank of a form F , denoted crk(F ), is the least
degree of a zero-dimensional apolar scheme to F , see [23]. This is also called
the scheme length of F , see [14, Definition 5.1, Definition 5.66].

Recall that cactus rank is bounded below by dimDerivs(F )a and is sub-
additive: crk(F ) ≥ dimDerivs(F )a and crk(F1 + F2) ≤ crk(F1) + crk(F2).
Briefly, if Z is apolar to F then deg(Z) ≥ dim(T/I)a ≥ dim(T/F⊥)a =
dimDerivs(F )a, and if Zi is apolar to Fi for i = 1,2, then Z1 ∪ Z2 ⊂
PV1 ∪ PV2 ⊂ P(V1 ⊕ V2) is apolar to F1 + F2.

Evidently rk(F )≥ crk(F ). So crk(F ) = dimDerivs(F )a occurs at least as
often as the equality rk(F ) = dimDerivs(F )a. See Example 3.5 for monomials
F such that rk(F )> crk(F ) = dimDerivs(F )a.

Theorem 3.4. Suppose that x1, . . . ,xk are independent tuples of variables.
For each i, 1 ≤ i ≤ k, let Vi be the vector space with basis xi. For each i,
1≤ i≤ k, let Fi(xi) be a nonzero d-form in the variables xi, or equivalently

0 �= Fi ∈ SdVi. Let F = F1 + · · ·+ Fk and let V =
⊕k

i=1 Vi.
Suppose that there exists an integer 1 ≤ a ≤ d − 1 such that for each i,

crk(Fi) = dimDerivs(Fi)a. Then

crk(F ) = dimDerivs(F )a =

k∑
i=1

crk(Fi).

If in addition a≥ 2, then furthermore every zero-dimensional apolar scheme
to F of degree crk(F ) is a union of apolar schemes to the Fi. That is, if Z ⊂
PV is any zero-dimensional apolar scheme to F of degree deg(Z) = crk(F ),

then Z is a union of apolar schemes to the Fi, meaning that Z =
⋃k

i=1Zi,
where each Zi ⊂ PVi ⊂ PV is apolar to Fi.

Proof. The first statement follows just as in previous theorems. Briefly,

crk(F ) ≤
∑

crk(Fi)

=
∑

dimDerivs(Fi)a

= dimDerivs(F )a ≤ crk(F ),

because Derivs(F )a =
⊕

Derivs(Fi)a, for 1≤ a≤ d− 1.
Now suppose that a ≥ 2. And suppose that Z ⊂ PV is apolar to F and

r = deg(Z) = crk(F ).
For each i, 1≤ i≤ k, let ∂∂∂i be a tuple of dual variables to xi. Concretely,

if xi = (xi,1, . . . , xi,ni) then ∂∂∂i = (∂i,1, . . . , ∂i,ni) where ∂i,j acts as ∂/∂xi,j .
We identify the dual space V ∗

i with the subspace of T1 spanned by ∂∂∂i. We
write V ⊥

i =
⊕

j �=i V
∗
j . Note that the variety in PV = PS1 defined by V ⊥

i is

Zeros(V ⊥
i ) = PVi.

Let I = I(Z). Since I is a one-dimensional ideal, r = dim(T/I)e for e� 0.
Since I is saturated, dim(T/I)0 ≤ dim(T/I)1 ≤ · · · . So r ≥ dim(T/I)a. From
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I ⊂ F⊥, we get dim(T/I)a ≥ dim(T/F⊥)a. And we have just seen that
dim(T/F⊥)a = dimDerivs(F )a = r. It follows that codim Ia = codim(F⊥)a.
But Ia ⊆ (F⊥)a by apolarity, hence Ia = (F⊥)a. Again because I is saturated,
it follows that (F⊥)e ⊂ I for all e≤ a. In particular, (F⊥)2 ⊂ I . And finally
for all 1≤ i < j ≤ k, V ∗

i V
∗
j ⊂ (F⊥)2 ⊂ I . Note that Zeros(

∑
1≤i<j≤k V

∗
i V

∗
j ) =⋃k

i=1 PVi ⊂ PV . This shows Z is contained in the disjoint union
⋃k

i=1 PVi.

For 1≤ i≤ k let Zi = Z ∩ PVi. Then Z =
⋃k

i=1Zi, a disjoint union.

All that is left is to verify that each Zi is apolar to Fi. Since V =
⊕k

i=1 Vi,

then SdV1 ⊕ · · · ⊕ SdVk ⊂ SdV is a direct sum. The containment Zi ⊂ PVi

means span(νd(Zi))⊆ span(νd(PVi)) = PSdVi. It follows that span
′(νd(Z1))+

· · ·+ span′(νd(Zk)) = span′(νd(Z)) is a direct sum. Since F ∈ span′(νd(Z)),
there is a unique decomposition F =

∑
F ′
i where F ′

i ∈ span′(νd(Zi))⊂ SdVi.
Since the SdVi are a direct sum, it must be F ′

i = Fi. So [Fi] ∈ span(νd(Zi)),
that is, the schemes Zi are apolar to Fi, for each i. This shows that Z is a
disjoint union of schemes apolar to the Fi, as desired. �

Example 3.5. Let M = xa1
1 · · ·xan

n be a monomial with 0 < a1 ≤ · · ·
≤ an. The Waring rank rk(M) = (a2 + 1) · · · (an + 1) was found by Carlini–
Catalisano–Geramita [9], who also found that sums of monomials in inde-
pendent variables satisfy the symmetric Strassen additivity conjecture. (See
also [3].) Slightly earlier, the cactus rank crk(M) = (a1+1) · · · (an−1+1) was
found by Ranestad–Schreyer [23]. But they did not consider the cactus rank
of a sum of monomials in independent variables, and in fact this value is not
known in general. We can now answer this for the special case of “concen-
trated” monomials (defined below).

(Note that if n = 1 so that M = xd, then rk(M) = crk(M) = 1 and the
given expressions for both Waring rank and cactus rank remain valid when
they are interpreted as empty products.)

Say that a monomial M with notation as above is concentrated if a1 +
· · · + an−1 ≤ an, equivalently if an ≥ d

2 , where d = deg(M). Every mono-
mial in 1 or 2 variables is concentrated. One can check that for a1 + · · ·+
an−1 ≤ δ ≤ an we have dimDerivs(M)δ = (a1 + 1) · · · (an−1 + 1) = crk(M)
(see [17, Lemma 11.4]). In particular, if M is concentrated then crk(M) =
dimDerivs(M)a for a= �d

2�.
Thus, if F1, . . . , Fk are concentrated monomials of degree d in independent

variables it follows that crk(
∑

Fi) =
∑

crk(Fi) and every zero-dimensional
apolar scheme to

∑
Fi is a union of apolar schemes to the individual Fi.

Example 3.6. Recall that the border rank brk(F ) of a form is the least r
such that [F ] lies in the Zariski closure of the locus of forms of Waring rank
at most r, that is, the rth secant variety of the Veronese; see for example [17],
[14, Definition 5.66]. In general border rank does not necessarily correspond
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to the length of any apolar scheme; see [1] for an example of a form F such
that brk(F )< crk(F ).

It is known that brk(F )≥ dimDerivs(F )a for 0≤ a≤ d, see for example [14,
Proposition 5.67], and that brk(F +G) ≤ brk(F ) + brk(G). It immediately
follows that if F1, . . . , Fk are d-forms in independent variables and 0≤ a≤ d is
such that brk(Fi) = dimDerivs(Fi)a for each i, then brk(

∑
Fi) =

∑
brk(Fi).

It has been known for some time that for a monomial M ,

brk(M)≤ crk(M) = (a1 + 1) · · · (an−1 + 1),

see [17, Theorem 11.2], and that equality holds when M is concentrated [17,
Theorem 11.3]. In particular if F1, . . . , Fk are concentrated monomials of
degree d in independent variables, then brk(

∑
Fi) =

∑
brk(Fi) =

∑
crk(Fi).

However, Oeding has very recently shown that brk(M) = (a1 + 1) · · ·
(an−1 + 1) for every monomial M [20]. While it is not explicitly stated in
[20], it seems to be the case that Oeding’s technique extends to show that
if F1, . . . , Fk are any monomials of degree d in independent variables then
brk(

∑
Fi) =

∑
brk(Fi).
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