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PRESERVATION OF p-POINCARÉ INEQUALITY FOR
LARGE p UNDER SPHERICALIZATION AND FLATTENING

ESTIBALITZ DURAND-CARTAGENA AND XINING LI

Abstract. Li and Shanmugalingam showed that annularly qua-
siconvex metric spaces endowed with a doubling measure pre-
serve the property of supporting a p-Poincaré inequality under

the sphericalization and flattening procedures. Because natural

examples such as the real line or a broad class of metric trees

are not annularly quasiconvex, our aim in the present paper is to

study, under weaker hypotheses on the metric space, the preser-
vation of p-Poincaré inequalites under those conformal deforma-
tions for sufficiently large p. We propose the hypotheses used in

a previous paper by the same authors, where the preservation

of ∞-Poincaré inequality has been studied under the assump-
tion of radially star-like quasiconvexity (for sphericalization) and

meridian-like quasiconvexity (for flattening). To finish, using the

sphericalization procedure, we exhibit an example of a Cheeger

differentiability space whose blow up at a particular point is not
a PI space.

1. Introduction

One of the cornerstones in the development of first order calculus in the
metric measure setting is the concept of metric space equipped with a doubling
measure and supporting a Poincaré inequality. If a space or domain supports
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a Poincaré inequality, many fruitful geometric and analytical properties can
be deduced, including the existence of non-trivial differentiable structures.
Therefore, it is valuable to explore which metric spaces enjoy such properties.
For a general introduction to the subject one can look at [2], [13], [15] or [16].

A common way to construct new metric spaces from old ones is to use
conformal deformations in the sense of [1]. This means to construct a new
metric space, which is homeomorphic to the original one, by endowing the
old space with a new metric density function. In order to preserve certain
geometric properties, the measure also plays an important role and should be
altered in a similar way. A natural problem is to study the preservation of
the doubling property and the Poincaré inequality under these deformations.
In the present paper, two types of conformal deformations are considered:
sphericalization and flattening.

Sphericalization and flattening are dual transformations in the sense that
if one starts from a bounded metric space, then performs a flattening trans-
formation followed by a sphericalization transformation, then the resulting
metric space is biLipschitz equivalent to the original space. Furthermore,
starting from an unbounded metric space, the performance of sphericaliza-
tion followed by a flattening transformation leads to a metric space that is
biLipschitz equivalent to the original.

The idea of sphericalization and flattening was first considered by Bonk and
Kleiner [5] (sphericalization) and Balogh and Buckley [1] and further studied
in [6] and [17]. Within these papers, two types of conformal deformations
were introduced in order to generalize the stereographic projection between
the Riemann sphere and the complex plane. Their motivation comes from
comparing quasihyperbolic metrics of a domain (which are considered in Bonk,
Heinonen and Koskela [4]) with two types of metric, the length metric and
the sphericalized metric on the domain.

The preservation of p-Poincaré inequality under these conformal deforma-
tions for the case p < ∞ was first studied in Li and Shanmugalingam [20],
assuming that the original space is annularly quasiconvex. By a result in Ko-
rte [19], spaces supporting a p-Poincaré inequality for sufficiently small p≥ 1
are necessarily annularly quasiconvex. It was shown in [20] that the property
of annular quasiconvexity cannot be removed in their results regarding preser-
vation of the property of supporting a p-Poincaré inequality for sufficiently
small p, and the authors of [20] pose whether the assumption of annular qua-
siconvexity is necessary for preserving a p-Poincaré inequality for sufficiently
large p.

At this point, it is important to highlight the role that the exponent p plays
in p-Poincaré inequalities. The larger the p, the weaker the inequality and
the limiting case, the ∞-Poincaré inequality, would be the weakest. We refer
the interested reader to [21] or [12] for several examples of spaces supporting
a p-Poincaré inequality for some but not all values of p in the range [1,∞].
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In [9], the preservation of quasiconvexity and ∞-Poincaré inequality has been
studied under a weaker assumption, namely, radially star-like quasiconvexity
and meridian-like quasiconvexity. The motivation for introducing these new
definitions comes from the fact that there are simple examples that are not
annularly quasiconvex but still support a p-Poincaré inequality, for example
the real line R or S

1 when endowed with the length metric. Actually, the
sphericalization of R gives S

1 and viceversa. The definition of such proper-
ties is inspired by the paper [4], where the authors considered the duality of
uniform domains and Gromov hyperbolic spaces and use the concept of rough
star-likeness.

The different nature of p-Poincaré inequality for finite p versus ∞-Poincaré
inequality makes that the techniques used in [20] differ from the ones used
in [9]. In [20], a version of Boman type chaining arguments found in [3] and
[12] is used. In [9], the authors consider the case p = ∞ and use a purely
geometric characterization of ∞-Poincaré inequality proved in [10] and based
on a stronger version of quasiconvexity.

For a metric space supporting a doubling measure there are two exponents
related to the doubling measure, the relative upper bound exponent t and the
relative lower bound exponent s with t≤ s in general. In the present paper,
we improve part of the results in [20], namely, the preservation of p-Poincaré
inequality under sphericalization and flattening for p > s, under assumptions
that are weaker than annulular quasiconvexity: radially star-like quasiconvex-
ity for sphericalization, and meridian-like quasiconvexity for flattening. On
the other hand, it is well-known that Ahlfors Q-regular spaces that support
a a p-Poincaré inequality for some 1≤ p <Q are annularly quasiconvex when
Q> 1 (see [19]). Notice that in this case t= s=Q and therefore, Ahlfors Q-
regular spaces with Q> 1 preserve the p-Poincaré inequality for p > 1 under
sphericalization and flattening procedures.

It is an open question (see for example [8]) whether the blow-up of a positive
measure subset of a differentiability space (in the sense of Cheeger) must be
a PI space, that is, a metric space with a doubling measure and a p-Poincaré
inequality for some p <∞. Using the sphericalization procedure, we make a
first step in this direction by exhibiting in Example 2 a differentiability space
whose blow up at a particular point is not a PI space.

The key point of this construction is that, as opposed to the examples that
appear in [11] (in which the p-Poincaré inequality only fails at large scales),
the p-Poincaré inequality fails for domains that contain the image of infinity
from the original space.

The paper is organized as follows: in Section 2, basic notations and defi-
nitions are introduced; in Section 3, preservation of p-Poincaré inequality for
p > s under sphericalization for radially star-like quasiconvex spaces is proved
(see Theorem 3.1). In Section 4, preservation of p-Poincaré inequality for p > s
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under flattening for meridian-like quasiconvex spaces is presented (see Theo-
rem 4.1). Last section, Section 5, contains an example of a differentiability
space whose blow-up is not a PI space.

2. Notation and preliminaries

In this section, we gather the key notions, definitions and notations that
will be used throughout the paper.

2.1. Curves in metric spaces. Let (X,d) be a metric space. We de-
note open balls centered at x ∈ X and of radius r > 0 by B(x, r) := {y ∈
X : d(x, y)< r} and closed balls by B(x, r) := {y ∈X : d(x, y)≤ r}. For λ > 0,
λB denotes the ball concentric with B (with respect to a predetermined cen-
ter) but with radius λ-times the radius of B. For 0< r <R, A(a, r,R) denotes
the annulus A(a, r,R) :=B(a,R) \B(a, r).

Given a continuous map (also known as curve) γ : I →X , where I = [a, b]
for some a, b ∈ R with a < b, we denote the length of γ with respect to the
metric d by

�d(γ) := sup

n−1∑
k=0

d
(
γ(tk), γ(tk+1)

)
,

where the supremum is taken over all partitions a= t0 < t1 < · · ·< tn = b of
the interval [a, b]. A curve γ is rectifiable if �d(γ)<∞. We simply write �(γ)
if the metric is clear from the context. Given two points x, y ∈X , γxy denotes
a curve connecting x to y.

For a rectifiable curve γ : [a, b]→ X , let sγ : [a, b]→ [0, �(γ)] be the asso-
ciated length function. That is, sγ(t) = �(γ|[a,t]). There exists a unique (1-
Lipschitz continuous) map γs : [0, �(γ)]→X such that γ = γs ◦ sγ . The curve
γs is called the arc length parametrization of γ. The image of a curve will be
denoted by |γ|. If γ is a rectifiable curve in X , the line integral over γ of a
Borel function ρ : X → [0,∞] is defined by∫

γ

ρds :=

∫ �(γ)

0

(ρ ◦ γs)(t)dt.

A metric space (X,d) is said to be C-quasiconvex if there exists C ≥ 1
such that for every pair of points x and y there exists a rectifiable curve γ
with �d(γ)≤ Cd(x, y). A related notion to quasiconvexity is that of annular
quasiconvexity, a notion introduced in [19] that has been further used in [6],
[13] and [17], for example. We say that X is A-annularly quasiconvex with
respect to a base point a ∈X if there exists A≥ 1 such that for every r > 0,
and for each pair of points x, y ∈A(a, r/2, r) there is a curve γxy connecting
x to y inside the annulus A(a, r/A,Ar) with �d(γ) ≤ Ad(x, y). We say that
(X,d) is annularly quasiconvex if there exists A≥ 1 such thatX is A-annularly
quasiconvex for every a ∈X .
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2.2. Metric measure spaces. A metric space (X,d) endowed with a Borel
measure μ is called a metric measure space and will be denoted by (X,d,μ).
We say that the measure μ is doubling if balls have finite positive measure
and there is a constant Cμ ≥ 1 such that

(1) μ(2B)≤Cμμ(B)

for all balls B in X .
A metric space is called doubling if there is a constant C so that every ball

of radius r can be covered by at most C balls of radius r/2. It is well known
that a complete metric space X admits a doubling measure if and only if X
is doubling. Moreover, a complete doubling metric space is proper, that is,
every closed ball in it is compact. See [16, Section 4].

Condition (1) implies that there are constants C > 0 and s > 0, depending
only on Cμ, such that

(2)
μ(B(x, r))

μ(B(y,R))
≥C

(
r

R

)s

whenever 0< r ≤R and x ∈B(y,R). See [13] for a proof of this fact. In this
case, we also say that X has a relative lower volume decay of order s > 0.

If the measure is doubling and the space is connected, then there exist an
exponent t > 0 and a constant C > 0 such that

(3)
μ(B(x, r))

μ(B(y,R))
≤C

(
r

R

)t

for 0< r ≤R≤ diamX/2 and x ∈B(y,R). In general, we have s≥ t, and we
say that X has a relative upper volume decay of order t > 0.

2.3. First-order calculus in metric measure spaces. Given a real-valued
function u in a metric space X , a Borel function g : X → [0,∞] is an upper
gradient of u if ∣∣u(x)− u(y)

∣∣≤ ∫
γ

g ds,

for each rectifiable curve γ connecting x to y in X .
Given 1≤ p <∞, we say that (X,d,μ) supports a p-Poincaré inequality if

each ball in X has finite and positive measure and there are constants C,λ > 0
such that for every open ball B in X , for every measurable function u on B,
and for every upper gradient g of u we have

1

μ(B)

∫
B

|u− uB |dμ≤C rad(λB)

[(
1

μ(λB)

∫
λB

gp dμ

)1/p]
.

Here rad(λB) denotes the radius of the ball λB, and for arbitrary A⊂X
with 0< μ(A)<∞ we write uA = 1

μ(A)

∫
A
udμ=

∫
A
udμ.

When p=∞, the term inside the square brackets of the above inequality
should be interpreted to mean ‖g‖L∞(λB).
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The following result due to Keith [18] states that to verify a p-Poincaré
inequality it suffices to verify the inequality for Lipschitz functions and their
continuous upper gradients.

Lemma 2.1 ([18, Theorem 2]). Let p ≥ 1 and let (X,d,μ) be a complete
metric measure space with μ doubling. Then the following conditions are
quantitatively equivalent:

(a) (X,d,μ) admits a p-Poincaré inequality for all measurable functions and
their upper gradients.

(b) (X,d,μ) admits a p-Poincaré inequality for all compactly supported Lip-
schitz functions and their compactly supported Lipschitz upper gradients.

By the work of Cheeger [7], metric measure spaces endowed with a dou-
bling measure and supporting a p-Poincaré inequality for p <∞ have a very
rich infinitesimal “linear” structure that allows to state the Rademacher dif-
ferentiability theorem in this context. It is worth mentioning that a complete
metric space supporting a doubling measure and a p-Poincaré inequality is
quasiconvex (see [7, Theorem 17.1]) as defined in Section 2.1.

The interested reader can find in [16] a discussion of the recent advances
in the field of analysis on metric measure spaces, including those in [20] (see
also [16, Chapter 14]).

2.4. Sphericalization and flattening. The concept of sphericalization
and flattening are natural analogs of the stereographic projection between the
Riemann sphere and the complex plane. As pointed out in the Introduction,
these notions were introduced by Bonk and Kleiner in [5] (sphericalization)
and by Balogh and Buckley in [1] and further studied in [6] and [17].

For an unbounded locally compact metric space X , we denote its one-point
compactification by Ẋ :=X ∪ {∞}, where U is open in Ẋ if either U is open

in X or U contains ∞ and X \U is a compact subset of X . In particular, Ẋ
is compact with this topology.

Definition 2.2 (Sphericalization). Given a complete unbounded metric
space (X,d) and a base point a ∈X , we consider the following density function

da : Ẋ × Ẋ → [0,∞) given by

da(x, y) =

⎧⎪⎨⎪⎩
d(x,y)

[1+d(x,a)][1+d(y,a)] if x, y ∈X,
1

1+d(x,a) if x ∈X,y =∞,

0 if x=∞= y.

Although da is not a metric since it is possible to violate the triangular

inequality, there exists a metric d̂a on Ẋ whose metric topology agrees with
the topology of Ẋ and satisfying

1

4
da(x, y)≤ d̂a(x, y)≤ da(x, y)
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for all x, y ∈ Ẋ (see [5, Lemma 2.2]).

The metric space (Ẋ, d̂a) is said to be the sphericalization of (X,d). As
shown in [1], the metric space resulting from flattening the (bounded) spheri-

calized space (Ẋ, d̂a) with respect to the point {∞} is bi-Lipschitz equivalent
to the (unbounded) space (X,d), making sphericalization and flattening dual
transformations.

Since there is no closed form formula for d̂a, for convenience we will use
da in defining balls in Ẋ . Furthermore, observe that diam(Ẋ) = 1. Balls

in Ẋ , with respect to da, will be denoted Ba = Ba(x, r), while the balls in
X , with respect to the original metric d, will be denoted B = B(x, r). In a
similar fashion, for 0< r <R, an annulus with respect to the metric da will be
denoted by Aa(a, r,R). Notice that the density function da used here satisfies
the condition of the standard sphericalizing function g(t) = (1+ t)−2 as in [1,
Section 2]. Actually, because g is continuous on X , it can be proved that the
length metric (associated with g) as considered in [1, Section 2] is biLipschitz

equivalent to the metric d̂a, with biLipschitz constant only depending on the
quasiconvexity constant of X .

The operation of flattening, which is dual to the procedure of sphericaliza-
tion, can be defined analogously. In the flattening procedure, we begin with a
bounded metric space and remove a point to construct an unbounded metric
space.

Definition 2.3 (Flattening). Given a complete bounded metric space
(X,d) with a base point c ∈X , we consider the metric space Xc :=X \ {c},
with a density function dc :Xc ×Xc → [0,∞) defined by

dc(x, y) =
d(x, y)

d(x, c)d(y, c)
if x, y ∈Xc.

Just as in the case of sphericalization, the density function dc is not a
metric, but by [6, Lemma 3.2], we have a metric space (Xc, d̄) associated to
dc with

1

4
dc(x, y)≤ d̄(x, y)≤ dc(x, y)

for all x, y ∈Xc.
The metric space (Xc, d̄) is said to be a flattening of (X,d). Balls in Xc,

with respect to the metric dc, will be denoted Bc(x, r). An annulus centered at
x with respect to the metric dc will be denoted by Ac(x, r,R), where 0< r <R.

In the sequel, it will be useful to know how a curve and its corresponding
length change under the sphericalization and flattening processes. Let γ be a
rectifiable curve in a rectifiably connected unbounded metric space X . Under
sphericalization γ corresponds to γ̇ : [0, �(γ)] → Ẋ defined by γ̇(t) = γs(t),
where γs is the arc-length parametrization of γ with respect to the original
metric d. By an abuse of notation, we will denote the corresponding curve in
Ẋ by γ as well. One can check (see [1, Proposition 2.6]) that γ is rectifiable
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with respect to the metric d̂a if it is rectifiable with respect to the original
metric d.

Then length �da(γ) of γ with respect to “the metric” da is is given by the
formula

�da(γ) =

∫ �(γ)

0

1

[1 + d(γs(t), a)]2
ds(t)

whereas the formula for the length �dc(γ) of γ with respect to “the metric”
dc is given by

�dc(γ) =

∫ �(γ)

0

1

d(γs(t), c)2
ds(t).

In the next lemma, we explain how upper gradients are transformed under
sphericalization. Note that a function that is Lipschitz continuous on X will
be locally Lipschitz continuous on Ẋ \ {∞}, and a function that is Lipschitz

continuous on Ẋ is necessarily Lipschitz continuous on X .

Lemma 2.4 ([20, Lemma 3.3.1]). Suppose that u is a Lipschitz function

on Ẋ . If g is an upper gradient of u in X , then the function ĝ given by

ĝ(x) = g(x)
(
1 + d(x,a)

)2
and extended by setting ĝ(∞) = 0 is an upper gradient of u in Ẋ . Furthermore,

if h is an upper gradient of a function v in Ẋ , then the function h̄ given by

h̄(x) =
h(x)

(1 + d(x,a))2

is an upper gradient of v in X .

The current work focuses on the preservation of Poincaré inequalities in
the setting of metric measure spaces under sphericalization and flattening, so
we also need to transform the measure on X in a manner compatible with the
change in the metric.

Definition 2.5. Suppose (X,d) is proper space equipped with a Borel-
regular measure μ such that the measures of non-empty open bounded sets
are positive and finite. We consider the spherical measure μa defined on Ẋ
as follows. For a Borel set A⊂ Ẋ , the measure μa(A) is given by

μa(A) =

∫
A\{∞}

1

μ(B(a,1 + d(z, a)))2
dμ(z).

We next define the transformation μc of the measure μ under flattening.
In this case, X is a bounded metric space equipped with a Borel-regular
measure μ.



PRESERVATION OF p-POINCARÉ INEQUALITY FOR LARGE p 1051

Definition 2.6. The flattened measure μc corresponding to (Xc, dc) is
given by

μc(A) =

∫
A

1

μ(B(c, d(c, z)))2
dμ(z),

whenever A⊂Xc is a Borel set.

The spherical and the flattened measure are doubling if the original measure
μ is doubling as well. See [20].

The following lemma, due to N. Shanmugalingam, shows the corresponding
result for measures. We are grateful to N. Shanmugalingam for allowing us
to include the result here.

Lemma 2.7. Let X be a connected, unbounded, complete metric measure
space and μ be a doubling measure on X . Let a ∈X and Xa =X ∪ {∞} be
the sphericalization of X with respect to the base point a, and X∞

a be the
flattening of Xa with respect to the base point ∞. Then μ∞

a ≈ μ, that is, there
is a constant C > 0 such that for all x ∈X ,

1

C
dμ(x)≤ dμ∞

a (x)≤C dμ(x),

and μ, μ∞
a are mutually absolutely continuous.

Proof. The fact that μ and μ∞
a are absolutely continuous with respect to

each other is clear from the definitions of μa and μ∞
a .

Note that

dμ∞
a (x) =

dμa(x)

μa(Ba(∞, da(x,∞)))2

=
dμ(x)

μa(Ba(∞, da(x,∞)))2μ(B(a,1 + d(x,a)))2
.

Thus, we consider μa(Ba(∞, da(x,∞))). Observe that y ∈Ba(∞, da(x,∞)) if
and only if da(y,∞)< da(x,∞), that is, d(y, a)> d(x,a). It follows that

Ba

(
∞, da(x,∞)

)
=X \B

(
a, d(x,a)

)
.

The rest of the proof is divided into two cases.
Case 1 : d(x,a)> 1/C . In this case, note that for y ∈X \B(a, d(x,a)) we

have that 1 + d(y, a) ≈ d(y, a) and hence by the doubling property of μ, we
also have μ(B(a,1 + d(y, a)))≈ μ(B(a, d(y, a))). For non-negative integers j
we set Bj =B(a,2jd(x,a)). Then by the doubling property of μ,

μa

(
Ba

(
∞, da(∞, x)

))
≈
∫
X\B(a,d(x,a))

1

μ(B(a, d(y, a)))2
dμ(y)

=
∞∑
j=0

∫
Bj+1\Bj

1

μ(B(a, d(y, a)))2
dμ(y)
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≈
∞∑
j=0

μ(Bj+1 \Bj)

μ(Bj)2
.

By (2) and (3), there are positive constants t, s (which are independent of
j, x) such that μ(Bj+1 \Bj)≈ μ(Bj) and

(4)
2sj

C
≤ μ(Bj)

μ(B0)
≤C2tj .

Using this, we obtain

μa

(
Ba

(
∞, da(∞, x)

))
≈

∞∑
j=0

1

μ(Bj)
,

with
1

Cμ(B0)

∞∑
j=0

2−sj ≤
∞∑
j=0

1

μ(Bj)
≤ C

μ(B0)

∞∑
j=0

2−tj .

It follows from the assumption d(x,a)> 1/C that

μa

(
Ba

(
∞, da(x,∞)

))
≈ 1

μ(B0)
=

1

μ(B(a, d(x,a)))
≈ 1

μ(B(a,1 + d(x,a)))
,

that is, dμ∞
a (x)≈ dμ(x) when d(x,a)> 1/C .

Case 2 : d(x,a)≤ 1/C . In this case, we have 1+ d(x,a)≈ 1, and so by the
doubling property of μ,

μ
(
B
(
a,1 + d(x,a)

))
≈ μ

(
B(a,1)

)
.

For non-negative integers j, we now choose Bj =B(a,2j). Then

μa

(
Ba

(
∞, da(x,∞)

))
=

∫
X\B(a,d(x,a))

1

μ(B(a,1 + d(y, a)))2
dμ(y)

≈
∫
B(a,1)\B(a,d(x,a))

1

μ(B(a,1))2
dμ(y)

+
∞∑
j=0

∫
Bj+1\Bj

1

μ(B(a,1 + d(y, a)))2
dμ(y).

Since d(x,a)≤ 1/C , we have

μ
(
B(a,1) \B

(
a, d(x,a)

))
≈ μ

(
B(a,1)

)
,

and for y ∈Bj+1 \Bj we also have that

μ
(
B
(
a,1 + d(y, a)

))
≈ μ(Bj).

Hence

μa

(
Ba

(
∞, da(x,∞)

))
≈ 1

μ(B(a,1))
+

∞∑
j=0

μ(Bj+1 \Bj)

μ(Bj)2
.
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An application of (4) to the above now yields

μa

(
Ba

(
∞, da(x,∞)

))
≈ 1

μ(B(a,1))
≈ μ

(
B
(
a,1 + d(x,a)

))
.

It now follows that dμ∞
a (x)≈ dμ(x) even when d(x,a)≤ 1/C .

This completes the proof of the lemma. �

2.5. Radially star-like quasiconvex spaces and meridian-like quasi-
convex spaces. The notions of radially star-like and meridian-like quasicon-
vexity were introduced in [9] to investigate the preservation of ∞-Poincaré
inequality under the transformations of sphericalization and flattening.

Definition 2.8. A space is K-radially star-like quasiconvex with respect
to a base point a ∈X , if there exist a constant K ≥ 1 and a radius r0 > 0 such
that for every r > r0 and x ∈ A(a, r/2, r), there exist a base-point quasicon-
vex ray γa∞, a point y ∈ γa∞ and a quasiconvex curve γxy ⊂ A(a, r/K,Kr)
connecting x to y such that

�(γxy)≤Kd(a, y).

Here we say that a ray γ : [0,∞)→X with γ(0) = a is base-point quasi-
convex if for each z ∈ |γ|, �(γaz) ≤ Cd(a, z), where γaz is the subcurve of γ
ending at z.

Notice that if (X,d) is a connected complete locally compact metric space
which is annularly quasiconvex with respect to a point a ∈X , then (X,d) is
K-radially star-like quasiconvex. See [9, Lemma 3.3].

Definition 2.9. A (bounded) metric space is K-meridian-like quasiconvex
with respect to a base point c ∈X , if there exists a constant K ≥ 1, a point
a ∈X and a small radius r0 > 0 such that for every x ∈A(c, r/2, r) with r < r0,
there exist a double base-point quasiconvex curve γac, a point y ∈ γac and a
curve γxy ⊂A(c, r/K,Kr) connecting x to y such that

�(γxy)≤Kd(y, c).

By double base-point quasiconvex curve we mean that for any z ∈ |γac|,
�(γaz) ≤ Cd(a, z) and �(γcz) ≤ Cd(c, z). Here γaz and γcz denote the sub-
curves of γac with end points a and z and c and z, respectively.

Remark 1. The idea is to choose the point a ∈ X (in Definition 2.9)
in A(c,R/2,R) where R = supz∈X d(c, z). Then, 2d(a, c) ≥ supz d(c, z) ≥
diam(X)/2. Additionally, when 0< r�R and x ∈B(c, r), we have d(x,a)≈
d(a, c). Indeed, for x ∈B(c, r), we have that

2d(a, c)> d(a, c) + d(x, c)≥ d(a,x)≥ d(a, c)− d(x, c)≥ d(a, c)− r ≈ d(a, c).
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Observe that if (X,d) is a bounded connected complete locally com-
pact metric space which is annularly quasiconvex with respect to a point
c ∈X , then (X,d) is K-meridian-like quasiconvex with respect to c. See [9,
Lemma 4.3].

Remark 2. It is possible to show that the sphericalization of an unbounded
radially star-like quasiconvex space will result in a bounded meridian-like
quasiconvex space, and vice versa. In fact, these two concepts are dual to
each other via the dual transformations of sphericalization and flattening.
See [9, Lemma 4.6, Lemma 4.7].

Unless otherwise stated, the letter C denotes various positive constants
whose exact values are not important for the purposes of this paper, and its
value might change even within a line.

3. Preservation of p-Poincaré inequality for p > s under
sphericalization

Li and Shanmugalingam proved in [20, Theorem 3.3.5] the preservation of p-
Poincaré inequality (1≤ p <∞) under sphericalization for annularly quasicon-
vex spaces. In what follows, we show the preservation of p-Poincaré inequality
under sphericalization for p sufficiently large for metric spaces satisfying the
radially star-like quasiconvexity property (see Definition 2.8). Metric spaces
that are not annularly quasiconvex but are radially star-like quasiconvex are
for example the real line, the Euclidean infinite strip R× [−1,1], some classes
of metric trees and Example 5.1 of the current paper.

Theorem 3.1. Let (X,d,μ) be a complete unbounded metric space with a
doubling measure μ so that (X,d,μ) supports a p-Poincaré inequality for some
p > s, where s is the exponent of relative lower volume decay associated to μ
as in (2). Let a ∈X be a base point in X , and assume (X,d) is K-radially

star-like quasicovex with respect to a for some K ≥ 1. Then (Ẋ, da, μa) also
supports a p-Poincaré inequality.

Remark 3. Notice that we need p > s, which is associated to the exponent
s related to the original measure μ rather than the spherical measure μa from
(2). See Example 1 below.

Remark 4. The following heuristic argument could help to understand
the main difficulty that arises when working with the weaker hypothesis of
radially star-like quasiconvexity as opposed to working with annular quasi-
convexity. Let r < r0 and consider the ball Ba(∞, r). If the space is annularly
quasiconvex, one can connect points in the same annulus with a curve that
stays approximately in the same annulus. Under this hypothesis, it is there-
fore easy to compare points lying in the same horizontal annulus, that is, an
annulus centered at ∞. On the other hand, radially star-like quasiconvexity
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allows us to connect any point x to ∞ through a curve passing close to x,
and x connects to this curve through a quasiconvex curve. Therefore, in this
case, it is easy to compare points that lie in the same vertical strip (denoted
in the proof by Si). Moreover, using the doubling property of the space, we
will see that we can divide the ball into a finite number of vertical strips with
the number independent of the radius of the ball. According to these two
approaches, one could consider two possible divisions of the ball Ba(∞, r):

Ba(∞, r) =

{⋃∞
i=0Aa(∞,2−i−1r,2−ir) division into “horizontal annuli”,⋃N0

i=0(Ba(∞, r)∩ Si) division into “vertical strips”.

In the proof that follows, we will use the division of the ball into “vertical
strips”.

Proof of Theorem 3.1. We need to verify p-Poincaré inequality for balls
Ba(x, r) with x ∈ Ẋ and r > 0. We divide the proof into three different
cases: balls far away from ∞ (whose behavior is similar to the balls in the
original metric), balls centered at ∞, and more general balls. We assume
0< r < 1/(10λK2), where λ is the scaling constant involved in the p-Poincaré
inequality and K is the constant in the radially star-like quasiconvex property,
because balls with radius r ≥ 1/(10λK2) can be compared to balls centered

at ∞ with radius 1, that is, balls that are equal to Ẋ . Indeed, we will prove
the p-Poincaré inequality for balls centered at ∞ in Case 2 without restricting
the radius r in that case.

Let u ∈ Lip(Ẋ) and let g be an upper gradient of u in X with respect to
the original metric d. Recall here that by Lemma 2.1 it suffices to verify the
p-Poincaré inequality for functions u that are Lipschitz continuous in Ẋ .

Case 1 : da(x,∞)≥ 8λr. We can follow the same proof as the one of Case 1
in [20, Theorem 3.6]. Notice that the only hypotheses used in that proof are
the doubling property of the measure μ (and μa), and the fact that X supports
a p-Poincaré inequality (not the annular quasiconvexity property). We only
recall here one estimate proven in Case 1 of [20, Theorem 3.6] that will be
needed in Case 2. There is a positive integer k0 ≥ 3 so that

2k0λr ≤ da(x,∞) =
1

1+ d(x,a)
≤ 2k0+1λr,

and there are two balls Bs,Bl (with respect to the original metric) centered
at x, with Bs ⊂Ba(x, r)⊂Bl and

μ(Bs)

μ(B(a,1/(2k0r)))2
≈ μa

(
Ba(x, r)

)
≈ μ(Bl)

μ(B(a,1/(2k0r)))2
.(5)

Using these balls the p-Poincaré inequality is proven for Ba(x, r) on the
left-hand side of the inequality and Ba(x,λ0r) on the right-hand side, with
λ0 depending solely on λ and the doubling constant of μ.
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Case 2 : x = ∞ and 0 < r < 1/(10λK2). As shown in [9], because X is

radially star-like quasiconvex, Ẋ equipped with da is a meridian-like quasi-
convex space. Therefore, there exist a constant K ≥ 1 and a fixed radius
r0 > 0 such that for every R< r0 and x ∈Aa(∞,R/2,R), there exist a double
base-point quasiconvex curve βx connecting a to ∞ and a quasiconvex curve
γxz ⊂A(∞,R/K,KR) connecting x to z with �da(γxz)≤Kda(x,∞).

In addition, in [20], it was shown that Ẋ is doubling. Therefore, if

ρ = r
20λK2 , there exist N0 = N0(Cμ) and sphericalized balls {Bi}N0

i=1 :=

{Ba(zi, ρ)}N0
i=1, such that Aa(∞, r/2, r)⊂

⋃N0

i=1Bi and Bi ⊂ Aa(∞, r/3,2r).
The key point here is that the number of balls N0 that cover the annulus
depends only on the doubling constant and the ratio ρ/r, which is indeed
independent of r.

Indeed, because Ẋ is endowed with a doubling measure μa with constant
Cμa , then the metric space (Ẋ, da) is doubling in the sense that there is a
constant N0 depending only on Cμa such that for each r > 0, each closed ball

in Ẋ of radius 2r can be covered by a family of at most N0 closed balls of
radius r. Without loss of generality, we may assume that 3r/4≤ da(zi,∞)≤ r.
Then the ball Ba(∞, r) can be written as a finite union of measurable sets,

namely Ba(∞, r) =
⋃N0

i=1(Si ∩Ba(∞, r)), where

Si :=
⋃

R<r0

{
∈Aa(∞,R/2,R) : ∃βy double base-point quasiconvex curve

connecting a to ∞,∃z ∈ βy and a quasiconvex curve

γyz ⊂Aa(∞,R/K,KR) with �da(γyz)<Kda(y,∞) and βy ∩Bi �= ∅
}
.

Here we write R to distinguish it from the radius r fixed above.
Notice that for every x ∈ Si there is a small neighborhood Nx of x with

Nx ⊂ Si, so Si is open in Ẋ . Also, the intersection of two sets Si and Sj , i �= j
could possibly be nonempty.

It might also be possible that Si = ∅ for some 1≤ i≤N0 but, without loss
of generality, we may assume Si �= ∅ for all i. If Si �= ∅, there exists a double
base-point quasiconvex curve βi connecting a to ∞ such that βi ∩Bi �= ∅. Let
y ∈ βi∩Aa(∞, r/2, r). Because Ẋ is quasiconvex (see [9, Theorem 3.4]), there
exists C0 such that Ba(y, r/C0)⊂ Si and so, by the doubling property of μa,
μa(Si ∩Ba(∞, r))≈ μa(Bi)≈ μa(Ba(∞, r)).

In addition, Bi = Ba(zi, ρ) ⊂ 1
3KλBa(∞,6Kλr) and KBa(∞,6Kλr) ⊂

70K3λBi.
Following the same argument as in Case 2 in [20, Theorem 3.4], we see that

(6)

∫
Si∩Ba(∞,r)

|u− uBi |dμa ≤Cr

(∫
λBi

ĝp dμa

)1/p

,
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where ĝ is the upper gradient of u in Ẋ defined in Lemma 2.4. We do not
repeat here the argument but the idea is to control for each 1≤ i≤N0, the
measure μa of the following level sets

Et,i =
{
y ∈ Si ∩Ba(∞, r) : y �=∞ and

∣∣u(y)− uBi

∣∣≥ t
}
.

The only difference with the proof of [20, Case 2, Theorem 3.4] is that we
use meridian-like quasiconvexity instead of annular quasiconvexity to connect
y ∈ Si ∩Ba(∞, r) with points in Bi. This is doable because, y ∈ Si ∩Ba(∞, r)
and Bi are in the same “vertical strip”. Notice that an annularly quasiconvex
space is a meridian-like quasiconvex space with one single vertical strip (see
[9, Lemma 4.5]).

Now observe that for a fixed i0 ∈ {1,2, . . . ,N0},

(7)

∫
Ba(∞,r)

|u− uBa(∞,r)|dμa

≤ 2

∫
Ba(∞,r)

|u− uBi0
|dμa

≤ 2

N0∑
i=1

∫
Si∩Ba(∞,r)

|u− uBi0
|dμa

≤ 2

N0∑
i=1

∫
Si∩Ba(∞,r)

(
|u− uBi |+ |uBi − uBi0

|
)
dμa

≤ 2

N0∑
i=1

∫
Si∩Ba(∞,r)

|u− uBi |dμa

+ 2

N0∑
i=1

μa

(
Si ∩Ba(∞, r)

)
|uBi − uBi0

|.

Notice that the first summand of the last inequality can be estimated by using
(6) as follows:

(8)

N0∑
i=1

∫
Si∩Ba(∞,r)

|u− uBi |dμa

≤Cr

N0∑
i=1

μa(Bi)

(∫
λBi

ĝp dμa

)1/p

≈CN0μa

(
Ba(∞, r)

)
r

(∫
λBa(∞,r)

ĝp dμa

)1/p

.

The second summand of inequality (7) can be estimated by using the point
x = ∞. For that, we need to compare Bi with Bi0 , balls that lie in the
same “horizontal annulus”. Since we only know how to compare points in a
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“vertical strip”, one has to compare first Bi with the point at ∞ (lying both

in a “vertical strip”) and then ∞ with Bi0 (lying both in another “vertical

strip”) as the following inequality illustrates:

(9)

N0∑
i=1

μa

(
Si ∩Ba(x, r)

)
|uBi − uBi0

|

≤
N0∑
i=1

μa

(
Si ∩Ba(∞,2r)

)(∣∣uBi − u(∞)
∣∣+ ∣∣u(∞)− uBi0

∣∣).
Now, fix 1≤ i≤N0.

First find zi,0 ∈ βi, where βi is a ray in Si, such that da(∞, zi,0) = da(∞, zi)

and denote Bi,0 = Bi. We can choose a sequence of points zi,j ∈ βi by in-

duction to estimate |uBi − u(∞)|. Suppose zi,j−1 has been chosen, with
zi,j−1 ∈ Aa(∞,2−lj−1−1r,2−lj−1r), where lj−1 is an integer depending only

on j. We can find a point zi,j in the subcurve of βi connecting zi,j−1 to

∞, denoted by β∞zi,j−1 , such that the length of the subcuve γi,j of β∞zi,j−1

with end points zi,j−1 and zi,j satisfies 2−lj−1−1ρ≤ �da(γi,j)≤ 2−lj−1ρ. Since
da(zi,j−1,∞)≥ 2−lj−1−1r ≥ 2−lj−1ρ≥ �da(γi,j), such zi,j always exists. Once

zi,j has been chosen, we can choose zi,j+1 in the subcurve of βi connecting
zi,j to ∞ satisfying 2−lj−1ρ≤ �da(γi,j+1)≤ 2−ljρ, where γi,j+1 can be defined

as before. Therefore, we have chosen a sequence of points zi,j ∈ βi.

We now need to prove that

lim
j→∞

da(zi,j ,∞) = 0.

Let Nl := {j ∈N : lj = l}. We first need to show that for every l≥ 0, we have

#(Nl)≤M(K,λ). Let sl =min j ∈Nl. By the base-point quasiconvexity of

βi with respect to base point ∞, we have

(10) #(Nl)2
−l−1ρ=

∑
j∈Nl

2−lj−1ρ≤
∞∑

j=sl

2−lj−1ρ≤
∞∑

j=sl

�da(γi,j+1)

≤ �da(β∞zi,sl
)≤Cda(zi,sl ,∞)

≤ 2−lsl r = 2−lr,

so #(Nl) ≤ M for some M = M(K,λ). Hence, for each l ≥ 0, there ex-

ists j ∈ N so that when j ≥ Ml, we have lj ≥ l, and so it follows that
limj→∞ da(zi,j ,∞)≤ limj→∞ 2−ljr = 0.
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Now we can take the collection of sphericalized balls Bi,j =Ba(zi,j ,2
−ljρ)

to estimate |uBi − u(∞)|. Notice that rad(Bi,j) tends to zero when j ap-
proaches to ∞. Then we can obtain the estimate as follows:

(11)
∣∣uBi − u(∞)

∣∣
≤

∞∑
j=0

|uBi,j − uBi,j+1 | ≤ 4

∞∑
j=0

∫
2Bi,j

|u− u2Bi,j |dμa

≤C

∞∑
j=0

rada(2Bi,j)

μa(2Bi,j)1/p

(∫
6λK2Bi,j

ĝp dμa

)1/p

≤C

( ∞∑
j=0

(
rada(2Bi,j)

μa(2Bi,j)1/p

) p
p−1

) p−1
p
( ∞∑

j=0

∫
6λK2Bi,j

ĝp dμa

)1/p

≤C

( ∞∑
j=0

(
rada(Bi,j)

μa(Bi,j)1/p

) p
p−1

) p−1
p (

M

∫
6λK2(Si∩Ba(x,r))

ĝp dμa

)1/p

,

where in the third line we have used Hölder inequality and in the second line
we have applied the p-Poincaré inequality for balls Bi,j , which satisfy the
hypothesis of Case 1. Here rada(B) is the radius of B in the metric da.

On the other hand, we need to estimate the quantity (rada(Bi,j))/
(μa(Bi,j)). Since rada(Bi,j) = 2−ljρ and da(zi,j ,∞) ≥ 2−lj−1r, by (5), we
have

μa(Bi,j)≈
μ(B(zi,j ,C2lj/ρ))

μ(B(a,C2lj/ρ))2

and

μa(Bi)≈
μ(B(zi, c/ρ))

μ(B(a, c/ρ))2
.

Therefore by (2), we have

μa(Bi,j)

μa(Bi)
≈ μ(B(zi,j , c2

lj/ρ))μ(B(a, c/ρ))2

μ(B(zi, c/ρ))μ(B(a, c2lj/ρ))2
≈ μ(B(a, c/ρ))

μ(B(a, c2lj/ρ))

≥C−1

(
c/ρ

c2lj/ρ

)s

≈C

(
2−ljρ

ρ

)s

,

and so it follows that

(2−ljρ)s/p

μa(Bi,j)1/p
≤C

ρs/p

(μa(Ba(zi, ρ)))1/p
.
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Then we obtain the upper bound of the first term in the last inequality of
(11), which is

(12)

( ∞∑
j=0

(
rada(Bi,j)

μa(Bi,j)1/p

) p
p−1

) p−1
p

=

( ∞∑
j=0

(
(2−ljρ)s/p(2−ljρ)1−s/p

μa(Bi,j)1/p

) p
p−1

) p−1
p

≤
( ∞∑

j=0

(
ρs/p(2−ljρ)1−s/p

μa(Bi)1/p

) p
p−1

) p−1
p

=
ρ

(μa(Bi))1/p

( ∞∑
j=0

2−lj
p−s
p−1

) p−1
p

.

Notice from the argument of (10) and the subsequent paragraph that for
each k ∈ N, there are at most M number of j with lj = k. So the quantity∑∞

j=0 2
−lj

p−s
p−1 is finite. Combining (11) and (12), we obtain that

∣∣uBi − u(∞)
∣∣≤Cr

(∫
6λK2(Si∩Ba(x,r))

ĝp dμa

)1/p

.

Combining (7),(8), (9) and the inequality above, we obtain that∫
Ba(∞,r)

|u− uBa(∞,r)|dμa ≤Cr

(∫
6λK2Ba(∞,r)

ĝp dμa

)1/p

,

as wanted.
Case 3 : da(x,∞)< 8λr. In this case, we use the conclusion of Case 2 above

as an aid, since Ba(x, r) ⊂ Ba(∞,16λr), Ba(∞,96Kλ2r) ⊂ Ba(x,105Kλ2r)
and the ball Ba(∞,16λr) satisfies the hypothesis of Case 2. Hence by the
doubling property of μa,∫

Ba(x,r)

|u− uBa(x,r)|dμa ≤ 2

∫
Ba(x,r)

|u− uBa(∞,16λr)|dμa

≤C

∫
Ba(∞,16λr)

|u− uBa(∞,16λr)|dμa

≤Cr

(∫
96Kλ2Ba(∞,r)

ĝp dμa

)1/p

≤Cr

(∫
Ba(x,105Kλ2r)

ĝp dμa

)1/p

. �
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The following example was considered in [20] and shows that the previous
theorem is not true for p≤ s.

Example 1. Let X be the 2-dimensional Euclidean strip R × [−1,1]
equipped with the Euclidean metric and the weighted measure dμ(x) =
max{1, |x|2}dL 2(x), which is clearly a radially star-like quasiconvex space.
By [14, Corollary 15.35] the measure μ is p-admissible in R

2 for any p > 1,
which means that μ is doubling and (R2, | · |, μ) supports a p-Poincaré inequal-
ity for any p > 1. In particular (X, | · |, μ) supports a 2-Poincaré inequality.
The sphericalized space with respect to the base point a = (0,0) is the re-
gion trapped between two tangential circles in the sphere. In particular, the
boundary of such a region is a quadratic cusp and one can check that μa = L 2.
Therefore, (Xa, da, μa) supports a p-Poincaré inequality for any p > 3. Ob-
serve that in this case the exponent of relative lower volume decay associated
to μ is s= 3.

On the other hand, [9, Example 3.14] provides a metric measure space
endowed with a doubling measure, which is not radially star-like quasicon-
vex, supporting an ∞-Poincaré inequality but whose sphericalized space fails
to support an ∞-Poincaré inequality. We can therefore conclude that Theo-
rem 3.1 is no longer true if the hypothesis of radially star-like quasiconvexity
is removed.

4. Preservation of p-Poincaré inequality for p > s under flattening

In this section, we show the preservation of p-Poincaré inequality under
flattening for p sufficiently large for meridian-like quasiconvex metric spaces
supporting a doubling measure (see Definition 2.9).

Theorem 4.1. Let (X,d,μ) be a bounded complete metric space endowed
with a doubling measure μ and supporting a p-Poincaré inequality for some
p > s, where s is the exponent of relative lower volume decay associated to μ as
in (2). Let c ∈X be a base point on X , and assume (X,d) is K-meridian-like
quasiconvex with respect to the base point c for some K ≥ 1. Then (Xc, dc, μc)
also supports a p-Poincaré inequality.

Remark 5. Notice that we require p > s, where s is associated to the
original measure μ rather than the flattened measure μc.

Proof of Theorem 4.1. Let u ∈ Lip(Xc) and g be an upper gradient of u in
X with respect to the metric (X,d). We split the proof into three different
cases depending on the quantity λrd(x, c).

In the first case, we consider balls Bc(x, r) far away from the singular
point c (with a behaviour similar to the original ball). In the second case,
the flattened ball Bc(x, r) behaves like the complement of an unflattened ball
centered at c. In the third case, we cover the rest of possibilities.
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As shown in [9], because X is meridian-like quasiconvex, Xc equipped
with dc is radially star-like quasiconvex. Therefore, there exist a constant
K ≥ 1, a fixed radius r0 > 0 and a point a ∈X (as explained in Remark 1)
such that for every R > r0 and y ∈ Ac(a,R/2,R), there exist a base-point
quasiconvex ray βy connecting a to ∞, a point z ∈ βy and a quasiconvex curve
γyz ⊂ Ac(a,R/K,KR) connecting y to z with �dc(γyz) ≤Kdc(a, z). Denote
L=max{r0d(a, c)/4,1}, a constant that will be used in Case 2 and Case 3.

Case 1 : 6λrd(x, c) ≤ 1/2. This case is the same as Case 1 of [20, Theo-
rem 4.4]. Observe that in that proof one only uses the p-Poincaré inequality
(not the annularly quasiconvexity property) and the doubling property of the
measure μ, so the same argument works in our setting.

Case 2 : λrd(x, c)≥ 4λL. According to Case 2 of [20, Theorem 4.4], we can
see that

X \ B̄(c,2/r)⊂Bc(x, r)⊂X \ B̄
(
c,2/(3r)

)
.

First, we assume that x= a.
In [20], it was shown that Xc is doubling. Therefore, if ρ = r/(96λK)

there exist N0 = N0(Cμ) flattened balls {Bi}N0

i=1 := {Bc(zi, ρ)}N0

i=1, such

that Ac(a, r/2, r)⊂
⋃N0

i=1Bi, with rd(zi, c) ≈ 4L. Then the ball Bc(a, r)
can be written as a finite union of measurable sets, namely Bc(a, r) =⋃N0

i=1(Si ∩Bc(a, r)), where

Si :=
⋃

R>r0

{
y ∈Ac(a,R/2,R) : ∃βy base-point quasiconvex ray

connecting a to ∞,∃z ∈ βy and a quasiconvex curve

γyz ⊂Ac(a,R/K,KR) with �dc(γyz)<Kdc(a, y) and βy ∩Bi �= ∅
}
.

Notice that for every x ∈ Si there is a small neighborhood Nx of x with
Nx ⊂ Si, so Si is open in Xc.

As we did in Case 2 of Theorem 3.1, we assume Si �= ∅. If Si �= ∅, there exists
a base-point quasiconvex ray βi connecting a to ∞ such that βi∩Bi �= ∅. Now,
let y ∈ βi ∩Ac(a, r/2, r). Because Xc is quasiconvex (see [9, Theorem 4.10.]),
there exists C0 such that Bc(y, r/C0)⊂ Si and so, by the doubling property
of μc, we have that μc(Si ∩Bc(a, r))≈ μc(Bi)≈ μc(Bc(a, r)).

Observe that the radius of the ball Bi = Bc(zi, ρ) satisfies the hypothesis
of Case 1, that is, 6λρd(zi, c) = 6λd(zi, c)r/(96λK)≤ 1/2.

Following the same argument as in Case 2 of [20, Theorem 4.4.], we see
that

(13)

∫
Si∩Bc(a,r)

|u− uBi |dμc ≤Cr

(∫
6λKBc(a,r)

ḡp dμc

)1/p

,

where ḡ is the upper gradient of u in Xc defined in Lemma 2.4. Again, the
only difference with the proof of [20, Case 2, Theorem 4.3.3] is that we use
radially star-like quasiconvexity instead of annular quasiconvexity to connect
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y ∈ Si ∩Bc(a, r) with points in Bi. We can do this because y ∈ Si ∩Bc(a, r)
and Bi are in the same “vertical strip”. Next, observe that

(14)

∫
Bc(x,r)

|u− uBc(a,r)|dμc

≤ 2

∫
Bc(a,r)

|u− uB1 |dμc ≤ 2

N0∑
i=1

∫
Si∩Bc(a,r)

|u− uB1 |dμc

≤
N0∑
i=1

∫
Si∩Bc(a,r)

(
|u− uBi |+ |uBi − uB1 |

)
dμc

≤
N0∑
i=1

∫
Si∩Bc(a,r)

|u− uBi |+
N0∑
i=1

μc
(
Si ∩Bc(a, r)

)
|uBi − uB1 |.

Notice that we can estimate the first summand of the last inequality by using
(13), so we only need to estimate the second summand.

Since d(a, c) ≈ supz∈X d(z, c), there exists l ≥ 0 with 2ld(zi, c) ≤ d(a, c) <
2l+1d(zi, c). In what follows, denote zi,0 = zi, zi,Mi = a where Mi will be
shown to be bounded in the next paragraph. Then similar to Case 2 of Theo-
rem 3.1, we can construct a collection of points zi,k, where k = 0,1,2, . . . ,Mi

from βi by induction. Suppose zi,k−1 has been chosen. Then denote
βzi,k−1a to be the subcurve of βi connecting zi,k−1 to a, and zi,k−1 ∈
A(c,2lk−1d(zi, c),2

lkd(zi, c))(with respect to the metric d), where lk is an
integer depending only on k. We can find a point zi,k ∈ βzi,k−1a such
that the length of the subcurve γi,k of βi connecting zi,k−1 to zi,k satisfies
2−lk−1−1ρ≤ �c(γi,k)≤ 2−lk−1ρ.

Let Ns = {j ≤ Mi : lj = s}. We first need to show that for each s ≤ l,
#(Ns) ≤ M for M = M(K,λ). Let js = min j ∈ Ns. Because (X,d) is
meridian-like quasiconvex, βi is a base-point quasicovex ray with respect to
the point a and the metric dc and so we have

#(Ns)2
−s−1ρ=

∑
j∈Ns

2−ljρ≤
∑
j∈Ns

�c(γi,j)≤
Ml∑
j=js

�c(γi,j)

= �c(βzi,jsa)≤Cdc(a, zi,js).

Since dc(a, zi,js) =
d(a,zi,js )

d(a,c)d(zi,js ,c)
and d(a, zi,js) ≤ d(a, c) + d(zi,js , c) ≤

2d(a, c), so

dc(a, zi,js)≤
2

d(zi,js , c)
≤ 2

2ljs−1d(zi, c)
= 2−s16r, for rd(zi, c) = 4.

Therefore, we have #(Ns)≤M and also Mi ≤
∑l

s=0#(Ns)≤M(l+ 1).
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Set ρk = 2−jkρ. Then we can construct a collection of flattened balls Bi,k =
Bc(zi,k, ρk) in order to estimate the second summand in (14). Note that

(15) |uBi − uB1 | ≤ |uBi − uBi,Mi
|+ |uBi,Mi

− uB1 |.

Without loss of generality, it suffices to estimate |uBi,Mi
− uBi |. To es-

timate |uBi,Mi
− uBi |, notice that uBi,Mi

= uB1,M1
for i = 1,2, . . . ,N0, so

|uBi,Mi
− uB1 |= |uB1,M1

− uB1 |.
Then we have

(16) |uBi − uBi,Mi
|

≤
Mi∑
k=1

|uBi,k
− uBi,k+1

| ≤ 2

Mi∑
k=1

∫
2Bi,k

|u− uBi,k
|dμc

≤C

Mi∑
k=1

rad(2Bi,k)

μc(2Bi,k)1/p

(∫
6λKBi,k

ḡp dμc

)1/p

≤C

(
Mi∑
k=1

(
rad(2Bi,k)

μc(2Bi,k)1/p

)p/(p−1)
)(p−1)/p(∫

6λKBj,k

ḡp dμc

)1/p

≤C

(
Mi∑
k=1

(
rad(2Bi,k)

μc(2Bi,k)1/p

)p/(p−1)
)(p−1)/p(

C ′
∫
6λKSi

ḡp dμc

)1/p

,

where in the third line we have used Hölder inequality and the fact that,
by the doubling assumption on μ, μc is also doubling. In the second
line, we have applied the p-Poincaré inequality for the balls Bi,k which
satisfy the hypothesis of Case 1. Indeed, recall that Bi,k = Bc(zi,k, ρk),
and 2jkd(zi, c) ≤ d(zj,k, c) ≤ 2jk+1d(zi, c), ρk = 2−jkρ = 2−jkr/(96λK), so
d(zj,k, c)ρj ≤ 2d(zi, c)r/(96λK) = 1/(12λK).

Now, according to Case 1, since 6λrad(Bi,k)d(zi,k, c)≤ 1/2, then we have

(17) μc
(
Bc(zi,k, ρk)

)
=

∫
Bc(zi,k,ρk)

dμ(y)

μ(B(c, d(y, c)))2
≈ μ(Bc(zi,k, ρk))

μ(B(c, d(zi,k, c)))2

≈ μ(B(zi,k, ρkd(zi,k, c)
2))

μ(B(c, d(zi,k, c)))2
.

Notice that ρkd(zi,k, c)≈ ρd(zi, c) = 1/(12λK)≤ 1/2. By the doubling prop-
erty, of μ we have

Cμ ≥ μ(B(zi,k, ρkd(zi,k, c)
2))

μ(B(c, d(zi,k, c)))
≥C

(
d(zi,k,c)
24λK )s

d(zi,k, c)s
≥ 1

C
.
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Therefore, from the estimate above and (17) we can induce that

μc(Bc(zi,k, ρk))

μc(Bc(zi, ρ))
≈ μ(B(zi,k, ρkd(zi,k, c)

2))

μ(B(c, d(zi,k, c)))2
μ(B(c, d(zi, c)))

2

μ(B(zi, ρd(zi, c)2))

≈ μ(B(c, d(zi, c)))

μ(B(c, d(zi,k, c)))
≥C

(
d(zi, c)

d(zi,k, c)

)s

≈C

(
(4/r)

2jk(4/r)

)s

.

Hence, we can get

(2−jkr)s/p

μc(Bi,k)1/p
≤C

rs/p

μc(Bc(zi, ρ))1/p
.

From this estimate together with (16), we obtain

(18)

(
Mi∑
k=1

(
rad(2Bi,k)

μc(2Bi,k)1/p

) p
(p−1)

) (p−1)
p

≤C

(
Mi∑
k=1

(
(2−jkr)s/p(2−jkr)1−s/p

(μc(2Bi,k)1/p)

) p
(p−1)

) (p−1)
p

≤C

(
Mi∑
k=1

(
rs/p(2−jkr)1−s/p

(μc(Bi)1/p)

) p
(p−1)

) (p−1)
p

≤C

(
Mi∑
k=1

2−jk(p−s)/(p−1)

) (p−1)
p

r

μc(Bi)1/p
.

From (18), we can go back to (16), then we can derive that

(19) |uBi − uBi,Mi
| ≤C

r

μc(Bi)1/p

(∫
6λKSi

ḡp dμc

)1/p

.

Combining with (14), (15) and (19), we have proved Case 2 for x= a.
If x �= a, because 2d(a, c)≥ supz∈X d(z, c) and rd(x, c)≥ 4L we have that

rd(a, c) ≥ 2L. We can observe that the balls Bc(a, r) and Bc(x, r) inter-
sect each other and there exist C1,C2 > 0 such that Bc(x, r)⊂ Bc(a,C1r)⊂
Bc(x,C2r). Then, by the doubling property of μc we obtain the following
chain of inequalities,∫

Bc(x,r)

|u− uBc(x,r)|dμc ≤C

∫
Bc(a,C1r)

|u− uBc(a,C1r)|dμc

≤Cr

(∫
6KλBc(a,C1r)

ḡp dμc

)1/p

≤Cr

(∫
6KλBc(x,C2r)

ḡp dμc

)1/p

,
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where in the second inequality we have applied the p-Poincaré inequality for
balls in Case 2 centered at a.

Case 3 : 1/4≤ λrd(x, c)≤ 4λL. The proof of this case is similar to Case 3
of [20, Theorem 4.4].

Indeed, for 1/12≤ λrd(x, c)≤ 4λL, we have that∫
Bc(x,r)

|u− uBc(x,r)|dμc ≤ 2

∫
Bc(x,r)

|u− uBc(x,48λLr)|dμc

≤C

∫
Bc(x,48λLr)

|u− uBc(x,48λLr)|dμc

≤Cr

(∫
288Kλ2LBc(x,C2r)

ḡp dμc

)1/p

,

where in the last inequality we have used the fact that Bc(x,8r) satisfies the
hypothesis of Case 2.

By combining the above three cases, we have proved the theorem. �

The example [9, Example 4.12] gives a metric measure space endowed
with a doubling measure, which is not meridian-like quasiconvexity, support-
ing an ∞-Poincaré inequality but whose flattened space fails to support an
∞-Poincaré inequality. Therefore, we cannot dispense of the hypothesis of
meridian-like quasiconvexity in Theorem 4.1.

5. The blow-up of a differentiability space does not need to be a
PI space: An example

It is an open question whether the blow-up (also known in the literature
as tangent cone or tangent space) of a subset of positive measure of a differ-
entiability space must be a PI space, that is, a metric space endowed with a
doubling measure and a p-Poincaré inequality for some p <∞. See, for exam-
ple, [8]. Roughly speaking, the blow-up of a metric space at a point x consists
on “zooming into” X close to x and gives information about the infinitesimal
behavior at the chosen point.

The following example is a modification of [11, Example 2] and shows that,
at a particular point, this is not always the case.

Example 2. Let Q= [0,1]× [0,1]⊂R
2 be the unit square.

First, we divide Q into nine equal squares of side-length 1/3 and remove
the central (open) one. We define the set Q1 to be the union of the 8 re-
maining squares. Repeating this procedure on each of the 8 squares making
up Q1 we obtain the set Q2, a union of 82 squares, each of side-length 1/32.
Iterating this process, we get a sequence of sets Qj consisting of 8j squares
of side-length 1/3j . Because Qj has positive area for each j, we can define
a probability measure μj concentrated on Qj obtained by renormalizing the
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Figure 1. Metric measure pace (X,d,μ).

Lebesgue measure (restricted to Qj) to have measure one. We now consider
the following metric measure space (see Figure 1):

X = · · · ∪
(
Q3 + (−2,0)

)
∪
(
Q2 + (−1,0)

)
∪Q1 ∪

(
Q2 + (1,0)

)
∪ · · ·

endowed with the measure

μ=

∞∑
j=−1

χQ|j−1|+(j,0) · μj−1 +

∞∑
j=1

χQj+(j−1,0) · μj ,

and with the Euclidean metric restricted to X . In the previous formula,
Qj + (j − 1,0) is the set obtained by translating Qj in the direction parallel
to the x-axis by j − 1 units and μj is the measure given by

μj = (9/8)jL 2|Qj+(j−1,0) for j ∈N,

and

μj = (9/8)|j|L 2|Q|j|+(j+1,0) for j ∈ Z, j < 0.

It can be directly verified that the measure μ is doubling on X .
As shown in [11], the space (X,d,μ) supports an ∞-Poincaré inequality but

does not support any p-Poincaré inequality for finite p. This space, being a
countable union of spaces with a Euclidean differentiable structure, is a metric
differentiability space in the sense of Cheeger. Fix a ∈ X and observe that
(X,d) is a radially star-like quasiconvex space. By [9, Theorem 3.4], the spher-

icalization (Ẋ, da, μa) also supports an ∞-Poincaré inequality and a metric
differentiable structure (given via the sphericalization of the metric differen-
tiable structure of (X,d,μ)). See [7] or [8] for the relevant definitions related

to metric differentiable structures. However, (Ẋ, da, μa) does not support a
p-Poincaré inequality for any p <∞. If that were the case, by Theorem 4.1,
the flattening of (Ẋ, da, μa), which is bi-Lipschitz equivalent to the original
metric space (X,d,μ), would support a q-Poincaré inequality for some finite q.
But, as mentioned above, this is not the case which yields a contradiction.
Observe that q might be different (but always finite) from p, being p the

exponent involved in the Poincaré inequality of the space (Ẋ, da, μa).
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On the other hand, the blow-up of (Ẋ, da, μa) at the point x =∞ has a

self-similar structure and coincides with (Ẋ, da, μa), so it cannot support a
p-Poincaré inequality for any p <∞.
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sion properties for Newton–Sobolev functions in metric spaces, J. Math. Anal. Appl.
332 (2007), no. 1, 190–208. MR 2319654

[4] M. Bonk, J. Heinonen and P. Koskela, Uniformizing Gromov hyperbolic spaces,
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