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FOR FREE PRODUCTS
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ABSTRACT. In this paper, we develop the metric theory for the
outer space of a free product of groups. This generalizes the
theory of the outer space of a free group, and includes its relative
versions. The outer space of a free product is made of G-trees
with possibly non-trivial vertex stabilisers. The strategies are
the same as in the classical case, with some technicalities arising
from the presence of infinite-valence vertices.

We describe the Lipschitz metric and show how to compute
it; we prove the existence of optimal maps; we describe geodesics
represented by folding paths.

We show that train tracks representative of irreducible (hence
hyperbolic) automorphisms exist and that their are metrically
characterized as minimal displaced points, showing in particular
that the set of train tracks is closed (in particular, answering to
some questions raised in Azis in outer space (2011) concerning

the axis bundle of irreducible automorphisms).

Finally, we include a proof of the existence of simplicial train

tracks map without using Perron-Frobenius theory.

A direct corollary of this general viewpoint is an easy proof
that relative train track maps exist in both the free group and

free product case.

1. Introduction

In this paper, we are interested in studying the outer space of a free product
of groups. Namely, given a group of the form G =G *--- *x G), x F},, we study

the set of trees where G acts with vertex stabilizers the G;’s.

In the case

G =Gy *---xGp x Fy, is the free product decomposition of a finitely generated
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group G, then this was introduced by Guirardel and Levitt in [36] in the case
where this is the Grushko decomposition of G. That is, when each G; is
freely indecomposable and not isomorphic to Z. However, we shall consider
such spaces with respect to an arbitrary free product decomposition, and not
necessarily the natural Grushko one. Similar spaces are studied by Sykiotis
in [34].

The theory is similar to that of the case of free groups, with the advantage
that this unified viewpoint covers at once both the general case of a free
product as well as many “relative” cases of the classical Outer space. The
group of isomorphisms that acts on G will be that of automorphisms that
preserve the set of conjugacy classes of the G; (which coincides with Aut(G)
in the case of the Grushko decomposition, by the Kurosh subgroup theorem).

In particular, one can define the Lipschitz metric (see [1], [20], [21] for the
classical case). The presence of vertex stabilizers involves some technical com-
plications (for instance, the Ascoli-Arzela theorem does not hold for spaces
that are not locally compact) but the main results of the classical case hold
mutatis mutandis. For instance, optimal maps exist and Lipschitz factors can
be computed on a list of simple candidates. Also, geodesics are constructed
via folding paths.

For the study of automorphisms a very useful tool is the theory of train
track maps, developed by Bestvina and Handel [8] (see also [4], [5], [6], [7])
and extensively used in literature. This tool is available also in the present
setting.

For studying train tracks, we chose to follow the metric viewpoint as in [3].
In particular, we show that for an irreducible automorphism the set of train
tracks coincides with the set of minimally displaced elements. We remark
that there is no uniform definition of train track maps in the literature, even
if the difference from one definition to another is minimal. As the set of
minimally displaced elements is closed, this gives in particular a proof that
the set of train tracks is closed, hence answering to a question raised in [23],
where the authors give a characterizations of the axis bundle of an irreducible
automorphism (see Remark 8.22). We would also like to mention the very
recent preprint [33] about axis bundles.

Many of the results about train tracks that we are going to describe are well
known (at least to the experts) in the case of free groups, and the proofs in
our general setting do not require substantial changes. We give here explicit
and fully detailed proofs of all these facts for completeness. We refer the
reader also to the very recent and nice preprint [32] that deals with local finite
trees with possibly non trivial edge-stabilizers, from the same viewpoint of us.
As Meinert pointed out, the fact the we work with trivial edge-stabilizers is
crucial, as Lemma 4.2 may fail in general. In this work, we do not develop the
theories of geodesic currents and laminations ([10], [11], [12], [13], [14], [15],
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[16], [19], [22], [24], [25], [26], [27], [28], [29], [30], [31]) that would certainly
be of interest in this general case.

2. G-Trees and lengths

For any simplicial tree T (not necessarily locally compact), we denote by
VT and ET the set of vertices and edges of T, respectively. A simplicial
metric tree, is a simplicial tree equipped with a complete path metric such
that edges are isometric to closed intervals of R. Note that the simplicial
structure on a metric tree is an additional structure that is not necessarily
determined by the metric structure. However, we do require that all branch
points be vertices, and generally we will simply take the set of vertices to be
the set of branch points (which is determined by the metric structure).

For x,y € T, we denote by [z, y]r (or simply by [z, y] if there is no ambiguity
concerning T') the unique path from x to y, and for a path v in T we denote
by 7 () the length of y in 7.

Let G be a group. In this work, by a G-tree we mean a simplicial metric
tree T = (T, dr), where G acts simplicially on 7" and for all g € G and e € ET,
e and ge are isometric. In other words, G is acting on 71" by isometries and
preserving the simplicial structure.

If T is a G-tree, then the quotient space G\T is a graph. We denote by
w1 : T — G\T the projection map.

In general, a path v in G\T may have many lifts to T, even if we fix the
initial point of the lift. This is because each time  passes through an edge
whose initial vertex has a lift with non-trivial stabilizer, we have many choices
for the lift of the edge.

Let T be a G-tree. The following definitions depend on the action of G on T'.
An element g € G is called hyperbolic if it fixes no points. Any hyperbolic
element g of G acts by translation on a subtree of T' homeomorphic to the
real line, called the axis of g and denoted by axisr(g). The translation length
of g is the distance that g translates the axis. The action of G on T defines
a length function denoted by It

Ilr: G—=R, Ir(g): = inng(x,g:r).
xTE
REMARK 2.1. We note that, under our hypothesis, this inf is always

achieved (see for example [17, 1.3]). In particular, g € G is hyperbolic if
and only if I7(g) > 0.

3. The outer space of a free product
We follow [36]. We will consider groups G of the form
G:Gl*"‘*Gp*Fk,

where (G;)Y_; is a family of groups, and Fj, denotes the free group of rank
0<k<o0.
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We will be mainly concerned with the case where G admits a co-compact
action on a tree with trivial edge stabilisers and indecomposable vertex sta-
bilisers, or equivalently a group of finite Kurosh rank. However, in general we
will not assume that that G; are indecomposable. That is, while G may ad-
mit a decomposition as a free product of finitely many freely indecomposable
groups, we are interested in developing the subsequent theory in the situation
where our given free product decomposition is not necessarily of that kind.
For instance, we will apply the theory in the case that G is free, and the G;
are certain free factors of G.

Let T(G) denote the set of simplicial metric G-trees. We say that two
elements T,7T" of T(G) are equivalent, and we write T ~ T, if there exists a
G-equivariant isometry f: T —T".

Let T € T(G). A vertex v € VT is redundant, if it has degree two, and any
g that fixes v also fixes the edges adjacent to v. It is terminal if T — {v} is
connected. A terminal vertex is often referred to as a leaf. We will consider
G-trees with no redundant vertices.

Let O =O(G, (G;)Y_,, F) be the subset of T(G)/ ~ of simplicial, metric
G-trees T, up to equivariant isometry, satisfying that:

(C0) T has no redundant vertices;

(C1) the G-action of T is minimal (i.e., there exist no proper invariant
subtree), with trivial edge stabilizers;

(C2) for each i =1,...,p, there is exactly one orbit of vertices with stabi-
lizer conjugate to G; and all edge stabilizers are trivial;

(C3) all other vertices have trivial stabilizer. We will often refer to such
vertices as free vertices.

It may be worth to mention that under such assumptions, for any 7" € O
the quotient G\ T is a finite graph.

The space O admit a natural action of (0,00) defined by rescaling the met-
ric, that is to say, multiplying all lengths of the edges by the same number. The
quotient space of O by that action is denoted by PO = PO(G, (G;)}_,, Fy)
and is called the outer space of G. Sometimes O will be referred to as the
unprojectivized outer space of G.

There is a natural map from 7(G) to R®, mapping T to (I7(g))gec- This
map clearly factors through 7(G)/ ~. The following fact is proved in [17,
Theorem 3.7] (see also [2]).

LEMMA 3.1. The restriction of the translation length function to © — RY
1s injective.

The azes topology on O is the topology induced as a subspace of RE.

As in [36], there are in fact two topologies on O. There is, as in Outer
Space, the simplicial topology which is different from the Gromov topology
(which coincides with the axes topology). The metric we study in the following
discussion induces the same topology as the axes topology.
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Definition 3.2. The group Aut(G,O) is the group of automorphisms that
preserve the set of conjugacy classes of the G;’s. Namely ¢ € Aut(G) belongs
to Aut(G, O) if ¢(G;) is conjugate to one of the G;’s.

In the case of the Grushko decomposition, Aut(G) = Aut(G, Q). The group
Aut(G, 0) acts on T(G) by changing the action. That is, for ¢ € Aut(G) and
T in T(G), the image of T under ¢ is the G-tree with the same underlying
tree as T', endowed with the action given by (g,2) € Gx T +— ¢(g)xz € T. If ¢y,
is the automorphism of G given by conjugation by h € G (g+ h~'gh), then
for every T € T(G), T ~ ¢5(T) via the map T — ¢p(T), x + h~'z. Thus,
Out(G,0) = Aut(G,0)/Inn(G) acts on T(G)/ ~.

4. The metric

4.1. O-Maps. Let T be a simplicial metric G-tree. Denote by Hyp(T") set
of elements g € G whose the action on T is hyperbolic (see [17] for details).
If [T] € O and g ¢ Hyp(T'), then g fixes a vertex of T, and by (C2) there exits
i€ {1,...,p} such that g lies in a G-conjugate of G;. Conversely, if g lies in
a G-conjugate of some Gy, i € {1,...,p}, by (C2) g fixes a vertex, and then
it is not hyperbolic. Therefore, g € Hyp(T) if and only if it is hyperbolic for
any other element of O. The set of hyperbolic elements of G for some (and
hence for all) T in O is denoted by Hyp(O).

Definition 4.1 (O-maps). Let A, B€ O. An O-map f: A— B is a G-
equivariant, Lipschitz continuous, surjective function. (Note that we don’t
require to f to be a graph morphism.) We denote by Lip(f) the Lipschitz
constant of f, that is the smallest constant K > 0 such that, for all x1,2, € A

dB(f($1)7f(.’)32)> S KdA(.%'h.’l?Q).

LEMMA 4.2. For every pair A,B € O, there exists a O-map f: A — B.
Moreover, any two O-maps from A to B coincide on the non-free vertices.

See [18] or [35, Theorem 3.8] for a proof.
LEMMA 4.3. Let A,B€ O. For any O-map f: A— B, we have

') i),

geHyp(0) la(g)

Proof. Let f: A— B bean O-map, g € G, and x € A. Since f is continuous
[f(z), f(92)]5 C f([z,92]4), then
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By Remark 2.1, there exists x4 € A realizing [4(g), that is [a([zg, gz4]a) =
la(g). Using z,4 in the previous inequality, we conclude that

(1) I5(g) <Lip(f)la(g)- O
4.2. The metrics.

Definitions 4.4. For any pair A, B € O we define the right and left maximal
stretching factors

A4 B)= sip B p B = s A9 )
geHyp(0) La(g) getyp(0) IB(9)

and asymmetric pseudo-distances
dR(A, B) = IOgAR(A7 B)7 dL (A, B) = log AL(A, B) = dR(B, A)

We define A(A, B) := Ar(A, B)AL(A, B) and the distance between A and
B as

d(4, B) :=log A(A, B).

Directed triangular inequalities are readily checked for dr and dj, thus
triangular inequality holds for d. Moreover, d is a genuine distance on O
as d(A,B) =0 gives lg(g) =1a(g) for any element of G, and this implies
that A =B by Lemma 3.1. The functions dg and dj become asymmetric
distances once restricted to the subset of O of G-trees with co-volume one,
which can be identified with PO. (See, for example, [20], [21], [1] for the study
of such functions in the case of outer space of free groups.) We notice that
without volume-restriction dr and dy, can be negative. Also, the fact that
dr(X,Y) =0 implies X =Y is true only with the volume-restriction (see [20,
Lemma 4.16] for a proof in the classical case that extends with no changes to
the actual case).

LEMMA 4.5. The action of Aut(G,O) on O is by isometries.

Proof. If ¢ € Aut(G, D), the it preserves the conjugacy classes of the G;’s.
Therefore, g is hyperbolic if and only if ¢(g) is. Thus,
Is(g) _ I3(0(9) _ ls(B)(9)

= = sup .
g€Hyp(O) lA(g) gEHyp(O) lA(Qﬁ(Q)) gEHyp(O) l¢(A)(g) O

5. Equivariant Ascoli—Arzela

In this section, we provide a tool for computing stretching factors. We
follow the approach of [20]. The main issue is that given A, B € O, one needs
to find a map between them which optimize the Lipschitz constant. Since
elements of O are not locally compacts, Ascoli-Arzeld does not apply directly,
and we need to control local pathologies by hand.
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The lazy reader may skip this section by paying the small price of missing
out on some definitions and the beautiful proof of the equivariant version of
Ascoli-Arzeld theorem.

Definition 5.1. A map f: A — B between metric graphs is called piecewise
linear if it is continuous and for all edges e of A, there exists a positive number
St.e, called the stretching factor of f at e, such that the restriction of f to
e has constant speed Sy.. More precisely, f is piecewise linear if for any
e € FA, the following diagram commutes and the vertical functions are local
isometries:

eCA Jie fle)c B

| |

R D[0,la(e)] [0,Sfela(e))] CR

tl—}Sf’et

We remark that piecewise linear maps are locally injective on edges.

Definition 5.2 (PL-map for trees). Let A, B € O. We say that a function
f:A— B is a PL-map if it is a piecewise linear O-map. For any O-map
f:A— B we define the map PL(f) as the unique PL-map that coincides
with f on vertices.

REMARK 5.3. Let f: A— B be an O-map and e € EA. If I(f(e)) denotes
the distance between the images of the vertices of e, then by construction we
have Spr(s).e =15(f(e))/la(e) < Lip(f),) <Lip(f), for all e € EA. Therefore,
Lip(PL(f)) < Lip(f).

Before proving the equivariant Ascoli-Arzeld, we discuss an example.

Example 5.4. Consider a segment [0,3] with free vertices and a segment
[0,1] with a vertex non free, say 0, with associated group Z. Consider the
associated trees A =[0,3] and B. B is a star-shaped tree with an infinite
valence vertex, say 0, from which emanate infinite copies of [0, 1],, labeled by
n € Z. Now consider the map f :[0,3] — [0, 1]

t te[0,1],
ft)y=<2—-t te[1,2],
t—2 tel2,3].

For any n € Z there exist a lift f, : A— B of f such that the segment [0, 2]
is mapped to [0,1],, and [2,3] is mapped to [0,1]p. The sequence f,, has no
sub-sequence that converges, but clearly if one “straightens” f, by collapsing
[0,2] to 0, this sequence becomes constant. Of course, this is safe because
there is no G-action on A.



866 S. FRANCAVIGLIA AND A. MARTINO

This is more or less everything that can go wrong. We now introduce the
precise notion of collapsible and non-collapsible map.

Definition 5.5. Let A€ O. A subset X C A is collapsible if gX N X = () for
any Id #g € G.

Definition 5.6. Let A, B€ O and f: A— B be an O-map. A collapsible
component of f is a connected component of A\ f~1(v), for a v € VB non-
free, which is collapsible.

Definition 5.7. Let A,B€ O and f: A— B be an O-map. f is said col-
lapsible if it has a collapsible component. f is said non-collapsible if it is not
collapsible.

Note that f is non-collapsible if any component C of A\ f~!(v) either
contains a non-free vertex or there is point w € A and id # g € G so that both
w and gw belong to C.

Definition 5.8. Let A, B€ O and f: A— B be an O-map. f is o-PL if:

e 0 is a simplicial structure (Vo, Eo) on A obtained by adding 2-valent ver-
tices to A.

The number of G-orbits of edges of ¢ is finite.

For any v € VB non-free, f~!(v) is a forest (union of trees) with leaves

in Vo.
fis PL w.r.t. o.

Any PL-map f:A— B is 0-PL for the f-pull-back structure induced on
A by B.

LEMMA 5.9. Let A,B€ O and f: A— B be a 0-PL map. Then the number
of orbits of collapsible components of f is finite.

Proof. First note that A\ f=(gv) = g(A\ f~1(v)). Hence, the orbits of
components corresponding to the orbit of v have representatives in A\ f~1(v).
Since there are finitely many orbits of vertices, it is enough to show that the
collapsible components in A\ f~1(v) are contained in finitely many orbits.

We argue by contradiction and assume that we have infinitely many col-
lapsible components C; of A\ f~!(v) in distinct orbits.

Since there are finitely many orbits of (open) edges of o, we may assume
that the orbit of some edge e meets every C;; hence there are g; € G such that
e C g;C;. Moreover, for the same reason and from the definition of collapsible
component, we deduce that there is a uniform bound on the number of edges
in any collapsible component.

Without loss of generality, we may assume that the number of edges of Cj
is maximal amongst the C; and that gy =1d. Since C; and Cj are not in the
same orbit, ¢;C; # Cy. On the other hand ¢;C; N Cy # (), thus one of them
contains a leaf of the other. Since Cj is maximal there is a leaf x; of ¢;C;
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in Cy. Leaves of C; are o-vertices, and since Cj has finitely many vertices
and edges, we may assume that z; = x is independent of i, and that there is
an edge £ of Cy contained in ¢;C; for all i (we note that g;C; N Cy contains
at least one edge because it is the intersection of open sets, guaranteeing the
existence of &).

As z is a leaf of ¢;C;, f(x) = g;v for all i. In particular,

97 'g;(v) =v.

Since £ C ¢;C; N g;C; we have Cj ﬂg;lngj # (). However, C; is a component
of A\ f~'(v) and g; *g;C; is a component of A\ f~'(g;  g;v) = A\ f~(v).
Hence, they are equal contradicting the fact that the C;’s are in distinct
orbits. O

LEMMA 5.10. Let A,B€ O. Let f: A— B be a collapsible o-PL map.
Then there is an O-map fo: A — B such that:

e fo is 0-PL (same o).
e Lip(f.) <Lip(f).
e The number of orbits of collapsible components of fo is strictly smaller than

that of f.

Proof. Let v € VB non-free and let C' be a collapsible component of A \
f~Y(v). Collapse C by defining fo|c =v. Extend f, by equivariance on the
orbit of C. This is possible since gC N C = for g # id. On the remaining
part of A, let fo = f. Clearly, fo is an O-map which is o-PL and satisfies
Lip(fs) < Lip(f).

Since g(A\ f~1(v)) = A\ f~1(gv), it follows that A\ f~!(v) contains a
representative for every orbit of components. In passing from f to f,, the
components of A\ f~1(v) which are not of the form gC are unchanged, while
the orbit of C' is removed. More precisely, A\ fo1(v)={A\ f~1(v)}\ GC.
Thus, the number of orbits of collapsible components in A\ f~!(v) is decreased

by 1.
Now, consider the non-free vertices of B that are not in the orbit of v and
chose orbit-representatives wy, ..., wy. Define G-sets

U, = {D : D is a component of A\ f~!(gw;) for some g € G},

U, = {D : D is a component of A\ f,!(gw;) for some g € G}7

V= {D : D is a collapsible component of A\ f~!(gw;) for some g € G},
Vi, = {D:D is a collapsible component of A\ f,"' (gw;) for some g € G}.
Since w; ¢ Gv, then f;!(w;) C f~'(w;). Therefore, any component K of

A\ f~Y(w;) is contained in a unique component K, of A\ f, ! (w;). Moreover,
if K, is collapsible, so is K.
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This inclusion defines a G-equivariant surjection ¢ : U; — ﬁi such that XZ C
t(V;). Therefore, the number of G-orbits in V; is greater than or equal to the
number of G-orbits in V. O

COROLLARY 5.11 (Existence of Coll). Let A,B€ O. Let f: A— B be a
o-PL map. Then there is an O-map Coll(f): A — B such that:
e Coll(f) is o-PL (same o).

e Lip(Coll(f)) < Lip(f).
e Coll(f) is non-collapsible.

Proof. This follows by induction from Lemmas 5.9 and 5.10. O

In the sequel we use the following conventions:

e When we write Coll(f) we mean any map given by Corollary 5.11.

e We say that P is true eventually on n if Ing so that P is true for all n > ny,
and we write P is true VYn > 0.

e P is true frequently if Yn 3m > n so that P is true for m.

e A sequence sub-converges if it converges up to passing to sub-sequences.
Now we are in position to prove the existence of a map that minimizes the

Lipschitz factor.

THEOREM 5.12 (Equivariant Ascoli-Arzeld). Let A, B € O, then there exits
a PL-map F: A— B with

Lip(F) =inf{Lip(p) : ¢ is an O-map from A to B}.

Proof. For the entire proof—which requires several lemmas—we fix a min-
imizing sequence f! : A — B of PL-maps so that
lim Lip(f,,) = inf{Lip(¢) : ¢ is an O-map from A to B}
n—oo
and we define
fo= Coll(f,’l).
By definition of Coll we have that the f,, are non-collapsible, uniformly
L-Lipschitz and

lim Lip(f,)=inf{Lip(¢): ¢ is an O-map from A to B}.
n—oo

By Ascoli-Arzeld the maps 7g o f,, o 7721 : G\A — G\ B sub-converge to a
map f.. We will show that f., is in fact the projection of a map A — B
which is the limit of f,. From now on, we restrict to a sub-sequence and we
suppose that mg o f, o 7'('21 uniformly converges to foo.

Let T be the set of pairs (T, f) such that:

T C A is a G-invariant subset of A (not necessarily simplicial).
f:T — B is G-equivariant and L-Lipschitz.

7B(f(t)) = foo(ma(t)) for any t € T.

fn|r sub-converges to f.
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The set T is ordered by inclusion/consistency: (T, f) < (Q,u) if T'C Q and
f=u|r. (Note that 7 # (), because f, is constant on non-free vertices.)

We need a couple of standard facts on Lipschitz functions, that we collect
in the following lemma whose proof is left to the reader. O

LEMMA 5.13. Let X CY be metric spaces and let Z be a complete metric
space. Denote by X the closure of X in Y. Then:

(1) If f: X — Z is a L-Lipschitz map, then there is a L-Lipschitz map
f:X =7 sothat flx = f.

(2) If up : X — Z is a sequence of L-Lipschitz maps and us : X — Z is
such that u, — us on X, then the extensions i, : X — Z converge to Uso.

(3) Suppose in addiction that X is compact, then the point-wise conver-
gence of uy is uniform.

LEmMMA 5.14. If (T, f) € T then f,|r sub-converges uniformly to f.

Proof. We restrict to the sub-sequence where f,|r sub-converges. G acts
by isometries on A, B. T is G-invariant and admits a compact fundamental
domain K. Since f,, are uniformly Lipschitz, we can apply Lemma 5.13, point
3 to K and get uniform convergence on K. The uniform convergence on T
follows from G-equivariance of f,, and f. O

If {(Ti,¢:)} is a chain in 7 then, by Lemma 5.14 and a standard argu-
ment on sub-sequences, (|J, T,|J; i) is an upper bound. Therefore, 7 has a
maximal element.

Let (T, fs) be a maximal element of 7. If we show that T = A we are
done because f,, =lim f, realizes the minimum Lipschitz constant and F =
PL(fs) will be PL and with the same Lipschitz constant.

LEMMA 5.15. T contains all non-free vertices and it is closed.

Proof. Both claims follow from maximality of 7. The first is because
G-equivariance implies that f,(v) = Fixg(Staba(v)) is a constant sequence.
The second is an immediate consequence of Lemma 5.13. O

Assuming that T"# A and maximal we shall derive a contradiction. Let
x € 9T N A be fixed for the remainder of the proof. As T is closed x € T'.
Define

A = i d 5 5 Ap = i d 00 ) )
A= pn  da(zw),  Ap= o omin o ds(fe(c)w)

A =min(Ag, Ap/2L).

Choose y ¢ T such that da(z,y) <.
Since fn(x) = foo(x) eventually on n we have

fn(y) € B(fo(@),AB).
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Note that B(feo(x), Ap) is star-shaped, namely it contains at most one vertex
and contains exactly one vertex if and only if foo(x) is a vertex of B.

If f,.(y) sub-converges, we can extend fo, to y and then extend equiv-
ariantly contradicting the maximality of T. Therefore f,(y) does not sub-
converge. In particular, this implies that B(foo(2), A5) does not have compact
closure, hence

foo(z) =0
is non-free vertex of B. Also, for the same reason f,(y) # v eventually on n,
and so after passing to a sub-sequence we may assume that f,(y) #v Vn.

Define

Cn(y) = the connected component of A\ f,*(v) containing y.

The rest of the argument is devoted to proving that C,,(y) is collapsible
eventually on n. This contradicts the fact that f,, are not collapsible and
completes the proof.

LEMMA 5.16. Let C C A\ f;1(v) be a connected subset such that there
is a w e C and Id # g € G with gw € C. Then, there exist two connected
component D1(g) and Dy(g) of B\ v, depending only on g, such that

fn(C) C Di(g) U Da(g).

Proof. Since C' is connected f,(C) is contained in a single component of
B\ v, the point is the independence from n.

Set Invp(g) to be axisg(g) if ¢ is hyperbolic and Invg(g) = Fixg(g) if ¢
is elliptic. Invg(g) is either a line or a single point. Therefore, it intersects
at most two components of B\ v that we denote D;(g) and Dy(g) (possibly
Di(g) = D2(g)).

The segment [w,gw]4 is contained in C' and f,([w,gw]a) NInvg(g) # 0.
Therefore f,,(C) is contained in D;(g) U D2(g). O

LEMMA 5.17. For any Id # g € G, we have gCp,(y) N Cyr(y) =0 eventually
on n.

Proof. We argue by contradiction. So there exist g such that gC,(y) N
Cn(y) # 0 frequently on n. By Lemma 5.16, f,,(Cy,(y)) C D1(g) U Da(g) fre-
quently on n. Therefore, f,(y) € B(v,Ap)N(D1(g)UD43(g)) which is the union
of at most two open segments and hence has compact closure. In particular,
fn(y) sub-converges contradicting the maximality of 7T O

Lemma 5.17 is not enough to conclude that C,(y) is collapsible because
a priori for any given n there may be infinitely many ¢ such that gC,(y) N
Crly) # 0.

For any half-line starting form y let w the first vertex such that there is
Id # g, € G with g,w € [y,w]. Let K be the union of all such segments. By
construction, K is a simplicial tree containing y. Also, the diameter of K is
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finite because there are finitely many orbit of vertices. Moreover, the interior
of K does not contain any non-free vertex. Therefore, K is a finite simplicial
tree. We denote by int(K) the interior of K as a tree, which is not necessarily
an open subset of A.

LEMMA 5.18. Eventually on n we have Cy,(y) C int(K).

Proof. Since K is finite the collection G = {g., : w a leaf of K} is finite.
By Lemma 5.17 for every g, € Gk, guwChr(y) N Cp(y) = @ eventually on n. Up
to passing to a sub-sequence, we may suppose that this happens for any n.
Therefore, Cy,(y) cannot contain the segment [g,w,w]. Since C,(y) is con-
nected and contains y, it follows that it does not contain any of the leaves
of K. The claim follows. O

LEMMA 5.19. There are only finitely many g € G such that g(int(K)) N
int(K) # 0.

Proof. Suppose g(int(K)) Nint(K) # (. Then it contains at least either a
vertex or an open segment. Let o denote either a vertex or an open segment.
Since K is a finite tree, it contains finitely many open edges and vertices. For
any o € int(K) there are only finitely many g € G such that g~lo € int(K),
again because K is a finite tree, the action of G on edges is free and int(K)
contains only free vertices. O

As a direct corollary of Lemmas 5.18 and 5.19, we get that the family
of elements g € G such that gC, (y) N Cy(y) could possibly be non-empty is
finite and independent of n. Therefore, by Lemma 5.17 eventually on n, for all
Id#geG,gCh(y)NCr(y) =0. That is to say, C,(y) is eventually collapsible.
A contradiction.

6. Optimal maps

In this section, we describe a class of maps, called optimal maps, which
provide a useful tool for computing stretching factors and studying train track
maps.

Definition 6.1 (Train track, from [3]). A pre-train track structure on a G-tree
T is a G-invariant equivalence relation on the set of germs of edges at each
vertex of T. Equivalence classes of germs are called gates. A train track
structure on a G-tree T is a pre-train track structure with at least two gates
at every vertex. A turn is a pair of germs of edges emanating from the same
vertex. A turn is legal if the two germs belong to different equivalent classes.
An immersed path is legal if it has only legal turns.

Definition 6.2. Given A,B € O and a PL-map f: A — B, we denote by
Anax(f) (or simply A;ax) the subgraph of A consisting on those edges e of A
for which Sy . =Lip(f). That is to say, the set of edges maximally stretched

by f.
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Note that Ay is G-invariant. We notice that in literature the set A ax
is often referred to as tension graph.

Definition 6.3. Let A,B€ O and f: A— B be a PL-map. The pre-train
track structure induced by f on A is defined by declaring germs of edges to
be equivalent if they have the same non-degenerate f-image.

Definition 6.4 (Optimal map). Let A,B€ O. A PL-map f: A— B is not
optimal at v if Apnax has only one gate at v for the pre-train track structure
induced by f. Otherwise f is optimal at v. The map f is optimal if it is
optimal at all vertices.

We notice that with the above definition, f is optimal at any vertex outside
AIII&X .

REMARK 6.5. An PL-map f: A — B is optimal if and only it the pre-train
track structure induced by f is a train track structure on Ay,.. In particular
if f: A— B is an optimal map, then at every vertex v of A .y there is a legal
turn in Apax.

LEMMA 6.6. Let A,B€ O and let f: A— B be a PL-map. Then every
non-free vertex has at least two gates. In particular, f is optimal at non-free
vertices.

Proof. Let v be a non-free vertex of A and let x be an edge emanating
from v. If the germ of x is collapsed by f to f(v), then for any 1 # ~ € Stab(v)
also vz is collapsed to f(v). By definition such two germs x and yx are not
equivalent in the pre-train track structure induced by f, so v has at least two
gates. If the germ of x is not collapsed to f(v) then by equivariance we have
f(yx) =~f(x), and since B has trivial edge-stabilizers v f(x) is different from
f(x). Therefore, x and vz have different non-degenerate images and thus are
not equivalent. Hence, v has again at least two gates. (|

LEMMA 6.7. Let A,B€ O and let f: A— B be a PL-map. If f is not
optimal, then there is a PL-map h: A — B such that either Lip(h) < Lip(f)
or Amax(h) € Amax(f) (or both).

Proof. Let v be a (free) vertex of Apax where f is not optimal, and let e
be an edge of Ay, incident to v.

For ¢t € [0,14(e)] let p; be the point in e at distance ¢ from v. Let f; be the
unique PL-map A — B such that for w e VA

f(w) if w+#gv,g €G,
fr(w) = _
filgv)=gf(pe) g€G.

For small enough ¢, if all the edges of A . are incident to a point in
the orbit of v, then we obtain that Lip(f;) < Lip(f); otherwise, we get that
Apax(ft) is obtained from Ap.x(f) by removing the edges of Ay incident
to v and its orbit. We set h = f;. (]
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COROLLARY 6.8. For any A, B € O there exists an optimal map h: A — B.
Moreover, if a PL-map f: A— B is not optimal but minimizes the Lipschitz
constant, then there is an optimal map h such that Amax(h) C Amax(f).

Proof. By Lemma 4.3, we know
Agr(A,B) <inf{Lip(h) s.t. h: A— B is an O-map}.

By Theorem 5.12, there exists a PL-map f with Lip(f) minimal. Among such
maps, we choose f so that A .y is the smallest possible. By Lemma 6.7, f is
optimal.

As for the second claim, recall that there are finitely many orbits of edges.
So if Amax(h) C Amax(f), then the number of orbits of edges in Apyax(h) is
strictly less than that in Apy.x(f). Therefore, given f that minimizes the
Lipschitz constant, repeated use of Lemma 6.7 gives the desired conclusion.

O

Definition 6.9. Let f be as in Corollary 6.8. By Opt(f) me mean any
optimal map h as given in that corollary.

Definition 6.10. Given A, B € O and a PL-map f: A — B, asub-tree L C A
is tight if L C Apmax and f|g is injective.

We notice that if L =axiss(g) for some g € G, and L is tight, then f(L) =
axisp(g).

THEOREM 6.11. For any optimal map f: A — B there is an element g € G
so that its axis in A is tight. In particular 15(g)/la(g) = Lip(f) = Ar(A, B).

Proof. Let f: A— B be any optimal map. By Remark 6.5, every vertex of
Apnax has a legal turn. Since pre-train track structures are G-equivariant, we
can G-equivariantly associate to any edge e of A, incident to a vertex v,
a legal turn 7(e) at v in Apax, containing e. This defines a successor of e in
Apax- Starting from an edge eg in Apax, the path obtained by concatenating
successors, defines an embedded legal half-line, which eventually becomes pe-
riodic because A has finitely many orbits of edges. The period g € G has the
requested properties. O

7. Folding paths and geodesics

7.1. Local folds. For this sub-section, we fix A,B € O, and a PL-map
f:A—B.

Definition 7.1 (Isometric folding relations). For any v € VA, t € R and pair
7 of edges T = (a, B) with So(f) = Ss(f), and emanating from v such that
f(a) and f(B) agree on some non-trivial segment. We define an equivalence
relation ~, ; on A as follows. First, we declare z € a and y € 3 to be equivalent
if d(z,v) =d(y,v) <t and, after the isometric identification of [v,z] and [v,],
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we have fljy 4 = flj,y)- Then we extend this relation to the orbit of 7 by
equivariance.

Definition 7.2. Given v,7 as above, and t € R we define A,;, = A ~,;
equipped with the metric making the quotient map ¢,;: A — A, a local
isometry. The map f splits as
qr.t
\L fﬂ',t,

A‘r,t

We say that A; is obtained by (equivariantly) folding 7. If 7 is understood,
we shall abuse notation and suppress the subscript 7.

By definition, a fold depends on how f overlaps edges. When necessary,
we will say that a fold is directed by f to emphasize this fact.

LEMMA 7.3. In the present setting, for any t we have that either
Lip(PL(f+)) <Lip(f) or Atmax(PL(ft)) € qt(Amax(f))-

Proof. Fix t. Let o be the fi-pullback simplicial structure on A; (that is
to say, we declare new vertices the pre-images of vertices). We write A7 and
A; to distinguish between ¢ and the original simplicial structure of A;. Note
that f, is then a o-PL map.! As ¢ is a local isometry, for any edge of o
we have Se(fi) =5,-1(,(f). In particular, Lip(f;) = Lip(f) and A7, (f1) =
Gt (Amax(f)). Now the edge-stretching factors of PL(f;) are less than or equal
to those of f;. Hence, Lip(PL(f;)) < Lip(f:) or Aimax(PL(ft)) C A7 . (ft).

O

The following lemma will be useful in the study of train track maps. For
O € Aut(G,0), ©(A) and A are the same metric tree with different G-action.
So ®(A); = ®(A:) and we use the same symbol ¢; to denote the quotient
map from ®(A) — ®(A;). We have the following commutative diagram which
defines the map h; (Figure 1).

LEMMA 7.4. Let ® € Aut(G, O) and suppose that f : A — ®(A) is a PL-map
such that
Lip(f) = min{Lip(h),h: X — ®(X), X € O}.
Let Ay be the tree obtained by perform a local fold directed by f. Then
Lip(PL(h)) = Lip(PL(f:)) = Lip(f)

and
At max (PL(ht)) C g (Amax(f))

1 Note that ft may be not PL for the original structure (see Definition 5.1). This happens
for example if there is an edge of A which is mapped by f through the turn 7.
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AT aa)

1T

Ay *hf (I’(At)

FiGURE 1. The quotient map h;.

Moreover, if PL(hy) is not optimal, then

Proof. Since ¢ is a local isometry, then Lip(h;) = Lip(f;) = Lip(f). Passing
to PL does not increase the Lipschitz constants, and by hypothesis Lip(f) is
minimal, thus

Lip(PL(h:)) = Lip(PL(f;)) = Lip(f).
Hence, by Lemma 7.3 we have that Ay max(PL(ft)) C ¢:(Amax(f)). Now, note
that PL(q; o PL(f;)) = PL(hy). Therefore, since ¢; is a local isometry, we
have A¢max(PL(ht)) C At max(PL(f:)). Whence, the second claim. The last
claim is a direct consequence of Corollary 6.8. O

7.2. Folding paths. Now we describe paths joining any two points of O
which are geodesics w.r.t. the metric dgr. The procedure is exactly that used
in [20] in the case of free groups.

First, we restrict attention to the special situation where f: A — B is a
map so that Apax(f) = A and Lip(f) =1.

For a complete simple fold, we mean the path obtained by equivariantly
folding two edges a and (§ as much as possible. That is to say, the path
[0,m] = O

t— Antv

where 7= (a, 8), M =min{L4(),La(B)}, ~rn is not trivial, and m is the
minimum ¢ so that ~, =~ .

ProprosITION 7.5. Let A, B€ O and f: A— B a PL-map such that
Anax(f) = A and Lip(f) = 1. Then there exists a path from A to B which is a
concatenation of complete simple folds directed by f (and successive maps f).

Proof. Let o be the simplicial structure induced on A by f, so that f maps
o-edges to edges. Note that by definition of ¢ if the initial segments of two
edges of o have the same f-image then the two edges have the same f-image.
On the other hand, if f admits no simple folds, then f is a G-equivariant
isometry from A to B, and hence A = B. Otherwise, let A; be a tree obtained
by a complete simple fold.
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Then f splits as

A——B
qt
|
Ay
and o induces a simplicial structure on A; with fewer orbits of edges. Induc-
tion completes the proof. O

Now we come back to the general case.

Definition 7.6 (Isometric folding paths). Let A,B€ O and f: A — B be a

PL-map such that Any.x(f) = A. A isometric folding path from A and B, and

directed by f, is a path obtained as follows.

e First, rescale the metric on A so that Lip(f) =1 and call that point Ag.
Note that Ay = Lip(f)A.

e Then, consider a path 4(t) = A; from Ay to B given by Proposition 7.5,
parametrized by t € [0, 1].

e Finally, rescale 4 by ~(t) =4(t)/ Lip(f)(*~).

THEOREM 7.7. For any A,B € PO there is a dr-geodesic in PO from A
to B.

Proof. We use the following characterization of (unparameterized) geode-
sics.

LEMMA 7.8. An oriented path vy form A to B in (the volume-one slice of)
PO is a dr-geodesics if and only if there is a g € G hyperbolic so that

Ip(g)

Ar(C, D)= le(g)

for any C < D e~.

Proof. A path is geodesic if and only if intermediate triangular inequalities
are equalities (see, for instance, [20]), that is to say, for any C € v we have

dR(A,B) = dR(A,O) + dR(C, B)

Let g € G hyperbolic so that Agr(A, B) = ;jggg We have

_lsl) o) sle) | 1e(©) 150
al9) ~ Talg) lele) =& 1a(©) e e (©)

and equality holds true if and only if

le(g) _ . le(§) I5(g) I5(£)

la(g)  Tela©)  lolg) e lele)

AR(A, B) :AR(Avc)AR<C7B)
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Applying the same reasoning to the geodesic v|cp we get that v is geodesic
if and only if g is maximally stretched form C to D for any A<C<D<B
in ~. U

We now describe a path in O which projects to a dr-geodesics in PO.
Let f: A— B be an optimal map and let g € G be an element with tight
axis in A (Theorem 6.11). First, we equivariantly rescale all the edges of A
as follows
e Se(f)e

obtaining a tree Ag. Call p the projection map p: A — Ay clearly f splits as

A*f>B

|

Ao

Note that if Se(f) =0 for some edge e, than f collapses e, so the tree Ay is
actually in O. Moreover, the map fy: Ag — B is PL and has the property
that Agmax(fo) = Ao and Lip(fp) = 1. Finally, note that if S.(f) =0 then
€ & Amax(f), therefore p restricts to a homeomorphism from Apax(f) to its
image. In particular, this implies that g has tight axis in Ay.

We do this operation continuously so that we have an oriented path
from A to a Ag. It is clear that for any two points C, D in v,

Ip(9)
Ar(C D) le(g)

Let 72 be an isometric folding path from Ag to B directed by fo. Define ~
to be the concatenation of v; and ~s.

Since g has a tight axis in A, by definition f; is injective on axisa,(g).
Therefore, axis 4, (g) is never folded in 7. In particular, i, (g) is constant.
Since -5 is an isometric folding path, nothing is stretched by a factor > 1,
hence g realizes Ar(C, D) =1 for any two ordered points in 7s.

This implies that for any C' < D in

AalCD) = 2

Finally, note that the above condition is scale invariant, in the sense that
if

AR(C, D) = Ip(9)

then
ARG, ) = 1249

for any A, u > 0.
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Therefore, the projection of « to the set of co-volume one elements of O is
an (unparameterized) dg-geodesic. O

8. Train tracks

In this section, we prove that any irreducible automorphism in Aut(G, O)
is represented by a train track map (see below the definitions). We follow
the approach a la Bers of M. Bestvina ([3]). The following arguments are
restatement of those for the case of free groups. In fact, the proofs do not
require adjustment due to the fact that we are allowing non trivial stabilizer for
vertices, and one could just say that the theory of train tracks for free groups
passes to the case of free products without any substantial change. We refer
to [4], [5], [6], [7], [8] for the train track theory for free groups. However, there
are many facts that are well-known for free groups, at least to the experts,
but for which there is no reference in literature. We take the occasion of the
present discussion on train tracks for free product to give explicit statements
and metric proofs of some of these facts, as for instance the relations between
the minimal displaced set and the set of train tracks. (See also [23], [33].)

8.1. Irreducibility and minimal displacement trichotomy. Let ® €
Aut(G,0). Tt acts on O by changing the marking. Define

)\q) = )%_Iéf(.gAR(XﬁI)(X))

Note that since both X and ®(X) have the same volume, the number \g
cannot be smaller than one. Therefore, there are three cases: ® is elliptic,
if log A\g is zero and the infimum is attained; parabolic, if the infimum is not
attained; hyperbolic if log A\ is positive and attained.

For T € O, we say that a Lipschitz surjective map f:7T — T represents ®
if for any g € G and t € T' we have f(gt) = ®(g)(f(¢)). (In other words, if it
is an O-map from T to ®(T).)

Definition 8.1. We say ® € Aut(G, O) is O-irreducible (or simply irreducible
for short) if for any T'€ O and for any f:7T — T representing @, if W C T is
a proper f-invariant G-subgraph then G\ W is a union of trees each of which
contains at most one non-free vertex.

This is related to an algebraic definition of irreducibility as follows. Suppose
that G can be written as a free product, G = G1 *Ga * - - - * G * G, where we
allow the possibility that Go, is trivial. Then we say that the set G = {[G;] :
1 <i<p}is a free factor system for G, where [G;] = {gG;g~ ' : g € G} is the
set of conjugates of G;. Given two free factor systems G = {[G;] : 1 <i < p}
and H = {[H,]:1<j<m}, we write G C H if for each ¢ there exists a j
such that G; < gH,;g~" for some g € G. We write G C H if either one of the
previous inclusions is strict or p < m. We also say that G = {[G;]: 1 <i <p}
is proper if G C {[G]}.
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We say that G = {[G;] : 1 <i <p} is ® invariant for some & € Out(G) if
for each ¢, ®([G;]) = [G;] for some j. We shall restrict our attention to those
free factor systems G such that {{H]} C G whenever H is an indecomposable
free factor which is not a free group. In particular, this means that G =
G1 Gy * - % Gp ¥ Goo, and G = Fy, for some free group Fj,. Associated
to such a free factor system G = {[G;] : 1 <i < p} we have the space of trees
0 =0(G,(G,)?_,, F;) and any (outer) automorphism of G leaving G invariant
will act on O in the usual way.

Definition 8.2. Let G be a free factor system of G as above and suppose it
is @ invariant for some ® € Out(G). Then @ is called irreducible relative to
G if G is a maximal (under C) proper, ®-invariant free factor system.

LEMMA 8.3. Suppose G is a free factor system of G with associated space
of trees O, and further suppose that G is ®-invariant. Then ® is irreducible
relative to G if and only if ® is O-irreducible.

Proof. Suppose ¢ is O-reducible. Then thereis T € O and W C T a proper
¢-invariant G-subgraph such that W\ G contains at least a component whose
fundamental group is non-trivial (as graph of groups) and either contains only
free vertices or strictly contains a conjugate of the Gs. In both cases, G is
not maximal.

On the other hand, suppose G is not maximal. Then there is a ¢-invariant
free factor system H{[H;]:1 < j <m} (hence G = Hy % --- % H,, * F},.) such
that G C H. Let T'€ O(G, (H;)L,, F;). Since any G;’s is contained in some
conjugate of some H;’s, any H; has an induced splitting whose factors are
conjugated to some G;’s. Then we can replace any non-free vertex of T
stabilized by a conjugate of some H;, with a tree in the outer space O(H,)
corresponding to that splitting (that may be a point if [G;] = [H,]). Let W
be the collection of such trees. Since H is ¢-invariant, so is W. The fact that
G C H assures that there W\ G is not a union of trees each of which contains
at most a non-free vertex. Hence, ¢ is O-reducible. O

We prove now that irreducible automorphisms are hyperbolic.

THEOREM 8.4. For any irreducible ® € Aut(G,0), Ao = infxeco Ar(X,
®(X)) is a minimum and obtained for some X € O.

Proof. We essentially follow the proof in [3], noting that the technical dif-
ficulties arise due to the fact that our space is not locally compact and that
our action is not proper. We shall utilise the Sausages lemma result, The-
orem 9.10, which is proved in the subsequent section, but whose proof is
independent on the results in this section.

In order to proceed, we demonstrate the contrapositive, that an automor-
phism, ® € Aut(G, O), for which A\g =infxeco Ar(X, ®(X)) is not a minimum



880 S. FRANCAVIGLIA AND A. MARTINO

is reducible. So we suppose that Iy, € O is a minimising sequence for . That
iS, limk_mo dR(Fk, (I)Fk) — log /\q).

We notice that dg(T, ®I") is scale-invariant as a function of ', and hence
descends to a function on PQO. For the remaining part of this proof, we work
with the co-volume one slice of O, which we still denote by O for simplicity
of notation.

Our first step is to show that the trees I'y cannot stay in the “thick” part
of O. The e-thick part of (the co-volume one slice of) O consists of all trees
X € O such that Ix(g) > e for all hyperbolic g € G.? Note that the e-thick
part of O is co-compact for any € > 0.

More precisely, we wish to show that only finitely many of the I'y, lie in the
e-thick part of O for any € > 0. For suppose not, then passing to a subsequence
we may assume that all I'y, belong to the e-thick part and then, again by taking
subsequences and invoking co-compactness, we may find ¥y, € Aut(G, Q) such
that ¥y (T'x) converges to some I'o, which is again in the e-thick part of O.
Hence, dg(T'so, \IkaI)\Ilgll"oo) — log A because of the continuity of dg.

However, note that as we are dealing with simplicial trees, the translation
lengths of the elements in a given tree form a discrete set. In fact, the set
{lyr)(9) : g € G} is the same discrete set for any ¥ € Aut(G,O). Moreover,
by Theorem 9.10, dg (T, \1/k<I’\I/,;1FOO) are given by the quotient of the trans-
lation lengths of candidates, and there are only finitely many possible lengths
of candidates in I's, (even though there will, in general, be infinitely many
candidates) and therefore the distances dg (I, \Ifkq)\ll,;lFOO) also form a dis-
crete set. Hence, there must exist some k (in fact infinitely many) such that
dr(Too, Ux ¥, 'T) = log \p, whence we obtain that \e = Ar(X,®(X)),
where X = \Illzlfoo. The first step is proved.

Now for any I' € O, we let I' be the sub-forest obtained as the union of
all the hyperbolic axes of elements of G whose translation length is less than
€, along with all the vertices. Since there are only finitely many graphs of
groups arising from O, each of which is finite, there exists an e such that for
all T, T'¢ is a proper sub-forest of I' (we remind that we are now working with
co-volume one trees). Call this €.

Also notice that each such sub-forest is a G-invariant subgraph, and hence
there is a bound on the length of any proper chain of such sub-forests. Call
this number B.

Now let €; = €g/(Ap + 1)*. Choose I' =T, as above such that dg(I',®T) <
log(Ap + 1) and T not in the ep-thick part (so I'“Z is non-trivial). Now,

[ 4T DT D... D5

2 The e-thik part of the co-volume one slice of O can also be defined as the set of trees
X € O such that the systole of X\G is at least e. By systole here we mean the shortest
length of a loop in X\G in the sense of graph of groups (for example, a segment whose
vertices are not free is a loop whose length is the double of the metric length of the segment).
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is a chain of (B + 1) non-trivial sub-forests of I'. Therefore, they cannot
all be distinct. However, if f:I' — ®I" is any optimal map, then—as it is
(Ay + 1)-Lipschitz—f must send T'% into I'%~*. Hence, we must have an
f-invariant subgraph of T" which is non-trivial (cf Definition 8.1), and hence,
® is reducible. (]

Hence, from now on we will use the fact that all our O-irreducible elements
of Aut(G, Q) are hyperbolic.

8.2. Minimally displaced points. For an irreducible automorphism &,
we introduce the set of minimally displaced points, which plays the role of a
“metric” axis for ®. We will show later that this coincides with the set of
train tracks.

Definition 8.5 (Minimal displaced set). Let ® be an O-irreducible element
of Aut(G,O). We define the minimal displaced set of ® by

M(@)={T €O :Ar(T,®(T)) = o }.

THEOREM 8.6. Let ® be an O-irreducible element of Aut(G,O). Then, if
TeM(®) and f: T — ®(T) is an optimal map, we have

ﬂnax(f) =T.

Proof. We consider f as either an O-map from T'— ®(T) or a map f:
T — T representing ®, without distinction. If T},.x is f-invariant we are done
because, since by Theorem 6.11 T},,x contains the axis of some hyperbolic
element, irreducibility implies 7' = T ax.

In the subsequent argument we shall perform small perturbations on T' by
changing edge-lengths. The map f will induce maps on these new trees which
are the same as f set-wise. Formally, we have many different pairs of trees
and associated maps, but that we still call (T, f).

Suppose that Tiax is not f-invariant. Then there is an edge e in Tyax
whose image contains a sub-segment of an edge a which is not in Ti,.x. We
shrink a by a small amount. If the perturbation is small enough, Lip(f) is
not increased, and since Lip(f) = A this remains true after the perturbation.
Therefore, e is no longer in Ti,ax, @ is still not in Ty, and Ti,ax must contain
some other edge b with Sp(f) = As.

Note that after perturbation f might no longer be optimal. However, by
Corollary 6.8 there is an optimal map h:T — ®(T) with

Tmax(h) Q Tmax(f)'

Since Lip(f) = As, then also Lip(h) = Ae. If Thax(h) is not f-invariant,
we repeat this argument recursively. After finitely many steps we must end
obtaining a finite sequence of maps h; with the properties that Lip(h;) = \e
and

@ 7£ Tmax(hO) Q Tmax(hl) Q e .,C,_ Tmax(f) g_ T.
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Since we stopped, Tmax(ho) is f-invariant. Therefore by irreducibility
Timax(ho) =T, and the above condition implies T = Tpax(f)- O

REMARK 8.7. In the proof of Theorem 8.6, we showed the following fact
which needs no assumption on reducibility, and may be of independent inter-
est: If (T, f) are so that first, T' locally weak minimizes d(T, ®T),® and second
Tinax 18 locally4 minimal,® then Ty,.y is f-invariant.

LEMMA 8.8. Suppose T € M(®) and suppose that f:T — T is a Lipschitz
map with Lip(f) = Ae. Then f is optimal.

Proof. First, consider PL(f). Since Lip(PL(f)) < Lip(f) and Lip(f) is
minimal, we have Lip(PL(f)) = A¢. Moreover, combining Lemma 7.4 and
Theorem 8.6, we get that PL(f) is optimal and Tyax(PL(f)) =T.

Since the maps PL(f) have the property that Se(PL(f)) < Se(f) with
inequality being strict at some edge only if f is not PL, it follows that f =
PL(f). O

THEOREM 8.9 (M (®) is fold-invariant). Let ® be an O-irreducible element
of Aut(G,0). Then, the set M(®) is invariant under folding directed by
optimal maps.

More precisely, if T € M(®) and f:T — ®(T) is an optimal map, and if
T} is an isometric folding path from T — ®(T') directed by f, then we have:

(a) Ty € M(D).

(b) The quotient maps hy : Ty — ®(T}), defined by the diagram in Figure 1,
are optimal.

In particular, any local fold directed by f stays in M(®P).

Proof. Claim (a) is a direct consequence of Lemma 7.4. Claim (b) follows
from Lemma 8.8 because Lip(h;) = Lip(f) = As. O

8.3. Train track maps. Train track maps can be defined via topological
properties as well as metric properties. In this section, we relate the two point
of view.

Recall that we defined pre-train track and train track structures in Defini-
tion 6.1, and that in our notation a train track structure is required to have
at least two gates at every vertex.

Definition 8.10 (Train track map). A PL-map f:T — T representing ® is
a train track map if there is a train track structure on 7" so that

(1) f maps edges to legal paths (in particular, f does not collapse edges);

3 That is, d(T,®T) < d(T’,®T") for any T’ in the same symplex of T sufficiently close to
T in the Euclidean coordinates.

4 In the symplex of T'.

5 With respect to the inclusion.
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(2) If f(v) is a vertex, then f maps inequivalent germs at v to inequivalent
germs at f(v).

Here a some remark is needed. First, we note that a part the PL require-
ment, this definition is topological and does not involves the metric on 7. In
fact if f is train track and we change the metric on edges of 7', then up to
re-PL-ize f it remains train track. For these reasons we have to distinguish
between (topological) train track maps and (metric) optimal train track maps.

The second remark on the definition of train track map is that, given an
optimal map f representing ®, we can consider two pre-train track struc-
tures, namely that given by f and that generated by the iterates f* (see
Definition 6.3). We denote the two structures in the following way

~f and <ka>.

So, two germs are ~j-equivalent if they are identified by f, they are
~ r-equivalent if they are identified by f* and they are (~j«)-equivalent
if they are identified by some power of f.

In particular one may ask if f is a train track for ~y or for (~x).

LEMMA 8.11. Suppose f:T — T is a PL-map representing ® € Aut(G, O).
If f is a train track map for some unspecified structure ~, then ~2 <ka>.6
In particular, if f is a train track map for ~y, then ~p= (~ k).

Proof. The last claim follows from the first because ~;C (~ ) by defini-
tion. Suppose T = (e1,e2) is a turn and suppose that e; and ey are in the
same gate for (~«). Then there is some k so that f¥(e;) = f*(e2), choose
the first k > 1 so that this happens. Either f*~1(7) is contained in an edge
(that is to say, the image of the vertex of 7 is not a vertex) or it is a turn. The
first case is not allowed since f is a ~-train track map. Therefore, f¥=1(7)
is an turn. Since f identifies the two germs of f*~1(7), by Condition (2) of
Definition 8.10, f*=1(7) is ~-illegal. Since f is a train track map, turns that
are pre-images of illegal turns are illegal. It follows that 7 is illegal, that is to
say, e1 ~ es. O

COROLLARY 8.12. Is f is a train track map for some ~, then it is train
track for (~x).

Proof. Condition (2) of Definition 8.10 is automatically satisfied for (~x).
Lemma 8.11 tells us that ~-legal implies (~ s»)-legal. Thus, also condition (1)
of Definition 8.10 is satisfied. g

Note that a priori f could be train track for (~ ) but not for ~.

6 Hence, <~fk> is a train track structure and not only a pre-train track structure.
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LEMMA 8.13 (Topological characterization of train track maps). If ® is
irreducible, then for a map f representing ®, to be a train track map is equiv-
alent to the condition that there is a hyperbolic g € G with axis L so that f*|r,
is injective Vk € N.

Proof. Let L be as in the hypothesis. The iterate images of L form a
proper f-invariant sub-graph of T containing the axis of a hyperbolic element.
Since @ is irreducible, such sub-graph is the whole T. The pre-train track
structure (~») is a train track structure and it is readily checked that f
satisfies Conditions (1) and (2) of Definition 8.10 with respect to (~ ).

On the other hand, suppose that f is a train track map. We argue as in the
proof of Theorem 6.11. As train track structures have at least two gates at
every vertex, there is a hyperbolic element g with legal axis L, and Conditions
(1) and (2) imply that this remains true under f-iterations.

By Corollary 8.12 it is a (~)-train track map, and (~ sx)-legality of L
implies injectivity of f*|r. d

Definition 8.14 (Train track bundle). Let ® be an O-irreducible element of
Aut(G,0). We define the train track bundle as

TT(®)={T € O:3 an optimal train track map f:7 — T representing P}.

We notice that the Axis bundle Ag of ® is defined in [23] as the closure of
the union of all the sets TT(®*).

Definition 8.15 (Strict train tracks). Let ® be an O-irreducible element of
Aut(G,O). We define the strict train track bundle as

TTo(®)={T € O:3f: T — ®T optimal which is train track for ~}.

LEMMA 8.16. Suppose f:T — T is a train track map representing an O-
irreducible ®. Then there is a rescaling of edges of T such that every edge is
stretched the same, and f becomes optimal. In particular, if f is a train track
for ~¢, then the (closed) simplex of T contains a point T' € TTH(P).

Proof. We argue as in the proof of Theorem 8.6. For any assignment of
edge-lengths, that is to say for any point in the simplex of T, we have the cor-
responding stretching factors of PL(f) (remember that f is PL for T but may
need a reparametrization when we change edge-lengths). The reparametriza-
tion of f along edges does not affect the train track property of f. So PL(f)
is train track. As in the second part of the proof of Theorem 8.4, one can
see that irreducibility implies that there is a point in the closed simplex of T’
that realizes the minimum, over the simplex, of Lip(PL(f)). We choose T”
among such points so that it minimizes the tension graph with respect to the
inclusion. As in Theorem 8.6, we see that the tension graph is ®-invariant. If
T! . \G is trivial (a forest whose trees contains at most one non-free vertex)
we can collapse it obtaining a point in a facet of the simplex of T with strictly
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smaller Lip(PL(f)) contradicting the minimality of 7'. By irreducibility of
® we have T} ., =7". Since the map f' = PLp/(f) is a train track map, and

max
T/

Y ax =17, then f’ is optimal and T € TTy(®). O

Now, we want to prove that minimally displaced points and train tracks
coincides. As a first observation, we have.

LEMMA 8.17. For any ® € Aut(G, O), we have TTo(P) CTT(P) C M(D).

Proof. It T € TT(®) and f is an optimal train track map, then there is g
such that I7(®"(g)) = Lip(f)™Ir(g). On the other hand, if Q € M(®) then
Io(®™(g)) < A3lg(g). Therefore, we have

(H0Y D cp s

which implies Lip(f) = Ao. O

THEOREM 8.18. Let ® be an irreducible element of Aut(G,O). Then, 0 #
TTy(P) is dense in M(P) with respect to the simplicial topology.

Proof. Since ® is hyperbolic there exists an element 7" € O that realizes
Ao. Let f:T — ®(T) be an optimal map, which exists by Corollary 6.8. By
Theorem 8.6, we know that Th.x(f)=T.

We consider the pre-train track structure ~; induced by f on T'. As f is
optimal the pre-train track structure is a train track structure (no one-gate
vertex). Now, say that a vertex of T is foldable if it contains at least a gate
with two elements.

By Theorem 8.9, up to perturbing T" by as small an amount as required via
a finite number of equivariant folds, we may assume that any foldable vertex
has valence exactly 3. In particular, any foldable vertex has exactly two gates.

Moreover, again by Theorem 8.9 we may assume that 7" locally maximizes
the number of orbits of foldable vertices.

We claim that in this situation f is a train track map with respect to ~ .
First, we check Condition (1) of Definition 8.10.

Suppose that an edge e of Tiax has illegal image. Then it passes through an
illegal turn 7. We equivariantly fold 7 by a small amount ¢. The result is a new
tree T; and an induced map h;. By Theorem 8.9 T; € M(®) and h, is optimal.
But € € Ty max(ht), 80 Timax 7# T, which is impossible by Theorem 8.6.

Now we check Condition (2). By definition of our pre-train track structure,
inequivalent germs are mapped to different germs. Now, suppose that a legal
turn n at a vertex v is mapped to an illegal turn 7 at a vertex w. We equivari-
antly fold 7 by a small amount getting a tree 73 and a map h;. Theorem 8.9
guarantees that T3 € M(®) and h; is optimal. Now, n became foldable. By
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optimality, there are no one-gate vertices. Thus, we increased the number of
foldable vertices in contradiction with our assumption of maximality. O

In fact, more is true.

THEOREM 8.19. Let & be an irreducible element of Aut(G,0). Then,
TT(®) = M(D).

Proof. What we are going to prove is that if f is an optimal map rep-
resenting @, then it is a train track map for (~«). We need a couple of
lemmas.

LEMMA 8.20. Suppose f:T — T is a PL-map representing ® € Aut(G, O).
If f is a train track map for ~¢, then 1. which represents O is a train track
map for ~ k.

Proof. By Lemma 8.11 ~f = (~ k), whence ~y =~ for any k. Since f is
a train track for ~, in particular ~y is a train track structure, so any vertex
has at least two gates. Conditions (1) and (2) of Definition 8.10, that hold
for f, imply that f*(e) is a legal path, hence Condition (1) for f*.

If 7 is a turn and f*(7) is ~ pe-illegal, then f¥(7) is ~s-illegal, which implies
that 7 is ~-illegal, and so ~ sx-illegal. 0

LEMMA 8.21. If TTo(®) #0, then Agr = (Aa)".

Proof. Let T € TTo(®) C M(®P) and let f: T — T be an optimal train track
map with respect to ~¢. By Lemma 8.20 f* is a train track map for ~ gk, I
particular Lip(f*) = Lip(f)*, ~ ¢ is a train track structure and f* is optimal
by Remark 6.5. By Theorem 6.11 (Ag)* = Lip(f*) = Mgk O

We can now conclude the proof of Theorem 8.19. Let T'€ M(®), and let
f:T — T be an optimal map. By Lemmas 8.21 and 8.8, all the iterates f*
are optimal.

We claim that f is a train track map with respect to (~). First, note
that since f* is optimal, every vertex has at least two gates, hence (~ sr) is a
train track structure.

Now, we check Condition (1) of Definition 8.10. Suppose that an edge e is
folded by some f*, and choose the first k so that this happens. Let p be a
point interior to e where a fold occurs.

By Theorem 8.18, there is T; obtained from T by a finite number of as-
small-as-required folds so that T; € TT(®) (in fact, in TTo(®)). Without loss
of generality, we may suppose that 7} is obtained by 7" by a simple fold, and
show that in this case T € TT(®). Let hy : Ty — T3 be the map induced by the
fold as in Figure 1. We choose the fold small enough so that p remains in the
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interior of the edge e; corresponding to e. The following diagram commutes

e L ar) s a(r) AR
Tt?q}(Tt) e (Ty) G (T7) ”'W(D(Tt)

and therefore e; is folded at p by (hF). But in the proof of Theorem 8.18, we
have seen that the h; are train track maps, so edges are never folded.

As for Condition (2) of Definition 8.10, note that Condition (1) and the
definition of (~+) imply that Condition (2) is automatically satisfied. O

REMARK 8.22. We notice that in [23] the authors ask if, given ®, there is
N such that Ag is the closure of Ufil TT(®%). In the same work they provide
an example of a ® and point in X € Ag not supporting any train track for
any ®°. This example, together with our Theorem 8.19, provides a negative
answer to the question, since TT(®*) = M(®) is closed, and hence any finite
union of TT(®?) is closed.

THEOREM 8.23 (Folding axis). Let ® be an O-irreducible element of
Aut(G,0). Then TTy(P) is invariant under folding directed by optimal train
track maps.

More precisely, if f:T — ®(T') is train track map with respect to ~, and
T; is an isometric folding path from T — ®(T') directed by f, then the induced
map hy : Ty — ©(T}) is a train track map with respect to ~p, .

Proof. Let vo(t) =T} be a folding path from T to ®(T), directed by f.
Since f is an optimal train track map, there is a folding path from T to
®2(T) directed by f2, given by the concatenation of vy and ®(vp). Therefore,
we can form a folding line directed by f (and its powers) by concatenating
the paths ®*(vo).

Let g be an element such that axisp(g) is legal and f*(axisy(g)) is legal
for any k. (Such an element exists because f is a train track map.) It follows
that axisr(g) is never folded during the folding procedure, so axisr, (g) is legal
and h¥(axist, (¢)) is legal. Thus, h; is a train track map as desired. O

It is useful to have train track maps that respect the simplicial structure
(i.e., that map vertices to vertices). The presence of non-free vertices is in
this case an advantage with respect to the classical case ([3], [8]). We give a
detailed proof of the following result in full generality by completeness. We
notice that we make no use of Perron-Frobenius theory.

THEOREM 8.24 (Simplicial train track). Let ® € Aut(G,O) be irreducible.
Then there exists a simplicial optimal train track map representing ®. More
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precisely, if T € TT(®), then the closed simplex of T contains a point admit-
ting a simplicial (optimal) train track map.

Proof. The idea is to “snap” images of vertices to nearest vertices, as sug-
gested in [3]. Let T € TT(®) and f:T — T be an optimal train track map
(with respect to (~yr)) representing ®. Let A = Ap > 1 be the Lipschitz
constant of f.

We will argue by induction on the number of orbits of vertices whose image
is not a vertex (note in particular that such vertices are free) making use of
local surgeries for the inductive step.

First, we describe in details the local move that we use, and after we will
adjust the map f. The moves can be interpreted as local isometric folds
followed by local isometric “unfolds”. However, we describe them in terms of
surgeries because this viewpoint helps in controlling the derivative of f. We
remark that we are not working with covolume-one trees, thus no rescaling is
needed.

Choose € > 0 small enough so that:

(1) B(w,e)NBw',e) =0 Yw,w' e VT :w#w'.
(2) f(B(w,e))NB(w',e) =0 Yw,w' € VT : f(w) #w'.

Let v € VT be such that there is k >0: f*(v) ¢ VT. In particular, v is
free and has two gates, that we label as positive and negative. We build an
isometric model of B(v,¢) as follows. By our choice of €, B(e,v) is star-shaped
with say n_ negative and n positive strands. Therefore, B(e,v) is isometric
to the space obtained from n_ copies of (—¢,0] and ny copies of [0,¢) by
gluing the 0’s. See Figure 2, left-hand side.

For |t| < e, let B:(v) be the space obtained from n_ copies of (—e,t] and
n4 copies of [t,e) by gluing the points t’s. See Figure 2, right-hand side.

By (v) has a vertex, corresponding to the endpoints “t’s”, which we denote
by v¢, and the boundary of B;(v) is naturally identified with that of B(v,¢).

Now, we cut out from T the whole G-orbit of B(v,e) and we paste back
copies of B;(v) using the natural identifications on the boundaries. We say
that we equivariantly moved v by t.

Bi(v)

e ees ¢

FIGURE 2. Local models for B(e,v) and B;(v).
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Now, choose v € VT with f(v) ¢ VT and move it by ¢t < in the direction
given by the nearest vertex to f(v). (If f(v) is a midpoint of an edge, we
chose a direction.)

Define pre(v) = {w € VT : f¥(w) = v for some k >0 and fi(w) € VT for
all 0 <4 <k}. Thus, pre(v) consists of the iterate f-pre-images of v.

First, we see that pre(v) is finite. For any vertex w € VT consider the
sequence w, f(w), f2(w),.... If it happens that fi(w) is a vertex fori =0,...,k
and f*+1(w) = gw for some g € G, then by equivariance f*(w) is a vertex for
every i. Since f(v) is not a vertex, then the elements in pre(v) are in different
g-orbits. Since there are only finitely many orbits of vertices, pre(v) is a finite
set.

Moreover, any w € pre(v) is free and if w # v then w ¢ pre(w). Note also
that Gv N pre(v) =v. Moreover, since f is a train track map, any w € pre(v)
has two gates, with positive and negative labels determined by that at v
via f*.

For w € pre(v), if k is the first power so that f*(w) = v, we consider the ball
B(w,e/A\F) and we equivariantly move w by ¢/A¥. Note that this is possible
because such balls are all disjoint from the G-orbit of each other, and disjoint
from f(B(v,e)) because (A > 1 and) our choice of .

We denote by T} the tree obtained from 7" in such a way.

We are now left to define f; : Ty — T;. Let N be the union of the G-orbits of
the metric balls B(w, /) for all w € pre(v) and k as above, and let N; be the
union of the corresponding sets B;’s (see Figure 2). Thus, Ty = (T'\ N) U N;.

On the set f~Y(T\ N)N (T \ N) we set f, = f. Clearly, there f; = \.

Let o C f7Y(N)\ N be a segment without vertex in its interior. As o is
connected, f(c) is contained in one of the balls B(w,e). Since f is a train
track map, edges are mapped to legal paths. Therefore, f(o) is contained
in the union of a negative and a positive strand of B(w,e). Such union is
isometric to the union of the corresponding strands in B;(w). We define f;
on ¢ by composing f with such isometry. Clearly ft =\

It remains to define f; on N;. For any w € pre(v), any strand S of By(w)
corresponds isometrically to a legal path ¢ in B(w,e/A¥), which is uniformly
stretched by f by factor A. Since we moved w by t/A¥ and f(w) by t/\F~1,
f(o) C B(f(w),e/A\*~1) corresponds isometrically to a strand Sy in B;(f(w))
(or f(B(v,e)) if w=w). Therefore, f; is defined by pre- and post-composing
f with such isometries. Clearly, f; = A. See Figure 3.

It is clear that (T, f) is homeomorphic to (73, f;) (that is to say, there is an
homeomorphism from T to T; that conjugates f to f;) and therefore f; still
is an optimal train track representing ®.

We remark that when we move v by ¢, then f(v) moved toward its nearest
vertex u by At. On the other hand, even if v has been moved, that was by
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Bt )\k 17f

Isom %/ J\ Isom /'\

FIGURE 3. The definition of f; on Bi(w).

w))

an amount of ¢/\* for some k > 0. Therefore, f(v) approaches u at speed at
least A —1>0.

We can finally run the induction on the number of orbits of vertices whose
image is not a vertex. Let v be such a vertex. We move v as described as long
as we can. Since d(f(v),VT) is strictly decreasing, the process must stop.
The process stops when we cannot chose £ > 0 with the required properties.
That is to say, when either f(v) is a vertex or some moved vertex collided
with another vertex v’. (It is readily checked that the resulting limit map is
train track.) In both cases, we decreased by one our induction parameter. [

The following is a direct corollary of the existence of train track maps
for free products. It was proved in [8] for free groups and in [9] for free
products.

COROLLARY 8.25 ([8], [9]). Let G be a group acting co-compactly on a tree
with trivial edge stabilisers and freely indecomposable vertex stabilisers. Then
any ® € Out(G) has a representative which is a relative train track map. In
particular, relative train tracks for free groups exist.

Proof. We can write G = G * - - x G, * F},, where the G; are freely inde-
composable and non-free. By the Kurosh subgroup theorem, any subgroup of
G can be written as a free product of conjugates of subgroups of the G; and
some free group. So if H <G, then H = Ay x--- x Ay, x Fy, for some A; # 1
which are conjugates of subgroups of the G; and some free group F; of rank .
Define the Kurosh rank of such a subgroup H to be m + [, denoted x(H).
Note this number may be infinite in general, but will certainly be finite if H
is a free factor (and in many other cases).

Now define the reduced Kurosh rank of H to be ®(H) = max(0,x(H) —1).
The Kurosh rank of a free factor system, G = {[G,]} is then defined to be
k(G) = > k(G;) and the reduced Kurosh rank of G is defined to be ®(G) =
> R(GH).

These are finite numbers, and if G C H then K(G) <&(H) and (G) < k(H).
Moreover, if G C H, then either ®(G) <R®(G) or k(G) < k(H).
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Hence given ® € Out(G) there is a maximal ®-invariant, proper free factor
system, with corresponding space of trees O. A simplicial train track map
representing ® for some tree in O is a relative train track map in the sense
of [9]. O

9. Computing stretching factors

This section is devoted to prove that stretching factors are realized by a
class of particularly simple elements. We generalize the line used in [20], taking
in account possible pathologies coming from the presence of non-free vertices.
We remark that even if this section is at the end of the paper, the results of
this section are independent from those in Section 8 (where Theorem 9.10 is
used).

Notation 9.1. Let x,y,z,t be vertices of a G-tree, not necessarily different
from each other. We write

X

X
~~ &€y, 2z and )\{i)m¢[y,z]
y z y z

X

Note that )\ , if and only if the segments [y, 2] and [x, 2] intersect in a sub-
y oz
segment starting at x which is not a single point. We will use the following

two inference rules, whose verification is immediate.

T x T
P PN
y 2 2zt y ot

z T T

)\+/\:>/\
Yy z z t yt

We will now be concerned in finding good elements g with a tight axis.”

In the subsequent discussion when we say “g does not have a tight axis” we
mean either that the axis of g is not tight or that g is elliptic.

LEMMA 9.2. Let A, B€ O and f: A— B be a PL-map. Let L C A be
a tight sub-tree isomorphic to R. Suppose there is g € G and x € L so that
x # gx and [z,gx] C L. Set y= f(x). If g does not have tight axis, then we
have
Yy

W

9y gy

7 See Definition 6.10.
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o=
[
[ ]
[ ]

FIGURE 4. The segment [z, gx].

Proof. Suppose g has a fixed point v. Since A is a tree, v is the middle
x
point of [z,gz], and in particular we have )\ (where the center of
g 'z gz
the tripod is exactly v). The claim follows.

If g has no fixed point, then it has an axis. The union of the segments
[gkx, g’”‘lac]7 as k varies in Z, is a g-invariant tree. Therefore, it contains the
axis of g. Thus, axis4(g) is contained in the g-orbit of [z,gz]. In particular
axisA(g) C Amax because [z, gx] C L C Apax which is a G-invariant sub-set of
A. By hypothesis the axis of g is not tight, thus f|axis,(g) is not injective.
Since L is tight, then f|r is injective. Therefore, f must overlap an initial
segment of [z,gx] with a terminal segment of [¢~'x,z]| which is exactly the
claimed formula. O

LeEMMA 9.3 (No triple points). Let A,B€ O, f: A— B be a PL-map, and
g € G be such that axisa(g) is tight. If there exists x € axisa(g) such that
|G N [z, gz]| >4 then, there exists h € G with tight axis, such that [4(h) <

la(g).

Proof. By hypothesis, there exists € A and a,b € G such that axisa(g)
locally looks as depicted in Figure 4.

In other words, the segment [z, gz] is the concatenation of segments [z, ax],
[az,bz] and [bx, gx]. Let y= f(x). Since axisa(g) is tight, we have a similar
situation in B. See Figure 5. In particular, we have

ay b lay Y
§i= o~ bMoi= o~ and a 0= TN
y by b7y oy alty a by

We look at a,ba~1, gb~! (corresponding to single steps in Figure 5). Clearly,
all of them have A-length strictly smaller than that of g. Thus, if one of them
has tight axis we are done. We can therefore suppose that none of them has

y ay by 9y
.0 Y [ ] e ...

FIGURE 5. The segment [y, gy].
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tight axis. In particular, by Lemma 9.2 we know

) ay

a”y ay ab~lay by

Now we look at b (corresponding to a double step in Figure 5). As above, we
have 14(b) <la(g). We argue by contradiction assuming that b has no tight

Y
axis. Then by Lemma 9.2, we have )\ . Moreover, by assumption we
by bty
have ay € (y,by) whence b~tay € (b=1y,y); from which we get
Y
X = /\ .
ay b lay

It follows that

a—l—x—!—(a*l,ﬁ) = /\ = 1)\

ay b lay a by a7y alby

Y

which contradicts a= 6= "~ . O
aly a lby

Definition 9.4. When the hypothesis of Lemma 9.3 are satisfied, we say that
axis4(g) has triple points.

LeMMA 9.5 (Four points lemma). Let A,B€ O and f: A— B be a PL-
map. Let L C A be a tight sub-tree isomorphic to R. Suppose thereisx v € L
and a,b € G such that ax # bv and az,v € [z,bv] C L (see Figure 6). Let

Yy w
y=f(z), w=f(v). If )\ and )\ , then b~'a has a tight
aly ay b lw  bw

axis, given by the iterates of [x,b=rax]. (Thus, by Lemma 9.2, we have that
either a, or b, or b=ta has a tight awis.)

T v ax bv
[} [ ) [ ] [ ]
T ax v bv
[ ] [ ] [ ] [ ]

FIGURE 6. The two possibilities for the segment [x,bv].
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Proof. First of all, note that the tripodal hypotheses imply x # ax and
v # bv (and thus z # bv). We have to show that the tree formed by the iterates
of the segment [x,b~'az] is a tight line. Clearly it is contained in Ap,.x because
L is, and [z,b"ax] is contained in the union of the two segments [z,v] and
[v,b7taz] (the latter may be a single point). Note that a priori, we may have
v
)\1 . Since [v,b~ az] = b~ ([bv,ax]) and [az,bv] C L, we know that f
x b rax
is injective on both [z,v] and [v,b™taz]. If we prove

w Yy
I:= and I :=
y/b\ay a’ﬁay
v
we are done. Indeed, I implies /b} and since x # v we have x # b~ lax.
x ax
Now II and Lemma 9.2 conclude.
bv
First, we prove I. Since both az and v lie in [z, bv], ax # bv gives )\ .
ar v
bw w
Applying f we get )\ whence, acting with b1, /\ . By
ay w b~ lay b lw
w
hypothesis, we know )\ . Summing up we get
b~ lw  bw

w
/\ + /\
btay b lw 1w bw
w
Now, if we had /\ we would get /\ 1)\ =
ay “tay  bw

Y

which is impossible because L is tight. Thus, /\ is not true and 1 is
y b ay
true. Note that this implies that a # b.
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ay
We now prove II. From tightness of L, we get b/\ whence
w oy
y L
and thus + =
a’mly a’mly afly ay
a"thw Y
Acting on I by a~'b we get 7 that, together with
& Y & a by gy s a_my’

)
implies a‘lb/y\ay because by hypothesis az # bv and so y # a~'bw. As

x y
above, since both az,v lie in [x,bv] we have )\ whence )\ It

ar v ay w

y w
follows that, together with ives
a“b/y\w & y/b\ay &

)

/\ =1I. -

a” by b ay

LEMMA 9.6 (No crossing points). Let A,B€ O, f: A— B be a PL-map,
and g € G be such that axisa(g) is tight. Suppose that there exists points
x,v € axisa(g) and a,b € G such that ax,bv € axiss(g) and, with respect to
the linear order of axisa(g), we have x < v < ax < bv < gx (see Figure 7)
Then, there exists h € G with tight axis, such that la(h) <la(g).

Proof. Note that we may have a =b. Let y = f(x) and w = f(v). Since
[z,ax], [v,bv] lie in axiss(g), they lie in Amax. Also la(a),la(b) <la(g).
If one of them has tight axis, then the claim is proved by 1etting h=a or

h =1b. Otherwise, by Lemma 9.2 we have )\ nd )\ and by

b lw  bw
Lemma 9.5 the element h = b"'a has a tlght axis (1n particular, in this case
a #b). On the other hand I 4 ([hx, z]) =4 ([az, bz]) <las([az,bv])+1a([z,v]) <
1a(g), therefore 14 (h) <la(g). O

T v ax bv gx
N [ ] [ ] [ ] e ...

FIGURE 7. The segment [z, gx]4
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T A ar A2 v Az buv Ay t A5 ct gz
- @ [ ] [ [ ] [ ] [ ] o ...

FIGURE 8. The local situation in axis4(g).

Definition 9.7. When the hypothesis of Lemma 9.6 are satisfied we say that
axis4(g) has crossing points.

LEMMA 9.8 (No bad triangles). Let A,B€ O, f: A— B be a PL-map,
and g € G be such that axisa(g) is tight. If there exists x,v,t € axisa(g)
and a,b,c € G such that xa,bv,ct € [z, gz] C axiss(g) and, with respect to the
linear order of [z, gx], we have x < ax < v <bv <t <ct < gz (see Figure 8)
then there exists h € G with tight axis, such that la(h) <la(g).

Proof. Let y = f(z),w= f(v) and s = f(t). We first try h =a,b,c. Since
[z,az], [v,bv] and [t,ct] lie in Apax and 1a(z),la(y),la(z) <la(g), if one
of them has a tight axis we are done. Otherwise, by Lemma 9.2 we have

Y w S
, )\ and )\ . From Lemma 9.5, we deduce
aly ay b lw bw cls cs
that b~ 'a, ¢ 'b and ¢ 'a all have tight axis. It suffices to show that one
of them has length less than g in A. Let Ay =14 ([z, az]), Ao =14 ([az,v]), A3 =
ZA([Ua b’l)]), Ay = ZA([bUat])a As = ZA([tv Ct])'

La(b"a) <la([z, b7 ax]) <la(lz,v]) +1a([v,07 az]) = A+ Ao + Ao + As,
La(c™'b) < La([bv,ct]) +1a([v,t]) = Aa+ As + Az + As
Summing up
La(b7"a) +1a(c7'b) <2(A1 + Az + Az + Aa+ As) < 2la(g).
So one of them has length strictly less than g in A. O

Definition 9.9. When the hypothesis of Lemma 9.8 are satisfied we say that
axis4(g) has bad triangles.

THEOREM 9.10 (Sausage lemma and candidates). Let A, B € O. Then the
minimal stretching factor Ar(A, B) is realized by an element g such that the
projection of axisa(g) to G\A is of the form:

(i) Embedded simple loop: O;
(ii) embedded figure-eight: oo (a bouquet of two copies of St);
ili) embedded barbel: O — O (two simple loops joined by a segment);
) embedded singly degenerate barbell:  — O (a non-free vertex and a simple
loop joined by a segment);
(v) embedded doubly degenerate barbell: o — o (two non-free vertices joined
by a segment).

(
(i

v

The loops and segments above may contain free and non-free vertices.
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Proof. By Corollary 6.8 and Theorem 6.11, we know that there is an op-
timal map f: A — B and an element g so that axisa(g) is tight. Translation
lengths of hyperbolic elements form a discrete set, so we may assume that
¢ has minimal translation length among those elements with tight axis. In
order to prove our claim, it suffices to find an element with tight axis whose
projection to G\A is of one of the types (i),...,(v). By Lemmas 9.3, 9.6
and 9.8, we know that axiss(g) has no triple points, nor crossing points, nor
bad triangles.

Choose 1z € axisa(g). Since there are no triple points in axis4(g) there
cannot be three distinct points in [zg,gx¢) with the same image in G\A.
Hence, every point in G\A has at most two pre-images in [zg, gxo). Pairs of
points with the same image are exactly those of the form {z,az} with a € G
and z # ax. Call such a pair a pair of double points.

If [x0,g20) has no pairs of double points then we are in case (i). If it has
exactly a pair of double points we are in case (ii). Thus, we have reduced to
the case where there are at least two pairs of double points.

Without loss of generality, we may assume that = xy and {z,ax} is a
pair do double points. There is a second pair of double points {v,bv} and we
may assume that v < bv with respect to the orientation of [z, gx). Since there
are no crossing points, we have either

r<ar<v<bv<gzr

or
r<v<bv<ar<gx

by interchanging the role of z and v we may assume we are in the first case.
Since the translation lengths of hyperbolic elements form a discrete set we may,
after possibly replacing {z,az} by another pair of double points, assume that
either there are no pairs of double points in [z, ax) or a is elliptic. Similarly for
{v,bv}. By minimality of the translation length of g neither a nor b can have
tight axis. Therefore, Lemma 9.5 applies and b~'a has a tight axis formed by
the iterated of [x, b~ tax].

In the order induced by the axis of b~'a we have Figure 9.

Since there are no bad triangles in axiss(g) the segment [ax,v] projects
injectively to G\4, and the same is true for [b~'v,b~ax], which projects to
same path in the quotient but with opposite orientation. If there are no pairs
of double points in [z, ax), then [z, azx] projects to a simple closed curve. If a is
elliptic, it must fix the middle point of [z,az]. The similar picture holds true

[ 23}
[ ]
oc
[ ]

FIGURE 9. The axis of b~ 1a in A.
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for [v,bv]. Therefore, axis4(b~'a) projects to a barbell, possibly degenerate
depending on whether a,b are elliptic or not. O
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