
Chapter XI

Applications to Algebra

by P. C. EKLOF

In contrast to the situation in first-order finitary logic, the applications of infinitary
logic to algebra are so scattered throughout the literature that it is extremely
difficult to discern any coherent pattern. Nevertheless, there are some interesting
applications; and, in this chapter, we .will survey a few of them. This survey will
primarily be for the benefit of the non-specialist. That being so, proofs will not
always be given in detail, since our aim is simply to present enough background
to state a result, indicate its significance, and explain how infinitary logic enters
into the statement of the result and/or its proof.

The separate sections are organized by algebraic subject matter and are
essentially independent of each other. The first four sections involve i ? ^ , while
the fifth and sixth make use of i£(X)K for arbitrary K. The last section is simply a
collection of references to other relevant literature.

The first two sections of our survey deal with applications of logic to algebra
in the purest sense that results expressible in algebraic terms are proved by logical
means. The first section's concern—arguably the most important application to
date of infinitary model theory to algebra—is the construction by Macintyre and
Shelah of non-isomorphic universal locally finite groups of the same cardinality.
In the second section we examine the use by Baldwin of some profound results
in the model theory of «Sfωiω to count the number of subdirectly irreducible
algebras in a variety. The remaining sections involve applications in which logical
notions are employed in the expression as well as in the proof of a result so as to
provide new insight into an algebraic notion or problem.

Sections 3, 4 and 5 make use of the notion of infinitary equivalence. In Section
3, the back-and-forth characterization of i f ^ equivalence is used to formulate
precisely and prove the heuristic principle in algebraic geometry known as
Lefschetz's principle. Classification theorems in abelian group theory are studied
in Section 4 to see what information can be gained from their proofs about the
if Aω-equivalence of abelian groups. Section 5 gives a characterization of the
algebras in a variety which are S£^-equivalent to a free algebra, and the question
of the existence of non-free such algebras is studied, in general, and specifically in
the variety of abelian groups. Finally, Section 6 presents both Hodges' formaliza-
tion of the notion of a concrete (or effective) construction and an examination of
his use of it in proving that certain algebraic constructions are not concrete.

I am deeply appreciative to the authors of the other chapters of this volume
for their help. And, to Wilfred Hodges, Carol Jacoby, David Kueker, and Alan
Mekler, I extend my special thanks.
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1. Universal Locally Finite Groups

Using the model-theory of J ^ ω i ω Macintyre and Shelah [1976] (to be denoted
hereafter simply as [M-S]) answered questions raised by Kegel and Wehrfritz
[1973] about the groups in the title.

Recall that a group is locally finite if every finitely-generated subgroup is
finite. The following class of groups is precisely the class of existentially closed
locally finite groups and was first studied by Hall [1959].

1.1 Definition. A group G is universal locally finite (or G e ULF) if it is locally
finite and:

(i) every finite group G can be embedded into G; and
(ii) any isomorphism between finite subgroups of G is induced by an inner

automorphism of G (see Kegel-Wehrfritz [1973, pp. 177 f]).

Hall has shown that any infinite locally finite group can be embedded in a
ULF group of the same cardinality, and that any two countable ULF groups are
isomorphic. In fact, the latter result is easily proved by a back-and-forth argument
which will show that any two ULF groups are i f ^-equivalent and that if G ^ H
belong to ULF, then G<ooωH.

Kegel and Wehrfitz [1973, Chapter 6] posed the following questions:

1.2 Questions, (a) Are any two ULF groups of the same cardinality isomorphicΊ
If not, are there 2K ULF groups of cardinality KΊ

(b) Does every ULF group of cardinality K > Kx contain an isomorphic copy
of every locally finite group of cardinality < KΊ

The key to the results of Macintyre and Shelah is the observation that ULF
is elementary in i ? ω i ω . Indeed, for each m > 1 let {φmtΆ(vu . . . , vm): n e ω} be an
enumeration of all formulas of JSf ω i ω which describe the multiplication table of a
set of m generators of a finite group. Then a group G belongs to ULF iff G \= σ
where σ is the conjunction of the following sentences:

(0) /\Vv1...vm\Jφm,n(vι...vm)
m n

[that is, G is locally finite]

(1)

[that is, G satisfies Definition l . l ( i ) ] ; and

(2) /\ /\ Vϋ! . . . vm VM! . . . M J (φ^niVi . . . vm) A φmtn(ux . . . uj)
m n L

[that is, G satisfies Definition l . l(i i)].
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Since σ has models of all infinite cardinalities, the method of indiscernibles (see

Keisler [1971a, Section 13]) implies the following:

1.3 Theorem. For every K > ϋί there is a model Gκ of σ of cardinality K such that
for every countable A c GK,GK has only countably many A-types. D

We will now use the following simple group-theoretic observation.

1.4 Lemma. For every infinite cardinal K, there is a locally finite group Hκ of
cardinality κ+ and a subset Aκ of Hκ of cardinality K such that Hκ realizes at least
κ+ quantifier-free Aκ types.

Proof. Let G be a finite group with two elements α and β such that ocβ φ βa. Then
Gκ, the direct product of K copies of G, is locally finite (the reader is referred to
[M-S, Lemma l(b)]). Let Hκ be the subgroup of G generated by Aκ u Y, where Aκ

consists of all functions/v e Gκ (v e κ\ where

, iΐμ Φ v,

and Y is a subset of {e9 β}κ of cardinality κ +. Then any two distinct elements of Y
have different quantifier-free types over Aκ in fact, if g, he Y, g(v) = e, and h(y) = β,
then g satisfies xfv = /vx, but h does not. D

We can now proceed to prove (Refer to Questions 1.2)

1.5 Theorem (Macintyre and Shelah [1976]). (i) For any K > Kj there are 2K

groups in ULF of cardinality K.
(ii) For any K > Kj there is a locally finite group Hκ of cardinality K and a

group G e ULF of cardinality K such that Hκ is not embeddable in Gκ.

Proof. The Hκ of Lemma 1.4 is clearly not embeddable in the Gκ of Theorem 1.3,
so (ii) holds. Since Hκ is embeddable in some ULF group of cardinality K, there
are clearly at least two non-isomorphic ULF groups of cardinality K. In order to
obtain 2K different ULF groups, we appeal to a theorem of Shelah [1972a, Theorem
2.6] which says that if a sentence σ of ^λ+ω has for every cardinal K a model 93
with a subset A of cardinality K such that S realizes more than K quantifier-free
,4-types, then for all K > λ σ has 2K models of cardinality K. (The reader is also
referred to Hodges [1984] for a proof of (i) in a more general context). •

These results give rise to other questions which have been posed in [M-S].

1.2. Questions (continued) (c) Which locally finite groups H can be embedded in all
ULF groups of cardinality > \H\Ί (Such groups are called inevitable).

(d) For K > Xj is there a universal ULF group of cardinality KΊ That is, is
there one into which can be embedded every locally finite group of cardinality < KΊ

Hickin [1978] proved that no locally finite group of cardinality Hx is inevitable.
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In fact, he constructed a family of 2*1 ULF groups of cardinality Kx such that no
uncountable subgroup is embeddable in any two of them. Giorgetta and Shelah
[1984] obtained the same result with X t replaced by any K such that Ko < K <
2Ko. Question (d) was answered in the negative (by Grossberg-Shelah [1983])
for K = 2K o; and, assuming GCH, for all K of uncountable cofinality. The proofs
of the results mentioned above do not, however, use infinitary logic.

Problems similar to Questions 1.2(a) and (b) have been studied for alge-
braically closed groups and for skew fields. Here the statements of some of the
results use the notion of i f ^-equivalence, although the proofs themselves use
specific algebraic constructions. For example, we have

1.6 Theorem (Shelah-Ziegler [1979]). Let A be a countable algebraically closed
group. Let K be an uncountable cardinal

(i) There are 2K algebraically closed groups of cardinality K which are ^^ω-
equivalent to A.

(ii) There is an algebraically closed group of cardinality K which is <έ>

ooω-
equivalent to A and which contains no uncountable commutative subgroup, ϋ

See also Macintyre [1976], Ziegler [1980], and Giorgetta-Shelah [1984].

2. Subdirectly Irreducible Algebras

Baldwin [1980] observed that some general theorems of the model theory of
J£?ωiω have applications to counting the number of subdirectly irreducible algebras
in a residually small variety.

Recall that a variety is a class V of algebras (all structures for the same
vocabulary τ, consisting only of function symbols) which is closed under the forma-
tion of products, subalgebras and homomorphic images. A fundamental theorem
of Birkhoff says that V is a variety if and only if it is the class of models of a set
of equations, Σ. In the following discussion we will assume that the vocabulary τ
of V is countable.

2.1 Definition. An algebra 91 is called subdirectly irreducible if whenever 91 is
embeddable in a product of algebras, it is also embeddable in one of the factors.
This, of course, is equivalent to requiring that every family SF of homomorphisms
on 91 which separates points of 91—that is, for all a φ b in 9ί 3/ e 2F such that
f(a) Φ f{b)—contains a one-one homomorphism. A variety V is residually
small if the class of subdirectly irreducible algebras in V forms a set, or, equivalently,
if there is an upper bound to the size of subdirectly irreducible algebras in V.
V is residually countable if every subdirectly irreducible algebra in V is countable.

Taylor [1972] has shown that if a variety V is residually small then every
subdirectly irreducible algebra in V has cardinality < (2*°) + .
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2.2 Definition. A congruence on 91 is a subset θ c A x A such that there is a
homomorphism / on 91 such that θ = {(a, b) e A x A:f(a) = f(b)}. θ is non-
trivial, if θ φ the diagonal on A. If (c, d)e A x A, the principal congruence gen-
erated by (c, d), which we denote 0(c, d), is the smallest congruence containing (c, d).

Note that (α, b) belongs to θ(c, d) if and only if for every homomorphism /
on 91 such that/(c) = f(d) we have/(α) = fφ). Thus, by the compactness theorem
of finitary logic, we have:

2.3 Lemma. For any a, b,c,de 91, (a, b) e 0(c, d) iff there is a positive (existential)

formula φ(x, y, z, w) e Jδf ω ω such that

(*) 1= Vx, z, w[φ(x, x, z, w) -^ z = w]

αnrf 91 N φ[c, d, α, b]. D

Moreover, as an immediate consequence of the definitions we have:

2.4 Lemma. An algebra 91 is subdirectly irreducible iff there exists a φ b in A such
that for every non-trivial congruence θ on 9Ϊ, (a, b)εθ iff there exists a φ bin A such
that for every c Φ din A, (α, b) e θ(c, d). D

Using these results, we can now establish

2.5 Proposition. For any variety V, there is a sentence σ e Jέfωiω such that 91 f= σ
iffSΆ is a subdirectly irreducible algebra in V.

Proof Let Φ be the set of all positive existential formulas of JSPωω satisfying (*)
in Lemma 2.3. Let σ be the conjunction of the defining equations of V and the
following sentence:

3z, u Vx, y\z φ u Λ ixφy-* \J φ(x, y, z, u)\ .
L \ φeΦ /J

By Lemmas 2.3 and 2.4, σ has the desired property. D

We can now apply the model-theory of JS?ωiω.

2.6 Theorem (Harnik-Makkai [1977]). If σ is a sentence of J?ωιω and σ has at
least Kx and fewer than 2N° countable models, then σ has a model of power Kx. D

2.7 Corollary (Baldwin [1980]). // V is residually countable, then V has either
< Ko or exactly 2K° subdirectly irreducible algebras.

Proof. This result follows immediately from Proposition 2.5 and Theorem 2.6.
Baldwin [1980] has noted that all the possibilities for the number of subdirectly
irreducible varieties do occur. D
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The following theorem was proven by Shelah [1975c] under the assumption
that V = L and more recently (Shelah [1983a, b]) assuming only GCH.

2.8 Theorem (G.C.H.) Ifσ is a sentence of <£ωιω which has at least one but fewer
than 2K l models of power K t then it has a model of power K 2. D

2.9 Corollary (Baldwin [1980]) (G.C.H.) // V is residually small and it has a sub-
directly irreducible algebra of power K : then it has 2N l subdirectly irreducible
algebras of power ϋ1.

Proof. As we remarked after the statement of Definition 2.1, Taylor has shown that
a residually small variety has no subdirectly irreducible algebra of power (2 X o ) + =
K2. D

Remarks, (i) Theorems 2.6 and 2.8 can also be used in an analogous way to count
the number of simple algebras in certain varieties, because the simple algebras
are axiomatized by the following sentence of JS?ωiω (where Φ is as in the proof of
Proposition 2.5):

Vx, y Vz, u \(x φ y)-+ V <?(x> >;' z ' w)
|_ φ eΦ _|

(ii) Mekler [1980b] uses the idea of Lemma 2.3 to prove that the class, 0t,
of residually finite groups is axiomatizable in JS?ωiω. It follows immediately from
the downward Lόwenheim-Skolem theorem for S£ωχω that 0t is of countable
character. That is, a group belongs to 01 iff every countable subgroup does. (This
result was first proved by B. H. Neumann.)

3. Lefschetz's Principle

Using notions from category theory and the model theory of ^OQω, Eklof [1973]
gave a simple and yet comprehensive formalization of Lefschetz's principle from
algebraic geometry. The key idea was inspired by the work of Feferman [1972]
and basically asserts that certain simply characterized functors preserve <£^ω-
equivalence.

Following Weil [1962], we will call K a universal domain if K is an algebraically
closed field of infinite transcendence degree over its prime field. We recall that
the prime field of K is the smallest field contained in K and that it is isomorphic
to Q (respectively the field with p elements) if char X, the characteristic of K, is 0
(respectively the prime p).
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In his foundational work, Weil [1962, p. 306] gave the following explanation
of the heuristic principle attributed to S. Lefschetz:

"For a given value of the characteristic p [ = zero or a prime], every result involving
only a finite number of points and varieties, which has been proved for some choice of
the universal domain remains valid without restriction; there is but one algebraic
geometry of characteristic p for each value of p, not one algebraic geometry for each
universal domain."

Seidenberg [1958] has rightly pointed out that Lefschetz had in mind a stronger
principle: That algebraic geometry is the same for any two algebraically closed
ground fields—not necessarily of infinite transcendence degree—having the same
characteristic. We will not deal with this stronger principle at all. The reader should
consult Barwise-Eklof [1969, Section 3] for historical remarks on formalizations
of Lefschefz's principle.

Notice that two universal domains are !£ ^-equivalent if and only if they have
the same characteristic. Let <% be the category of universal domains. The nature
of the formalization of Lefschetz's principle will be that certain functors on °U into
a category # of algebras preserve <£ooω-equivalence; any particular instance of
Lefschetz's principle will then follow by checking that the algebraic-geometric
result in question is a statement in JS? o o ω about structures constructed by an
appropriate functor.

We shall fix a vocabulary τ consisting of a countable set of function symbols
but no relation symbols. Let Alg[τ] be the category of all τ-structures and all
τ-homomorphisms.

3.1 Definition. A subcategory # of Alg[τ] will be called a quasίvariety if it is a
full subcategory (that is, if it contains all τ-homomorphisms between objects in
^ ) and the class of objects of # is axiomatizable by a set of strict universal Horn
sentences, that is, a set of sentences of the form

where each 0f is atomic.

Thus defined, the class of objects of <g is closed under products and under
substructures. Clearly any variety is a quasivariety. In order to characterize the
quasivarieties, we recall an important notion from category theory.

3.2 Definition. Let K > ω. D = (/, > ) is a κ-dίrected set if it is a partially ordered
set such that for every subset X c D of cardinality < K, there exists; e / such that
ί < j for all i e X. A diagram £> over D (in Alg[τ]) is a family of τ-algebras 9If for
each i e / and τ-homomorphisms φu: % -• %j for each i < j in I such that φίk =
φjk o φ.j if i < j < k. The κ-direct limit of a diagram T> over a ^-directed set D is
a structure 21 together with morphisms φt: 2I£ -• 91 for each i e / such that given
any 95 in Alg[τ] and any family of morphisms 0,-: 9lf -• 33(ί e /) such that for all
i <j, θj o φ.j = θi9 there is exactly one morphism 0: 91 -* 95 such that for all
ί e / , 0 o ψ. = 0..
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If K is ω, we omit the reference to it, and simply say direct limit instead of
ω-direct limit. It is a standard result of category theory that the direct limit is
unique up to isomorphism and that in Alg[τ] it may be constructed as the disjoint
union of the 9lf modulo the equivalence relation generated by all identities of the
form y = (Pipe). Observe that for the latter result, it is necessary that D be directed.
We shall always use the term direct limit in this sense of "colimit over a directed
set" (see Mitchell [1965, pp. 44-49]).

MaΓcev [1973, Section 11] characterized the quasivarieties # in Alg[τ] as the
full subcategories which are closed under isomorphism, substructure, and direct
limits.

We will be interested in functors which preserve direct limits. The following
result gives a large class of such functors (see Feferman [1972, Lemma 4]).

3.3 Lemma. Let F:($0^>cβ1 be a functor, where %>0 and (^ί are quasivarieties.
Suppose that:

(i) F preserves monomorphisms and
(ii) for every SΆe<$0 and every finite subset X c: F(9I) there exists a finitely

generated substructure 3 ^ o/9I such that X c= F(e)[$li']9 where e: <Άί -> 91
is the inclusion morphism.

Then F preserves direct limits. D

Feferman proved that functors satisfying properties (i) and (ii) of Lemma 3.3—
he called them ω-local functors—preserve ££ ooω-equivalence and noted that this
(and its generalizations for cardinals K > ώ) imply various preservation results for
algebraic constructions (see Chapter IX, Sections 4.5.2 and 4.5.3). G. Sabbagh
suggested means for obtaining some other preservation results by weakening the
hypotheses given in (i) and (ii) above (see Eklof [1975a, Section 3]).

We can now state

3.4 Lefschetz's Principle (Formalized). Let ^ be a quasivariety and F.^U -*<€
a functor which preserves direct limits. For any universal domains Kγ and K2, if
char K1 = char K2, then F(KX) Ξ o o ω F(iC 2 ).

Proof. Kι is the direct limit of the family £fx of all of its algebraically closed sub-
fields of finite transcendence degree (the morphisms are inclusions between sub-
fields). Thus, F(Kt) is the direct limit of the F(k), k e Sfh relative to certain mor-
phisms φk: F(k) -> F(Kt). Let F(k) denote the image of F(k) under ψk. It is a sub-
algebra of F(Kt). If/: kγ -> k2 is an isomorphism between /q e Sfγ and / c 2 e y 2 ,
we will show that the isomorphism F(f): F(/c2) -> F(k2) induces an isomorphism
/ between F(/cx) and F(k2) by means of the rule ftykfr)) = *M^(/)0)X for
x e F(kx). It suffices to verify that if ψkι(x) = 0, then φk2(F(f)(x)) = 0. But
^ k l (x) = 0 iff there is a k\ ^ kγ in £fγ such that if eγ: k1 -• k\ is the inclusion map,
F(ei)(χ) = 0 I n Λat case, there is a k2 3 k2 and an isomorphism/': k\ -* k2 ex-
tending / such that if e2' k2 -» k'2 is inclusion, / ' ° ex = e2 ° / . Hence, 0 =
F(Γ)F(ei)(x) = F(e2)F(f)(x), and so φkl{F{f){x)) = 0.
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Now we appeal to the back-and-forth criterion for J^ooω-equivalence (Refer to
Chapter IX, Theorem 4.3.1 or to Chapter XIII, Theorem 2.1.1). Indeed, the family,
I, of all /, as / ranges over all isomorphisms from an element of $fγ to an element
of 5̂ 2, is a family of partial isomorphisms such that I: F(Kλ) ~p

ω F{K2). D

Let us now consider as an example of a use of Lefschetz's principle, the paper
of Murthy-Swan [1976]. In this study, Lefschetz's principle is used to carry over
a result on uncountable universal domains to the case of countable universal
domains. It is striking that the methods used in this paper to justify the appeal to
Lefschetz's principle closely mirror the considerations of our general theorem. (In
fact, the authors specifically noted this; see pp. 141 f). Murthy and Swan proved
that the key constructions they were studying are functors on °U (into Ab, the
category of abelian groups, or into Sets, the category of sets) which preserve direct
limits (Murthy-Swan [1976, Lemma 5.8]). They then used this result to show
that certain properties of the objects constructed by these functors are independent
of the choice of universal domain (the reader is referred to Murthy-Swan [1976,
pp. 142-143]). For example, one of the properties that concerned them is that a
certain abelian group SA0(X )—the value at K e °U of a functor on ^l which
preserves direct limits—is a divisible group of infinite rank. They make an ad hoc
argument, using the limit preserving property of the functor, to show that if
SA0(XKί) has this property for some (uncountable) Kγ in %, then SΛ0(XK2) has
the property for all (including countable) K2 on % of the same characteristic.
From our point of view, the property of being a divisible abelian group of infinite
rank is expressible in <£ooω, so by Theorem 3.4, char Kί = char K2 implies that
SA0(XKί) = aoω SA0(XK2). And hence it follows that SA0(XKι) is divisible of
infinite rank iff SA0(XK2) is.

Another example of Lefschetz's principle, given by Weil [1962], is worked
out in detail in Eklof [1973].

4. Abelian Groups

Classification theorems in abelian group theory, due to Ulm and Warfield, were
generalized by Barwise-Eklof [1970] and Jacoby [1980], respectively, to classify
a larger class of groups up to i f ^-equivalence. This suggests that the notion of
potential isomorphism, which has an algebraic formulation in terms of partial
isomorphisms, is a natural one to employ in the study of abelian groups.

For simplicity of exposition—especially in the case of mixed groups—we will
restrict attention to the local case. That is, we will fix a prime p and consider
abelian groups A which are Z^-modules, where Zp is the ring of rationals with
denominators prime to p. This means that every element of A is uniquely divisible
by every prime different from p. From now on, we will use the word "module"
to mean Zp-module. A torsion module is then a p-group (i.e., an abelian group A
such that for all a e A, there exists neω such that pna = 0).
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For any module A and ordinal α, define pM by induction as follows: p°A = A
P*+1 = P(P*A) = {px: x spaA}\ pσA = f)Oί<σ p*A, if σ is a limit ordinal. For any
ae A, the height, h(a\ of a is the unique α such that a e paA — pa+ 1A, if it exists, or
h(ά) = oo, otherwise. It is easy to see that there exists σ < \A\+ such that pσA =
pσ+1A = pτA, for all τ > σ. Then pσA, denoted Ad9 is a divisible module and a
direct summand of A. The structure of a divisible module is easily explicated: it is
a direct sum of copies of Q, the rationals, and of Z(p°°), the p-torsion component
of Q/Z. Thus, the classification problem easily reduces to the problem of classifying
reduced modules; that is, modules A such that Ad = {0}.

Define pM[p] = {x e paA: px = 0}; this is a vector space over GF(p), the
field of order p. The dimension of the quotient space pCίAlp']/pa+ M [ p ] is called the
αth Ulm invariant of A and is denoted by/(α, A). Let/(α, Λ) = /(α, ,4) if/(α, A)
is finite, and/(α, A) = oo otherwise.

Ulm's theorem asserts that two countable reduced torsion modules A and B
are isomorphic iff/(α, X) = /(α, β) for all α < ω : . This result is not true for
arbitrary uncountable torsion modules, although the largest class of torsion
modules for which the theorem holds—the class of totally projective modules-
has been given a number of interesting characterizations (see for example, Fuchs
[1973, Chapter XII]). However, the back-and-forth method of proof (see Chapter
IX, Theorem 4.3.3) does yield a classification of arbitrary torsion modules up to
t£^-equivalence. More precisely, we have

4.1 Theorem (Barwise-Eklof [1970]). For any cardinal K and any reduced torsion
modules A and B, A is $£'^-equivalent to B ifff(<x, A) = /(α, B)for all a < K. D

For an exposition of the proof of Theorem 4.1 the reader should see Barwise
[1973b]. The proof shows that every torsion module is J2?^-equivalent to a totally
projective module. Barwise-Eklof [1970] also uses the back-and-forth method to
classify equivalence with respect to certain subclasses of sentences of J^ κ ω . For
instance, if we let r(B) = the rank of B, if finite and f(B) = 00, otherwise, we then
have

4.2 Theorem (Barwise-Eklof). // A and B are reduced torsion modules then every
existential sentence oj5£}

κω true in A is true in B iff for all α < /c, r(paA) < f(paB). D

For countable groups (and, even more generally, by a simple argument, for
direct sums of countable groups) this yielded the following result—a result which
was apparently not previously known.

4.3 Corollary. // A and B are countable torsion modules then A is embeddable in
B iff rank(pM) < rank(pαB)/or all OL < ωv D

This result was later extended, by different means, to all totally-projective

modules by May-Toubassi [1977].
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Remark. The Barwise-Eklof method is employed in Eklof [1977c, Theorem 1.6]
to give an i f ^-extension of a theorem of Kaplansky characterizing fully in-
variant subgroups of a countable p-group; the extended theorem characterizes
definable subgroups of arbitrary p-groups.

Warfield [1981] defined a class of modules whose torsion members were
precisely the totally projective modules and which included many non-trivial
mixed modules, these latter being modules that are not a direct sum of a torsion
and a torsion-free module. The modules in this class have come to be called
Warfield modules and are characterized by the property of being summands of
simply presented modules, where a simply presented module is a module that can
be generated by a set of elements subject only to defining relations of the form
pnx = 0 or pmx = y.

A Warfield module M has a decomposition basis, such a basis being a linearly
independent subset X such that, if [X] denotes the submodule generated by
X, M/[X~\ is torsion, and for all

/ n \

x 0 , , xn e X, r0,..., rn e Zp, hi £ r fx f = minίftfoXf): i < n}.
V=o /

In fact, a countable module is a Warfield module if and only if it has a decomposi-
tion basis. For uncountable modules, this is not the case, although the Warfield
modules can be characterized as those which have a certain kind of decomposition
basis X called nice, such that M/[X] is a totally projective torsion module (the
reader is referred to Hunter-Richman-Walker [1977]).

Warfield classified the Warfield modules by use of new invariants g(e, M)
defined as follow. If x e M, the Ulm sequence of x, denoted U(x) is the sequence
(h(pιx))ieω. Two Ulm sequences ( α f ) i e ω and (βi)ieω are called equivalent if there
are positive integers n and m such that for all i eω,o( i + n = j8 ί + m. Thus, U(x) and
U(y) are equivalent if there exists r,seZp such that rx = sy. If e is an equivalence
class of Ulm sequences, and M is a module with a decomposition basis X, define
g(e, M) = cardinality of {xe X: U(x) e e). Warfield showed that this is an in-
variant of M and that two reduced Warfield modules M and N are isomorphic iff
for all ordinals α and all classes e,f{<x, M) = /(α, N) and g(e, M) = g(e, N).

Jacoby [1980] extended Warfield's methods to give a classification result for
e. Let g(e, M) = g(e, M) if finite, and equal to oo, otherwise.

4.4 Theorem (Jacoby). // M and N are reduced modules with decomposition bases,
then M = 9ω N iff for all α and all e,f(a, M) = /(α, N) and g(e, M) = g(e, N). U

Now the class of (non-reduced as well as reduced) modules classified (up to
i f ^-equivalence) using Theorem 4.1 is an elementary class in i f o o ω : It is precisely
the class of all torsion modules. But the class of all modules with decomposition
bases is not even closed under i f ^-equivalence. Jacoby [1980] defined in a natural
algebraic way a larger class of modules closed under ^£^-equivalence (but not
£Cooω) which can be classified up to i^^-equivalence using Theorem 4.4. But,
surprisingly enough, she was able to show that no class of modules that generalizes
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the class of modules with decomposition bases in any reasonable way is an ele-
mentary class in $£)

aQω. The proof uses her classification theorem for modules with
decomposition bases. (Jacoby [1980] contains the proof in the global case).

4.5 Theorem. Let Ή be a class of modules satisfying:

(i) every Warfield module is in Ή; and
(ii) if A e #, then every pair of elements of A is contained in a submodule of A

which has a decomposition basis.

Then <& is not an elementary class in ££aoω. D

4.6 Corollary. The class, <&, of all modules which are <£ ̂ -equivalent to a module
with a decomposition basis is not an elementary class in <έ*aoω.

Proof. Clearly # satisfies (i) of Theorem 4.5. Moreover, since every module with a
decomposition basis obviously satisfies (ii) of the Theorem 4.5, we can use the back-
and-forth method to show that every module in # satisfies (ii) of Theorem 4.5. D

5. Almost-Free Algebras

Algebras which are J^ ̂ -equivalent to a free algebra in an arbitrary variety have
been studied by Kueker, Shelah, Mekler, and Eklof among others.

Fix a variety V in a countable vocabulary (see Section 2). We will say that
A e V is V-free (on X) if there is a subset X ςi A such that for any B e V and any
set m a p / : X -> B, there is one and only one homomorphism/: A -> B such that
/ { X = f. X is said to be a set of free generators for A. Since V will be fixed, we
will simply say free instead of F-free.

If B is a subalgebra of C, we say B is & free factor of C (written B \ C) if B and
C have sets of free generators, X and Y, respectively, such that X c y. In this
case, every set of free generators of B extends to a set of free generators of C. If
B\C, we say C has infinite rank over B, if there are X, Y as above such that in
addition Y — X is finite.

It follows easily from the back-and-forth criterion (see Chapter IX, Theorem
4.3.3) that if K > ωl9 any two free algebras of cardinality > K are if^-equivalent.
Define A to be ^^-free, if A is i?^-equivalent to a free algebra. The back-and-
forth criterion implies that A is $£ooκ+-free iff A is the /c+-direct limit of a set S
of free subalgebras of cardinality K, where the maps are inclusions, such that S is
ω-directed under |(see Definition 3.2). The latter condition means that if G o , . . . ,
Gn e S, then there is an H e S such that for all / < n, Gf | H.

Surprisingly enough, Kueker [1973] has shown that J ^ ^ - f r e e algebras
satisfy the following stronger condition. The proof uses game-theoretic methods
(see Kueker [1981]).

5.1 Theorem (Kueker). A is ^ooκ + -free iff A is the κ+- direct limit of a set S of free
subalgebras of cardinality K such that S is κ+-directed under |. In particular, if
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\A\ = κ+, A is £foΰK + -free iffA = u v < κ + Av where each Av is a free subalgebra
of cardinality K and for all μ < v < κ+, v4J>4v.

Proof. If Y is a subset of A of cardinality K, the Y-Shelah game on A is the game of
length ω, where player I (respectively II) chooses Xn, a subalgebra of A of cardi-
nality K, when n is even (respectively odd), and II wins if for all fc, X2k <= Xuc+1
and Y\X2k+i\X2k+3 Let S(A) = {Y: player II has a winning strategy in the
Y-Shelah game on A}. Observe that if F is the free algebra o n κ + generators,
Y e S(A) iff for some B\F, (A, Y) Ξ ^ (F, B). Hence, S(A) is JS?GOK + -definable
(see Chang [1968c, Proposition 7]). Now S(F) is clearly κ + -directed under | and
F is the κ+-direct limit of S(F). Thus, since these facts are expressible in L o o κ + ,
the same holds when F is replaced by A. ϋ

5.2 Corollary (Kueker). If A is Jέf

ODK + -free then there is a free algebra F on a set
of free generators of cardinality κ+ such that F ^Kooκ A. 0

It follows from the back-and-forth criterion that for any uncountable λ, A is
JS^-free iff A is i f ooκ+-free, for every K < λ (see Shelah [1975a, Theorem 2.6(c)]).

A natural question is whether or not there are non-free jSf^-free algebras.
The following profoundly interesting result is due to Shelah (Shelah [1975a,
Theorem 2.6(d)]).

5.3 Theorem (Shelah). If λ is singular and A is ^^χ-free and of cardinality λ then
A is free. D

Remarks, (i) Hodges [1981] gives a very clear exposition of Shelah's "singular
compactness theorem" in a general form. For those familiar with Hodges [1981],
we now indicate how to derive Theorem 5.3 from the results in that paper. It
suffices to prove that for every K < λ, player II has a winning strategy in the κ+-
Shelah game on A (see Hodges [1981, p. 207]). If S is a set of free subalgebras of
cardinality K such that A is the κ+-direct limit of S and S is ω-directed under |, then
player II can win by always choosing his subalgebra Bt (i is odd) to be an element
of 5 such that Bi_2\Bi.

(ii) Mekler [1980a, Theorem 1.6] proved that if K is a regular cardinal and A
is a /c+-free group (that is, every subgroup of A of cardinality <κ+ is free), then
A is J^?

ooκ-free. For varieties in which it is not the case that a subalgebra of a free
algebra is always free, a different definition of /c+-free is needed; one (weak)
notion of κ+-free is that A is to satisfy

~~i(Vx2f ^x2i+i)i<κ

i\χi' i < κ> is not free"

(that is, it is not the case that almost every subalgebra of cardinality K is non-free.
The reader should consult Kueker [1977]). It follows from an argument similar
to that in Lemma 3.1 of Hodges [1981] that (for regular K) if A is a κ:+-free algebra
in this sense, then A is i f ooκ-free (the reader should compare this result to that in
Shelah [1975a, Theorem 2.6(b)]). If A is not ££-non-free, then A is κ+-free (in the
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above sense). Whether or not an ^ ?

o o κ + -free algebra is always κ;+-free remains an
open question. (It is true under certain hypotheses on V.)

A general theorem of Shelah (see Chapter IX, Theorem 4.3.7) implies that,
assuming V = L, if K is regular and not weakly-compact, then there are either 1
or 2K ^?

ooκ-free algebras of cardinality K. Eklof-Mekler [1982] recently proved the
following general result about the existence of non-free ifooκ-free algebras.

5.4 Theorem (Eklof-Mekler). (1) (V = L). If there is a non-free ̂ ?

aoωι-free algebra
of cardinality ω1, then for every regular non-weakly-compact K there is a
non-free ££^κ-free algebra of cardinality K.

(2) If every ^£^ωχ-free algebra of cardinality ωγ is free, then for every K, every
if'nx-free algebra of cardinality K is free. D

Moreover, under certain general conditions on the variety V, the hypothesis
given in (2) holds if and only if the class of free algebras is definable in J£?ωiω (see
also Kueker [1980]).

Much work has been done on the problem of constructing non-free ifooκ-free
algebras for V = the variety of groups or abelian groups. Kueker proved that a
group (or abelian group) is JSf^-free iff it is α^-free. Higman constructed a non-
free ω r free group. Mekler, as well as Kueker, constructed a non-free $£^^-free
group of cardinality ωv See Mekler [1980a] for more results on groups. Pope
[1982] deals with other varieties of groups and rings.

The if ooκ-free abelian groups (for uncountable K) are characterized by the
property that A is /c-free and every subset of A of cardinality < K is contained in a
subgroup B of cardinality < K, such that A/B is κ;-free (see Eklof [1974]). These
groups had arisen naturally in the study of Whitehead's problem: by Chase
[1963], CH implies that every Whitehead group is ifooωi-free. But by Shelah
[1979b] MA + —iCH implies that there are Whitehead groups which are not
if^^-free. The following theorem sums up the main results about the existence
of if ooK-free abelian groups. (See Eklof [1977c] for more details and references).

5.5 Theorem, (i) (Eklof [1975b]) For all neω there is a non-free Sfa0ωn+rfi'ee

abelian group of cardinality ωn+ί.
(ii) (Shelah [1979a]). G C H ^ for all K < Kω2 there is a non-free ^^κ + -free

abelian group of cardinality κ+.
(iii) (Magidor-Shelah [1983]). (Assuming the consistency of the existence of

many supercompact cardinals). It is consistent with GCH that if κ = Kω2
every κ+-free abelian group of cardinality κ+ is free.

(iv) Ifκ is weakly compact, every κ-free abelian group of cardinality K is free.
(v) Ifκ is strongly compact, every κ-free abelian group is free.

(vi) (Gregory). V = L => for every non-weakly-compact regular K there exists

a non-free i f aoK-free abelian group of cardinality K.
(vii) // there is no inner model with a measurable cardinal, then there exist

arbitrarily large K such that there is a non-free ^?

aDK + -free abelian group
of cardinality κ+. D
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5.6 Corollary. If there is a strongly compact cardinal, then the class of free abelian
groups is definable in <£'^ If the class of free abelian groups is definable in S£ n*>
then there is an inner model with a measurable cardinal

Proof. If K is strongly compact, then by (v) the class of free abelian groups is
defined by the sentence of £PKK which says that the group is κ-free. Conversely, we
prove a little more: if there is no inner model with a measurable cardinal, then the
class of free abelian groups is not definable in any j£? which has the following
downward Lόwenheim-Skolem property: there is a cardinal λ such that for every
sentence θ of if, if 911= θ, then 23 \= θ, for some substructure 23 of 91 of cardinality
< λ. Suppose there is a sentence θ of JSf which is true in a group G iff G is a free
abelian group, andlet λ be as above. By (vii), there is a non-free ,3?^ +-free abelian
group A of cardinality κ+ for some K > λ. So A |= —\θ. But every subgroup of A
of cardinality < λ is free and hence satisfies θ—a contradiction. D

For Theorem 5.5(vii) and Corollary 5.6, the crucial fact from the theory of the
core model is that if there is a largest K such that D κ + holds, then there is an inner
model with many measurable cardinals.

6. Concrete Algebraic Constructions

Using notions from J ^ * , Hodges gave a formalization of the intuitive idea of an
effective algebraic construction and used it in conjunction with set-theoretic
methods to give a negative answer to Taylor's question (Taylor [1971]) as to
whether or not there is a concrete construction of the pure injective hull of every
abelian group.

6.1 Notation. Let σ and τ be vocabularies consisting of function symbols (possibly
of infinite arity), and let Alg[σ] (respectively Alg[τ]) be the category of σ-structures
(respectively τ-structures). Let 31 (respectively ^) be a quasivariety in Alg[τ]
(respectively in Alg[σ]) (see Definition 3.1). The following definition is a formaliza-
tion of the intuitive idea of a construction which is uniformly definable by gener-
ators and relations (see Hodges [1975]).

6.2 Definition. Let σ, τ, ^ , <€ be as in Notation 6.1, and let K be a regular cardinal.
A function F from objects of ^ to objects of # is a K-word-construction if there is a
vocabulary σ' extending σ, a set T of terms of J^[σ'], a set A of atomic formulas of
JS?[σ'], and a function Γ:T v A^> ^^[τ] such that, for all α e T u A, Γ(α) has
free variables among those in α and, for all 23 in J1, F(23) is isomorphic to df{X, Φ>,
the structure given by the presentation <X, Φ> where X = X®, the set of generators,
is {t(b): t G T, 95 1= Γ(ί)[5]} and Φ = Φ®, the set of relations, is {φ(b): φ e A,
23 N Γ(φ)[5]}. (Let b run over all sequences of elments of 25 of length <κ). More
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precisely, df(X, Φ> is the structure whose universe is the closure X of X under
the function symbols of σ, modulo the equivalence relation ~ on X defined by

x1 ~ x 2 iff Φ 1= Xi = x 2

if x denotes the equivalence class o f j c e ϊ , the operations on df(X, Φ> are given
by: if / is a n-ary function symbol of σ,

f(xl9 ..., xn) = f(xl9..., xny

F is a word-construction if it is a /c-word-construction for some K.

6.3 Examples. (1) Let 3& = <& = the variety of rings in the vocabulary σ = τ =
{ + ,•}. We will now show that the function F which takes a ring B to the formal
power series ring B [ [ 7 ] ] is an ω^word construction. Let σ' add to σ the extra
ω-ary function symbol p. Let T = {p(v0, υl9 v2, ..)} a n d let Γ(p(vθ9 υl9 v2,...))
be Vx(x = x). Hence, X = {p(S): b e Bω}. Let A = {φl9 φ 2}, where φ1 is p(υθ9υl9

v2,..) + p(uo,uu w2,...) = p(w0, w1} w 2 , . . . ) , and φ 2 is p(r 0 , ι;1? t?2,...) •
p{uθ9 ul9 M2, ...) = p(w0, w l9 w 2 , . . .)• Let Γ(φ x) be /\ieto(Vi + M£ = wf), and let
Γ(φ 2) be Λjeω(wj = Σi+*=j yί + uk)- Observe that these are formulas of <£fooωι

but not of JSfooc since they have infinitely many free variables. Now it is easy to
check that df(XB, Φ*> = ^ [ [ 7 ] ] .

(2) Let & = the variety of sets; that is, Λ = Alg[τ], where τ = 0 and # =
the variety of groups ( c Alg[σ], where σ ={•}). We shall show that the function
F which takes a set B to the free group on B is an ω-word construction. Let σ'
be obtained by adding to σ a unary function symbol i, and a 0-ary function symbol
(constant) e. Let T be the set of all terms in i f [σ r] and let Γ(ί) be Vx(x = x), for
a l l t e T. L e t A = {v ΐ(t>) = e9 i(v) -v = e9 e υ = v, v e = v, v1'(v2-v3) =

(υί v2) v3} and, for each φeA9 let Γ(φ) be Vx(x = x). Then df{XB, ΦB) is the
free group on B.

Other examples of word-constructions are the following—the first three being
ω-word-constructions, and the last an ω1 -word-construction.

(3) An integral domain to its quotient field (the example is worked out in

Hodges [1975, Example 6]).
(4) An ordered field to its real closure (see Hodges [1976, Theorem 2.1]).
(5) A valued field to its Henselization (see Hodges [1976, Theorem 2.4]).
(6) A rank 1 valued field to its completion (see Hodges [1976, Theorem 2.6]).

By using several sorts, the word construction can be defined so that (for
example, in Example (4)) it gives the embedding F -> F of F in its real closure.

Hodges [1975] advances the thesis that every effective—or, synonymously,
concrete—construction occurring naturally in algebra can be put into the form
of a word-construction. That word-constructions are effective is given by the
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following result. Let 0><κ denote the function given by 0><K(X) = {Y: Y £ X and
Card(Y) < K}.

6.4 Theorem (Hodges [1975]). IfF:&-+($ is a K-word-constructίon, then F is
provably Σ ^ ^ J . That is, there is a formula θ(x, y) in the language of set theory
including the symbol 0>

<κ (possibly with parameters) which has all universal quantifiers
bounded and which satisfies

ZF + definition of 0><κ \- Vx 3 ! yθ(x, y)

and for all 93 e # ,

ZF + definition of 0><KV- 0(93, F(&)). D

Hodges [1975] also proves that /c-word-constructions preserve i f ^-equiv-
alence, and discusses connections with Feferman [1972] Eklof [1973, 1975a] and
Gaifman [1974].

The following result provides a useful algebraic method of proving that certain
constructions are word-constructions (see, Hodges [1980a, Lemma]).

6.5 Lemma. Let 0&, <€, σ, τ be as in Notation 6.1 and let Kbe a regular cardinal If
F: 3ft —• # is a functor which preserves κ-dίrect limits (see Definition 3.2) then F is a
K-word-constructίon.

Proof Any structure 93 is the ic-direct limit of ^(93), the c-directed diagram of the
^-generated—that is, is generated by fewer than K elements—substructures of 93,
where the maps between substructures are inclusions. So it suffices to define a
word construction which sends every 93 to the fc-direct limit of F(^(93)). To do
this, let {93V: v e λ} be the set of all ^-generated substructures of 93, and for each
93V let/v: ρv -> 93V be a function (p v < K) whose image is a set of generators of 93V.
Then we extend σ to σ' by adding a set T of function symbols £v>c where c ranges
over all elements of F(93V) and the arity of £v,c is ρv. Let A be the set of all atomic
formulas of JS?[σ']. We claim that, for all 93 in ^ , the ^-direct limit of F(D(S)) is
df(X, Φ>, where X is the set of all ζVfC(B) and where the mapfv(ϊ)\-+bh for i < p,
induces an isomorphism of 93V to the substructure <S> of 93 generated by B; and
where, furthermore, Φ consists of atomic formulas which are of the form
<p(Cv,Cl(h -", Cv,cn(% where the ζVtCi(S) are in X and F(93V) \= φ[cu ..., c j , or
are of the form ζvc(B) = ζμ,e(d) (both terms in X), where there is an inclusion
/: (By -> ζd} and F(ι)c = e\ or are logical consequences in the quasivariety #
of formulas of these forms. We leave it to the reader to verify that there is a function
T\T KJ A-* <Sfa0K[τ~] which determines X and Φ as in Definition 6.2 (see Hodges
[1975, pp. 457 ff] for details). D

Note that, in fact, we need only that F preserve κ:-direct limits over diagrams
whose map are monomorphisms. For example, for any right ^-module M, the
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functor which takes a left R-module N to the abelian group M (χ)Λ N preserves
ω-direct limits and is thus an ω-word construction. Observe that this functor is
not ω-local, but does preserve if ^-equivalence (see Section 3).

Let Div be the functor which takes an abelian group A to the push-out diagram
illustrated below

DΪV'04)

where ί is inclusion and g takes ca to a. It is not hard to check that Div preserves
ω-direct-limits. Hence, by Lemma 6.5 there is a concrete construction which
takes every abelian group A to an embedding of A into a divisible group, Div'(/1),
containing A. On the other hand, we have

6.6 Theorem (Hodges [1980a, Corollary 5]). There is no word-construction F on
the variety of abelian groups such that for all A, F(A) is an embedding of A in

a divisible hull of A.

Sketch of Proof. Suppose to the contrary, that there is such an F. Then, using the
definition of a word-construction, it is easy to see that F induces an embedding of
the automorphism group of A into the automorphism group of F(A). One obtains
a contradiction by taking A = Z5 © Z 5 , the direct sum of two copies of the cyclic
group of order 5, and by showing—via a direct computation—that the auto-
morphism of A, given by the matrix,

1 1

0 1

has order 5 but has no extension to the divisible hull—or even to Z 2 5 0 Z 2 5 —
which has order 5. (This argument—though different from the one in Hodges
[1980a]—is also due to Hodges). D

As a corollary, Hodges [1980a, Theorem 6] also gives a negative answer to
Taylor's question: if there were a word-construction sending an abelian group A
to an embedding of A in a pure-injective hull of A, then, using some constructions
satisfying the hypothesis of Lemma 6.5 one could define a word-construction of
divisible hulls.

Other negative results are given in Hodges [1976], such as, for example, that
there is no word-construction sending a field to its algebraic closure, or a formally
real field to its real closure (the reader should compare this to Example 6.3(4)).
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7. Miscellany

Here we mention a few other examples of the interaction of infinitary logic and
algebra.

One important application is Shelah's construction of arbitrarily large rigid
real closed fields. This result uses infinitary logic in a general construction that
has a variety of other uses (see Shelah [1983d]).

The model theory of J?ωιω has also been applied to group theory by
Kopperman-Mathias [1968]. There use was made of the downward Lόwenheim-
Skolem notions for JSPωiω to give new proofs of results of Hall, results showing that
certain classes of groups are bountiful, where a class # of groups is called bountiful
if whenever G c H and H e % then there exists H' e <£ such that G c H' and
|if'| = |G| + No.

Dickman has analyzed the Erdόs-Gillman-Henriksen isomorphism theorem
for real closed fields from the point of view of the back-and-forth method (see
Chapter IX, Theorems 4.5.8 and 4.5.9).

Using the model theory of ifooω, Eklof [1977b] contains a new proof of a result
of Hill characterizing the classes of abelian groups closed under substructures and
direct limits.

Eklof and Sabbagh [1971] discuss if ^-equivalence and if ^-definability for
various classes of modules and rings. For example, it is proved that the class of
Noetherian rings is not definable in S^aQω. But it is definable in JS?ωiωi (see Kopper-
man [1969]). An algebraic result of Gordon and Robson [1973, Theorem 9.8]
implies that the class # oϊ commutative Noetherian rings is not definable in 5£^ω,
(The argument in Eklof-Sabbagh [1971, p. 644] immediately implies that # is not
definable in J5?ωiω5 but an argument found by Hodges—an argument which uses
the ordinal rank of prime ideals—yields the stronger conclusion).






