
Chapter VI

Other Quantifiers: An Overview

by D. MUNDICI

Generalized quantifiers were introduced by Mostowski [1957] as a means of
generating new logics. In the meantime, their study has greatly developed, so that
today there are more quantifiers in the literature than there are abstract model
theorists under the sun. In any logic $£ = S£ωω{(£\ei one does not need to in-
troduce specific formation rules for renaming and substitution; for, upon adding
to the finite set of logical symbols of J*?ωω one new symbol for each Q\ all sentences
in !£ are obtainable by an induction procedure on strings of symbols, pretty
much as in JSfωω. One can gδdelize sentences and start studying the axiomatiz-
ability and decidability of theories in J$f. One might even go as far as to write
down the proof of a theorem in ££ and then have it published in some mathe-
matical journal. For infinitary logics this all seems to be a bit more problematic.

There are several ways to introduce quantifiers. For instance, nonlinear
prefixes of existentially and universally quantified variables may be regarded as
quantifiers as is discussed in Section 1. Quantifiers are also used for transforming
concepts such as isomorphism, well-order, cardinality, continuity, metric com-
pleteness, and the "almost all" notion into primitive logical notions such as =
(see Sections 2 and 3).

There is no reason why quantifiers introduced via the above definability
criteria should also preserve the nice algebraic properties of J£?ωω. Indeed, in
many cases they do not. However, in a final section of this chapter we will briefly
describe a novel approach to quantifiers, an approach that is based on the fact
that every separable Robinson equivalence relation ~ on structures is canonically
representable as inequivalence, =# for !£ = ifω ω{β| =2>{Q) *S coarser than ~}.
In addition to this, <£ turns out to have compactness and interpolation: The open,
interior quantifiers and their π-dimensional variants can be introduced in this
way, starting from a suitable approximation of homeomorphism.

We do not aim at an encyclopedic coverage here. Rather, we only aim to
present an anthology of the most significant facts and techniques in the variegated
realm of quantifiers. In line with this, highly developed quantifiers or special
topics are discussed in detail in Chapters IV, V, VII, and XV.

Throughout this chapter ifmI1 will be taken to mean second-order logic with
universal and existential quantifiers over unary relations. Moreover, we will also
write i f ( φ i s I instead of 5£ω
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1. Quantifiers from Partially Ordered
Prefixes

In this section we will present the logic if® with quantifiers which arise from
nonlinear prefixes (see Section 1.1). The logic i f (β H ) with the smallest such
quantifier often gives a full account of the whole if® (see Section 1.2). Further
topics on Jέf(βH) are discussed in Section 1.3.

1.1. Partially Ordered Quantifiers

Let φ be a first-order formula in prenex normal form. Each existentially quantified
variable x in the prefix of φ only depends on the universally quantified variables
which precede x. We can naturally consider formulas with nonlinearly ordered
prefixes such as, for example,

which is equivalent to 3/, g, g' Vx, x', t ψ(x, x', ί, /(x, x'), g(t\ g'(t)). Another
example is Henkin's prefix (see also Chapter II):

(2) { v x ' g y j ^ ' ^ ^ ^ ' viz '

The smallest logic which is closed under this prefix is i f(β H ), where QH =
{(A, R}\R £ A* and R 2 / x g for some/, g: A-> A} = Henkin's quantifier.
Similarly, the prefix in (1) results in a quantifier Q which is given by

Q = {(A, R>\R c A6 and R 3 / x g for some/: A2 ^ A and

We will agree to say that the (variable binding) pattern of Qn is {<1, 1>, <1, 1>},
and that the pattern of Q in the discussion above is {<2, 1>, <1, 2>}. More generally,
we set

1.1.1 Definition. Let π= {<nl5 m ^ , . . . , (nr, mr>} be a sequence of pairs of
natural numbers > 1. Then the partially ordered quantifier Qπ with pattern π is
given by

Qπ = {(A, R} \R c As and R Ώ fx x x fr for some

/ i : Anι -> Am\ ...,fr:A
nr-> A"1'},

where 5 = nλ + mλ + + πr + mr. We will also say that Qπ has r rows.

Partially ordered quantifiers do express some genuine mathematical notion,
namely, uniformization. As a matter of fact, the quantifier Vx 3yRxy expresses
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the fact that the binary relation R can be uniformized, just as the quantifier

It
expresses the fact that the 4-ary relation S contains the product of two binary
uniformizable relations. Similar considerations hold for every partially ordered
quantifier.

The syntactical rules for forming formulas in i?(β), with Q = Qπ, are naturally
obtained by generalizing the rules for $£(QH). Thus, Q binds s distinct variables,
and if we display Q as

(3) Q=\

then we immediately obtain the semantics of Q. In this development, the existen-
tially quantified variables in a row are thought of as only depending on the uni-
versally quantified variables in the same row. Let us denote by i f ® the smallest
logic in which all partially ordered prefixes of the form (3) are allowed. If this is done,
we then have:

1.1.2 Theorem. For an arbitrary class K, if K is PC in J^ ω ω then K is EC in
Indeed, K = Mod^© ψ, for some φ of the form Qχ where Q is a partially ordered
quantifier as in (3) above, and χ e <£ ωω is quantifier free.

Proof. Upon replacing relations by their characteristic functions, K = Mod
3g1 . . . gjθ, where θ is a first-order formula in prenex normal form. Using Skolem
functions, θ becomes equivalent to 3/i .. ./„ Vxx . . . xmα, where α is quantifier-
free. The terms in α can be safely assumed to have the form f(yί ... yk), where
yu ..., yk are variable symbols, so that no function symbol occurs in the argument
of/. Indeed, one might use the equivalence between, for example, Vy, zβ(f(g(y, z),
h(y))) and Vy, z, t, u[t = g(y, z) A u = h(y) -> β(f(t, w))]. By similarly adding new
universally quantified variables, we can also assume, without loss of generality,
that in the argument of any two different functions there are no common variables
and also that the n variables occurring in the argument of each «-ary function are
all distinct. We finally make sure that a function symbol does not occur in two
different terms. Thus, we replace, for example, 3/Vx, y, zφ(f(x, y), f(y, z)) by
writing 3/, g Vx, y, t, z{[x = t A y = z -+ f(x, y) = g(t, z)] Λ [ί = y ->
φ(f(x, y\ g(t, z))]}. Now, K is reduced to the desired form. D

7.2. The Relationship Between JSfmΠ, &® an

Walkoe [1970] observed that if Q is any partially ordered quantifier such that
jSf(Q) ψ jS?ωω, then i f (β H ) < JSf(β). Thus, Qn is the weakest partially ordered
quantifier. The two theorems of this subsection tell us to which extent QH alone
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can replace the denumerable set of all partially ordered quantifiers. We shall also
investigate the relationship between partially ordered quantifiers and second-
order logic. In this latter respect, Vaananen [1977c] proved that there is no gen-
eralized quantifier Q such that !£(Q) = full second-order logic.

1.2.1 Theorem. <£® is equivalent to i^(β H ) in first-order Peano arithmetic. That
is, for every φ in t£®, there is a ψ in ^(Q11) having the same models as φ among the
models of Peano arithmetic.

Proof. By making repeated use of pairing functions (say, by using formula χ(x, y, z)
in the language of Peano arithmetic, which defines a bijection from M 2 onto M
in each model 301 of Peano arithmetic), we can safely assume that every quantifier
Q in φ has only one universally quantified variable and only one existentially
quantified variable in each row. Moreover, it is no loss of generality to assume
that Q has only two rows. As a matter of fact, we have the equivalence between

{Vxi3z1Ί r V x 1 . . χ π 3 z 1 . . . z J Γ - Ί
i \θ and \ \\θ A Λ(*i = *ί->*i = z) •

Ivx^zJ [vχi-..χ;3zi. z;JL /=i J

We can now use pairing functions again to contract the latter prefix into QH.
This concludes the proof of the theorem. •

Remark. Theorem 1.2.1 can be generalized (without altering the proof) to any
arbitrary first-order theory where a definable pairing function is available.

Recall the definitions of < R P C and of the Δ-closure A5£ of a logic !£ from
Chapter II. Intuitive notions stemming from first-order logic might suggest that
Δj^mii _ j^mii However, this is not the case. Indeed, recall that in the definition
of < R P C , extra universes are allowed which, in settings where Lόwenheim-Skolem
fails, cannot be coded as extra relations on some given universe.

1.2.2 Theorem. A^(QH) = A&® = A^ml\

The proof proceeds through the following two claims:

Claim 1. i * @ < R P C &"**•

Proof. It suffices to show that for every φ e &®(τ\ Mod φ is in RPC^mii. For the
moment, assume that τ has just one sort s, and that only QH occurs in φ. Now,
~ι β H asserts the nonexistence of functions, while ifmI1 can only express the non-
existence of sets. To overcome this difficulty, we add a binary function symbol J
to τ, and let the first-order sentence α assert that J maps the set of all pairs in s
one-one onto a new sort 5'. For X any set-variable of ifmI1, let β(X) assert
that X represents via J (that is, J ' ^ X ] is) a function: namely, β(X) is
Vx 3! y 3z(z e X A z = J(x, y)). If X represents a function X, then the fact that X
maps x into y, for short X(x) = y, is simply expressed by the ifmII-formula
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J(x, y) e X. Now, let φ' e J?ml1 be obtained from φ via the following inductive
procedure: φ' = φ if φ is atomic, (~iφy = ~Ί(Φ')9 (φ A χ)' = φ' A χ', (3xφ)' =
3x(φ'). For the crucial QH-clause, where φ is given by

Vx' 3

we let ι// be given by 3X, X'lβ(X) A β(X') A VX, X', y, y\y = X(x) Λ / =
X'(x') -• 0')]. Clearly, the τ-reducts of the models of α Λ φ' are exactly the models of
φ so that Mod φ e RPC^mn as required. If φ has many sorts, or if φ has a p.o.
quantifier Q Φ QH, then we proceed similarly, using maps JQ: An

s

 +1 -> As» to code
into subsets of a new sort s" each π-ary function asserted to exist by Q.

Claim 2. ̂ ml1 < R P C J^(βH).

Proof. If A Φ 0 and {0, A} c 5 c p ^ ) , where P denotes power set, then
S # P(v4) iff 3/: X -> {0, 1} such that Vr e 5, r # / " ^ l ) ; that is to say, iff
3/: ^ -» {0, 1} and 3gf: S -• ̂  such that Vr e S, Vx e A [x = #(r) -»(gf(r) e r ^
/(x) = 0)]. Using relativized QH we can equivalently say the following:

sA3ye{0, 1}

Now, to prove our claim, it is enough to show that for every φ e J^" 1 "^),
Mod φ e R P C ^ ( Q H } . To this purpose, add to τ new unary relations A and S, as
well as one binary relation E and the constants 0 and 1. Let the roles of S, A, 0,
1, E be described by sentence α which is given by the conjunction of the following
formulas: Vx((Sx v Ax) A ~Ί(SX A AX)\ 50 Λ 51, Vx(Ax^>Exl\ "i3x(^x Λ £xθ),
Vsr, Vsr' \r = r' +-> VAx(Exr ++ Exr')\ where Vzx0 as usual means Vx(Zx -• θ).
Let β be a reformulation of (1) without relativizations, that is,

X yI {Ax A Sr^>[At A (y = 0 v y= 1) Λ (t = x-^(Etr^y = 0))]}.

Let φ' be obtained from φ by relativizing to A (that is, to {x| Ax}) each quantified
individual variable in φ, and by relativizing to 5 each quantified set variable in φ (we
can add more A's and 5's if more sorts occur in φ\ and finally by replacing yeX
throughout by Eyxx, where x^ is an individual variable. By the above discussion,
the τ-reducts of models of α Λ ~iβ A φ\ upon restriction to {x|^x}, are exactly
the models of φ. As a matter of fact, α Λ ~I β ensures that in our transcription of
second-order variables as variables ranging over 5 we are missing no subset of A.
Thus, we have proved that ifmϊI < R P c ^ ( β H ) Those who do care to relativize
classes may add one more sort 5" as well as a function symbol/and assert that/
is an isomorphic embedding of the structure on sort s" onto the restriction to
{x|Ax} of τ-reducts of models of α Λ iβ A φ'. Π
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1.2.3 Corollary. i f(g H ), if® and ifmϊI have the same Lόwenheίm and the same
Hanf numbers. Moreover, they have recursively isomorphic sets of valid sentences.

Proof. The proof of this result is routine as it follows from standard facts of abstract
model theory and from an easy inspection of the above proof (see also Proposition

D

1.2.4 Remark. The godelized set Vml1 of valid sentences in ifmI1 is not definable in
72-th order arithmetic. Indeed, it is not a Σ™ subset of the natural numbers, for any
n,meω (see Montague [1965] and also Tharp [1973]). For the Hanf number of
if m I 1 see Barwise [1972b] and Vaananen [1979b]. The reader should also consult
Theorem 2.1.5(i) of the present chapter for more on this notion.

1.3. Further Topics on S£(βH)

In the light of Theorem 1.2.2 the implicit expressive power of i f (βH) is very strong
(see also Theorem 2.1.1 and Proposition 2.1.3). Concerning the explicit expressive
power of J2?(βH), we first observe that i*(β H ) > J£?(β0). Indeed,

Qoxφ(x) iff 3ί{φ(ί) Λ 3/, g Vu, v[(u = v <->/(n) = g(v))

Λ (φ(u) -> φ(f(u)) Λ f(u) Φ ί)]}

1.3.1 Proposition. ^(QH) is neither (ω, ω)-compact nor axίomatίzable, nor does it
have the weak Beth property.

Proof. There is a sentence of <£(Qn) characterizing up to isomorphism the standard
model of arithmetic, since Qo is EC in i f (QH). Thus, J?(QH) cannot be countably
compact and, using GodeΓs incompleteness theorem, J£(QH) is not axiomatizable.
Failure of the weak Beth property is now a particular case of a result in abstract
model theory which holds for every finitely generated logic in which the class
{91191 ^ <ω, <>} is EC (see, for example, Makowsky-Shelah [1979b, Theorem
6.1], or Theorems XVII.4.1.1 and 4.2.9). D

1.3.2 Theorem. J^(βH) > &(Qa) iff oc = 0.

Proof. We must prove only the (=>)-direction. To this purpose, it suffices to show,
by induction on the complexity of formulas, that for each formula ψ in the pure
identity language of i f (βH)—that is to say, only the equality ( = ) occurs in φ—
there is a formula φ in the pure identity language of Jδf ω ω equivalent to φ upon
restriction to infinite sets (that is, K N=^(QH) φ<^φ, for each K > ω). The only
nontrivial step in the proof arises in the case where φ has the form QHψ. In this
case, one then uses upward and downward Lόwenheim-Skolem methods for
JSf ω ω to establish that φ does not distinguish between infinite sets. By contrast,
for α > 0, Qa does distinguish between infinite sets. D
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1.4. Bibliographical Notes

Henkin's quantifier was introduced in Henkin [1961], while Ehrenfeucht proved
that J^(6H) is neither countably compact, nor axiomatizable (see Henkin [1961]).
Theorems 1.1.2 and 1.2.1 are proved in Enderton [1970] and in Walkoe [1970].
The proof of Theorem 1.3.2 given above is due to Lopez-Escobar [1969], who
also proved the failure of interpolation. Paulos [1976] proved that both Δ-closure
and Beth property fail for 5£(βH). Failure of the weak Beth property is proved in
Gostanian-Hrbacek [1976] who used general ideas from Craig [1965]. The
reader should also consult Kreisel [1967], Mostowski [1968] and Lindstrom
[1969] for more in this connection. Back-and-forth games for j£?(gH)-equivalence
are used by Krynicki [1977b] in connection with Theorem 1.3.2. Here the reader
should also see Krawczyk-Krynicki [1976] and Weese [1980]. Theorem 1.2.2 is
proved in Krynicki [1978] and Krynicki-Lachlan [1979]. In the latter paper,
the reader can also find decidability (undecidability) results on i?(βH). Partially
ordered quantifiers are used in Barwise [1976] to find nice first-order axiomatiza-
tions for certain classes of structures such as, for example, the class of structures
having a nontrivial automorphism/ such that/ 2 = identity. In Walkoe [1970,
1976] and in Keisler-Walkoe [1973] partially ordered quantifiers are used to
prove the following result about ordinary model theory: Let Q' and Q" be first-order
prefixes, with Qf Φ Q" and Q' and Q" having the same length. Then, for some
quantifier-free formula φ in cSfωω, there is no quantifier-free formula φ in jSfωω

such that Q'φ is equivalent to Q"φ. See Harel [1979], Cowles [1981], and Barwise
[1979] for further information about βH.

2. Quantifiers for Comparing Structures

The quantifiers presented in this section express the fact that two structures 91
and 93 are isomorphic: In Section 2.1 both 91 and 23 are sets, and in Section 2.2
we add one binary relation; while in Section 2.3 we keep 91 fixed.

2.1. Equicardinalίty Quantifiers

Recall that Hartig's quantifier / is defined by / = {(A, R, S}\\R\ = \S\}9 so that
Ixyφ(x\ φ(y) says that |{x\φ(x)} | = |{y\φ(y)} |. Reseller's quantifier QR is given
by ρ R = {(A, R, S}\\R\ < \S\}. Chang's quantifier Qc binds only one variable
and Qcxφ(x) says that Ixyφ(x\ (y = y). Clearly, Jέf(βc) < <£(l\ Also observe
that i?(6o) ^ &(!)- A s a matter of fact, we have

(1) Qox φ(x) iff 3z[φ(z) A Ixy φ(x\ φ(y) A y Φ z].

These points clear, we can now consider
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2.1.1 Theorem. i f ( β 0 ) < JS?(J) < i f (β R ) < i f(β H ) .

Proof. For the proof that -Sf(Q0) ^ ^ ( ^ ) holds we only need give due regard to
(1) above. It is trivially true that if(/) < i f(β R ) . Also, i f (β R ) < i f (β H ) holds, for
we have

(Ixy φ\ φ(y)) v (βRx^ φ\ ψ(y)) iff

Iff Vx, x'{(x = x'~/(x) = /'(x')) Λ lφ) -> ιA(/W)]}

JSf(βo) is not equivalent to i f (/), since the former—as a sublogic of i f ^ — h a s the
Karp property, while the second logic does not. {Proof: The two-cardinal struc-
tures <ω1 ? [/> and <ω1 ? K> with \U\ = ω and | K| = \ωγ ~ V\ = α^ are partially
isomorphic, but not i?(βc)-equivalent, and hence not <£(J)-equivalent). The fact
that <£(ΐ) is not equivalent to J£?(βR) has been proved by Hauschild [1981]
(In this connection, the reader should also see Weese [1981b]). The fact that <£(βR)
is not equivalent to i?(β H ) has been proven by Cowles [1981]. D

The following sentence of <£{ΐ) characterizes <ω, <> up to isomorphism:

Vx ~ΛIUV{U < x), (v < x) Λ " < is a discrete linear order with first
element".

Using the above sentence, we immediately obtain

2.1.2 Proposition. l£(l) and J5f(βR) are neither (ω, ω)-compact nor axiomatizable
nor do they satisfy the weak Beth property.

Proof. The proof is the same as that given for Proposition 1.3.1. D

As for the implicit expressive power of 5£{l) we have

2.1.3 Proposition. The following are RFC in i f (7) and, hence in i f (β R ) also:

(i) the class of well-ordered structures;
(ii) the class of well-ordered structures which are isomorphic to some cardinal;

(iii) the class of well-founded structures;
(iv) the class {{A, E} | (A, E} £ <L(α), e>, for some ordinal α}
(v) the class {{A, E}\(A, E) £ <L(/c), e)Jor some cardinal K}.

Proof, (i), we note that < well-orders its universe of sort s iff there is an additional
sort s' and a binary relation #xx', where x e s and x' e s\ such that the function

f(χ) = I {x'|#xx'} I is strictly increasing; that is to say, we have formally that

x < y -+ l(Rxx' -> Ryxf) Λ -ΊIU'V'RXU', Ryv'~\.

To prove (ii), we add the clause that Vz ~ι Ixy(x = x), (y < z) to the above sentence.
The proof of (iii) is the same as for (i). To prove (iv), we use Mostowski's collapsing
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lemma and standard results on constructible sets to exhibit a finite subtheory of
ZF + V = L whose well-founded models are exactly those that are isomorphic
to <L(α), e>, for some α € On. Now, recall that well-foundedness is RPC in $£(/),
by (iii). To prove (v), we use (iv) and (ii). D

2.1.4 Theorem. (V = L). ΔjSf(/) = A^(QR) = Δ ^ m Π . j?(/), i f (β R ) and £?ml1 have
the same Lόwenheίm number and the same Hanf number. Moreover, they have re-
cursively isomorphic sets of valid sentences.

Proof. That 5£(ϊ) < R P C J2?(βR) is trivially true. The fact that j2?(βR) < R P C if
mI1 is

proven by use of pairing functions, as in Claim 1 of Theorem 1.2.2. We must now
show that V = L implies that ifmΠ < R P C ^ ( J ) . Let α be a sentence of jSf(J) of
type τ whose £-reducts are exactly the structures that are isomorphic to <L(/c), e>,
for some cardinal K, as in Proposition 2.1.3(v) (E is meant as membership). Expand
τ by adding a function symbol /, and let sentence β assert t h a t " / is increasing and
maps the ordinals one-one onto the infinite cardinals." By 2.1.3(i)(ii), ordinals
and cardinals are true (up to isomorphism) ordinals and cardinals, so that / is
isomorphic to the aleph function and K is a fixed point, ωκ = K. Hence, using
GCH—a consequence of V = L—we have that K = 3 K . Now add two constants
c and p and let sentence θ assert that "c is a cardinal and p is the power set of
c". In every model of αΛ β A θ, C is indeed isomorphic to a cardinal, and p is
isomorphic to the set of constructible subsets of c (use, for example, Theorem
7.4.3(vii) in Chang, Keisler [1977], to the effect that, since K = 2K, then L(κ) =
R(κ) n L; recall also that c < K). NOW, given φ e <£mλλ of type τφ, we construct
φ' G <£(ϊ) as is done in Claim 2 of Theorem 1.2.2 by relativizing each quantified
individual variable to {x\x < c}, i.e. to {x\Exc}, and relativizing each set variable
to {r\Erp}, and using E instead oϊe. By V = L, p is the power set of c, so that the
τ^-reducts of models of φ' Λ α Λ β A θ, upon restriction to {x \ Exc) are exactly
the models of φ. Whence we have that j£?mI1 < R P C •&(!)• The proof of the theorem
is completed by using standard tools. D

Remark. Thus, we see that under the assumption that V = L, the gόdelized set
Vj of valid sentences of J^(/) is not a Σ^ subset of ω, Vw, m e ω (see Remark 1.2.4).
As was remarked by Vaananen [1980b, p. 198], ΔJ?(/) = Δj£?mI1 continues to
hold if V = L is weakened to V = L[0 # ] , or even to V = Lμ.

2.1.5 Theorem, (i) // λ is the smallest inaccessible (hyperinaccessible, Mahlo,
hyper-Mahlo) cardinal, then the Hanf number ofJ?(I) is >λ.

(ii) The gδdelized set Vι of valid sentences of 'JSf(J) is neither a Σ\, nor a Πl
subset of ω.

(iii) The fact that the Lόwenheim number of S£(J) is < 2ω and VI is a Δ3 subset of
ω is consistent, if ZF is consistent.

(iv) The fact that J?(I) and ΔjSf (/) have different Hanf numbers is consistent,
if ZF is consistent.

Proof, (i) Let φ be a sentence of if(/) of type τ = {£,...} such that the £-reducts
of the models of φ are the well-founded models of ZFC + "there are no inaccessible
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cardinals". The existence of φ then follows from Proposition 2.1.3 together with
standard results from axiomatic set theory. Now, (R(λ\ E} \= φ, where λ is the
first inaccessible cardinal and E means membership. Note that \R(λ)\ = λ. We
claim that for no μ > λ, φ has a model of cardinality μ. Otherwise (absurdum
hypothesis) let 95 = <£, £, . . .> 1= φ with \B\ = μ. By Mostowski's collapsing
lemma, we have that 95 { E is (isomorphic to) a transitive model of ZFC. Also,
λeB holds; for otherwise, by the assumed inaccessibility of λ, we would have
\B\ < μ. For a suitable transitive well-founded (end) extension T) of 95 we have
that D h= "λ is inaccessible". Now, "x is not inaccessible" is a Σx predicate.
Hence, we cannot have 231= "λ is not inaccessible", by a familiar persistence
argument. Thus, 95 N "λ is inaccessible and there are no inaccessibles"—a
contradiction. In case λ is hyperinaccessible, etc., the proof is the same, since we
only need the fact that each of these properties is inherited by transitive submodels.

(ii) Assume that VI is either Σ\ oτ Y\\ {absurdum hypothesis). By Shoenfield's
absoluteness lemma, VI is an element v of, say L(ωx). Let ψ be a sentence in J£?(/)
of type τ = { £ , . . . } such that the £-reducts of the models of φ are the sets <L(κ), E}
as in Proposition 2.1.3(v). Let χ assert further that an uncountable ordinal is in
the universe so that K > ωι. Now, x eVI holds true i f f ^ Λ χ - > x e t ; holds true.
Proceeding as in Tarski's diagonal argument, we now let y e W mean that y is
the Gόdel number of a formula β(x) having one free variable such that β(y) is
false. By the above discussion, W is an element w of L(ωx) and xeW holds true
iffψΛχ-+xew holds true. Let z be the Gόdel number of the formula θ(x)
which asserts that "ψ Λ χ -> x e w." Then z e W iff z φ W. This is, of course, a
contradiction.

(iii) This is proven in Vaananen [1980b, Corollary 3.2.3]. The reader should
see Example XVΠ.2.4.3 and Proposition XVII.2.4.7 of this volume.

(iv) is proven in Vaananen [1983]. See also Theorem XVII.4.5.4 of the present
volume. D

Let us end this subsection with a brief examination of Qc. On finite structures,
Qc may be replaced by V. On structures of cardinality ωa, Qc behaves like Qa\
indeed many of the techniques used for the βα—notably for β i ~ a P P l y equally
well to β c , as is shown in detail in the textbook by Bell and Slomson [1969, Chapter
13]. These techniques are also extensively discussed in Chapters IV and V of this
volume. We will thus limit ourselves to stating, without proof, the following
results about Qc.

2.1.6 Theorem, (i) Let T be a countable set of sentences in i ? ( β c ) having a de-
numerable model Then T has a model of every infinite cardinality.

(ii) Assume that all singular cardinals are strong limit. Then J£(QC) is both
axiomatizable and (ω, ω)-compact relative to infinite structures.

(iii) Assume GCH, then J£(QC) is compact relative to infinite structures. D

The logic J£(QC) is not closed under relativization (and hence, it is not Δ-closed).
Indeed, if i f (Qc) allowed relativization, then the relativization of Qcx φ(x) to
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{y I Ψ(y)} would be equivalent to Ixy φ(x) A φ(x), ψ(y), and we could then charac-
terize the standard model of arithmetic in J£(QC) as is done in J£f(/) by using
Section 2.1(1). Thus, we would contradict Theorem 2.1.6(i).

Evidently, ^(Qc) is not (ω, ω)-compact, for Qoz(z = z) can be expressed as
3xQcz(z Φ x). In the above theorem, compactness relative to infinite structures
means that for every set T of sentences in i f (β c ), if each finite 7" ^ T has an
infinite model (that is, a model whose universe is infinite), then T itself has an
infinite model.

2.2. Similarity Quantifier and Its Variants

The quantifier / says that two sets are isomorphic; the similarity quantifier S says
that two structures with a binary relation are isomorphic; that is,

21 N= Sxyuv φ(x, y), φ(u, v) iff {A, φ*> ^ <4, ψ*}9

where qp = {(a, b} e A2 | 911= φ(a, b)}. Let α be given by

Vm, n, p[m < n < p —• "nSxyx'yXm < x < ^ < p\ (n < x' < y' < p)].

Then a discrete linear ordering with first element is a model of α iff it is isomorphic
to <ω, < >. By arguing as in Proposition 1.3.1, we see that <Sf(S) is neither (ω, ω)-
compact nor axiomatizable, nor does it have the weak Beth property.

Concerning the implicit expressive power of J?(S), in Vaananen [1980a] it is
proven that AJ£(S) = Δj5fmI1. The easy direction of this theorem uses pairing
functions as in Claim 1 of Theorem 1.2.2. For the other direction, we first show that
well-foundedness is RPC-definable in ££(S). As a matter of fact, the quantifier / is
clearly RPC in jSf(S). But / is also the complement of an RPC-class in J^(S), since
(A, (7, V) {= -ilxyUxVy iff the disjoint sum B of U and V satisfies <£, U2}ψ
<B, V2}. Therefore, / is EC in ΔJS?(S) and, by using Proposition 2.1.3, well-
foundedness is RPC in if(-S), as was required. To conclude the proof that
ΔJSf(S) = ΔifmΠ, we now try to express genuine power set in Δif(5), and, finally,
argue as in Claim 2 of Theorem 1.2.2.

Thus, if we try to express isomorphism as a primitive logical notion, we may
well attain the implicit expressive power of ifmίI by means of a single quantifier.
Note here the analogy with the case of i f (QH) in the framework of partially ordered
quantification.

2.2.1 Variants of S. We can consider isomorphism between certain binary

relations such as orderings or equivalence relations. Thus, we might define, say,

SDLo a n d ^EQ as follows:

y),ιKυ9w) iff <X, φ*> £ <Λ, tfr*>,
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and φ® is a dense linear ordering over its field

<Ά\=SEQxyvwφ(x,ylφ(v,w) iff < A Λ ^ ( i , f ) ,

and φm is an equivalence relation over its field.

The list of such variants of the quantifier S is potentially infinite. However,
we shall limit our attention to SD L O and SEQ. It is not difficult to see that ΔJSf (SEQ) >
ΔJSf (7) (\A\ = I £ I iff the equivalence relation given by equality on A is isomorphic
to equality on B\ and that Δί?(SE Q) < Δi?(7) (two equivalence relations 91 and
95 are isomorphic iff for every A, 91 and 93 have the same number of equivalence
classes of power λ). Therefore, assuming F = L w e can apply Theorem 2.1.4 to
the effect that Δ^(S E Q ) = ΔifmI1. Turning to SD L O, we immediately see that
&(Qι) ^ ΔJS?(SDLO) (\A\>ω1 iff there are two nonisomorphic dense linear
orders without endpoints on A). It is also proven in Vaananen [1980a] that
-S?(6o) ^ ΔJ?(SD L O) and that JSf(SDLO) < ΔJSf(SEQ) is an independent statement
ofZF.

2.3. The Quantifiers Q1* and Q*1"

For 91 an arbitrary structure of finite relational type τ, let Qm have as its defining
class /9I = {95193 s 9Ϊ}. Clearly, J^(β / 9 1) ΞΞ j£?ωω iff 91 is finite iff £>(Qm) is
compact. Next, we will consider the denumerable case.

2.3.1 Theorem. Let X = &(Qm), with \A\ = ω. Then S£ does not have the Craig
property. Furthermore, $£ is (ω, ω)-compact iff there is a first-order sentence α with
no finite models whose denumerable models are exactly the models in 791.

Proof. The proof is by cases. We will begin with

Case 1. 3α e JSfωω whose denumerable models are exactly those in 791.
Then, let φ e J? be defined by 93 |= φ iff S has two sorts s and s' and / maps
95 Is s one-one into 95 [ sf and 95 |" 5' e 791. Then we see that the class of countable
sets is R P C ^ . Now, let φ e i f be defined by X) 1= φ iff D φ 79ί and X) f= α and gf
maps 7) one-one into D' §c 7). We then see that the class of uncountable sets is
RPCV Therefore, β j is EC in ΔSe so that ΔJSf > Δ ^ β O The proof for Case 1
can now be completed as follows:

Subcase 1.1. α may be assumed to have no finite models.
Then JBG/2ϊiff95l=^(Q l )α Λ - l β ^ x = x). Hence, 7 9 t e E C ^ ( Q l ) . Whence
& < &(Qι) By the above discussion, we have ΔJS? = A^iQ^. This shows that
5£ is (ω, ω)-compact (as is ^ ( β O and Δ-closure preserves compactness) and that
5£ does not have the interpolation property (AJ^iQ^ does not, see Hutchinson
[1976]).

Subcase 1.2. every α as in Case 1 has some finite model.
Then α need have arbitrarily large finite models; let θ s <£ be given by © |= θ iff 95
has sorts 5,5', s" and/maps 95 Γ s one-one into 93 [ s\ g maps 93 Γ 5' one-one into
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95 [ s", 95 Γ s" e /SI, 95 [ s' φ /SI, 95 f s ' N α ; thus 95 Γ 5 can be of every finite (but
of no infinite) cardinality and ~\Q0 is RPC_^; trivially Qo is R P C ^ , so that Δj£? >
Δj^f(β0) and ^f cannot be (ω, ω)-compact (as ΔjSf is not, and Δ-closure preserves
compactness). Actually we can find a recursively enumerable (r.e.) set of ^-sen-
tences which is a counterexample to compactness, i.e. i f is not r.e. compact. Then
if does not have the Beth property (hence interpolation fails for if), by a well-
known general fact in abstract model theory, to the effect that the Beth property
implies r.e. compactness in every finitely generated logic (see, for example,
Vaananen [1977b], or Makowsky-Shelah [1979b, Theorem 6.1], or Theorem
XVΠ.4.2.9 of the present volume).

Case 2. ~ι 3α € jSf ω ω whose denumerable models are exactly those in /SI.

Subcase 2.1. 395 denumerable such that 95 = 31 and 95 g 81.
Let {In}n<ω: 31 ^ ω 95, as given by the Fraϊsse-Ehrenfeucht characterization of =
(see Chapter II.4.2). Rename the sorts and symbols of 95. Let 9M = <SI, 95, / 0 , ω,
<, L, J ,/>, where Lmnp iff p e In (for p e Io, n e ω), Jmpab iff p(a) = b (for aeA,
b e B), fm maps ,4 one-one onto B. Take a finite subtheory T of T h ^ SCR
such that for every W N T, W = <3Γ, 95', /'0, D', <', L', J ' ,/ '>, <£', < r> is still
a discrete linear order with first element, L', J', still codes in W a D'-sequence of
sets of partial isomorphisms with the back-and-forth property so that SΓ = S',
/ ' maps A one-one onto B\ 31' e /SI and 95' φ /SI. For details about T, see,
for example, Flum [1975b, proof of Lindstrόm's theorem]. If i f is (ω, ω)-compact
(absurdum hypothesis) then it would be consistent to assume that <D', <'>
has an infinitely descending chain. Hence, SI' ^p 95'. Whence, SI' = 95' by Karp's
back-and-forth argument, since / ' ensures that S ' is denumerable also. But, then,
the basic isomorphism axiom for i f implies that 95' 6 /SI—a contradiction. We
have thus actually proved that 5£ is not r.e. compact. Hence, by the well-known
general results quoted above (see Theorem XVII.4.2.9), !£ does not have the Beth
(resp., Craig) property.

Subcase 2.2. —1393 denumerable such that 95 = SI and 95 qk SI.
For n = l , 2 , . . . , there are 95Π ψ SI, \Bn\ = ω, and {/0,...,/J such that
{/0 , . . . , / „ } : SI ^n 23M (otherwise 3α e ^ωω whose denumerable models are
exactly those in /SI, by the Fraϊsse-Ehrenfeucht characterization of = , thus,
we contradict our assumptions). So let SOΐ,, = <SI, 95Π, / 0 , ω, < , L , J ,/ , s> as
in the above proof of Subcase 2.1, where 5 is the successor function. Let Tn be a
finite theory such that for every Wn 1= Tn, L and J' code a finite sequence of
s e t s o f p a r t i a l i s o m o r p h i s m s {Γo,... 9 Γs s(0)}:SHf =n^Bf

n, w i t h \B'n\ = \A\9

SI' e /SI, 95; ^ /SI. Now, Γ = (J Tn is inconsistent, by the Fraϊsse-Ehrenfeucht
characterization of = as well as by our assumptions, and T yields a counter-
example to the r.e. compactness of 5£. Thus, the Beth property also must fail for
5£, for we can argue as at the end of Case 1. The examination of Subcase 2.2 con-
cludes the proof of our theorem. D

For SI a structure of finite relational type τ, let Qpm have as its defining class
P/SI = {95195 ^p SI} = {95195 = ^ _ 31}. Clearly, we have that ^(Qpm) = &ωω
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2.3.2 Theorem. Assume that PI$lφEC#ωto9 where 91 need not be denumerable.
Then, A^(Qpm) > A^(Q0\ In particular, &(Qpm) is not (ω, ω)-compact and
does not have the Beth property. Moreover J?(Qpm) is not axίomatizable.

Proof. The proof is by cases. We begin with

Case 1. 393 such that 33 = 91 and 95 £p 91.
Let {/„}„< ω : 91 ^ ω 93 and 9M = <9ϊ, 93, Io, ω, <, L, J> with L and J coding
{/Jπ<ω as in the proof of Subcase 2.1 of Theorem 2.3.1. By a similar argument,
we exhibit a finite subtheory T of T h ^ 9M from which a counterexample to r.e.
compactness can be obtained. Hence, the Beth property fails also for j£? = !£(Qpm).
A closer examination of T shows that <ω, <> is R P C ^ ; and, hence, S£ is not
axiomatizable, by GόdePs incompleteness theorem.

Case 2. 93 Ξ 91 implies 93 ^p 91.
Then, for n = 1, 2 , . . . , there is a B n such that 93n £ „ 91, and 93Π £ P/9I (otherwise,
P/9I would be EC in J^ ω ω ) . Now argue as in Subcase 2.2 of Theorem 2.3.1, to
obtain a counterexample T to r.e. compactness and hence to the Beth property in
<&(Qpm). Indeed, T is a recursive set of sentences so that, by a trick method which
goes back to Craig and Vaught [1958], one can code T into a single sentence
whose < -reducts are all isomorphic to <ω, < >. Thus, <ω, < > is RPC in i f (Qpm\
and the proof is concluded by arguing as in Case 1. D

Remarks. Barwise [1974a] proved that ΔJSf(β0) = ^ω +» where ω+ = ω^ κ is the
smallest admissible set to which ω belongs (see also XVII.3.2.2). More generally,
for U c: co, let <ω, U}+ denote the smallest admissible set having ω and U as its
elements: then we have

2.3.3 Theorem. A^(QPI<ω<u>) = Δj^(ρ / < ω ' < ' ί 7 >) = J5?<β)iϋ>+.

Proo/. The reader is referred to Makowsky-Shelah-Stavi [1976, Theorem 4.1].
See also Theorem XVΠ.3.2.3 of this volume. D

2.4. Bibliographical Notes

The quantifiers QR and / were introduced respectively by Rescher [1962] and
Hartig [1965]. Failure of (ω, ω)-compactness and axiomatizability for if(/) was
proven by Yasuhara [1969] and Issel [1969]. The latter author also proved that
ωω is the Hanf and the Lόwenheim number of the fragment of i f (/) with equality
and otherwise only unary relation symbols. Proposition 2.1.3(i) goes back to
Lindstrόm [1966a, p. 192]. For Theorem 2.1.4, see, for example, Vaananen
[1978] and Pinus [1979b]. Lower bounds for the Hanf number of J2?(/) were also
discussed by Fuhrken [1972] and Pinus [1978]. Further information on i?(/)
can be obtained from Vaananen's papers quoted in Section 2.1 as well as from
Vaananen [1978, 1979b]. Named after C. C. Chang, the quantifier Qc is studied
in detail in Bell-Slomson [1969]; the fragment containing = but otherwise only
unary relations, was studied by Slomson [1968], who proved that ω is both its
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Lόwenheim and its Hanf number. He also proved the decidability of this frag-
ment—a proof of the decidability of the corresponding fragments of J?(QH) and
<£(ϊ) can be found in Krynicki-Lachlan [1979]. An axiomatization of the frag-

ment of j£?(βc)—without equality—was given by Yasuhara [1966a]. The quan-
tifiers S, SD L O, SEQ and their relativized versions are presented in Vaananen
[1980a]. The quantifiers Qm and Qpm are studied in Makowsky-Shelah-Stavi
[1976]. The reader should also see Makowsky [1973] for more in this connection.

3. Cardinality, Equivalence, Order
Quantifiers and All That

In this section, we will consider quantifiers which assert that a structure has a
certain property. In Section 3.1 we will study properties of sets and equivalence
relations. In Section 3.2, we shall focus attention on linear orderings. Other cases
are examined in Section 3.3.

3.1. Cardinality and Equivalence Quantifiers

Let Q have a class of sets as its defining class. By the isomorphism property, β
must express some property of cardinals. As a typical example, consider the
quantifier β α which asserts that "there are at least ωα-many elements", where α
is an ordinal > 0. The βα's are extensively studied in Chapters IV and V. The
following result extends to quantifiers of the form Qxλ . . . xw<Pi(xi), . . , φn(

χr)

3.1.1 Theorem. Assume that each quantifier β ι occurring in (i) through (iii) below
is a class of sets. Furthermore:

(i) Let <£ = &(Q?)ieI. ifSe is (ω, ω)-compact and A-closed, then <£ = J^ ω ω .
(ii) Let <£ = ££(Q},..., β"). If S£ obeys interpolation, then $£ = jSfωω.

(iii) For α > 1 a fixed ordinal, let 5£ = JSf(ββ, Q
ι)ieJ. Then & is not A-closed.

For the proof of this result we need the following

3.1.2 Lemma. For K, λ > ω, let 21* = <̂ 4, £>, where E is an equivalence relation
on A having λ equivalence classes, each of cardinality K. Let J£° = &(Qj)jej, where
each Qj is a class of sets. Then 2I£ =^o 21* .

Proof of Lemma 3.1.2. Let J^ c = ^^(QXeOn- Then, S&κ

κ =^c 2l£, as was observed
by Caicedo [1979, p. 93] with the help of a back-and-forth argument (this refines
Keisler's proof that 2 C =<?iQί) 2I£J; see II.4.2.8). We also have that ^-equiv-
alence is finer than <£°-equivalence, as was proven in the same paper by Caicedo
([1979, Lemma 4.2]). Also see Vaananen [1977c].
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Proof of Theorem 3.1.1. (i) Assume that ^ φ <£ωω. Then, by definition of if, there
is a sentence φ in the pure identity language of !£ which is not equivalent to any
ifωω-sentence. We now consider

Case 1. For some λ > ω, λ and ω are separated by φ (say, ω \=# φ and λ\J=#φ).
Using a choice function from λ into 91^ (that is, a bijection from λ onto 91^/E) and
a choice function from ω into 91*, we see that 91* and 91* belong to complementary
RPC classes in 5£. So, if we use Δ-closure, 91* and 91* can be separated by some
sentence in if—thus contradicting Lemma 3.1.2.

Case 2. For every λ > ω,ω]==^>φif(λ\=^φ (say, ω \= &φ).

Subcase 2.1. 3n < ω such that φ has no model of cardinality > n.
Then, without loss of generality, φ has no finite models, so that 5£ > ^(Qo\ and
^£ is not even r.e. compact.

Subcase 2.2. Both φ and ~Ί φ have arbitrarily large finite models.
Then, the theory whose sentences are ~iφ, 3~ίx(x = x), 3~2x(x = x ) , . . . is a
counterexample to r.e. compactness.

Subcase 2.3. φ has arbitrarily large finite models, but ~Ί φ does not.
Then φ is first-order, contradicting our assumption.

(ii) By inspection of the proof of (i), we see that r.e. compactness and Δ-closure
are actually sufficient to imply that ^£ = $έ}

ωω. But, if ^£ obeys interpolation,
then !£ has both Beth and Δ-closure. Hence, 5£ is r.e. compact, since ^£ is finitely
generated by assumption.

(iii) Using choice functions, we see that 9 1 ^ and 9I^α belong to complementary
RPC classes of if(Qα), and hence of i f also. If i f were Δ-closed, then some sentence
in ^£ would separate these two structures, thus contradicting Lemma 3.1.2. This
completes the proof of the theorem. D

Let X = {{A, £> \E is an equivalence relation on A}. Then Q is an equivalence
quantifier iff its defining class is a subclass of X.

3.1.3 Theorem. Let $£ be a compact logic with the interpolation and the Feferman-
Vaught property (FVP). Let Q be an equivalence quantifier which is EC in i f Then
QisECin&ωω.

Proof. We pose a denial, and let K be a class of equivalence relations which is EC
in !£ but not in <£ωω. Then K must separate two elementarily equivalent structures
91 = (A, E} and 91' = (A'9 F > (say, 91 e K and 91' φ K) by a familiar open cover
argument using the compactness of ^£ (for a similar argument see, for example,
Theorem III. 1.1.5). We now proceed by cases:

Case 1. Each equivalence class of 91 and 91' has infinitely many elements.
Thus, let JV and M be infinite sets such that | JV| = ω, \M\ > \A u A'\, N =#M.
Such sets JV and M clearly exist by the assumed compactness of if. By FVP, we
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have that [91, 9Γ, N] = ^[91, 91', M] (as three-sorted structures). By adding two
functions/and/', we can expand [91, 9Γ, M] to a model of the sentence φ which
asserts that "/and/ ' are injections of A and A' respectively into the third sort s3".
On the other hand, [91, 91', iV] can be expanded to a model of the conjunction φ
of the sentence asserting that "sort s3 is injected by h and h into each equivalence
class of 91 and 91', respectively" (where h is, for example, a binary function h(x, z),
x in the first sort, z e s3, and /z(x, •) maps s3 one-one into the equivalence class of
x in 91) and of the sentence which asserts that "either g0 is a bijection of 9I/£ onto
9Γ/F, or g and g' are injections of s3 into 5I/JE and 9Γ/£', respectively". Since if
has compactness and interpolation, then if satisfies Robinson's consistency, to
the effect that φ A φ has a model [23, 95', P,...] which is also a model of
Th ̂ [91, 91', JV] (that is, a model of Th^[9ί, 91', M]). In this model, we have that
95 £ 93' by the Cantor-Bernstein theorem, and 95 = <?% 95' Ξ ^ 9 Γ , thus con-
tradicting the isomorphism axiom for if, since K separates 91 and 91'.

Case 2. Each equivalence class of 91 and 9Γ has finitely many elements.
Then let n = 1, 2,... . Let τcM, κ'n be such that in 91 there are κn equivalence classes
with n elements and in 91' there are κ'n such classes. If κn is finite, then κn = κ'n
(since 91 = 91'). If κn is infinite, then ω can be injected into 9I/£ and into 9Γ/F.
Let [91, 91', AT] =<? [91, 91', M] be as above. Then [91, 91', ΛΓ| can be expanded to
a model of the sentence asserting that " / is an injection showing that there are
more (>) than | N | equivalence classes with n elements in 91, and/' does the same
for 91', or else g0 is a bijection showing that such classes are as many in 91 as in
91'". On the other hand, [91, 91', M] can be expanded to a model of the sentence
which asserts that "h and h! show that there are less (<) than \M\ equivalence
classes in 91 and 91' with n elements, or else g is a bijection showing that such
classes are as many in 91 as in 91'". Using Robinson's theorem as was done in Case
1, we exhibit a model [23, 23', P,...] of all these sentences together, and of
Th^[9I, 91', JV] as well so that © ^ 25' (since κn = κ'n for all n e ω), 91 = <? 25 and
91' = ̂  25', again contradicting 91 e K and 91' φ K.

Case 3. Neither Case 1, nor Case 2 occurs.
Then let 911 be the substructure of 9ί only containing the equivalence classes
having infinitely many elements, and let 9I2 be the substructure of 9ϊ containing
the equivalence classes with finitely many elements. Let 91Ί and 9Γ2 be similarly
defined with regard to 91'. Then 9IX = 9l'1? and 9I2 = 9Γ2 (by using standard
results of first-order model theory, as 91 = 91'); so, by the arguments given for
Cases 1 and 2, we see that 9^ = ^ 9IΊ and 9l2 = ^ 9Γ2. By FVP, we have that
[9l1? 9I2] =jr [9IΊ, 91'2]. Now consider structure TO = [9Ϊ1? 9ί2, 91,/, g\ where/
and g are the canonical embeddings of 91 γ and 9I2 respectively into 91. Let W be
similarly defined, using new symbols for /', g' and 91'. If 91 ψ <? 91' (absurdum
hypothesis), then [9I1? 9I2] and [9i;, 91'2] have expansions Wl and W with
Th^ 901 u Th^ W inconsistent. Hence, by Robinson's consistency, they are if-
inequivalent, thus contradicting the fact that [9I1? 9ί2] = ^ [9IΊ, 91'2]. Therefore,
91 and 91' must be if-equivalent. This, in turn, contradicts our initial absurdum
hypothesis according to which K separates 91 and 91'. D
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As actual examples of equivalence quantifiers, consider the Q^ (α > 0), which
are defined by Q% = {<A, E}\E is an equivalence relation on A with at least
ωα distinct equivalence classes}. See Feferman [1975]. We thus have

3.1.4 Theorem, (i) Jί?(βα) ^ ί?(Q*), whenever α > 0;

(ii) ΔJS?(βJ = Δif(ρα

E);
(iii) JS?(βα) and .Sf (Qα) ^ α t ; e recursively isomorphίc sets of valid sentences, the

same Hanf and same Lόwenheim numbers (the latter being equal to ωα),
and equal compactness spectrum;

(iv) interpolation fails for JSf(βα), ifcoa is regular.

Proof, (i) Immediate from Lemma 3.1.2.
(ii) Using choice functions, one sees that AJ?(Qξ) < Δif(Qα); on the other

hand, using the equivalence relation given by identity ( = ), one also sees that

(iii) Immediate from (ii), together with standard results of abstract model
theory; there is no problem for the Hanf number in this case, see Corollary
XVII.4.3.4 and Section 4.5 in the same Chapter.

(iv) for ωα regular, Δi?(Qα) does not obey interpolation (see Hutchinson
[1976b]). D

Thus each JS?(Q.) is closely related to i f (β α ) ; the latter logics are studied
extensively in Chapters IV and V.

3.2. Order Quantifiers

Let X = {<Y4, R}\R is a partial ordering relation}. Then Q is an order quantifier
iff its defining class is a subclass of X. One notable example of an order quantifier,
QCίω _ | ^ < > | < is a linear ordering of cofinality ω}, has been discussed in
detail in Chapter II, where it is proved that ^(Qcΐω) is compact, axiomatizable
and has Lόwenheim number equal to ω ^ From a general result due to Ebbinghaus
[1975b] one can infer that ££(Qcϊω) does not have the interpolation property
(Counterexample Π.7.1.3(c)). It is an open problem whether there exist extensions
of J£?(βcf ω) generated by a set of quantifiers and satisfying Robinson's consistency
theorem. Such extensions (if any) would have many syntactic and algebraic
properties in common with first-order logic.

The order quantifier QD gives rise to a logic having many properties in common
with ^ ( β O , where QD = {{A, < > | < is a dense linear ordering with a countable
dense subset}. As a matter of fact we have:

3.2.1 Theorem, (i) &(QD) is (ω, ω)-compact, axiomatizable and its Lόwenheim
number is ω1;

(ii) <^(QD) does not have the interpolation property.

Proof, (i) QDxy φ(x, y) iff {<x, y} | φ(x, y)} is a dense linear ordering and aa 5 "5 is
dense in the ordering φ(x, y)". Now refer to Section IV.4.

(ii) From Ebbinghaus [1975b]. D
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By contrast with QD, an order quantifier having many properties in common
with the quantifier / is R = {(A, < > | < has the order type of a regular cardinal}.
Note that Δj£?(βR) < A3>{R) < Δj^m I 1 (for the first inclusion, note that \A\ < \B\
iff there is a regular cardinal, namely \A\ + , and injections of | A \+ into B and of A
into an initial segment of | A \+ for the second inclusion, proceed as in Claim 1
of Theorem 1.2.2). Also, by saying that a discrete linear ordering with first element
has the order type of a regular cardinal, we can characterize <ω, < > in if (R).
Hence, the latter is not (ω, ω)-compact, not axiomatizable, and does not have the
weak Beth property (see Proposition 2.1.2). In addition, Proposition 2.1.3 and
Theorem 2.1.5 above can be applied to <£{R) as well.

3.2.2 Theorem, (i) IfV = L, then AS£{Ϊ) = A^(R) =

(ii) the fact that AJ?(R)φ A!£{T) is consistent, if "ZF + there are uncountably
many measurable cardinals" is consistent;

(iii) the fact that A<£(R) φ A<£mlλ is consistent, if ZF is consistent.

Proof. The argument for (i) is by the above discussion and by Theorem 2.1.4.
(ii) See Vaananen [1978, 3.1];

(iii) See Vaananen [1980b, Corollary 3.2.5 and the remark following it]. See

also Chapter XVII, passim. D

Our final example of an order quantifier is the well-order quantifier W, which
is defined by 91 N Wxy φ(x, y) iff {<*, y) e A2 |9I |= φ(x, y)} well-orders its field.
Clearly, we have that <ω, < > can be characterized by a sentence oϊ£f(W\ whence
J?(W) is not (ω, ω)-compact, not axiomatizable, and does not have the weak
Beth property. Theorem 2.1.5(i) can be applied to J?(W) with the same proof.

3.2.3 Theorem. Let & = ^(W). Then we have:

(i) The gόdelίzed set of valid sentences ofΊ£ is the complete W\ subset ofω;
(ii) the Lδwenheίm number of <£ is ω\

(iii) ΔJSP < ΔJίPω i ω i, and A5£ < Δif(/);
(iv) assuming that V = L, the Hanf number of Ί£ equals the Lowenheim number

of^ml1;
(v) the smallest logic $£'>:!£ having the Beth property is not A-closed;

(vi) the smallest logic ££" > <£ having the weak Beth property is not a sublogic

Proof (i) follows from Kotlarski [1978, p. 126]. In this connection, the reader
should also see Corollary XVII.4.3.7 of the present volume.

(ii) We extend the usual proof of the downward Lowenheim-Skolem theorem
for 5£ωω by witnessing also that -ι Wxyφ(x, y) with the help of an infinitely
descending chain of constants.

(iii) is immediate from (ii).
(iv) See Vaananen [1979b, p. 316].
(v) See Makowsky-Shelah [1979b, p. 222]. Note that, as a consequence, the

Beth property does not imply Craig interpolation.

Finally, for (vi) see Theorem XVΠ.4.1.3. D
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Let us conclude this subsection with a note on some general facts about binary
quantifiers. Assert that Q is binary iff β has the form Qx^i . . . xnyn ψ\{x\, j>i), ,
φn(xn9 yn). Krynicki-Lachlan-Vaananen [1984] have proven negative results con-
cerning binary quantifiers along the lines of the negative results about monadic
and equivalence quantifiers that were given in Section 3.1 above. For example,
binary quantifiers cannot count the dimension of a vector space in much the same
way as monadic quantifiers cannot count the number of equivalence classes of an
equivalence relation. Furthermore, there exists a ternary quantifier which is not
definable by using binary quantifiers only.

3.3. Other Quantifiers

In this subsection we briefly deal with other quantifiers occurring in the literature.
The reader is referred to Chapter IV for the "almost all" quantifier aa, as well as
for the Magidor-Malitz quantifiers. Other classes of quantifiers are considered in
Chapter III. Quantifiers arising in connection with infinitary languages are dealt
with in Part C. For second-order quantifiers see Chapters XII and XIII. Quantifiers
for enriched structures are studied in Chapter XV (but see also Section 4 below).

To introduce our next class of quantifiers we need the following:

3.3.1 Definition. A class K of structures is inductive iff it is closed under unions of
chains (with respect to the substructure relation c ) . For λ a cardinal, K is λ-
ίnductive iff K is closed under /l-unions, where 91 = {Jβ<Oί 2ί^(2ϊo — 21 I —> •) *s

a λ-union iff for every B c A(= [j Aβ) with |J3| < A, there is β < α such that
B^Aβ.

This notion clear, then we have

3.3.2 Theorem. IfK is an arbitrary class of structures of type τ, with K closed under
isomorphism, and if λ is an arbitrary cardinal, the following are equivalent:

(i) Both K and its complement K are λ-inductίve;
(ii) V91 G Str(τ) 39IO <Ξ 91, with \A0\ < λ such that V93, 9I 0 <= 93 <= 9ϊ implies

Proof See Makowsky [1975b, Theorem 2.16]. D

Following Makowsky [1975b], we call any class (or quantifier) Q, λ-securable
iff Q satisfies either of conditions (i) or (ii) in Theorem 3.3.2 above, ω-securable
classes are called continuous by Tharp [1974]. From the definition it follows that
3 and V are 2-securable, Qa is ωα+1-securable, W is α^-securable, Qc is never
A-securable. Moreover, Q° is ω2-securable if there is no Suslin tree (see Makowsky
[1975b]). We also have

3.3.3 Theorem. Let K be an arbitrary class of type τ, with K closed under iso-
morphism:

(i) K is n-securable, for some neω, iff both K and K can be defined by V3-
sentences of &ωω;
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(ii) K is ω-securable iff both K and K are inductive;
(iii) if K is ω-securable and has type τ' = {Ul9..., Um}, where each Ut is a

unary relation, then K is EC in <£t

ωω

(iv) for λ a regular cardinal, let J? = &(Q?)iel9 where each Qι is λ-securable;
then, if λ < ω, the Lδwenheim number of <£ is ω; if λ > ω, then each con-
sistent sentence of S£ has a model of cardinality < λ; in particular, the
Lδwenheim number of J£{W) is ω;

(v) J£?ωiω is the smallest A-closed logic containing all the ω-securable quantifiers.

Proof (i) See Makowsky [1975b, Corollary 3.11]. Observe here that Tharp [1973]
proved that if K is n-securable, then K is EC in jSfωω.

(ii) See Makowsky [1975b, Theorem 2.14]; but also see Miller [1979].
(iii) See Tharp [1974, Theorem 5].
(iv) See Tharp [1974, Theorem 7], for the case λ = ω; see Makowsky [1975b,

Theorem 2.1], however, for the general case. Recall that W is an αvsecurable
quantifier.

(v) See Makowsky [1975b, Corollary 5.6]. D

We now deal with quantifiers which are used to express the fact that "there
exist large sets of indiscernibles". Given a structure 91 e Str(τ), let q!

m = {B c A \B
contains an infinite set of order indiscernibles in 31}, and let q^ = {B c A | B con-
tains arbitrarily large finite sequences of indiscernibles in 91}. The resulting logics,
j£?(Q7) and ££(QF) are syntactically the same as, for example, ^(QJ. Moreover,
their semantics is obtained by letting, for instance,

911= Q*x φ(x) iff {XGA\SΆ\= φ(x)} e q^.

Notice the dependence of Q1 on the whole of 91, rather than on its universe only.
Steinhorn [1980] has a number of categoricity and quantifier elimination results
on Q1 and QF (see also [1981]). He also proves that i f (β F ) does not have the
interpolation property.

Thomason [1966] introduced a logic i? q with free variables for quantifiers.
The idea here was to examine those properties which are common to all generalized
quantifiers. If Q is any such variable, then Qxx .. .xnφγ{x^),..., φn(xn) is a
formula of i? β . If φ(... Q) is a sentence of i? e , then a model of φ(... Q) consists
of an ordinary structure 90Ϊ together with a quantifier (in the sense of Mostowski)
Q which serves as an interpretation of Q. Sentence ψ(... Q) is valid in Jίfq iff (SOΪ, Q)
satisfies ψ(... Q) for all structures SOΪ and all interpretations Q. Yasuhara [1969]
wrote down a sentence characterizing the natural numbers in jS?β. Therefore, jS?β

is neither (ω, ω)-compact, nor axiomatizable. The sets of valid sentences of j£?(/)
and J5fg are recursively isomorphic.

Now let JS?Q be just as S£q9 but with quantifier variables to be interpreted over
binary quantifiers. Then, in Vaananen [1980a], it is proved that JS?Q and J^(βH)
have recursively isomorphic sets of valid sentences. Roughly speaking, S£q is to
Se(I) as <£Q is to
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3.4. Bibliographical Notes

Theorem 3.1.1 is due to Caicedo [1979]. Using the Feferman-Vaught property,
Makowsky [1978c] proves a stronger form of Theorems 3.1.3 and 3.1.1 for arbitrary
monadic and equivalence quantifiers. The equivalence quantifiers Qξ were first
introduced by Feferman [1975], after Keisler's counterexample to Craig's inter-
polation in jSf(Q1). The quantifier Q c f ω is studied in Shelah [1975d]. For other
compact quantifiers, see Rubin-Shelah [1980], where it is proved that compactness
does not imply axiomatizability (if V = L). For the quantifier R, see Vaananen
[1978, 1979b, 1980b]. For further information about QΌ see Makowsky-Shelah-
Stavi [1976]. For free quantifier variables and their associated logics, see
Thomason-Randolph Johnson Jr. [1969], Yasuhara [1966b], Bell-Slomson
[1969], Vaananen [1979d, 1980a], and Anapolitanos-Vaananen [1981].

4. Quantifiers from Robinson Equivalence
Relations

Although compactness and interpolation are often regarded as desirable properties
of logics, in general quantifiers do not take care of such properties. For example,
none of the logics described in the preceding sections has the Robinson
property. A logic i ? = JS?(βf)ie/ has compactness and interpolation iff i f has the
Robinson property (see Chapter XIX): the latter only depends on =#. Thus, we
may naturally ask which equivalence relations ~ with the Robinson property
(for short, Robinson equivalence relations) do generate a nice logic i f = J^XβOϊe/
Recall that ~ is bounded iff for every type τ there is κτ such that the number of
equivalence classes of ~ of type τ is κτ. ~ is preserved under reduct iff 91 ~ 93
implies 91 \τ ~ 93 \ τ, for each, τ c τ^ = τ β . Preservation under renaming is
defined analogously. A quantifier Q belongs to hull(~) iff =&{Q) is coarser
than ~ (that is, 91 ~ 93 implies 91 = ̂ ( Q ) 93). We say that ~ is separable by
quantifiers iff whenever 91, 93 are structures of type τ and not-9l ~ 93 there is
τ' c τ and Q e hull(~) of type τ' such that 91 {τ' e Q and 93 {τ' φ Q (intuitively,
ρ separates 9ί and 93). We finally let j£f(~) = J2>{β|βehull(~)}. These ideas
clear, we now recall the following results from Chapter XIX:

Theorem. Let ~ be an arbitrary bounded Robinson equivalence relation on the
class of all structures and assume that ~ is preserved under reduct and renaming,
is coarser than ^ and finer than = . Then, adopting the above notation we have:

(i) JS?(~) is the strongest logic i f such that =# is coarser than ~
(ii) if, in addition, ~ is separable by quantifiers, then i f ( ^ ) is the unique (up

to equivalence) logic i f such that =•# = ~ . Furthermore, y{~) is compact
and has the Craig interpolation property. D
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Corollary. The following hold up to equivalence:

(i) JS?ωω is the unique logic <£ such that =^> = =
(ii) topologίcal logic S£t is the unique logic j£? such that =# — =* holds, where

=ι is topological ω-partial homeomorphism; the open and the interior
quantifiers and their n-dimensional versions are in hull(^ r);

(iii) the same as the first part of (ii) for n-dimensional monotone logic (n =
1,2,3,...). D

Note that in two-dimensional monotone logic we have a model-theoretical
framework for such notions as uniform continuity and metric completeness (see
Robinson [1973, p. 511]). For topological and monotone logic see Chapter XV,
and Flum-Ziegler [1980]. The equivalence "Robinson Consistency = Compact-
ness + Craig Interpolation" was first proved in Mundici [1982b] (and was
announced in Mundici [1979a, b]) and, independently, in Makowsky-Shelah
[1983]. The above theorem, as well as (i) of the corollary were first proven in
Mundici [1982a]. Parts (ii) and (iii) of the corollary can be found in Mundici
[1982c, Hand 198 ?b].

By the above theorem, any separable Robinson equivalence relation ~
canonically generates a nice set {Q'}^/ of quantifiers. In order to eliminate re-
dundancy, we may restrict attention to subsets of hull(~) of minimal cardinality
but which are still capable of generating J£?(~). Once JS?(~) is written out as
JSf {QIQ e B}, for B any such minimal set, the quantifiers in B are enough to give a
full account of all the syntactic as well as algebraic properties of jSf (~).

In the absence of a Kreisel-like program for quantifiers, the above theorem
and corollary may also give some hints in the search of (sets of) quantifiers such
as B. One might, for instance, investigate whether letting Q range over the ele-
mentary classes of Δif(Q c f ω), one can encounter an element of hull(~), for ~ a
bounded separable Robinson equivalence relation Φ Ξ . A s a first step in this
direction, one would check whether the compact logic J^(β) obeys interpolation.
The progression from the open and the interior quantifiers, to their multi-
dimensional versions, and from the latter to topological logic jS?t shows that this
program is feasible. Incidentally, the role played by restricted second-order
quantifiers for <£t shows that the usual first-order quantifiers do not have the sole
right of producing good syntaxes (see also Chapters XII and XV in this respect).

In Mundici [1982e], the author tried to obtain Robinson equivalence relations
and their associated quantifiers as a byproduct of more fundamental objects, such
as (suitably generalized) back-and-forth approximations of isomorphism. Indeed,
this can be done for = and ='. In addition, back-and-forth techniques already
pervade (abstract) model theory.






