
Chapter V

Transfer Theorems and
Their Applications to Logics

by J. H. SCHMERL

This chapter is primarily concerned with the general problem of transferring
results about one logic, say <^{Qγ\ to another logic, say J?(Qa). A typical such
property is ^-compactness. It is known from Chapter IV that i f ( β i ) is Ko-
compact. Under certain set-theoretic assumptions on α discussed in this chapter, the
logic £?(Qi) transfers to ^(QJ. In such cases we can then conclude that <&(Qa)
is also K0-compact. The logics that we consider in this chapter are variants and
generalizations of if(βi)> a n d t n e properties of these logics which we are most
concerned with are compactness and recursive enumerability for validity.

1. The Notions of Transfer and Reduction

After presenting the basic definitions that allow useful model-theoretic comparisons
between logics, we present applications to compactness and recursive enumerability
of logics and to two-cardinal questions.

1.1. Transfer

The substantive theme of this chapter is the notion of transfer and we will begin

our explorations with

1.1.1 Definition. Suppose Jίf 0 and i?\ are two logics which have exactly the same

syntax but differ in their semantics. Then i f 0 transfers to ifΊ iff every sentence

which is satisfiable relative to <£0 is also satisfiable relative to ί£ v In symbols, we

write J£?o -• J2\.

Transfer becomes quite fruitful when there is mutual transfer, when both
if o -• i f i and <^

>

1-^ ^ 0 hold. For, in this situation i f 0 and 5£\ have exactly the
same valid sentences, so that a syntactic property known to hold for J£o will also
hold for i f x. For example, if <£0 has the Beth property, then so does i f x. In this
chapter we will generally be concerned with two properties which are especially
amenable to verification using the methods of transfer. These properties are
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compactness and, to a lesser degree, recursive enumerability for validity. To be sure,
if there is mutual transfer $£0 -> <£ x and if\ -• J5f0

 a n d if either one of these logics
is compact or recursively enumerable for validity, then so is the other. However, it
often turns out that the proof of a specific transfer theorem yields a sort of self-
transfer theorem of the form S£ -> if. And while the transfer i f -> !£ is evidently
trivial, one nevertheless often obtains a stronger form having as a consequence
the compactness and the recursive enumerability for validity of i f This is the
approach that Fuhrken and Vaught used in the original proofs of the compactness
and the recursive enumerability for validity of i f ( d ) .

To see how compactness typically obtains, we need a strengthening of the
notion of transfer. For K an infinite cardinal, we say that i f 0 -• &Ί ^-compactly iff
whenever a set of at most K sentences is finitely satisfiable relative to j£?0, then it is
satisfiable relative to <ev Fuhrken and Vaught observed that ^(Qa+1) -• i f ( β i )
X0-compactly. In particular, i f ( β i ) -* i f (61) K 0 - c o m P a c t ly> which is just another
way of saying that ^{Qx) is X0-compact.

For the sake of completeness, we will mention a further generalization of
transfer at this point. For each j e J, let if} be a logic with the same syntax as ££.
Then {^j'.jeJ} -> & iff each sentence which is satisfiable relative to each 5£)
is also satisfiable relative to S£. Similarly, {5£'j: j eJ} -> !£ ^-compactly iff when-
ever a set of at most K sentences is finitely satisfiable relative to each 5£ p then it
is satisfiable relative to !£.

1.2. Reduction

Although it was noted at the outset of this Section that the notation of transfer
provides the substantive theme of the present chapter, there is, nevertheless, a
methodological theme appearing in this chapter: Reduction. This notion of reduc-
tion is of considerable importance in our exposition and the basic idea underlying it
is to associate (usually effectively) with each sentence in some logic 5£ a correspond-
ing first-order sentence, and then reduce the study of the model theory of i f to the
study of those models of some first-order theory satisfying some additional
property.

Much of what we do in this chapter will concern the logic ^(Q) with various
cardinality interpretations, which have already been discussed in Sections II.2.2 and
ΠI.2.4, and (for K = K^, in Section IV.3. For any infinite cardinal fc, if we are
defining the ̂ -interpretation of ££{(£), then the key clause in the definition is that

Sίί^Qxφ(x) iff \{aeA:SΆ\=φ(ά)}\ > K.

We will also adhere to the convention that if 91 is a structure appropriate for J?(Q)
with the ̂ -interpretation, then \A\ > κ; that is, Qx(x = x) is a valid sentence. If
K = Kα, then <$f(Qa) simply denotes ^(Q) with the ̂ -interpretation.

Fuhrken [1964] introduced the reduction of these logics to cardinal-like
structures. We will consider the Fuhrken reduction in some detail, since it is quite
typical of other reductions. Finally, typical applications will be given in Section 1.3.
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1.2.1 Definition. A linearly ordered set (A, < ) is κ-like iff (A, < ) N Vx —i Qy(y < x)
under the ^-interpretation. A structure 91 = (A, < , . . . ) is κ-like iff (A, < ) is κ-like.
91 is cardinal-like iff it is jc-like for some K. We let K(κ) denote the class of fc-like
structures.

Examples of /c-like linearly ordered sets are well-ordered sets with order type /c.
If K is uncountable, then there are linearly ordered sets which are /c-like but not
well-ordered. On the other hand, (ω, < ) is (up to order-isomorphism) the only
K0-like linearly ordered set.

To begin the Fuhrken reduction, let us fix a vocabulary τ which includes neither
the binary relation symbol < nor the ternary relation symbol R. Consider the
first-order sentence σ which is the conjunction of the universal closures of the
following three formulas:

R(xl9 y, z) A R(x2,y, z)-*xγ = x2,

R(x, yu z) A R(x, y2,z)^>y1 = y2,

x2 < x1 A R(xu yί9 z) -+ 3y2R(x2, y2, z).

The intention here is that σ should express the fact that as z varies, R encodes a set
of bijections x ι-> y whose domains are (possibly improper) initial segments.

With each if(Q)(τ)-formula φ we will associate a first-order (τ u {R, <})-
formula φ* having the same free variables as φ by the following inductive procedure:

0* = φ, if φ is atomic,

(Φl Λ φ2)* = φt A φl,

(3yφ)* = 3yφ\

(Qyφ)* = 3z Vx 3y(R(x, y, z) A </>*).

We will also associate with each J^(Q)(τ)-formula φ a first-order τ u {#, <}-
sentence σφ by the following inductive procedure:

σφ = σ, if φ is atomic,

σ3yφ = σφ>

σQyΦ = σφ A\/X 3Z \/y[φ*(x, y) <-• 3xR(x, y, z)].
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The following two lemmas give the essential properties of the Fuhrken reduc-
tion.

1.2.2 Lemma.//(91, R, <)ίsaκ-like(τ u {R, <})-structureandφ(x)isan<e(Q)(τ)-

formula, then

(91, R,<)\=σφ^ Vx(φ(3c) ~ φ*(x))

in the κ-interpretation. D

1.2.3 Lemma. J/9I is a τ-structure with \ τ \ < K = | A \, then 91 can be expanded to a
κ-like structure (91, R, <) such that for every &(Q) (τ)-formula φ9 (91, R, <) 1= σφ. D

The proof of Lemma 1.2.2 can be obtained by a rather routine induction on
formulas. In Lemma 1.2.3, the expansion of 91 is done in the following manner.
First, let < be any well-ordering of A which has order type K, and let dξ be the £-th
element of A in this well-ordering. By the cardinality conditions imposed
on σ and A, there are exactly K subsets of A which are <£(β)-definable. Let these be
{Dξ:ξ < K}, and for each ξ < K let fξ: Dξ -> A be a one-one function onto an
initial segment of A (which may, of course, be all of A). Now let R ^ A3 be such that
R(a, b, c) holds iff there is ξ < K such that c = dξ,beDξ and a = fξ(b). It is now
clear that (91, R, < ) is a/c-like model of σ. The problem of showing that (91, R, <)\=
σφ involves merely another rather routine induction on formulas.

1J. Applications of Reduction

In this subsection we will describe some applications of the specific reduction that
was discussed in Subsection 1.2. We begin with the definition of transfer for
cardinal-like models which is in complete analogy with the definitions of transfer
given in Subsection 1.1.

1.3.1 Definition. Let A, μ and Kj, for; e J, be infinite cardinals. Then {κy.j eJ}-+λ
μ-compactly iff every set of at most μ first-order sentences, each finite subset of
which has a Ky-like model for each j e J, has a A-like model.

We remark that by comparison with the corresponding definitions of transfer
given in Subsection 1.1, the meaning of each of K —• A, K —• λ μ-compactly, and
{Kj\j e J} -» λ is obvious.

1.3.2 Proposition. The following two statements are equivalent:

(1) {&(Qaj):jeJ} - n<2«) μ-compactly;
(2) {Kα.:jeJ} -• Nα μ-compactly.

Proof We will first show that (1) implies (2). Actually, this is the trivial direction.
Let V be a set of at most μ first-order sentences each finite subset of which has an
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Kαj-like model, for each; e J. Consider the set T u {Vx ~iQy(y < x)} u {"< is a
linear order"}, and apply (1) to it.

We will now show that (2) implies (1). Clearly, if (2) holds, then we can assume
μ < Kα. Let T be a set of at most μ L(Q)-sentences each finite subset of which has a
model in each of the Kαj-interpretations. By Lemma 1.2.3, for each finite T'o c T
and each; e J, we have that T'o KJ {σφ: φ e T'o} has an Xαj-like model and by Lemma
1.2.2, thismodelisalsoamodel of {(/>*: φe 7^}. By (2), we thus have that {(/>*: φe T)
u {σφ: φe T'} has an Xα-like model which, by Lemma 1.2.2, is also a model of

r. D

The preceding proposition and its proof remain valid even when both references
to the phrase "μ-compactly" are deleted.

1.3.3 Definition. Let K be a class of structures and μ an infinite cardinal. Then K
is μ-compact iff any set of not more than μ first-order sentences which is finitely
satisfiable in K is also satisfiable in K. Moreover, K is recursively enumerable for
validity iff for any recursive vocabulary τ the set of all first-order sentences valid in
every τ-structure in K is recursively enumerable.

1.3.4 Corollary. The following are equivalent:

(1) i^(βα) is μ-compact;
(2) X(Kα) is μ-compact.

Proof The proof for this result follows immediately from Proposition 1.3.2 upon
noting the following obvious equivalences: i f (βα) is /i-compact if
μ-compactly; K(Kα) is μ-compact iff Nα -• Kα μ-compactly. D

It should be recognized that the Fuhrken reduction given in Subsection 1.2 is
effective. That is to say, if τ is a recursive vocabulary, then both the functions
φ\-^φ* and σ i—• σφ are recursive. This yields the following equivalence involving
the recursive enumerability for validity of i f (β) under the cardinal interpretations.

1.3.5 Corollary. The following are equivalent:

(1) i f(6 α ) is recursively enumerable for validity;
(2) X(Kα) is recursively enumerable for validity.

Proof That (1) implies (2) is trivial. For the argument that (2) implies (1), we merely
note that any i f (Q)-sentence φ has a model in the ^-interpretation just in case
σφ A φ* has a c-like model. D

1.4. Two-Cardinal Models

In Subsection 1.2 we saw how to reduce 5£(Q) to cardinal-like structures. A further
reduction to two-cardinal structures will be described in this subsection. The
symbol U will always denote a unary relation symbol.
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1.4.1 Definition. A structure 91 is a (K, A)-structure if \A\ = κ and | l / | = λ.
Moreover, if K > λ, then 91 is a two-cardinal structure, and if K = λ+ > Ko>then 91
is a #αp-l two-cardinal structure. We will let K(κ, λ) denote the class of (K, λ)-
structures.

1.4.2 Definition. (κl9 λx) -• (κ2, λ2) iff every first-order sentence which has a
(κl9 /IJ-model also has a (ιc2, A2)-model.

We will leave the details of the remainder of this subsection as an easy, and yet
instructive, exercise for the reader.

1.4.3 Proposition. There is a first-order sentence σ in the vocabulary {<, U,S}9

where S is a ternary relation symbol, such that

(1) ϊ/911= σ is κ-like, then for some λ,κ = λ+ and 91 is a (A+, λ)-structure;

(2) ifSΆ \= σis a two-cardinal (/c, λ)-structure, then K = λ+ and 91 is κ-like;

(3) if τ is a vocabulary not including either < or U or 5, then
(i) any λ+-like (τ u { < })-structure can be expanded to a model ofσ, and

(ii) any gap-1 two-cardinal (τ u {U})-structure can be expanded to a model
ofσ. Ώ

Obvious consequences of Proposition 1.4.3 equate transfer for gap-1 two-
cardinal models with the corresponding transfer for successor cardinal-like models.
This immediately yields that for cardinals K and μ, X(/c+, k) is μ-compact iff K(κ+)
is μ-compact. Similarly, K(κ+, K) is recursively enumerable for validity iff K(κ+) is
recursively enumerable for validity.

2. The Classical Transfer Theorems

This section contains what might be referred to as the classical transfer theorems.
Included under this rubric is the earliest of the two-cardinal theorems—the
fundamental one of Vaught. Also included are those results which are directly
inspired by Vaught's result, namely the transfer theorems of Keisler, Chang,
Fuhrken and R. B. Jensen. The reduction of the previous section will yield in-
formation about the logics S£(Q) under various cardinality interpretations. Some
applications and counterexamples are also included in this section. We will
conclude this section with a discussion of gap-π and multi-cardinal transfer
theorems.

2.7. The Gap-1 Transfer Theorems

The earliest of the gap-1 transfer theorems is the following one. This result, first
proven by Vaught in Morley-Vaught [1962], has already been discussed in Chapters
II and IV.
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2.1.1 Theorem. For any cardinal K > N o , (κ + , K) -* (K1? Ko) K0-compactly. D

A consequence of Theorem 2.1.1 is that X(X l 5 Ko) is K0-compact. Moreover,
Vaught's proof of Theorem 2.1.1 shows that K(ϋί9 Ko) is recursively enumerable
for validity. Thus, the following corollary of Fuhrken [1964] and Vaught [1964]
follows.

2.1.2 Corollary, i f ( β i ) is compact and recursively enumerable for validity. D

Keisler's proof of Theorem 2.1.1 in [1966b] also yields Corollary 2.1.2. In fact,
his proof results in an elegant and comprehensible axiomatization for the class

i). Corollary 1.4.6 suggests that there should also be an axiomatization for

l 5 Ko). Such an axiomatization, although less elegant than that for A^Ki), was
indeed obtained by Keisler [1966a].

Theorem 2.1.1 is equivalent to κ+ -• Kx K0-compactly. Fuhrken [1965]
noticed that the proof of Theorem 2.1.1 can be used to prove the following general-
ization.

2.1.3 Theorem. For any regular K > Xo, K —> Kj #0-compactly. D

Yet another proof of Theorem 2.1.1 was given by Shelah [1978] using the
method of identities. This method will be discussed in the next section.

The problem of the "converse" transfer of Theorem 2.1.1 was attacked by
Chang [1965a] with notable partial success.

2.1.4 Theorem. Assume GCH. For any regular cardinal K, (K l 9 Ko) -• (/c+, K)
κ-compactly. D

One of the byproducts of Theorem 2.1.4—or of any other instance of (K1? Ko) -•
(K α + 1 ? Kα)—is that there is then a completeness theorem for i f (Q α + x) which is, of
course, the same completeness theorem as the one for J^(Qi) that is given in
Section IV.3.

2.1.5 Corollary. Assume GCH. //Kα is regular, then i f ( β α + 1 ) is tta-compact and
recursively enumerable for validity. D

In order to eliminate the requirement that K be regular in the statement of
Theorem 2.1.4, it is natural to replace the use of saturated models by special models.
In fact, R. B. Jensen [1972] did just that, but only with an additional set-theoretic
assumption which is a consequence of V = L.

2.1.6 Theorem. Assume V = L. For any K > Ko, (N l 9 Ko) -> (/c+> κ) ^-compactly.
D

2.1.7 Corollary. Assume V = L. For any α, £?(Qa+1) is ^-compact and recursively

enumerable for validity. D
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We will end this subsection with an application to combinatorics. Shelah

[1976a] proved the following result.

2.1.8 Theorem. There is a linear order of power Xx whose square can be covered by
countably many chains. D

We present the following simple exercise for the reader. Write down a first-order
sentence σ with the property that for any cardinals K > λ > Ko, σ has a (K, λ)-
model iff there is a linear order of power K whose square can be covered by λ chains.
This done, the following, for example, becomes an immediate consequence.

2.1.9 Corollary. Assume V = L. For any κ9 there is a linear order of power κ+ whose

square can be covered by κ+ chains. D

2.2. Trees: Some Applications

In this subsection an application and a counterexample, both of which are related
to the previous subsection, will be presented. And both require special Aronszajn
trees. Since trees will be useful at later points in this chapter, we will devote the
first few paragraphs of the present discussion to the requisite definitions.

A tree is a partially ordered set (A, < ) such that the set of predecessors a of any
element a e A is linearly ordered. Contrary to usual practice in set theory, we do not
require that a tree be well-founded. A well-founded tree (A, <) has associated with
it a rank function rk, where rk(α) is the ordinal of the order type of a. In the non-
well-founded case there are no such intrinsic rank functions. However, we will
overcome this deficiency by introducing ranked trees (A, <, ^ ) , where =^ is a
quasi-order (that is, it is transitive, reflexive, and connected, although not necessarily
anti-symmetric) on A such that (A, < ) is a tree and (A, <, < ) satisfies the following
two sentences :

x < y -• x ^y A —\y =^ x,

x =^ y -• 3z(z <yΛx^zΛz^x).

A well-founded tree (A, < ) has a unique expansion to a ranked tree; and the rank
order ^ is defined so that a ^ b iff rk(a) < rk(fc).

In order to make some definitions concerning ranked trees, we let (A, <, =Q be
an arbitrary ranked tree. For a regular cardinal K, we say that (A, <, = )̂ is a κ-tree
\ϊ\A\ = K and, for every a e A. \ {b e A: b =^ a} | < K. A branch B of (A, <, =Q is a
maximal linearly ordered (by < ) subset of A which has elements of arbitrarily high
rank in the sense that for any aeA there is beB such that a < b. (A, <, < ) is an
Aronszajn κ-tree if it is a κ-tree which has no branches. At the other extreme, a
K-tree {A, <, = )̂ is a Kurepa κ-tree if it has at least κ+ branches. Suppose, now, that
(A, <, = )̂ is a λ+-tree and that there is a function / : A -• λ such that whenever
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x < y are elements of A, then f(x) Φ f(y). Then (A, <, =Q is an Aronszajn Λ+-tree.
A λ+-tree for which such a function exists is a special Aronszajn Λ,+-tree.

The proof of the following result is left as an easy exercise for the reader.

2.2.1 Proposition. There is a sentence σ of S£(Q) such that for any regular cardinal K
the following are equivalent:

(1) there is a special Aronszajn κ-tree;
(2) there is a well-founded special Aronszajn κ-tree
(3) there is a model for σ in the K-interpretation. D

The existence of an Aronszajn K^tree was first established by Aronszajn. His
construction actually produced a well-founded special Aronszajn fr^-tree. The
construction is well-known and can be found, for example, in Jech [1978].

2.2.2 Theorem. There exists a special Aronszajn tf^tree.

Later—although still prior to Chang's two-cardinal theorem—Specker [1949]
proved the existence of special Aronszajn κ>trees, for some cardinals K > Xx.
Assuming GCH, we can arrive at the same conclusion by use of Theorem 2.1.4.

2.2.3 Corollary. (1) Assume GCH. Ifκ is regular, then there is a special Aronszajn
κ+-tree;

(2) Assume V = L. For any K, there is a special Aronszajn κ+-tree. D

Special Aronszajn trees can be used to show the failure of two-cardinal transfer,
or—to put it another way—the necessity of GCH in Chang's theorem (2.1.4).
Mitchell [1972] proved the following consistency result concerning the non-
existence of special Aronszajn trees. A different proof using iterated perfect
set forcing, was developed by Baumgartner and Laver [1979].

2.2.4 Theorem. //Con(ZFC + "there is a Mahlo cardinal"), then Con(ZFC +

" there is no special Aronszajn K2" ί r^") Π

2.2.5 Corollary. //Con(ZFC + "there is a Mahlo cardinal"), then Con(ZFC +

2 " ) . D

Some further results along these lines, results which use generalizations of
special Aronszajn trees, can be found in Schmerl [1974].

We will conclude this subsection with a result indicating that V = L cannot be
eliminated from the hypothesis of Jensen's theorem (2.1.6) unless there does not
exist a certain kind of very large cardinal. This proof of Ben-David [1978a] and
Shelah also makes use of trees.
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2.2.6 Theorem. //Con(ZFC + GCH + " there is a strongly compact cardinal"),

then Con(ZFC + GCH + " ^ -r> K ω + Γ) •

2.3. Gap-2 Transfer

The gap-1 transfer theorems of Section 2.1 suggest the possibility of "gap-2 transfer
theorems", that is, theorems of the sort (κ++, K) -• (λ++, λ). Rather simple
versions need not be true. For example, if the continuum hypothesis fails and yet
2K = κ+, then (X2, Ko) -» (κ+ + , K). Even the GCH is not a sufficient hypothesis,
as we shall now see.

From the previous subsection recall the notion of a Kurepa c-tree. The following
straightforward proposition relates Kurepa trees with gap-2 models.

2.3.1 Proposition. There is a sentence σ such that, for any regular cardinal K, the
following are equivalent:

(1) there is a Kurepa κ-tree;
(2) there is a well-founded Kurepa κ-tree;
(3) there is a(κ++, κ)-model of a. D

This result can be used to find examples of failure of gap-2 transfer. This is
exactly what was done by Silver [1971b] where the following is proven.

2.3.2 Theorem. //Con(ZFC + "there is an inaccessible cardinal"), then Con(ZFC
+ GCH + "there is a Kurepa ^2~

tree but no Kurepa W^-tree"). D

2.3.3 Corollary. //Con(ZFC + "there is an inaccessible cardinal"), then Con(ZFC

In Theorem 2.3.2 it would not be sufficient to assume the consistency of just
ZFC, for Solovay has shown that if there are no Kurepa κ>trees, then κ+ is in-
accessible in the constructible universe L. A proof of this result can be found in
Devlin [1973a]. In particular, if V = L, then for every regular K there exists a
Kurepa /c-tree. This suggests the truth of the gap-2 transfer theorem assuming that
V — L. Indeed this was proven by R. B. Jensen. A proof of this can also be found in
Devlin [1973a].

2.3.4 Theorem. If V = L, then (κ++, K) -> (λ++, λ) λ-compactly, for any infinite
cardinals K and λ. ϋ

The proof of Theorem 2.3.4 is quite difficult, using much of the intricate
machinery of the fine structure of L. A simple proof by Burgess [1978a] yields just
the consistency of gap-2 transfer relative to ZFC. A reduction of the type in Section 1
yields that V = L implies, for example, that &(Ql9 Q2) is K0-compact. The proof of
Theorem 2.3.4 also shows that V = L implies that JS?(βl5 Q2) is recursively
enumerable for validity.
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2.4, Gap-n and Multi-Cardinal Theorems

In order to generalize the gap-2 transfer of the previous subsection to gap-n, it will
be useful to have the iterated successor function. For cardinal λ and ordinal α > 0,
let N0(λ) = λ and Nα(λ) = supftK/λ))4": β < α}. A gap-n structure is an (Kπ(λ), λ)-
structure, for some 1 We will use Ul9 U2, l / 3 , . . . to denote unary relations.

2.4.1 Definition. A structure 21 is a (τc0, fc l 5 . . . , /cM)-structure if \A | = /c0, | [/f | = κt

for Ϊ = 1,2,..., n and (for the sake of orderliness), κ 0 > κt > > κn.

(κθ9κί9 ...,/cn)->(A 0, λί9..., An)

iff every sentence which has a (κ 0, κ l 5 . . . , K J-model also has a (λ0, λ l 5 . . . , Λ,π)-
model.

There are other notions of transfer for multi-cardinal models which are
analogues of those in Definition 1.3.1.

Every gap-n theorem yields an ostensibly stronger multicardinal theorem. This
is a consequence of the following observation which the reader should be able to
prove.

2.4.2 Proposition. For each 1 < n < ω and each first-order sentence σ, there is a
sentence σ' such that, for each infinite cardinal K, the following are equivalent:

(1) σ has an (Kπ(/c), κ)-model;
(2) σ' has an (Kn(κ), Kπ_ x(κ\ . . . , κ+, κ)-model. D

The gap-2 theorem (2.3.4) has been extended by Jensen using techniques which
are of such extreme difficulty that to date the proof remains unpublished, although
it has been confirmed by rumor.

2.4.3 Theorem. Assume V = L. For any n < ω and any infinite cardinals K and

λ, (Kπ(ιc), K) -* (KΛ(λ), λ) λ-compactly.

From Proposition 2.2.3 we can quite easily obtain the Kα-compactness of the
logic i f ( β α + 1 , βα+2> "-> Q*+n\ assuming V = L. The proof of Theorem 2.4.3
also shows that V = L implies that i?(βi , β2> -> Qn) i s recursively enumerable
for validity.

At this point it is interesting to take note of the Lachlan multi-cardinal theorem
for stable theories. The original proof is in Lachlan [1973] and a later, more simple
proof can be found in Baldwin [1975].

2.4.4 Theorem. Let T be a stable first-order theory which has a (κ0, κu . . . , κn)-

model, where κ0 > κγ > > κn. Then T has a (λθ9λl9...9 λn)-model whenever

λ0 >λx > ••• >λn.

Some multi-cardinal theorems have applications to the calculations of Hanf
numbers. This will be discussed at the end of Section 3.3.
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3. Two-Cardinal Theorems and the
Method of Identities

This section will examine a powerful approach to analyzing two-cardinal transfer
and two-cardinal compactness. These developments will, of course, have important
implications for the logics 5£(Q) and for the various cardinal interpretations via
Proposition 1.3.2.

In its simplest form, this method is the familiar one of employing indiscernibles
as generators in such a way that throughout a very tight control is maintained over
the generated model. For example, subsequent to the original proof of Vaught's
gap-ω theorem in Vaught [1965a], a result that is here formulated as Corollary
3.3.7, Keisler and Morley used indiscernibles obtained via the Erdόs-Rado theorem
(see Example 3.1.2 below) to give an alternate and more simple proof of that result.
Generators which are only partially indiscernible can be used with nearly the same
resulting tight control. Moreover, there is an added flexibility that guarantees that
the distinguished subset and the model itself have the desired cardinality. It will
be seen that identities are used as a sort of local description of the partition of the
set of all finite subsets of a set.

3.1. Identities

We will begin this subsection with the definition of an identity and some rather
closely related notions.

3.1.1 Definition. An identity I is an equivalence relation on [ D ] < ω , where D is a
finite set, such that if X, Ye [ D ] < ω and XIY, then \X\ = | Y\. The set D is the
domain of /, and \D\is the length of /.

In general, we will not distinguish between equivalent identities. Two identities
Ix and 12 are equivalent if there is a bijection α: Dί -> D 2, where Dx and D2 are
domains of/: and / 2, respectively, such that whenever X, Ye [I>i]< ω, then XIXY
iff α[X]/2α[Y]. Thus, for example, we will consider there to be only countably
many distinct, that is, inequivalent, identities. An identity Jx is called a subidentity of
12 if there is an injection α: Dί -• D2 from the domain of/x to the domain of I2 such
that whenever X, Ye [ D 1 ] < ω , then XIXΎ implies α[X]/2α[Y].

Suppose that / : \_A~\<ω -> B is a partition of [Λ]< ω, and suppose also that
D e [v4] < ω . Then/induces the identity / with domain D if, whenever X,Ye [D] < ω ,
then XIY iff both f{X) = /(Y) and | X \ = \ Y |. The set of identities which are sub-
identities of those induced by / is denoted by ./(/). For infinite cardinals K > λ,
let J(κ, λ) be the set of all identities / which are in J'(f) whenever /: [K] < ω -> λ.

There is an immediate simple observation to be made regarding J(κ, λ): These
sets are monotone in K and A. Specifically, if /cx > κ2 > λ2 > λu then </(/c2, λ2) c
/(κ 1 ? λx). The further apart K and λ happen to be the larger will be J{κ, λ), and the
closer together they are, the smaller will be J(κ, λ). Thus, J(κ, K) is minimal.
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In fact, for every /c, the set J{κ, K) consists merely of the trivial identities. Conversely,
whenever K > λ, then J(κ, λ) contains some nontrivial identity, the simplest one
being the identity / with domain 2 in which {0} and {1} are equivalent.

The previous example will be generalized in Example 3.1.3 by using the iterated
successor function. A more instructive example is one which uses the iterated
exponential function defined in the following manner:

3o(A) = K

OL<β

where α is any ordinal and β a limit ordinal. When λ = Ko reference to λ will be
surpressed, resulting in the standard Hα for 3α(K0). This example indicates how
identities are to be used in place of indiscernibles when complete indiscernibility is
not possible.

3.1.2 Example. If K > 2ω(λ), then the partition theorem of Erdόs and Rado (see
Chang-Keisler [1977]) implies that J(κ, λ) is the set of all identities. More
specifically, if K > 3M(/l), then all identities of length at most (n + 2) are in J>(κ, λ).
Conversely, by the Erdδs-Hajnal-Rado [1965] converse to the Erdδs-Rado
theorem, if λ < K < 1n(λ), then there is an identity of length (n + 2) which is not in
J>(κ, λ). The missing identity is the one in which all sets of the same size are equi-
valent.

Finally, we note that the reader should see Subsection 2.4 for the definition
K(Λ)

3.1.3 Example. Let /„ be the identity, having domain Dn = {a0, aί9..., tfM-i,
b0, bu . . . , fcπ-i), which is the equivalence relation that makes X, Ys[D^\<ω

equivalent iff either X = Y or else, for each i < n, \X n {ah bt}\ = \Y n {ah bt} \
< 1. It is left as an interesting exercise to verify that /„ e J(κ, λ) iff KM(/l) < K.

Identities have a very close relationship with two-cardinal models. The pro-
position below indicates one direction of this relationship, the other direction being
the deeper connection that is revealed in the next subsection by Theorem 3.2.1.

3.1.4 Proposition. With each identity I one can effectively associate a first-order
sentence σI such that whenever K > λ > Ko, then σt has a (K, λ)-model iff I φ J(κ, λ).

Proof. Suppose that / is an identity of length n. The sentence σι will be in the
vocabulary τ = {U, fί9 f 2 , . . . , /„}, where each ft is an i-ary function symbol, and
it will assert that each/) is a function on the set of subsets of cardinality /, that the
range of each ft is included in U, and that the identity / is not a subidentity of one
which is induced by the function fγ u u /„. It thus follows quite immediately
from the definition of J(κ, λ) that the sentence σI has the required property. D
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For instance, by applying Example 3.1.2 (or, respectively, Example 3.1.3) to the
preceding proposition we obtain, for each n < ω, an example of a sentence σn which
has a (/c, Λ,)-model iff λ < K < Ίln(λ) (or, respectively, λ <κ < KΠ(A))

5.2. The Two-Cardinal Compactness!Transfer Theorem

We now come to the fundamental two-cardinal compactness/transfer theorem, a
result which was first enunciated by Shelah [1971d]. Some of its consequences will
be given in the next subsection.

3.2.1 Theorem (The Two-Cardinal Compactness/Transfer Theorem). Suppose that
K > λ and that κ} > λjor each) e J. Then each of the following is equivalent to each
of the others:

(1) {(Kj, λj):j EJ} -• (K, λ) ^-compactly•;
(2) {(κj9 λj): jeJ}-± (K, λ) λ-compactly;
(3) There exists afunctίonf: [κ\<ω -» λ such that J(f) c (J {f(Kj, λj):je J}.

Proof The implication (2) implies (1) is trivial. The implication (1) implies (3) is an
easy consequence of Proposition 3.1.4. To see this, we let {/f : i < ω} be the set of
those identities not in each S(κj9 λj). Let σIt be the sentence from Proposition 3.1.4,
so that each σι. has a (κj9 λ^-model, for each j eJ. Then, each finite subset of
{σIt.: i < ω} has a (KJ, λj)-modd, for each 7 e J. Thus, by (1) above, {σh \ ι < ω}
has a (K, A)-model (A, U, fu / 2 , . . . ) . Assuming that A = K and U = λ both hold,
we see that f = {f.: i < ω} is the desired function.

The most interesting of the implications, and the one which demonstrates the
real strength of identities, is the remaining one, (3) implies (2). Here, let Tbe a first-
order theory in the vocabulary τ such that each finite subtheory To ς: T has a
(fCy, λ^-model for each j e J. Because of the cardinality restrictions on T, it can be
assumed that | τ | < λ. The standard technique of adjoining Skolem functions can
be used, so that we may as well assume that T is a Skolem theory. Thus, to every
τ-formula φ(x0, * i , . , xn-1> y\ there corresponds an π-ary term /(x 0 ? > xn-1)
in the vocabulary τ such that the sentence

Vx[3)^(x, y) -+ <Kx, /(x))]

is a consequence of T.
The vocabulary τ will now be augmented by the adjunction of some constant

symbols. For each ξ < λ, let bξ be a new individual constant; and, for each a < K,
let cα be a new individual constant, yielding the expanded vocabularies τ1 =
τ u {bξ: ξ < λ} and T2 = τ 1 u { c α : α < K}. We will define a theory 7} in the
expanded vocabulary τ2 which depends only on the function / : [K] < ω -> Λ,, whose
existence is guaranteed by (3) and which consists of the following sentences:

(i) bξΦbη (ξ<η< λ);

(ϋ) U(bξ) (ξ < λ);

(iii) caφ cβ (a < β < K);
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(iv) £ 7 ( / ( c α o , . . . , c α m _ , ) ) - • J(cao,..., c α m . τ ) = /(cβo,..., cPm_j)9 where / is a

τ r t e r m , α 0 < α 2 < < ccm_1 < κ9 β0 < βγ < < /?„_! < K, and

The key sentences are, of course, those occurring in (iv) above, and it should be
noted that the terms t appearing there are τt -terms so that they may include some

ξ

There are two crucial facts about 7} that together will complete the proof of the
theorem. The first is

Fact 1: Every minimal model of 7} is a (TC, λ)-model;

and the second is

Fact 2 : T u Γ / i s consistent.

By Fact 2, the theory T u 7} has a model; and, by Fact 1, the minimal submodel
of this model, which is also a model of T because T is a Skolem theory, is a (K, λ)-
model. It now remains to supply the proofs of these facts.

The proof of Fact 1 is very easy. Suppose that 91 = (A, U,...) is a minimal model
of Tf. Then | A | > K holds, because of sentences (iii) above, and | A | = K since 91 is a
minimal model for a vocabulary τ2, where |τ2\ < K. Thus, \A\ = K. Also, \U\ > λ
holds, because of sentences (i) and (ii) above. Finally, to see that \U\ < λ holds, we
observe that for each b e U, there is some n-ary ^-term /(xo> > χ

n-1) a n d some
ξ < λ such that whenever α0 < o^ < < απ_ t < K and / ( { α 0 , . . . , απ_ J ) = ξ,
then 91 h= / ( c α o , . . . , c ^ . J = b. Therefore, 1171 < λmust hold since | τ x | < λholds,
thus showing that 91 is a (K, /ί)-model.

To demonstrate that Fact 2 holds, that is, that T u 7} is consistent, we will
show that every finite subtheory To ς: Γ u 7} is consistent. Thus, let {α0, α l 5 . . . ,
απ_ x} be the finite set consisting of those α for which cα occurs in some sentence in
To, where α0 < αx < < αn_ x < K. Then / induces an identity I with domain
{α0, α 1 ? . . . , <*„_!}. Statement (3) of the theorem implies the existence of some
j e J for which I e <f(κj, λj). Let 91 be a (K, , λ^-model of To n T; such a model exists
by the assumption on T.

Let ξθ9 ξl9...9ξs< λj be such that if bξ occurs in To, then ξ is among ξ 0 ,
ξ l 9 . . . , ξs. Expand 91 to a structure 9ϊx = (91, bξo, bξί,..., bξs\ where each of the
bξi denote distinct elements of U. By very simple cardinality considerations, there is
a function g: \_A~]<ω -> λ} such that whenever {ao,al9..., απ_ J , {af

0,a\,..., α^_ J e
]", then 0({αo, α l 9 . . . , αM_ J ) = gf({α'o, α Ί , . . . , a'n-x}) iff

for each T r term t occurring in To.
Recall that IeJ(κj9 λj). Hence, there exists D ^ A such that the injection

h: {aLθ9...9aιn-1} -> D demonstrates that / is a subidentity of the identity with
domain D induced by g. Expand SΆι to the structure 9l2 = (9ί1? c α o , . . . , can_ι\
where cα = /zίαj. Then 9I2 is a model of Γo, thus demonstrating the consistency of
To. D
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3.3. Some Consequences

The two-cardinal compactness/transfer theorem of the previous subsection has
many consequences. This subsection will be devoted to the most interesting and
important of them. One immediate consequence is that in statements (1) through (3)
it always suffices to consider just some countable subset J o ci J.

3.3.1 Corollary. // {(κj9 λj): jeJ}-> (K, λ) i<0-compactly, then for some countable
Jo c J, {(κj9 λj):jeJ0} -» (K, λ) λ-compactly.

Proof. Consider statement (3) of Theorem 3.2.1. Since J(f) is countable, there is
some countable J o c J such that J(f) c {S(κj9 λj):jeJ0}. D

A function such as the one whose existence is asserted by clause (3) of Theorem
3.2.1 is called a fundamental function for the relation {(KJ, λj):jeJ} -> (K, λ). If
/ : [K] <ω -> λ is a fundamental function for (K, X) -• (K, λ), then we will say simply
that /: [ κ ] < ω -> λ is fundamental. Thus, as is very easy to see, / : [κ]<ω -» λ is
fundamental iff«/(/) = f(κ, λ).

The statement that (K, λ) -• (K:, A) μ-compactly is evidently equivalent to
K(κ, λ) being μ-compact. Thus, Theorem 3.2.1 yields the following corollary.

3.3.2 Corollary. Ifκ > λ > Ko, then each of the following is equivalent to each of the
others:

(1) K(κ, λ) is tf0-compact;
(2) K(κ, λ) is λ-compacti
(3) There is a fundamental function f: [ κ ] < ω -» λ. ϋ

The corollary thus characterizes compactness in terms of the purely combina-
torial property of the existence of fundamental functions. In general, the question
of the existence of fundamental functions remains unsolved. However, with some
very mild restrictions imposed upon the cardinals, their existence can be easily
demonstrated.

3.3.3 Lemma. Ifκ> λ*° = λ, then there is a fundamental function f: \_κ]<ω -• λ.

Proof Let {/„: n < ω} be the set of identities which are not in J(κ, λ). We pause at
this point to observe that if this set is finite, or even empty, then things become even
easier than is otherwise the case. For each n, let /„: [K] < ω -> λ be such that /„ φ J{Q.
Let g: λω -> λ be a bijection. Define / : [ κ ] < ω -• λ such that whenever Ae[κ]<ω

and n < ω, then f(A) = g((fn(A)\ n < ω » . We immediately see that J(f) =
J>(κ, λ), so that / is fundamental. D

The Shelah-Fuhrken two-cardinal compactness theorem, a result which was
first proven in Fuhrken [1965] with stronger hypotheses using ultraproducts and
which was later improved in Shelah [1971d], is an instantaneous consequence of
Lemma 3.3.3 and Corollary 3.3.2.
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3.3.4 Corollary. If K > λ*° = λ, then K(κ, λ) is λ-compact. D

3.3.5 Corollary. J/K*° = Kα, then &(Qa+ί) is ^compact.

Proof See Corollaries 1.3.4 and 3.3.4. D

Corollary 3.3.5 will be generalized later in Corollaries 4.2.1 and 5.1.3. There are
instances of compactness of Jέf(βα + 1) not covered by Corollary 3.3.5, the most
notable being ^ ( Q O which is known to be K0-compact (see Chapter IV) even
though KQ° > Ko I n fact> n o example is known for even the consistency of the
failure of K0-compactness of any J*?(βα + 1). On the other hand, it is unknown
whether it is a theorem of ZFC that J^(β 2 ) *s K0-compact, although it does follow
from ZFC + CH.

The two-cardinal compactness/transfer theorem has two transfer theorems as
rather immediate corollaries. The first is the Chang-Keisler [1962] gap narrowing
theorem, a result that was originally proven using ultrapowers, and the second is
Vaught's gap-ω theorem, a result originally proven by Vaught [1965a] using self-
extending models, a concept which will be discussed in Section 6.

3.3.6 Corollary. Ifκ>μ> λHo, then (K, λ) -+ (/c, μ) μ-compactly.

Proof Since (/lNo)Ko = ΛXo, we see from Lemma 3.3.3 that there is a fundamental
function / : [ κ ] < ω -> λ*°. Thus, we have that J(f) = J(κ, λ*°) c J(κ, λ). Since
AXo < μ holds, we can consider / to have range μ, so that / : [κ]<ω -> μ is funda-
mental for (K, λ) -* (K, μ). D

3.3.7 Theorem. // K > λ > Ko and if κn > 2n(λn) for each n < ω, then {(κn, λn):
n < ω} -> (K, λ) λ-compactly.

Proof Because of Example 3.1.3 any / : [κ]<ω -> λ is fundamental for {(κn, λn):
n < ω} -> (K, λ). D

The following corollary can be extracted from the proof of Theorem 3.2.1.

3.3.8 Corollary. IfK(κ, λ) is tf0-compact, then K(κ, λ) is recursively enumerable for
validity iff J(κ, λ) is recursively enumerable. D

If K > 2ω(λ), then J(κ, λ) is the set of all identities, and is therefore evidently
recursive. This observation yields the following corollary.

3.3.9 Corollary. lfκ > 1ω(λ), then K{κ, λ) is recursively enumerable for validity. D

The following three-cardinal theorem can be proven in a manner quite similar to
the one that was used to prove Theorem 3.3.7.

3.3.10 Theorem. If K > Ki and if κn > 2n(λn) and λn > μn,for each n < ω, then

{(*„, λn, μn): n < ω} -• (κ9 K1? Ko) ^-compactly. D
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An immediate consequence of this theorem, a consequence that can be obtained
by setting each λn = tfί and μn = Ko> *s that the Hanf number of J?(βi) is Uω. All
that was needed concerning J^CQi) was the K0-compactness of J^(Qi). Thus, the
more general result on Hanf numbers hλ{^f{Qa)) can be proven by the same
technique.

3.3.11 Theorem. If &(QJ is λ-compact, then hλ(^(Qa)) = Πω(Xα). D

Consequently, Proposition II.5.2.4 yields the following characterization.

3.3.12 Corollary. Λ K o (^(βJ) = =UKα) iff&(Qa) is ^compact D

In particular, Corollary 3.3.5 implies some specific Hanf numbers.

3.3.13 Corollary. //N*> = Kα, then hHJt#(Qa+1)) = 3 ω (K α ) .

5.4. Employing the Methodology of Identities

The two-cardinal compactness/transfer theorem (3.2.1) suggests a method for
proving specific two-cardinal transfer theorems. Suppose it is desired to prove the
transfer (κ l 5 Ax) -• (κ2, λ2) K 0 " c o m P a c t l y Using the methodology of identities, we
can employ the following three-step strategy:

(A) Define a set Jo of identities.
(B) Show that Jo c J{κu λλ).
(C) Show that there is a function / : | > 2 ] < ω -» A2 such that ^ ( / ) c ^ 0 .

This procedure has been used successfully by Shelah to prove several transfer
theorems which will be discussed in this section. First, we will suggest an alternate
proof of Vaught's theorem (2.1.1) that is due to Shelah [1978e]. In this proof
we will only perform step (A), omitting steps (B) and (C) altogether. Second, we
will discuss Shelah's transfer theorem (Kω, Ko) -• (2No, Ko), which was proven in
Shelah [1977]. We will consider only steps (A) and (C).

Vaught's Theorem. Our first task will be to define a set </Vau of identities. To do this,
a method for building a new identity from an old one will now be described.
Let / be an identity with domain neω, and let E ^ n. The identity J obtained from I
by duplicating E is constructed as follows: The domain of J is (n + m), where m =
\E\. Let α: n + m -> n be the function such that α | n is the identity function on n and
α| {n, n + 1,. . . , n + m — 1} is an order-preserving bijection onto E. Now J is
defined so that if X, Ye[n + m] < 0 ) , then XJY iff either X = Y or each of the
following three conditions is satisfied:

(1)
(2)
(3)

X c f

Y c n

α[Z]

tor XnE
or YnE

/α[Y].



3. Two-Cardinal Theorems and the Method of Identities 195

Define f* to be the smallest set of identities containing the identity with domain 1
and such that whenever / e / * has domain n and k < n, then the ordered identity
obtained from / by duplicating {/c, k + 1,..., n — 1} is in «/*.

Then «/Vau c a n n o w b e defined. It is the smallest set of identities which is closed
under the taking of subidentities and which also contains all identities / which
are in f*.

3.4.1 Theorem. J(Kί9 Ko) = JYau. D

This approach to Vaught's theorem is interesting since it yields a description of
the set / ( K b Ko). Now Theorem 2.1.2 and Corollary 3.3.8 predict that ^(X l 9 K o ) i s

merely recursively enumerable. However, since / ( K l 5 Ko) = J^Ύau, and this latter
set is evidently recursive, the following corollary results.

3.4.2 Corollary. The set f(tti9 X o) ί s recursive. D

Shelah's Theorem. The three-step strategy is the only known method for
proving the theorem of Shelah [1977] that (Kω, No) -• (2Ko, Ko) K0-compactly.
This theorem can be stated in a more general form for which a definition is
required. For an infinite cardinal K let ded*(/c) be the least cardinal λ such that
every (well-founded) ranked tree (see Section 2.2) of cardinality K has fewer than λ
branches. Note that ded*(K0) = (2*°)+ and that κ+ < ded*(κ) < (2K)+. On the
other hand, Mitchell [1972] has shown that ded*(Kx) < 2K l is relatively consistent
with ZFC.

3.4.3 Theorem. // ded*(A) > κ> λ and if κn> ttn(λn) for each n < ω, then
{(κn, λn): n < ω) -> (κ;, X) λ-compactly.

In order to execute step (A), we will first define a set «/* of identities as the small-
est set of identities containing the identity with domain 1, and such that whenever
ί e / * has domain n and k < n, then the identity obtained from / by duplicating {k}
is in «/*. Then ,/ s h e can now be defined as the smallest set of identities which is
closed under the taking of subidentities and which contains all identities / which are
in./*.

Having completed step (A), we will now proceed to develop a broad hint for
Step (C). Let (A, < ) be a well-founded tree which has at least K branches such that
IAI = λ. Let B be a set of branches of (A, < ) of cardinality exactly K. We will define
a function / with domain [B~\<ω. Suppose that bo,bl9.. .,bneB are distinct
branches. Then let α be the least ordinal such that the elements a0 e ft0, ax e bu . . . ,
anebn each of rank α are pairwise distinct. Finally, set f({bo,bl9...9bn}) =
{ao,a , . . . , an}. It is clear that the range of/ has cardinality at most λ. A rather easy
induction on n can be used to demonstrate that»/(/) £= <fshQ.

The proof of step (B) can be found in Shelah [1977].

3.4.4 Corollary. Suppose 2No > Nω. Then K(2*°, No) is K0-compact and recursively
enumerable for validity. In fact, ,/(2N(), Ko) is recursive. D
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It seems appropriate at this point to mention a closely related theorem that is
due to Shelah [1975b], a result which is conveniently stated as a three-cardinal
theorem.

3.4.5 Theorem. For each n < ω, let κn, pn, qn be cardinals such that nn < qn

n <
pn < Xo ^ κn- Also, let ded*(T) > κ> λ. Then {(κn, pn,qn)' n < ω} -• (K, K9 λ)
λ-compactly. D

To prove this theorem, a modification of the aforementioned three-step
procedure is used, steps (A) and (C) being almost exactly the same as in the proof
of Theorem 3.4.3. A proof of a suitable version of step (B) can be given inside of
Peano arithmetic, so the following corollary becomes a consequence of Theorem
3.4.5.

3.4.6 Corollary. Let Jί be a model of Peano arithmetic and I ^ M a proper initial
segment closed under multiplication. Then, whenever ded*(Λ.) > κ> λ there is a
model (Jf, J) = (Jί, 1) such that \J\ = λ yet every initial segment of Jί properly
containing J has cardinality K. ϋ

For the case in which K = 2*° and λ = Ko, this corollary was proven by Paris
and Mills [1979]. Corollary 3.4.6 thus also follows from their result using Theorem
3.4.3 and some absoluteness considerations.

4. Singular Cardinal-like Structures

The topic of this section is the transfer theorem for singular cardinals which was
obtained by Keisler [1968b]. This theorem and its proof have consequences con-
cerning the compactness and recursive enumerability for validity of the
language with cardinality quantifier QΛ with 9Iα a singular, strong limit cardinal.

4.1. Keisler's Transfer Theorem

In the following discussion Keisler's transfer theorem, which is the main result of
this section, will be examined. To this purpose, we recall that a cardinal K is a strong
limit cardinal if 2λ < K whenever λ < K. We will begin our development with
a simple example limiting possible generalizations of the theorem.

4.1.1 Example. Let σx be a first-order sentence in the vocabulary { <, R}, where R
is a binary relation symbol, describing the fact that there is an injection of the
universe in the power set of some proper initial segment. Then σ1 has a /c-like
model iff K is not a strong limit cardinal.

4.1.2 Theorem (Keisler [1968b]). Suppose that K is a strong limit cardinal and that
λ > μ > Ko, where λ is a singular cardinal. Then K -• λ μ-compactly.
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Only the initial portion of the proof will be presented here. Thus, suppose that τ
is a vocabulary of cardinality at most μ which contains the n-ary Skolem function
symbol fφ for each (n + l)-ary τ-formula φ. Let τ' = τ u {citj: i,j < ω}, where the
cu j are new, distinct, individual constants. Define a set Γ to consist of the following
τ'-sentences :

(1) Vx[3yφ(x, y) -> φ(x, fφ(x))~], for each τ-formula φ;
(2) Cij < cik, whenever i < ω and j < k < ω;
(3) t < ct j , where t is any τ'-term that does not involve any constant ck n with

k > i;

( 4 ) V X O > • • > * « - l D * O < CUr Λ ••• Λ X π _ i < Ci%r

-> ((/>(x, c m j J 0 , c m f i l , . . . , cmJs) ^ 0(x, c m 5 k o , c m k i , . . . , c m f k β ) ) ] ,

whenever Ϊ < m, j 0 < j i < - - < j s , k0 < k1 < < ks and φ(x, y) is a
τ'-formula which does not involve any cpq for p < m.

There are now two crucial properties that must be verified:

(I) Every set of τ-sentences consistent with Γ has a A-like model;
(II) Any τ-sentence which has a κ-like model is consistent with Γ.

We end with a hint that in order to prove property (II) above, it is necessary to
apply the Erdόs-Rado theorem several times.

4.2. Some Consequences

Theorem 4.1.2 and its proof yield some immediate consequences.

4.2.1 Corollary. //Kα is a singular, strong limit cardinal and Ko < λ < Nα, then

i?(βα) is λ-compact. D

By using a different approach to handle regular K, we will see as a consequence
of Theorem 5.1.3 that the requirement of singularity can be dropped in this
corollary.

The upshot of (I) and (II) in the proof of Theorem 4.1.2 lies in the fact that if K
is a singular, strong limit cardinal and σ is a τ-sentence, then σ has a κ-like model iff
σ is consistent with Γ. An inspection of the proof reveals that if τ is recursively
enumerable, then so is Γ. Thus, the set of τ-sentences true in every κ-like model is
recursively enumerable. This proves the following result.

4.2.2 Corollary. //Kα is a singular, strong limit cardinal, then i?(β α ) is recursively
enumerable for validity. D

As a consequence of Corollary 3.3.11, some more Hanf numbers can be com-

puted.

4.2.3 Corollary. //Kα is a singular, strong limit cardinal and λ < Kα, then hλ(J?(Qa))
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Corollaries 4.2.1 and 4.2.2 have immediate consequences with respect to the
logic J2?(gc) involving the Chang quantifier. (See Chapter VI.) Recall that the
syntax of this logic is the same as the syntax of the logic if(Q) with the cardinality
quantifier, and its interpretation in the structure 91 is that of if(Q) using the \A |-
interpretation, with the restriction that 91 be infinite.

4.2.4 Corollary. Assume GCH. J2?(QC) is recursively enumerable for validity and is
compact.

Proof. J^(βi) is recursively enumerable for validity according to Theorem 2.1.2, and
so is i f (β ω ) by Corollary 4.2.2, since by GCH Kω is a strong limit cardinal. Now,
by Theorems 2.1.3 and 4.1.2, σ is valid for i f ( β c ) iff it is valid for both JSf(βi) and
JSf (Qω). Hence, JSf (Qc) is recursively enumerable for validity.

Let Σ be a set of K sentences of ££{Q°) which is finitely consistent. Then either
every finite Σ o c Σ is consistent for <£(Q^, or every finite Σ o £ Σ is consistent for
^(Qω) Using Theorem 2.1.4 in the first case and Theorem 4.1.2 in the second, there
is a model 91 of Σ in the ^-interpretation for appropriate Kα > K. Since the
Lόwenheim number /κ(if (Qα)) = Kα, we can require that \A\ = Kα. Thus, we have
that 91 is also a i f (βc)-model of Σ. D

5. Regular Cardinal-like Structures

By means of more elaborate forms of identities, /c-like anologues of some of the
results given in Section 3 can be obtained. The main interest occurs when K is
inaccessible. Some of these results will be discussed in this section.

5.7. The CompactnessjTransfer Theorem

We will begin this discussion with the basic compactness/transfer theorem.

5.1.1 Theorem (The Regular Cardinal-like Compactness/Transfer Theorem).
Suppose that K > Ko and that Kj is regular for each j e J. Then the following are
equivalent:

(1) {Kj'.jeJ} -• K S<0-compactly;

(2) {κj\ jeJ}^>κ λ-compactlyjor each λ < K. Ώ

5.1.2 Corollary. //Xα > λ > Ko and Kα is regular, then

is K0-compact iff S£(βα) is λ-compact.

A proof of Theorem 5.1.1 would yield the following instances of compactness
as a consequence.
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5.1.3 Corollary. // Xα > λ > Ko, for regular Nβ, and K£° < Xα for β < α,
Ϊ5 λ-compact. Ώ

Combining this result with Corollaries 2.1.7 and 4.2.1 yields the following
general result.

5.1.4 Theorem. Assume V = L. If Kα > λ > Xo, then J^(βα) is λ-compact. D

This allows us to use Theorem 3.3.11 in computing Hanf numbers.

5.1.5 Theorem. Assume V = L. If Kα > λ > Ko, then hλ(^(Qa)) = Hω(Kα). D

It is not known whether the V = L hypothesis can be eliminated from Theorems
5.1.4 and 5.1.5.

A cardinal K is O-Mahlo iff it is inaccessible. For α > 0, the cardinal K is α-
Mahlo if, whenever β < oc and C c K is closed and unbounded, then there is a
β-Mahlo cardinal in C. The cardinal K is strongly oc-Mahlo if it is strongly inac-
cessible in addition to being α-Mahlo. It is known that if K is weakly compact, then
K is K-Mahlo and also that there are many cardinals λ < K which are A-Mahlo.

The following theorem was given a combinatorial proof in Schmerl [1972]. In
this connection we point out that there is also the beautiful Silver-Kaufmann
approach, which uses models of ZFC and which is detailed in Kaufmann [1983a].

5.1.6 Theorem. For each n < ω there is an S^{Q) sentence σn such that for each
regular K, σn is consistent in the K interpretation ιffκ is not strongly n-Mahlo. D

The following theorem of Schmerl and Shelah [1972] is a best possible result by
Theorem 5.1.6.

5.1.7 Theorem. For each n < ω let κn be strongly n-Mahlo, and let K > λ>#0.
Then {κn: n < ω} -+ K λ-compactly. D

One possible approach to proving this theorem uses generalizations of
identities. For another approach, which uses self-extending models, see Theorem
6.1.3. Either approach enables us to obtain the following corollary.

5.1.8 Corollary. //Xα is strongly ω-Mahlo, then J^(Qα) is recursively enumerable for
validity. D

It is not known whether the hypothesis of the corollary can be weakened. For
example, whether or not j£?(Qα) is recursively enumerable for validity when Kα is
the first strongly inaccessible remains open. Indeed, it is not even known whether it
is even consistent with ZFC that there be any α > 0 for which J?(βα) is not re-
cursively enumerable for validity.
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5.2. Strongly Cardinal-like Structures

Suppose we consider the vocabulary having only the binary relation symbol <

and the sentence of stationary logic which is the conjunction of a sentence asserting

that < is a linear order and the sentence

aa s 3x Vy(y es<-+y < x).

Then (A, < ) is a model of this sentence iff it is Kj-like and there is a closed, un-
bounded subset of A which has order type ω ^ A well-ordered subset X c: A is
closed and unbounded iff whenever a e X is a limit point, then a is the least upper
bound of the set {xeX:x < a} in A. The next definition generalizes this type of
ordering.

5.2.1 Definition. A linearly ordered set (A, <) is strongly κ~like, where K is a regular,
uncountable cardinal, if it is /c-like and contains a closed, unbounded subset. A
structure 91 = (A, < , . . . ) is strongly κ-like if (A, < ) is strongly c-like.

There is a reduction of J^(aa) to. strongly Ki-like structures.

5.2.2 Theorem. With each sentence σ of ^faa) we can effectively associate a first-
order sentence σ* such that the following are equivalent:

(1) σ is consistent;
(2) σ has a model of cardinality Xx

(3) σ* has a strongly ϋ^-like model D

In order to get the ^-interpretation, where K is regular and uncountable, we
consider the set PK(A) which is the set consisting of just those subsets of A having
cardinality < K. A subset C ^ PK(A) is closed if it is closed under the union of
chains of length < K, and it is unbounded if, for every s e PK{A\ there is t e C such
that s c t. Let DK(A) be the filter generated by the closed unbounded subsets of
PK(A). The new clause in the definition of satisfaction in the ^-interpretation is now
clear:

91 \= aa s φ(s) iff {s e PK(A): 911= φ(s)} e DK(A).

Compare this definition with Definition IV.4.1.1. Stationary logic with the K inter-
pretation, where K = Kα, will be denoted by <5?(aaα), so that ^ ( a a j = if(aa).

The following transfer theorem becomes apparent upon checking that all the
axioms for i f (aa) are valid in arbitrary J^(aaα).

5.2.3 Theorem. //N α > Ko is regular, then if(aaα) -> ^ ( a a ^ K0-compactly. D

Instead of proving transfer theorems of the form suggested by Theorem 5.2.3,
we will concentrate on theorems concerning strongly κ>like structures. This is
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justified by the following two observations. The first is that in the /c-interpretation,
the linearly ordered set (A, < ) is a model of the j£?(aa) sentence displayed at the
beginning of this subsection iff (.4, < ) is strongly κ>like. In the second observation
we state a theorem whose proof is identical to the proof of Theorem 5.2.2.

5.2.4 Theorem. With each sentence σ of if(aa) we can effectively associate a first-
order sentence σ* such that for each regular uncountable K, the following are equi-
valent:

(1) in the K-ίnterpretation, σ has a model of cardinality κ;
(2) σ* has a strongly κ-like model. D

In light of the above, the next definition is natural.

5.2.5 Definition. For regular uncountable cardinals, K and λ, K -J* λ if whenever σ
is a first-order sentence which has a strongly κ>like model, then σ has a strongly λ-
like model.

The customary variations on the above definition will be in force. For example,
for regular uncountable K, Theorem 5.2.3 implies that K ̂ K J K0-compactly.

The following theorem is the compactness/transfer theorem for strongly
cardinal-like models. Its proof resembles the proofs of Theorems 3.2.1 and 5.1.1,
although it does use an even more elaborate notion of identity.

5.2.6 Theorem. Suppose that K and κ} are regular, uncountable cardinals, for each
j eJ, such that for each n < ω there is some j GJ for which κj > Kπ. Then the
following are equivalent

(1) {Kj'.jeJ} τ> K ^-compactly,
(2) {Kj'.jeJ} -^ K λ-compactly for each λ < K. U

Many corollaries of the same sort as those derived from Theorems 3.2.1 and
5.1.1 can be derived from this theorem. We will mention only one of them here.

5.2.7 Corollary. Ifκ > λ > Kω, K is regular, and μ*° < κfor each μ < K, then the
class of strongly κ-like structures is λ-compact. D

The subtle hierarchy of cardinals was defined in Baumgartner [1975] and in
Schmerl [1976]. A cardinal K is subtle iff whenever <Sα: α < K) is such that each
Sa c= α and whenever C ^ K is closed and unbounded, then there are α < β, both in
C, such that Sβ not = Sa. Subtle cardinals are large in the sense that they are all
strongly inaccessible. And yet, the first one—if it exists—is far larger than the first
strongly inaccessible. For each ordinal α, we will define α-subtle cardinals with 0-
subtle cardinals being regular, uncountable cardinals and 1-subtle cardinals
being the same as subtle cardinals. However, we will be even more general than
this by defining what is meant by a subset X c K being α-subtle. To this end,
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let us assume that K is a regular, uncountable cardinal and X ^ K. Then X is 0-
subtle iff X is stationary. Inductively, X is (α + l)-subtle iff whenever <SV: v < κ> is
such that each Sv c v, then

{μ e X: {v G X n μ: Sv = v n Sμ} is α-subtle}

is stationary. If α is a limit ordinal, then X is oc-subtle provided it is β-subtle for each
β < α. The cardinal K is oc-subtle if it is α-subtle when considered as a subset of itself.

The following theorem was proven in Schmerl [1976] using combinatorial
techniques. However, for a much easier proof which uses models of set theory,
see Kaufmann [1983a].

5.2.8 Theorem. For each n < ω, there is a first-order sentence σn such that for each
regular, uncountable K, σn has a strongly κ-lίke model ιffκ is not n-subtle. ϋ

Can this theorem be extended, for example, by finding a sentence σ which has
a strongly /c-like model iff K itself is not ω-subtle? The answer is no because of
the following theorem which is the analogue of Theorems 3.3.7 and 5.1.7. A proof
of this result will be given in Section 6.

5.2.9 Theorem. For each n let κn be an n-subtle cardinal and κ> λ> Ko, where K is
regular. Then {κn\ n < ω} -^ K λ-compactly. D

6. Self-extending Models

Models which have canonical, internal proper elementary extensions of themselves
will be considered in this section. By iterating these extensions many times,
taking unions at limit stages, we can construct models with particular properties
This method will be discussed in Section 6.1 where alternate proofs of Theorems
3.3.7, 5.1.7 and 5.2.9 will be indicated. This technique will be exploited in Sub-
section 6.2 to prove the MacDowell-Specker-Shelah theorem.

6.1. Self-Extending Theories

Consider the language J£?(g), and consider a consistent theory T in this language
which has the following two properties:

(1) T is a Skolem theory: For every formula φ(x0,..., xn-15 y) there is a term
J(x0, * ! , . . . , xn-x) such that

is in T;
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(2) Q behaves as a nonprincipal ultrafilter: All universal closures of formulas of
the following form are in T:

(φ(x) -> ψ(x)) -> (Qxφ(x) ->

Qxφ(x) A Qxφ(x) -> Qx(φ(x) A φ(x)).

A model of T has the form (81, q), where q is a collection of subsets of A with the
obvious additional clause needed in the definition of satisfaction:

(%q)ϊ=Qxφ(x) iff {aeA:(%q)ϊ=φ(a)}eq.

A model (8ϊ, q) of T is reduced if every set in q is definable. Since replacing q by the
subset of itself which consists only of definable sets does not alter the satisfaction
relation, we can always assume that models of T are reduced.

There is a canonical elementary extension of (81, q) which is obtained by a
modified ultrapower construction. Let B be the set of definable functions/: A -• A
considered modulo q. That is, two definable functions /, g: A -• A are to be con-
sidered as equal if (81, q) t= Qx(f(x) = g(x))- There is a unique reduced structure
(95, r) such that for any formula φ(x0 , . . . , % „ _ x) and all functions f0 ,fl9...,fn_ιeB,

(®, r) |= φ(f0,..., /„_ 0 iff (81, q) \= QxφiMxl..., /,-1(x)).

The set r consists of all those sets of the form

{geB: (81, q) N βx0(/ o(x),...,/»-1(x), flf(x))},

where (81, f̂) |= QxQyφ(fo(χX •••>/«-1(̂ )? y) The structure (95, r) is an elementary
extension of (81, q) if the elements of A are identified with the constant functions.
Thus, the following definition is appropriate.

6.1.1 Definition. A consistent theory T satisfying (1) and (2) above is called a

self-extending theory.

One important fact about the canonical extensions of models of a self-extending
theory is that "large sets become larger." To make this precise, let /: A -> A
be the identity function so that if (93, r) is the canonical extension of the model
(81, q) of a self-extending theory, then

(95, r) 1= Qxφ(x, a) -> φ(*\ a),

for any formula φ and α 0 , α l 5 . . . , an- x e A.
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These self-extending theories can be applied to give alternate proofs of Theorems
3.3.7, 5.1.6 and 5.2.9. We state the relevant results in this regard.

6.1.2 Theorem. Let T be a first-order theory such that, for each n < ω, there are

cardinals K, λ, with K > 1n(λ), and a (K, λ)-model of T. Then T can be extended to a

self-extending theory which contains all universal closures of formulas of the form

Qx 3y(φ(x, y) A U(y)) -> 3yQxφ(x, y). U

6.1.3 Theorem. Let T be a first-order theory such that, for each n < ω, there is a
strongly n-Mahlo cardinal K and a κ-like model of T. Then T can be extended to a
self-extending theory which contains all universal closures of formulas of the form

Vzβx 3y(φ(x, y) A y < z) -> 3yQxφ(x, y). D

Actually, a theorem which was first proven in Schmerl [1976] and which is
slightly stronger than Theorem 5.2.9, will be considered here. In order to state it,
we need the following

6.1.4 Definition. Let K be a regular uncountable cardinal and X c K. A linearly
ordered set (A, < ) is (K, X)-like if it is κ-like and there is an increasing function
e: X -» A such that whenever aeX and α = sup({v eX:v<oc})eX, then
e{μ) = sup({φ): veX n α}). A structure 91 = (A, < , . . . ) is (K, X)-like if (A, < )
is (K, X

From this definition we see that 21 is strongly κ>like iff it is (/c, κ)-like.

6.1.5 Theorem. Suppose K is a regular uncountable cardinal and T is a first-order
theory such that \T\ < K.AISO assume that, for each n < ω, there is a cardinal κn and
an n-subtle X ^ κn such that that T has a (κn, X)-like model Then T has a strongly
K-like model

In order to prove this theorem using self-extending models, we need

6.1.6 Theorem. Let T be a first-order theory such that for each n < ω there is a
cardinal K, an n-subtle X c= K, and a (K, X)-like model of T. Then T can be extended
to a self-extending theory which contains the universal closures of all formulas of the
form

Qx 3y(φ(x, y) A y < x) -• 3yQxφ(x, y).

To see just how Theorems 6.1.2,6.1.3 and 6.1.6 imply the corresponding transfer
theorems, let us focus attention on Theorem 6.1.6 alone as a typical example.
Suppose that T is a first-order theory satisfying the hypothesis of Theorem 6.1.6.
Thus, according to that theorem, T can be extended to a self-extending theory T'
containing the required sentences. Without loss of generality, we can require that
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\T\ = \T\ + N o . The sentences in V imposed by Theorem 6.1.6 guarantee that the
canonical extension of any model of V is an end-extension. Furthermore, this
extension has a least new element. Thus, in order to form a strongly /l-like model of
T, where λ > \T\ + Ko is regular, we begin with a model (2I0, q0) of V with
\A0\ < λ. We then form an increasing chain of models <(2lv, qv): v < λ} by letting
(9Iv+i, qv + ί) be the canonical extension of (2ϊv,gv), and by letting (21 v, qv) be
the union of the previously constructed structures if v is a limit ordinal. Then SUλ is a
/l-like model of T. In order to see that it is strongly /l-like, we let av be the least new
element in the extension (2I V + 1 , qv + 1) of (2IV, qv). Thus, Av = {xsAλ:x < av}.
Then {av:v < λ} is a closed subset of Aλ, demonstrating that (Aλ, < ) is strongly
λ-like.

In order to see how to prove Theorems 6.1.2, 6.1.3 and 6.1.6, we will again
consider Theorem 6.1.6 as a typical example. Our aim here is to show that Γis con-
sistent with some theory, call it T", so by compactness we can assume that T is
countable, and then consider some finite To c; V and show the consistency of just
T u To. To this end, we choose an n < ω which is sufficiently large (depending on
Γo) and let 2lπ + 1 be a (κn+19 Xn+ 1)-like model of T, where Xn+ ί is an (n + l)-subtle
subset ofκn+1. Moreover, let e: Xn + j -> An+ ί be the function which demonstrates
that (An+U < ) is (κn+ί, Xπ+1)-like. Inductively, we will thus obtain structures
9In, SΆn_!,..., 3T0 and S π , »„_ 1 ? . . . , 95O. Each 21; will be an expansion of 95t , and
A{ will be an initial segment determined by an element e(Ki\ where Kι e Xn+1 that is,

4f = {xeAi+ί:x < e(κ^)}.

In order to get 2ΪΠ and 95M, let {φx(v0): v < κ π + 1 } b e a nonrepeating list of all
formulas with one free variable v0 in the vocabulary oϊ<Άn+ι allowing parameters
from An+1. There is a closed unbounded subset C c κn+1 such that whenever
α e C n X.ι+1a.ndφv(v0) involves only parameters from the set {b eAn+1:b <
then v < α. For each oceC n Xn+19 we let

We can also assume that if α e C n X π + 1 5 then 2In + 11 {x G X Π + x : x < e(α)} < 2ίM+ x.
Using the definition of the subtle hierarchy, we find κneC n Xn + ί such that if

Xn = { v e l n + 1 n κn:Sv = v n SKn},

then XΛ is an π-subtle subset of κn. Let An = {beAn+i:b< e(κn)}, and let 33M =
2I Λ + 1 |i4π so that 93Π -< SlΛ + 1. The important fact to notice here is that, for any
v e l n , both e(v) and e(κn) realize the same type over {beAn+1:b < e(v)}.

Now let 3) be the collection of subsets D which are definable in 2IΠ+ x using only
parameters from ^M and for which £?(*:„) G D. NOW, expand S π to a structure 95; by
adjoining a binary relation #„ so that

{{xsAn: S ; |= Λπ(i, x)
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Let 3lπ be the expansion of 93̂  obtained by adjoining all Skolem functions. The
structure 9In is (κn, XM)-like for n-subtle Xn £ κn.

The remainder of the 9If and 93,. are constructed in exactly the same fashion.
Having finally obtained 9I 0, we let q = {xeA0: 9I0 1= Roφ, x), beA0}. The
structure (2l0, q) is clearly a model of T and, without much difficulty, it can be shown
to be a model of To also. This demonstrates the consistency of T u To.

6.2. The MacDowell-Specker-Shelah Theorem

Our concern in this subsection is to use self-extending models to prove the following
theorem.

6.2.1 Theorem. //Ko < μ < A, then Ko -> λ μ-compactly. 0

Fuhrken [1965] observed that this theorem is a direct consequence of the well-
known theorem of MacDowell and Specker [1961] which asserts that every model
of Peano arithmetic has a proper, elementary end-extension. There are two features
of Peano arithmetic that are used in the MacDowell-Specker theorem. One is that
there is a definable pairing function which allows the coding of finite sequences. The
other is that the induction scheme is true in Peano arithmetic, where by the
induction scheme is meant the sentence

" < is a linear order with a first but no last element"

together with all sentences which are universal closures of formulas of the form

[3xφ(x) A Vx 3y(φ(x) -> φ(y) A X < y)] -> Vx MΦ(y) A X < y).

In words, this simply asserts that every nonempty definable set with no largest
element is cofinal.

Shelah [1978b] showed that only the induction scheme is necessary. Notice that
if we extend a theory which satisfies the induction scheme by adjoining all definable
terms, then the extended theory is a Skolem theory. Thus, we will consider such
theories to be already Skolem theories.

6.2.2 Theorem. Let The a consistent, countable first-order theory which satisfies the
induction scheme. To each first-order formula φ(x0, x 1 ? . . . , x π -i, y) there is as-
sociated another first-order formula σφ(x0, x l 5 . . . , xn_ x) such that T can be extended
to a self-extending theory which contains the universal closures of all formulas of the

form

Qyφ(x, y) <-* σφ(x)

and of the form

VzQx 3y(φ(x, y) A y < z) -• 3yQxφ(x, y).
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Theorem 6.2.1 follows from this theorem. Furthermore, any model of the
induction scheme in a countable vocabulary has a proper, elementary end-
extension.

Proof. The first step in the proof is to observe that, for each n < ω, there is a 2π-ary
formula ψn(xθ9 xί9...9 xn- ί9 y0, yί9..., yn- J—which we will abbreviate by
x <n y—which defines a linear order on the set of rc-tuples and which satisfies the
induction scheme. These formulas can be obtained inductively by letting < ι be <
and then allowing x <n+1 y to be the formula

( m a x ( x 0 , . . . , xn) < maxOo, , yn)) v [max(x 0 , ••-,*„)

= m a x ( > 0 , . . . , yn) A (xn < yn v (xn = yn A ( ( X 0 , . . . , xn_

Now consider a sequence (φn(x, y): n < ω> of all formulas, where φn has its
free variable among x 0 , xί9..., xn, y. Our object is to find formulas σn(x) and at
the same time formulas θn(y) such that the following are all consequences of T:

Vw 3y > wθH(y),

3w Vy > w(θn(y) -+ (φnix.y) ~ σn(x)).

We will proceed by induction on n. For convenience, we will let 0_i(y) be
y = y. Having ^ - ^ y ) and σrt(x\ we easily find an appropriate θn{y). For
example, let θn(y) be

ΘB. iOO Λ 3z < y[\fx <n+ίz
n+ \σn(x) ~ φn(x, y)

A Vw((Vx <n+1 zn+ \σn(x) ~ φn(x, w) Λ θn. x(w))

-• w < z v 3; < z))],

where by zM+ x is meant the (n + l)-tuple (z, z , . . . , z).
We have now reached the crux of the proof: To define σn(x\ knowing θn(y). Let

E(x, y9 z) be the formula

Vw <n+ ί x(φn(w9 y) <-» φn(w9 z)).

For fixed x, the formula E(x, y, z) defines an equivalence relation with only
"boundedly" many equivalence classes. As x gets larger (in the sense of < π + 1 ) ,
then the corresponding equivalence relation gets finer. Thus, the formula E(x, y, z)
can be viewed as defining a tree, the nodes of rank x being the equivalence classes of
the equivalence relation corresponding to x. For each rank x, there is an equi-
valence class containing an unbounded set of elements all of which satisfy θn. Call
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such an equivalence class large. Then, the following formula L(x, y, z) will assist us
in selecting a canonical large equivalence class of each rank:

3vv <π+13c(-ΊφM(vv, y) A φn(w, z) A £(W, y, z)).

The formula L(x, y, z) linearly orders the equivalence classes of rank 3c. Thus,

we let S(x, y) be a formula selecting the first large one. Thus, let S(x, y) be

Vw 3z > w(θn(z) A £(x, y, z)) A VU(L(X, υ, y)

^3wVz> w(θn(z) - -π£(x, / , z))).

The large classes selected in this way form a branch. That is, T implies w <n+1

x A S(x, y) -• S(w, y). It is now evident that σn(x) should be Vw 3y(S(w, y) A

Φn(χ,y)) •

7. Final Remarks

The final section of this chapter mentions some results which would have been
discussed in more detail had space allowed.

7.7. Other Logics

The logic of Magidor and Malitz [1977a] can be given cardinality interpretations
other than the Kx-interpretation discussed in Section IV.5. The logic i?(<2, Q2,
β 3 , . . . ) which uses the ^-interpretation is denoted by JSf(Qα, Ql, Ql,.. .)• The
Magidor-Malitz completeness theorem (see Section IV.5.2) also proves the
following transfer theorem.

7.1.1 Theorem. Assume O. If K = Kα is regular, then ^ ( Q α , Qj, β«,.. .) ->

i> Ql Ql •) Ko-compactly. D

A converse of the previous transfer theorem has been proven by Shelah [1980].

7.1.2 Theorem. Assume O N α and O« α + 1 Then

&(Qi, Ql Ql . . . ) 2 3

y. D

Theorems 7.1.1 and 7.1.2 together with the the Magidor-Malitz completeness
theorem imply that J£?(βα, β

2 , β 3 , . . . ) is recursively enumerable for validity under
the appropriate hypothesis on Kα.
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The cofinality quantifier (see Section Π.2.4) yields a logic which is fully compact.
We denote the quantifier by Qc{, and for regular cardinal K, its ^-interpretation is
defined so that Qcΐxyφ(x, y) holds iff φ(x, y) defines a linear order with cofinality K.
The logic with this quantifier with the ^-interpretation is denoted by J?(Qlf). A
proof of the following transfer theorem can be found in Makowsky-Shelah [1981].

7.1.3 Theorem. Let Kα and Kβ be regular cardinals. Then &(QCJ) -+ &(Q$) λ-
compactly for any cardinal λ. D

Consequently, J£?(βof) is fully compact. The proof also yields that ^(Qc

0

{) is
recursively enumerable for validity.

7.2. Infinίtary Languages

Some of the transfer theorems we have discussed have extensions to infinitary

languages. For example, the proof of Keisler [1966b] of Theorem 2.1.3 yields an

&ωu ω version.

7.2.1 Theorem. J/Kα is regular, then ^ωuω(QJ -> ^ ω i , ω « 2 i ) •

Some theorems of Section 5 also have infinitary versions which can be proven by
the techniques of that section or those of Section 6. The reader should refer to
Definition IL5.2.1 for the notion of the well-ordering number w(J£) of a logic and to
Chapter VIII for 5£A, where A is an admissible set. If A is countable, then w(J£A) =
A n Ord.

7.2.2 Theorem. Let A be an admissible set and φ a sentence of ££A.

(1) Suppose that for each cc < w{^A\thereisastronglyoί-Mahlocardinalκanda
κ-lίke model of φ. Then, for each λ > \A |, φ has a λ-like model.

(2) Suppose that, for each α < w(j£f A\ there is an (x-subtle cardinal K and a
strongly κ-lίke model of φ. Then,for each λ> \A\, φ has a strongly λ-like
model, ϋ

Similarly, the Hanf numbers of admissible fragments can be computed.

7.2.3 Theorem. Let A be admissible and ω < α = w(&A). Then h{^A) = 2a. •






