Comments on Selected Problems

CHAPTER 1

- 4. This problem gives the direct sum version of partitioned matrices. For (ii), identify V₁ with vectors of the form {v₁, 0} ∈ V₁ ⊕ V₂ and restrict T to these. This restriction is a map from V₁ to V₁ ⊕ V₂ so T{v₁, 0} = {z₁(v₁), z₂(v₁)} where z₁(v₁) ∈ V₁ and z₂(v₁) ∈ V₂. Show that z₁ is a linear transformation on V₁ to V₁ and z₂ is a linear transformation on V₁ to V₂. This gives A₁₁ and A₂₁. A similar argument gives A₁₂ and A₂₂. Part (iii) is a routine computation.
- 5. If $x_{r+1} = \sum_{i=1}^{r} c_i x_i$, then $w_{r+1} = \sum_{i=1}^{r} c_i w_i$.
- 8. If $u \in \mathbb{R}^k$ has coordinates u_1, \ldots, u_k , then $Au = \sum_{i=1}^k u_i x_i$ and all such vectors are just span $\{x_1, \ldots, x_k\}$. For (ii), r(A) = r(A') so dim $\Re(A'A) = \dim \Re(AA')$.
- 10. The algorithm of projecting x_2, \ldots, x_k onto $(\text{span } x_1)^{\perp}$ is known as Björk's algorithm (Björk, 1967) and is an alternative method of doing Gram-Schmidt. Once you see that y_2, \ldots, y_k are perpendicular to y_1 , this problem is not hard.
- 11. The assumptions and linearity imply that [Ax, w] = [Bx, w] for all $x \in V$ and $w \in W$. Thus [(A B)x, w] = 0 for all w. Choose w = (A B)x so (A B)x = 0.
- 12. Choose z such that $[y_1, z] \neq 0$. Then $[y_1, z]x_1 = [y_2, z]x_2$ so set $c = [y_2, z]/[y_1, z]$. Thus $cx_2 \Box y_1 = x_2 \Box y_2$ so $cy_1 \Box x_2 = y_2 \Box x_2$. Hence $c ||x_2||^2 y_1 = ||x_2||^2 y_2$ so $y_1 = c^{-1} y_2$.
- 13. This problem shows the topologies generated by inner products are all the same. We know [x, y] = (x, Ay) for some A > 0. Let c_1 be the minimum eigenvalue of A, and let c_2 be the maximum eigenvalue of A.

- 14. This is just the Cauchy–Schwarz Inequality.
- 15. The classical two-way ANOVA table is a consequence of this problem. That A, B_1 , B_2 , and B_3 are orthogonal projections is a routine but useful calculation. Just keep the notation straight and verify that $P^2 = P = P'$, which characterizes orthogonal projections.
- 16. To show that $\Gamma(M^{\perp}) \subseteq M^{\perp}$, verify that $(u, \Gamma v) = 0$ for all $u \in M$ when $v \in M^{\perp}$. Use the fact that $\Gamma'\Gamma = I$ and $u = \Gamma u_1$ for some $u_1 \in M$ (since $\Gamma(M) \subseteq M$ and Γ is nonsingular).
- 17. Use Cauchy–Schwarz and the fact that $P_M x = x$ for $x \in M$.
- 18. This is Cauchy-Schwarz for the non-negative definite bilinear form [C, D] = tr ACBD'.
- 20. Use Proposition 1.36 and the assumption that A is real.
- 21. The representation $\alpha P + \beta(I P)$ is a spectral type representation—see Theorem 1.2a. If $M = \Re(P)$, let $x_1, \ldots, x_r, x_{r+1}, \ldots, x_n$ be any orthonormal basis such that $M = \operatorname{span}(x_1, \ldots, x_r)$. Then $Ax_i = \alpha x_i$, $i = 1, \ldots, r$, and $Ax_i = \beta x_i$, $i = r + 1, \ldots, n$. The characteristic polynomial of A must be $(\alpha \lambda)^r (\beta \lambda)^{n-r}$.
- 22. Since $\lambda_1 = \sup_{\|x\|=1}(x, Ax)$, $\mu_1 = \sup_{\|x\|=1}(x, Bx)$, and $(x, Ax) \ge (x, Bx)$, obviously $\lambda_1 \ge \mu_1$. Now, argue by contradiction—let j be the smallest index such that $\lambda_j < \mu_j$. Consider eigenvectors x_1, \ldots, x_n and y_1, \ldots, y_n with $Ax_i = \lambda_i x_i$ and $By_i = \mu_i y_i$, $i = 1, \ldots, n$. Let $M = \operatorname{span}\{x_j, x_{j+1}, \ldots, x_n\}$ and let $N = \operatorname{span}\{y_1, \ldots, y_j\}$. Since dim M = n j + 1, dim $M \cap N \ge 1$. Using the identities $\lambda_j = \sup_{x \in M, \|x\|=1}(x, Ax), \mu_j = \inf_{x \in N, \|x\|=1}(x, Bx)$, for any $x \in M \cap N$, $\|x\| = 1$, we have $(x, Ax) \le \lambda_j < \mu_j \le (x, Bx)$, which is a contradiction.
- 23. Write $S = \sum_{i=1}^{n} \lambda_{i} x_{i} \Box x_{i}$ in spectral form where $\lambda_{i} > 0$, i = 1, ..., n. Then $0 = \langle S, T \rangle = \sum_{i=1}^{n} \lambda_{i}(x_{i}, Tx_{i})$, which implies $(x_{i}, Tx_{i}) = 0$ for i = 1, ..., n as $T \ge 0$. This implies T = 0.
- 24. Since tr A and $\langle A, I \rangle$ are both linear in A, it suffices to show equality for A's of the form $A = x \Box y$. But $\langle x \Box y, I \rangle = (x, y)$. However, that tr $x \Box y = (x, y)$ is easily verified by choosing a coordinate system.
- 25. Parts (i) and (ii) are easy but (iii) is not. It is false that $A^2 \ge B^2$ and a 2×2 matrix counter example is not hard to construct. It is true that $A^{1/2} \ge B^{1/2}$. To see this, let $C = B^{1/2}A^{-1/2}$, so by hypothesis, $I \ge C'C$. Note that the eigenvalues of C are real and positive—being the same as those of $B^{1/4}A^{-1/2}B^{1/4}$ which is positive definite. If λ is any eigenvalue for C, there is a corresponding eigenvector—say x such that ||x|| = 1 and $Cx = \lambda x$. The relation $I \ge C'C$ implies $\lambda^2 \le 1$, so $0 < \lambda \le 1$ as λ is positive. Thus all the eigenvalues of C are in (0, 1] so

the same is true of $A^{-1/4}B^{1/2}A^{-1/4}$. Hence $A^{-1/4}B^{1/2}A^{-1/4} \leq I$ so $B^{1/2} \leq A^{1/2}$.

- 26. Since P is an orthogonal projection, all its eigenvalues are zero or one and the multiplicity of one is the rank of P. But tr P is just the sum of the eigenvalues of P.
- 28. Since any A ∈ Ĉ(V, V) can be written as (A + A')/2 + (A A')/2, it follows that M + N = Ĉ(V, V). If A ∈ M ∩ N, then A = A' = -A, so A = 0. Thus Ĉ(V, V) is the direct sum of M and N so dim M + dim N = n². A direct calculation shows that {x_i□ x_j + x_j□ x_i|i ≤ j} ∪ {x_i□ x_j x_j□ x_i|i < j} is an orthogonal set of vectors, none of which is zero, and hence the set is linearly independent. Since the set has n² elements, it forms a basis for Ĉ(V, V). Because x_i□ x_j + x_j□ x_i ∈ M and x_i□ x_j x_j□ x_i ∈ N, dim M ≥ n(n + 1)/2 and dim N ≥ n(n 1)/2. Assertions (i), (ii), and (iii) now follow. For (iv), just verify that the map A → (A + A')/2 is idempotent and self-adjoint.
- 29. Part (i) is a consequence of $\sup_{\|v\|=1} \|Av\| = \sup_{\|v\|=1} [Av, Av]^{1/2} = \sup_{\|v\|=1} (v, A'Av)^{1/2}$ and the spectral theorem. The triangle inequality follows from $\||A + B|\| = \sup_{\|v\|=1} \|Av + Bv\| \le \sup_{\|v\|=1} (\|Av\| + \|Bv\|) \le \sup_{\|v\|=1} \|Av\| + \sup_{\|v\|=1} \|Bv\|.$
- 30. This problem is easy, but it is worth some careful thought—it provides more evidence that A ⊗ B has been defined properly and (· , ·) is an appropriate inner produce on L(W, V). Assertion (i) is easy since (A ⊗ B)(x_i □ w_j) = (Ax_i) □ (Bw_j) = (λ_ix_i) □ (μ_jw_j) = λ_iμ_jx_i □ w_j. Obviously, x_i □ w_j is an eigenvector of the eigenvalue λ_iμ_j. Part (ii) follows since the two linear transformations agree on the basis {x_i □ w_j|i = 1,..., m, j = 1,..., n} for L(W, V). For (iii), if the eigenvalues of A and B are positive, so are the eigenvalues of A ⊗ B. Since the trace of a self-adjoint linear transformation in the sum of the eigenvalues (this is true even without self-adjointness, but the proof requires a bit more than we have established here), we have tr A ⊗ B = Σ_{i, j}λ_iμ_j = (Σ_iλ_i)(Σ_jμ_j) = (tr A)(tr B). Since the determinant is the product of the eigenvalues, det(A ⊗ B) = Π_{i, j}(λ_iμ_j) = (Πλ_i)ⁿ(Πμ_i)^m = (det A)ⁿ(det B)^m.
- 31. Since $\psi'\psi = I_p$, ψ is a linearly isometry and its columns form an orthonormal set. Since $R(\psi) \subseteq M$ and the two subspaces have the same dimension, (i) follows. (ii) is immediate.
- 32. If C is $n \times k$ and D is $k \times n$, the set of nonzero eigenvalues of CD is the same as the set of nonzero eigenvalues of DC.
- 33. Apply Problem 32.
- 34. Orthogonal transformations preserve angles.

35. This problem requires that you have a facility in dealing with conditional expectation. If you do, the problem requires a bit of calculation but not much more. If you don't, proceed to Chapter 2.

CHAPTER 2

- 1. Write $x = \sum_{i=1}^{n} c_i x_i$ so $(x, X) = \sum c_i(x_i, X)$. Thus $\mathcal{E}[(x, X)] \leq \sum_{i=1}^{n} |c_i| \mathcal{E}[(x_i, X)]$ and $\mathcal{E}[(x_i, X)]$ is finite by assumption. To show that $\operatorname{Cov}(X)$ exists, it suffices to verify that $\operatorname{var}(x, X)$ exists for each $x \in V$. But $\operatorname{var}(x, X) = \operatorname{var}\{\sum c_i(x_i, X)\} = \sum \sum \operatorname{cov}(c_i(x_i, X), c_j(x_j, X))$. Then $\operatorname{var}\{c_i(x_i, X)\} = \mathcal{E}[c_i(x_iX)]^2 [\mathcal{E}c_i(x_i, X)]^2$, which exists by assumption. The Cauchy–Schwarz Inequality shows that $[\operatorname{cov}\{c_i(x_i, X), c_j(x_j, X)\}]^2 \leq \operatorname{var}\{c_i(x_i, X)\} \operatorname{var}\{c_j(x_j, X)\}$. But, $\operatorname{var}\{c_i(x_i, X)\}$ exists by the above argument.
- 2. All inner products on a finite dimensional vector space are related via the positive definite quadratic forms. An easy calculation yields the result of this problem.
- Let (·, ·)_i be an inner product on V_i, i = 1, 2. Since f_i is linear on V_i, f_i(x) = (x_i, x)_i for x_i ∈ V_i, i = 1, 2. Thus if X₁ and X₂ are uncorrelated (the choice of inner product is irrelevant by Problem 2), (2.2) holds. Conversely, if (2.2) holds, then Cov{(x₁, X₁)₁, (x₂, X₂)₂ = 0 for x_i ∈ V_i, i = 1, 2 since (x₁, ·)₁ and (x₂, ·)₂ are linear functions.
- 4. Let s = n r and consider $\Gamma \in \mathcal{O}_r$ and a Borel set B_1 of R^r . Then

. .

$$Pr{\{\Gamma X \in B_1\}} = Pr{\{\Gamma X \in B_1, X \in R^s\}}$$
$$= Pr{\{\begin{pmatrix} \Gamma & 0\\ 0 & I_s \end{pmatrix} \begin{pmatrix} \dot{X}\\ \ddot{X} \end{pmatrix} \in B_1 \times R^s\}}$$
$$= Pr{\{\begin{pmatrix} \dot{X}\\ \ddot{X} \end{pmatrix} \in B_1 \times R^s\}} = Pr{\{\dot{X} \in B_1\}}$$

The third equality holds since the matrix

.

$$\begin{pmatrix} \Gamma & 0 \\ 0 & I_s \end{pmatrix}$$

is in \mathcal{O}_n . Thus \dot{X} has an \mathcal{O}_r -invariant distribution. That \dot{X} given \ddot{X} has an \mathcal{O}_r -invariant distribution is easy to prove when X has a density with respect to Lebesgue measure on \mathbb{R}^n (the density has a version that

satisfies $f(x) = f(\psi x)$ for $x \in \mathbb{R}^n$, $\psi \in \mathcal{O}_n$). The general case requires some fiddling with conditional expections—this is left to the interested reader.

- 5. Let $A_i = \text{Cov}(X_i)$, i = 1, ..., n. It suffices to show that $\text{var}(x, \Sigma X_i) = \Sigma(x, A_i x)$. But (x, X_i) , i = 1, ..., n, are uncorrelated, so $\text{var}[\Sigma(x, X_i)] = \Sigma \text{var}(x, X_i) = \Sigma(x, A_i x)$.
- 6. $\mathcal{E}U = \sum p_i \varepsilon_i = p$. Let U have coordinates U_1, \ldots, U_k . Then $\operatorname{Cov}(U) = \mathcal{E}UU' pp'$ and UU' is a $p \times p$ matrix with elements $U_i U_j$. For $i \neq j$, $U_i U_j = 0$ and for i = j, $U_i U_j = U_i$. Since $\mathcal{E}U_i = p_i$, $\mathcal{E}UU' = D_p$. When $0 < p_i < 1$, D_p has rank k and the rank of $\operatorname{Cov}(U)$ is the rank of $I_k D_p^{-1/2} pp' D_p^{-1/2}$. Let $u = D_p^{-1/2} p$, so $u \in \mathbb{R}^k$ has length one. Thus $I_k uu'$ is a rank k 1 orthogonal projection. The null space of $\operatorname{Cov} U$ is span $\{e\}$ where e is the vector of ones in \mathbb{R}^k . The rest is easy.
- 7. The random variable X takes on n! values—namely the n! permutations of x—each with probability 1/n!. A direct calculation gives $\mathcal{E}X = \bar{x}e$ where $\bar{x} = n^{-1}\sum_{i=1}^{n} x_i$. The distribution of X is permutation invariant, which implies that Cov X has the form $\sigma^2 A$ where $a_{ii} = 1$ and $a_{ij} = \rho$ for $i \neq j$ where $-1/(n-1) \leq \rho \leq 1$. Since $\operatorname{var}(e'X) = 0$, we see that $\rho = -1/(n-1)$. Thus $\sigma^2 = \operatorname{var}(X_1) = n^{-1}[\sum_{i=1}^{n} (x_i - \bar{x})^2]$ where X_1 is the first coordinate of X.
- 8. Setting D = -I, $\mathcal{E}X = -\mathcal{E}X$ so $\mathcal{E}X = 0$. For $i \neq j$, $\operatorname{cov}(X_i, X_j) = \operatorname{cov}(-X_i, X_j) = -\operatorname{cov}(X_i, X_j)$ so X_i and X_j are uncorrelated. The first equality is obtained by choosing D with $d_{ii} = -1$ and $d_{jj} = 1$ in the relation $\mathcal{L}(X) = \mathcal{L}(DX)$.
- 9. This is a direct calculation.
- 10. It suffices to verify the equality for $A = x \Box y$ as both sides of the equality are linear in A. For $A = x \Box y$, $\langle A, \Sigma \rangle = (x, \Sigma y)$ and $(\mu, A\mu) = (\mu, x)(\mu, y)$, so the equality is obvious.
- 11. To say $\operatorname{Cov}(X) = I_n \otimes \Sigma$ is to say that $\operatorname{cov}(\operatorname{tr} AX'), \operatorname{tr} BX') = \operatorname{tr} A\Sigma B'$. To show rows 1 and 2 are uncorrelated, pick $A = \varepsilon_1 v'$ and $B = \varepsilon_2 u'$ where $u, v \in R^p$. Let X'_1 and X'_2 be the first two rows of X. Then $\operatorname{tr} AX' = v'X_1$, $\operatorname{tr} BX' = u'X_2$, and $\operatorname{tr} A\Sigma B = 0$. The desired equality is established by first showing that it is valid for A = xy', $x, y \in R^n$, and using linearity. When A = xy', a useful equality is $X'AX = \sum_i \sum_j x_i y_j X_i X'_j$ where the rows of X are X'_1, \ldots, X'_n .
- 12. The equation $\Gamma A \Gamma' = A$ for $\Gamma \in \mathcal{O}_p$ implies that $A = cI_p$ for some c.
- 13. $\operatorname{Cov}((\Gamma \otimes I)X) = \operatorname{Cov}(X)$ implies $\operatorname{Cov}(X) = I \otimes \Sigma$ for some Σ . $\operatorname{Cov}((I \otimes \psi)X) = \operatorname{Cov}(X)$ then implies $\psi \Sigma \psi' = \Sigma$, which necessitates $\Sigma = cI$ for some $c \ge 0$. Part (ii) is immediate since $\Gamma \otimes \psi$ is an orthogonal transformation on $(\mathcal{L}(V, W), \langle \cdot, \cdot \rangle)$.

- 14. This problem is a nasty calculation intended to inspire an appreciation for the equation $Cov(X) = I_n \otimes \Sigma$.
- 15. Since $\mathcal{L}(X) = \mathcal{L}(-X)$, $\mathcal{E}X = 0$. Also, $\mathcal{L}(X) = \mathcal{L}(\Gamma X)$ implies Cov(X) = cI for some c > 0. But $||X||^2 = 1$ implies c = 1/n. Best affine predictor of X_1 given \dot{X} is 0. I would predict X_1 by saying that X_1 is $\sqrt{1 \dot{X}'\dot{X}}$ with probability $\frac{1}{2}$ and X_1 is $-\sqrt{1 \dot{X}'\dot{X}}$ with probability $\frac{1}{2}$.
- 16. This is just the definition of \Box .
- 17. For (i), just calculate. For (ii), $Cov(S) = 2I_2 \otimes I_2$ by Proposition 2.23. The coordinate inner product on R^3 is not the inner product $\langle \cdot, \cdot \rangle$ on S_2 .

2. Since $\operatorname{var}(X_1) = \operatorname{var}(Y_1) = 1$ and $\operatorname{cov}(X_1, Y_1) = \rho$, $|\rho| \le 1$. Form Z = (XY)—an $n \times 2$ matrix. Then $\operatorname{Cov}(Z) = I_n \otimes A$ where

$$A = \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix}.$$

When $|\rho| < 1$, A is positive definite, so $I_n \otimes A$ is positive definite. Conditioning on Y, $\mathcal{L}(X|Y) = N(\rho Y, (1 - \rho^2)I_n)$, so $\mathcal{L}(Q(Y)X|Y) = N(0, (1 - \rho^2)Q(Y))$ as Q(Y)Y = 0 and Q(Y) is an orthogonal projection. Now, apply Proposition 3.8 for Y fixed to get $\mathcal{L}(W) = (1 - \rho^2)\chi_{n-1}^2$.

- 3. Just do the calculations.
- 4. Since p(x) is zero in the second and fourth quadrants, X cannot be normal. Just find the marginal density of X_1 to show that X_1 is normal.
- 5. Write U in the form X'AX where A is symmetric. Then apply Propositions 3.8 and 3.11.
- 6. Note that $\operatorname{Cov}(X \Box X) = 2I \otimes I$ by Proposition 2.23. Since (X, AX)= $\langle X \Box X, A \rangle$, and similarly for (X, BX), $0 = \operatorname{cov}((X, AX), (X, BX)) = \operatorname{cov}(\langle X \Box X, A \rangle, \langle X \Box X, B \rangle) = \langle A, 2(I \otimes I)B \rangle = 2 \operatorname{tr} AB$. Thus $0 = \operatorname{tr} A^{1/2} BA^{1/2}$ so $A^{1/2} BA^{1/2} = 0$, which shows $A^{1/2} B^{1/2} = 0$ and hence AB = 0.
- 7. Since $\mathcal{E}[\exp(itW_j)] = \exp(it\mu_j \sigma_j|t|]$, $\mathcal{E}[\exp(it\Sigma a_jW_j)] = \exp[it\Sigma a_j\mu_j (\Sigma|a_j|\sigma_j)|t|]$, so $\mathcal{E}(\Sigma a_jW_j) = C(\Sigma a_j\mu_j, \Sigma|a_j|\sigma_j)$. Part (ii) is immediate from (i).
- 8. For (i), use the independence of R and Z_0 to compute as follows: $P\{U \le u\} = P\{Z_0 \le u/R\} = \int_0^\infty P\{Z_0 \le u/t\}G(dt) = \int_0^\infty \Phi(u/t)$ G(dt) where Φ is the distribution function of Z_0 . Now, differentiate. Part (ii) is clear.

9. Let \mathfrak{B}_1 be the sub σ -algebra induced by $T_1(X) = X_2$ and let \mathfrak{B}_2 be the sub σ -algebra induced by $T_2(X) = X'_2 X_2$. Since $\mathfrak{B}_2 \subseteq \mathfrak{B}_1$, for any bounded function f(X), we have $\mathfrak{S}(f(X)|\mathfrak{B}_2) = \mathfrak{S}(\mathfrak{S}(f(X)|\mathfrak{B}_1)|\mathfrak{B}_2)$. But for $f(X) = h(X'_2 X_1)$, the conditional expectation given \mathfrak{B}_1 can be computed via the conditional distribution of $X'_2 X_1$ given X_2 , which is

$$(3.3) \qquad \mathcal{C}(X'_2X_1|X_2) = N(X'_2X_2\Sigma_{22}^{-1}\Sigma_{21}, X'_2X_2\otimes\Sigma_{11\cdot 2}).$$

Hence $\mathcal{E}(h(X'_2X_1)\mathfrak{B}_1)$ is \mathfrak{B}_2 measurable, so $\mathcal{E}(h(X'_2X_1)|\mathfrak{B}_2) = \mathcal{E}(h(X'_2X_1)|\mathfrak{B}_1)$. This implies that the conditional distribution (3.3) serves as a version of the conditional distribution of X'_2X_1 given X'_2X_2 .

- 10. Show that $T^{-1}T_1: \mathbb{R}^n \to \mathbb{R}^n$ is an orthogonal transformation so $l(C) = l((T^{-1}T_1)(C))$. Setting $B = T_1(C)$, we have $\nu_0(B) = \nu_1(B)$ for Borel B.
- 11. The measures ν_0 and ν_1 are equal up to a constant so all that needs to be calculated is $\nu_0(C)/\nu_1(C)$ for some set C with $0 < \nu_1(C) < +\infty$. Do the calculation for $C = \{v | [v, v] \le 1\}$.
- 12. The inner product $\langle \cdot, \cdot \rangle$ on \mathbb{S}_p is not the coordinate inner product. The "Lebesgue measure" on $(\mathbb{S}_p, \langle \cdot, \cdot \rangle)$ given by our construction is not $l(dS) = \prod_{i \leq j} ds_{ij}$, but is $\nu_0(dS) = (\sqrt{2})^{p(p-1)} l(dS)$.
- 13. Any matrix M of the form

$$M = a \begin{pmatrix} 1 & b & \cdots & b \\ b & 1 & & \vdots \\ \vdots & & \ddots & b \\ b & \cdots & b & 1 \end{pmatrix} : p \times p$$

can be written as M = a[(p-1)b+1]A + a(1-b)(I-A). This is a spectral decomposition for M so M has eigenvalues a((p-1)b+1)and a(1-b) (of multiplicity p-1). Setting $\alpha = a[(p-1)b+1]$ and $\beta = a(1-b)$ solves (i). Clearly, $M^{-1} = \alpha^{-1}A + \beta^{-1}(I-A)$ whenever α and β are not zero. To do part (ii), use the parameterization (μ , α , β) given above ($a = \sigma^2$ and b = p). Then use the factorization criterion on the likelihood function.

CHAPTER 4

1. Part (i) is clear since $Z\beta = \sum_{i=1}^{k} \beta_i z_i$ for $\beta \in \mathbb{R}^k$. For (ii), use the singular value decomposition to write $Z = \sum_{i=1}^{r} \lambda_i x_i u'_i$ where r is the rank of Z, $\{x_1, \ldots, x_r\}$ is an orthonormal set in \mathbb{R}^n , $\{u_1, \ldots, u_r\}$ is an orthonormal set in \mathbb{R}^k , $M = \operatorname{span}\{x_1, \ldots, x_r\}$, and $\mathfrak{N}(Z) = (\operatorname{span}\{u_1, \ldots, u_r\})^{\perp}$.

Thus $(Z'Z)^- = \sum_{i=1}^{r} \lambda_i^{-2} u_i u_i'$ and a direct calculation shows that $Z(Z'Z)^- Z' = \sum_{i=1}^{r} x_i x_i'$, which is the orthogonal projection onto M.

- Since ℒ(X_i) = ℒ(β + ε_i) where 𝔅ε_i = 0 and var(ε_i) = 1, it follows that ℒ(X) = ℒ(βe + ε) where 𝔅e = 0 and Cov(ε) = I_n. A direct application of least-squares yields β̂ = X̄ for this linear model. For (iii), since the same β is added to each coordinate of ε, the vector of ordered X's has the same distribution as the βe + ν where ν is the vector of ordered ε's. Thus ℒ(U) = ℒ(βe + ν) so 𝔅U = βe + a₀ and Cov(U) = Cov(ν) = Σ₀. Hence ℒ(U a₀) = ℒ(βe + (ν a₀)). Based on this model, the Gauss-Markov estimator for β is β̃ = (e'Σ₀⁻¹e)⁻¹e'Σ₀⁻¹(U a₀). Since X̄ = (1/n)e'(U a₀) (show e'a₀ = 0 using the symmetry of f), it follows from the Gauss-Markov Theorem that var(β̃) < var(β̂).
- 3. That $M \omega = M \cap \omega^{\perp}$ is clear since $\omega \subseteq M$. The condition $(P_M P_{\omega})^2 = P_M P_{\omega}$ follows from observing that $P_M P_{\omega} = P_{\omega} P_M = P_{\omega}$. Thus $P_M - P_{\omega}$ is an orthogonal projection onto its range. That $\Re(P_M - P_{\omega}) = M - \omega$ is easily verified by writing $x \in V$ as $x = x_1 + x_2 + x_3$ where $x_1 \in \omega$, $x_2 \in M - \omega$, and $x_3 \in M^{\perp}$. Then $(P_M - P_{\omega})(x_1 + x_2 + x_3) = x_1 + x_2 - x_1 = x_2$. Writing $P_M = P_M - P_{\omega} + P_{\omega}$ and noting that $(P_M - P_{\omega})P_{\omega} = 0$ yields the final identity.
- That $\Re(A) = M_0$ is clear. To show $\Re(B_1) = M_1 M_0$, first consider 4. the transformation C defined by $(Cy)_{ij} = \overline{y}_{i}, i = 1, \dots, I, j = 1, \dots, J$. Then $C^2 = C = C'$, and clearly, $\Re(C) \subseteq M_1$. But if $y \in M_1$, then Cy = y so C is the orthogonal projection onto M_1 . From Problem 3 (with $M = M_1$ and $\omega = M_0$), we see that $C - A_0$ is the orthogonal projection onto $M_1 - M_0$. But $((C - A_0)y)_{ii} = \overline{y}_{i.} - \overline{y}_{..}$, which is just $(B_1y)_{ii}$. Thus $B_1 = C - A_0$ so $\Re(B_1) = M_1 - M_0$. A similar argument shows $\Re(B_2) = M_2 - M_0$. For (ii), use the fact that $A_0 + B_1 + B_1$ $B_2 + B_3$ is the identity and the four orthogonal projections are perpendicular to each other. For (iii), first observe that $M = M_1 + M_2$ and $M_1 \cap M_2 = M_0$. If μ has the assumed representation, let ν be the vector with $v_{ij} = \alpha + \beta_i$ and let ξ be the vector with $\xi_{ij} = \gamma_j$. Then $\nu \in M_1$ and $\xi \in M_2$ so $\mu = \nu + \xi \in M_1 + M_2$. Conversely, suppose $\mu \in M_0 \oplus (M_1 - M_0) \oplus (M_2 - M_0)$ -say $\mu = \delta + \nu + \xi$. Since $\delta \in$ $M_0, \delta_{ii} = \overline{\delta}_{..}$ for all *i*, *j*, so set $\alpha = \overline{\delta}_{..}$. Since $\nu \in M_1 - M_0, \nu_{ii} - \nu_{ik} = 0$ for all j, k for each fixed i and $\bar{\nu}_{..} = 0$. Take j = 1 and set $\beta_i = \nu_{i1}$. Then $v_{ij} = \beta_i$ for j = 1, ..., J and, since $\bar{v}_{..} = 0$, $\Sigma \beta_i = 0$. Similarly, setting $\gamma_i = \xi_{1i}$, $\xi_{ij} = \gamma_j$ for all *i*, *j* and since $\xi_{ij} = 0$, $\Sigma \gamma_j = 0$. Thus $\mu_{ij} = \alpha + \beta_i + \gamma_j$ where $\Sigma \beta_i = \Sigma \gamma_j = 0$.
- 5. With $n = \dim V$, the density of Y is (up to constants) $f(y|\mu, \sigma^2) = \sigma^{-n} \exp[-(1/2\sigma^2)||y \mu||^2]$. Using the results and notation Problem

3, write $V = \omega \oplus (M - \omega) \oplus M^{\perp}$ so $(M - \omega) \oplus M^{\perp} = \omega^{\perp}$. Under $H_0, \mu \in \omega$ so $\hat{\mu}_0 = P_{\omega}y$ is the maximum likelihood estimator of μ and

(4.4)
$$f(y|\mu_0,\sigma^2) = \sigma^{-n} \exp\left[-\frac{1}{2\sigma^2} \|Q_{\omega}y\|^2\right]$$

where $Q_{\omega} = I - P_{\omega}$. Maximizing (4.4) over σ^2 yields $\hat{\sigma}_0^2 = n^{-1} ||Q_{\omega}y||^2$. A similar analysis under H_1 shows that the maximum likelihood estimator of μ is $\hat{\mu}_1 = P_M y$ and $\hat{\sigma}_1^2 = n^{-1} ||Q_M y||^2$ is the maximum likelihood estimator of σ^2 . Thus the likelihood ratio test rejects for small values of the ratio

$$\Lambda(y) = \frac{f(y|\hat{\mu}_0, \hat{\sigma}_0^2)}{f(y|\hat{\mu}_1, \hat{\sigma}_1^2)} = \frac{\hat{\sigma}_0^{-n}}{\hat{\sigma}_1^{-n}} = \left(\frac{\|Q_M y\|^2}{\|Q_\omega y\|^2}\right)^{n/2}$$

But $Q_{\omega} = Q_M + P_{M-\omega}$ and $Q_M P_{M-\omega} = 0$, so $||Q_{\omega}y||^2 = ||Q_M y||^2 + ||P_{M-\omega}Y||^2$. But rejecting for small values of $\Lambda(y)$ is equivalent to rejecting for large values of $(\Lambda(y))^{-2/n} - 1 = ||P_{M-\omega}y||^2 / ||Q_M y||^2$. Under H_0 , $\mu \in \omega$ so $\mathcal{L}(P_{M-\omega}Y) = N(0, \sigma^2 P_{M-\omega})$ and $\mathcal{L}(Q_M Y) = N(0, \sigma^2 Q_M)$. Since $Q_M P_{M-\omega} = 0$, $Q_M Y$ and $P_{M-\omega}Y$ are independent and $\mathcal{L}(||P_{M-\omega}Y||) = \sigma^2 \chi_r^2$ where $r = \dim M - \dim \omega$. Also, $\mathcal{L}(||Q_M Y||^2) = \sigma^2 \chi_{n-k}^2$ where $k = \dim M$.

- 6. We use the notation of Problems 4 and 5. In the parameterization described in (iii) of Problem 4, $\beta_1 = \beta_2 = \cdots = \beta_I$ iff $\mu \in M_2$. Thus $\omega = M_2$ so $M \omega = M_1 M_0$. Since M^{\perp} is the range of B_3 (Problem 1.15), $||B_3y||^2 = ||Q_My||^2$, and it is clear that $||B_3y||^2 = \sum (y_{ij} \overline{y_i} \overline{y_i} + \overline{y_i})^2$. Also, since $M \omega = M_1 M_0$, $P_{M-\omega} = P_{M_1} P_{M_0}$ and $||P_{M-\omega}y||^2 = ||P_{M_1}y||^2 ||P_{M_0}y||^2 = \sum_i \sum_j \overline{y_i^2} \sum_i \sum_j \overline{y_i^2} = J \sum_i (\overline{y_i} \overline{y_i})^2$.
- 7. Since $\Re(X') = \Re(X'X)$ and X'y is in the range of X', there exists a $b \in \mathbb{R}^k$ such that X'Xb = X'y. Now, suppose that b is any solution. First note that $P_M X = X$ since each column of X is in M. Since X'Xb = X'y, we have $X'[Xb - P_M y] = X'Xb - X'P_M y = X'Xb - (P_M X)'y = X'Xb - X'y = 0$. Thus the vector $v = Xb - P_M y$ is perpendicular to each column of X(X'v = 0) so $v \in M^{\perp}$. But $Xb \in M$, and obviously, $P_M y \in M$, so $v \in M$. Hence v = 0, so $Xb = P_M y$.
- 8. Since $I \in \gamma$, Gauss-Markov and least-squares agree iff

(4.5)
$$(\alpha P_e + \beta Q_e) M \subseteq M$$
, for all $\alpha, \beta > 0$.

But (4.5) is equivalent to the two conditions $P_e M \subseteq M$ and $Q_e M \subseteq M$.

But if $e \in M$, then $M = \operatorname{span}(e) \oplus M_1$ where $M_1 \subseteq (\operatorname{span}(e))^{\perp}$. Thus $P_e M = \operatorname{span}(e) \subseteq M$ and $Q_e M = M_1 \subseteq M$, so Gauss-Markov equals least-squares. If $e \in M^{\perp}$, then $M \subseteq (\operatorname{span} e)^{\perp}$, so $P_e M = (0)$ and $Q_{e}M = M$, so again Gauss-Markov equals least-squares. For (ii), if $e \notin M^{\perp}$ and $e \notin M$, then one of the two conditions $P_e M \subseteq M$ or $Q_{e}M \subseteq M$ is violated, so least-squares and Gauss-Markov cannot agree for all α and β . For (ii), since $M \subseteq (\operatorname{span}\{e\})^{\perp}$ and $M \neq \beta$ $(\operatorname{span}(e))^{\perp}$, we can write $R^n = \operatorname{span}(e) \oplus M \oplus M_1$ where $M_1 =$ $(\operatorname{span}(e))^{\perp} - M$ and $M_1 \neq \langle 0 \rangle$. Let P_1 be the orthogonal projection onto M_1 . Then the exponent in the density for Y is (ignoring the factor $(-\frac{1}{2})(y-\mu)'(\alpha^{-1}P_e+\beta^{-1}Q_e)(y-\mu) = (P_ey+P_1y+\mu)$ $P_{M}(y-\mu))'(\alpha^{-1}P_{e}+\beta^{-1}Q_{e})(P_{e}y+P_{1}y+P_{M}(y-\mu))=\alpha^{-1}y'P_{e}y$ $+\beta^{-1}y'P_1y + \beta^{-1}(y-\mu)'P_M(y-\mu)$ where we have used the fact that $Q_e = P_1 + P_M$ and $P_1 P_M = 0$. Since $det(\alpha P_e + \beta Q_e) = \alpha \beta^{n-1}$, the usual arguments yields $\hat{\mu} = P_M y$, $\hat{\alpha} = y' P_e y$, and $\hat{\beta} = (n - 1)^2 p_e y$ 1)⁻¹ $y'P_1y$ as maximum likelihood estimators. When $M = \text{span}\{e\}$, then the maximum likelihood estimators for (α, μ) do not exist—other than the solution $\hat{\mu} = P_e y$ and $\hat{\alpha} = 0$ (which is outside the parameter space). The whole point is that when $e \in M$, you must have replications to estimate α when the covariance structure is $\alpha P_e + \beta Q_e$.

- 9. Define the inner product (\cdot, \cdot) on \mathbb{R}^n by $(x, y) = x' \Sigma_1^{-1} y$. In the inner product space $(\mathbb{R}^n, (\cdot, \cdot))$, $\mathfrak{S}Y = X\beta$ and $\operatorname{Cov}(Y) = \sigma^2 I$. The transformation P defined by the matrix $X(X'\Sigma_1^{-1}X)^{-1}X'\Sigma_1^{-1}$ satisfies $P^2 = P$ and is self-adjoint in $(\mathbb{R}^n, (\cdot, \cdot))$. Thus P is an orthogonal projection onto its range, which is easily shown to be the column space of X. The Gauss-Markov Theorem implies that $\hat{\mu} = PY$ as claimed. Since $\mu = X\beta$, $X'\mu = X'X\beta$ so $\beta = (X'X)^{-1}X'\mu$. Hence $\hat{\beta} = (X'X)^{-1}X'\hat{\mu}$, which is just the expression given.
- 10. For (i), each $\Gamma \in \mathcal{O}(V)$ is nonsingular so $\Gamma(M) \subseteq M$ is equivalent to $\Gamma(M) = M$ —hence $\Gamma^{-1}(M) = M$ and $\Gamma^{-1} = \Gamma'$. Parts (ii) and (iii) are easy. To verify (iv), $t_0(c\Gamma Y + x_0) = P_M(c\Gamma Y + x_0) = cP_M\Gamma Y + x_0 = c\Gamma P_M Y + x_0 = c\Gamma t_0(Y) + x_0$. The identity $P_M\Gamma = \Gamma P_M$ for $\Gamma \in \mathcal{O}_M(V)$ was used to obtain the third equality. For (v), first set $\Gamma = I$ and $x_0 = -P_M y$ to obtain

(4.6)
$$t(y) = t(Q_M y) + P_M y.$$

Then to calculate t, we need only know t for vectors $u \in M^{\perp}$ as $Q_M y \in M^{\perp}$. Fix $u \in M^{\perp}$ and let z = t(u) so $z \in M$ by assumption. Then there exists a $\Gamma \in \mathcal{O}_M(V)$ such that $\Gamma u = u$ and $\Gamma z = -z$. For this Γ , we have $z = t(u) = t(\Gamma u) = \Gamma t(u) = \Gamma z = -z$ so z = 0. Hence t(u) = 0 for all $u \in M^{\perp}$ and the result follows.

11. Part (i) follows by showing directly that the regression subspace M is invariant under each $I_n \otimes A$. For (ii), an element of M has the form $\mu = \{Z_1\beta_1, Z_2\beta_2\} \in \mathcal{L}_{2,n}$ for some $\beta_1 \in \mathbb{R}^k$ and $\beta_2 \in \mathbb{R}^k$. To obtain an example where M is not invariant under all $I_n \otimes \Sigma$, take k = 1, $Z_1 = \varepsilon_1$, and $Z_2 = \varepsilon_2$ so μ is

$$\mu = \begin{pmatrix} \beta_1 & 0 \\ 0 & \beta_2 \\ 0 & 0 \\ \vdots & \vdots \\ 0 & 0 \end{pmatrix}$$

That the set of such μ 's is not invariant under all $I_n \otimes \Sigma$ is easily verified. When $Z_1 = Z_2$, then $\mu = Z_1 B$ where B is $k \times 2$ with *i*th column β_i , i = 1, 2. Thus Example 4.4 applies. For (iii), first observe that Z_1 and Z_2 have the same column space (when they are of full rank) iff $Z_2 = Z_1 C$ where C is $k \times k$ and nonsingular. Now, apply part (ii) with β_2 replaced by $C\beta_2$, so M is the set of μ 's of the form $\mu = Z_1 B$ where $B \in \mathcal{C}_{2,k}$.

CHAPTER 5

- 1. Let a_1, \ldots, a_p be the columns of A and apply Gram-Schmidt to these vectors in the order $a_p, a_{p-1}, \ldots, a_1$. Now argue as in Proposition 5.2.
- 2. Follows easily from the uniqueness of F(S).
- 3. Just modify the proof of Proposition 5.4.
- 4. Apply Proposition 5.7
- 5. That F is one-to-one and onto follows from Proposition 5.2. Given $A \in \mathcal{C}_{p,n}^{0}, F^{-1}(A) \in \mathcal{F}_{p,n} \times G_{u}^{+}$ is the pair (ψ, U) where $A = \psi U$. For (ii), $F(\Gamma \psi, UT') = \Gamma \psi UT' = (\Gamma \otimes T)(\psi U) = (\Gamma \otimes T)(F(\psi, U))$. If $F^{-1}(A) = (\psi, U)$, then $A = \psi U$ and ψ and U are unique. Then $(\Gamma \otimes T)A = \Gamma AT' = \Gamma \psi UT'$ and $\Gamma \psi \in \mathcal{F}_{p,n}$ and $UT' \in G_{U}^{+}$. Uniqueness implies that $F^{-1}(\Gamma \psi UT') = (\Gamma \psi, UT')$.
- 6. When $D_g(x_0)$ exists, it is the unique $n \times n$ matrix that satisfies

(5.3)
$$\lim_{x \to x_0} \frac{\|g(x) - g(x_0) - D_g(x_0)(x - x_0)\|}{\|x - x_0\|} = 0.$$

But by assumption, (5.3) is satisfied by A (for $D_g(x_0)$). By definition $J_g(x_0) = \det(D_g(x_0))$.

- 7. With t_{ii} denoting the *i*th diagonal element of *T*, the set {*T*|t_{ii} > 0} is open since the function *T* → t_{ii} is continuous on *V* to *R*¹. But G_T⁺ = ∩ {*l*{T|t_{ii} > 0}, which is open. That *g* has the given representation is just a matter of doing a little algebra. To establish the fact that lim_{x→0}(||*R*(x)||/||x||) = 0, we are free to use any norm we want on *V* and S_p⁺ (all norms defined by inner products define the same topology). Using the trace inner product on *V* and S_p⁺, ||*R*(x)||² = ||xx'||² = tr xx'xx' and ||x||² = tr xx', x ∈ *V*. But for S ≥ 0, tr S² ≤ (tr S)² so ||*R*(x)||/||x|| ≤ tr xx', which converges to zero as x → 0. For (iii), write S = L(x), string the S coordinates out as a column vector in the order s₁₁, s₂₁, s₂₂, s₃₁, s₃₂, s₃₃,..., and string the x coordinates out in the same order. Then the matrix of L is lower triangular and its determinant is easily computed by induction. Part (iv) is immediate from Problem 6.
- 8. Just write out the equations $SS^{-1} = I$ in terms of the blocks and solve.
- 9. That $P^2 = P$ is easily checked. Also, some algebra and Problem 8 show that (Pu, v) = (u, Pv) so P is self-adjoint in the inner product (\cdot, \cdot) . Thus P is an orthogonal projection on $(R^p, (\cdot, \cdot))$. Obviously,

$$R(P) = \left\{ x | x = \begin{pmatrix} y \\ z \end{pmatrix}, z = 0 \right\}.$$

Since

$$Px = \begin{pmatrix} y - \Sigma_{12} \Sigma_{22}^{-1} z \\ 0 \end{pmatrix},$$

$$\|Px\|^{2} = (Px, Px) = \begin{pmatrix} y - \Sigma_{12} \Sigma_{22}^{-1} z \\ 0 \end{pmatrix}' \Sigma^{-1} \begin{pmatrix} y - \Sigma_{12} \Sigma_{22}^{-1} z \\ 0 \end{pmatrix}$$

$$= \begin{pmatrix} y - \Sigma_{12} \Sigma_{22}^{-1} z \end{pmatrix}' \Sigma^{11} \begin{pmatrix} y - \Sigma_{12} \Sigma_{22}^{-1} z \\ 0 \end{pmatrix}.$$

A similar calculation yields $||(I - P)x||^2 = z' \Sigma_{22}^{-1} z$. For (iii), the exponent in the density of X is $-\frac{1}{2}(x, x) = -\frac{1}{2}||Px||^2 - \frac{1}{2}||(I - P)x||^2$. Marginally, Z is $N(0, \Sigma_{22})$, so the exponent in Z's density is $-\frac{1}{2}||(I - P)x||^2$. P)x||². Thus dividing shows that the exponent in the conditional density of Y given Z is $-\frac{1}{2}||Px||^2$, which corresponds to a normal distribution with mean $\Sigma_{12}\Sigma_{22}^{-1}Z$ and covariance $(\Sigma^{11})^{-1} = \Sigma_{11} - \Sigma_{12}\Sigma_{22}^{-1}\Sigma_{21}$.

10. On G_T^+ , for j < i, t_{ij} ranges from $-\infty$ to $+\infty$ and each integral contributes $\sqrt{2\pi}$ —there are p(p-1)/2 of these. For j = i, t_{ii} ranges

from 0 to ∞ and the change of variable $u_{ii} = t_{ii}^2/2$ shows that the integral over t_{ii} is $(\sqrt{2})^{r-i-1}\Gamma((r-i+1)/2)$. Hence the integral is equal to

$$\pi^{(p(p-1))/4} 2^{(p(p-1))/4} 2^{1/2\Sigma(r-i-1)} \prod_{l}^{p} \Gamma\left(\frac{r-i+1}{2}\right),$$

which is just $2^{-p}c(r, p)$.

CHAPTER 6

1. Each $g \in Gl(V)$ maps a linearly independent set into a linearly independent set. Thus $g(M) \subseteq M$ implies g(M) = M as g(M) and M have the same dimension. That G(M) is a group is clear. For (ii),

$$\begin{pmatrix} g_{11} & g_{12} \\ g_{21} & g_{22} \end{pmatrix} \begin{pmatrix} y \\ 0 \end{pmatrix} \in M \quad \text{for } y \in \mathbb{R}^q$$

iff $g_{21}y = 0$ for $y \in \mathbb{R}^q$ iff $g_{21} = 0$. But

$$\begin{pmatrix} g_{11} & g_{12} \\ 0 & g_{22} \end{pmatrix}$$

is nonsingular iff both g_{11} and g_{22} are nonsingular. That G_1 and G_2 are subgroups of G(M) is obvious. To show G_2 is normal, consider $h \in G_2$ and $g \in G(M)$. Then

$$ghg^{-1} = \begin{pmatrix} g_{11} & g_{12} \\ 0 & g_{22} \end{pmatrix} \begin{pmatrix} h_{11} & h_{12} \\ 0 & I_r \end{pmatrix} \begin{pmatrix} g_{11}^{-1} & -g_{11}^{-1}g_{12}g_{22}^{-1} \\ 0 & g_{22}^{-1} \end{pmatrix}$$

has its 2, 2 element I_r , so is in G_2 . For (iv), that $G_1 \cap G_2 = \langle I \rangle$ is clear. Each $g \in G$ can be written as

$$g = \begin{pmatrix} g_{11} & g_{12} \\ 0 & g_{22} \end{pmatrix} = \begin{pmatrix} I_q & 0 \\ 0 & g_{22} \end{pmatrix} \begin{pmatrix} g_{11} & g_{12} \\ 0 & I_r \end{pmatrix},$$

which has the form g = hk with $h \in G_1$ and $k \in G_2$. The representation is unique as $G_1 \cap G_2 = \langle I \rangle$. Also, $g_1g_2 = h_1k_1h_2k_2 = h_1h_2h_2^{-1}k_1h_2k_2 = h_3k_3$ by the uniqueness of the representation.

2. G(M) does not act transitively on $V - \{0\}$ since the vector $\binom{y}{0}$, $y \neq 0$ remains in M under the action of each $g \in G$. To show G(M) is

transitive on $V \cap M^c$, consider

$$x_i = \begin{pmatrix} y_i \\ z_i \end{pmatrix}, \qquad i = 1, 2$$

with $z_1 \neq 0$ and $z_2 \neq 0$. It is easy to argue there is a $g \in G(M)$ such that $gx_1 = x_2$ (since $z_1 \neq 0$ and $z_2 \neq 0$).

- Each n×n matrix Γ∈ Θ_n can be regarded as an n²-dimensional vector. A sequence {Γ_j} converges to a point x ∈ R^m iff each element of Γ_j converges to the corresponding element of x. It is clear that the limit of a sequence of orthogonal matrices is another orthogonal matrix. To show Θ_n is a topological group, it must be shown that the map (Γ, ψ) → Γψ' is continuous from Θ_n × Θ_n to Θ_n—this is routine. To show χ(Γ) = 1 for all Γ, first observe that H = {χ(Γ)|Γ ∈ Θ_n} is a subgroup of the multiplicative group (0, ∞) and H is compact as it is the continuous image of a compact set. Suppose r ∈ H and r ≠ 1. Then r^j ∈ H for j = 1, 2, ... as H is a group, but {r^j} has no convergent subsequence—this contradicts the compactness of H. Hence r = 1.
- 4. Set $x = e^{u}$ and $\xi(u) = \log \chi(e^{u})$, $u \in \mathbb{R}^{1}$. Then $\xi(u_{1} + u_{2}) = \xi(u_{1}) + \xi(u_{2})$ so ξ is a continuous homomorphism on \mathbb{R}^{1} to \mathbb{R}^{1} . It must be shown that $\xi(u) = \nu u$ for some fixed real ν . This follows from the solution to Problem 6 below in the special case that $V = \mathbb{R}^{1}$.
- 5. This problem is easy, but the result is worth noting.
- 6. Part (i) is easy and for part (ii), all that needs to be shown is that ϕ is linear. First observe that

(6.6)
$$\phi(v_1 + v_2) = \phi(v_1) + \phi(v_2)$$

so it remains to verify that $\phi(\lambda v) = \lambda \phi(v)$ for $\lambda \in \mathbb{R}^1$. (6.6) implies $\phi(0) = 0$ and $\phi(nv) = n\phi(v)$ for n = 1, 2, ... Also, $\phi(-v) = -\phi(v)$ follows from (6.6). Setting w = nv and dividing by n, we have $\phi(w/n) = (1/n)\phi(w)$ for n = 1, 2, ... Now $\phi((m/n)v) = m\phi((1/n)v) = (m/n)\phi(v)$ and by continuity, $\phi(\lambda v) = \lambda \phi(v)$ for $\lambda > 0$. The rest is easy.

- 7. Not hard with the outline given.
- 8. By the spectral theorem, every rank r orthogonal projection can be written $\Gamma x_0 \Gamma'$ for some $\Gamma \in \mathcal{O}_n$. Hence transitivity holds. The equation $\Gamma x_0 \Gamma' = x_0$ holds for $\Gamma \in \mathcal{O}_n$ iff Γ has the form

$$\Gamma = \begin{pmatrix} \Gamma_{11} & 0 \\ 0 & \Gamma_{22} \end{pmatrix} \in \mathfrak{O}_n,$$

and this gives the isotropy subgroup of x_0 . For $\Gamma \in \mathcal{O}_n$, $\Gamma x_0 \Gamma' = \Gamma x_0 (\Gamma x_0)'$ and Γx_0 has the form $(\psi 0)$ where $\psi : n \times r$ has columns that are the first r columns of Γ . Thus $\Gamma x_0 \Gamma' = \psi \psi'$. Part (ii) follows by observing that $\psi_1 \psi_1' = \psi_2 \psi_2'$ if $\psi_1 = \psi_2 \Delta$ for some $\Delta \in \mathcal{O}_r$.

The only difficulty here is (iii). The problem is to show that the only continuous homomorphisms χ on G₂ to (∞, ∞) are t^α_{pp} for some real α. Consider the subgroups G₃ and G₄ of G₂ given by

$$G_3 = \left\{ \begin{pmatrix} I_{p-1} & 0 \\ x & 1 \end{pmatrix} \middle| x' \in \mathbb{R}^{p-1} \right\}, \qquad G_4 = \left\{ \begin{pmatrix} I_{p-1} & 0 \\ 0 & u \end{pmatrix} \middle| u \in (0, \infty) \right\}.$$

The group G_3 is isomorphic to R^{p-1} so the only homomorphisms are $x \to \exp[\sum_{i=1}^{p-1} a_i x_i]$ and G_4 is isomorphic to $(0, \infty)$ so the only homomorphisms are $u \to u^{\alpha}$ for some real α . For $k \in G_2$, write

$$k = \begin{pmatrix} I_{p-1} & 0 \\ x & u \end{pmatrix} = \begin{pmatrix} I_{p-1} & 0 \\ x & 1 \end{pmatrix} \begin{pmatrix} I_{p-1} & 0 \\ 0 & u \end{pmatrix}$$

so $\chi(k) = \exp[\sum a_i x_i] u^{\alpha}$. Now, use the condition $\chi(k_1 k_2) = \chi(k_1) \cdot \chi(k_2)$ to conclude $a_1 = a_2 = \cdots = a_{p-1} = 0$ so χ has the claimed form.

10. Use (6.4) to conclude that

$$I_{\gamma} = 2^{p} \left(\sqrt{2\pi} \right)^{np} \omega(n, p) \int_{G_{U}^{+}} \prod_{i=1}^{p} U_{ii}^{2\gamma+n-i} \exp \left[-\frac{1}{2} \sum_{i \leq j} U_{ij}^{2} \right] dU$$

and then use Problem 5.10 to evaluate the integral over G_U^+ . You will find that, for $2\gamma + n > p - 1$, the integral is finite and is $I_{\gamma} = (\sqrt{2\pi})^{np} \omega(n, p) / \omega(2\gamma + n, p)$. If $2\gamma + n \le p - 1$, the integral diverges.

11. Examples 6.14 and 6.17 give Δ_r for G(M) and all the continuous homomorphisms for G(M). Pick $x_0 \in \mathbb{R}^p \cap M^c$ to be

$$x_0 = \begin{pmatrix} 0 \\ z_0 \end{pmatrix}$$

where $z'_0 = (1, 0, ..., 0)$, $z_0 \in R'$. Then H_0 consists of those g's with the first column of g_{12} being 0 and the first column of g_{22} being z_0 . To apply Theorem 6.3, all that remains is to calculate the right-hand modulus of H_0 —say Δ_r^0 . This is routine given the calculations of Examples 6.14 and 6.17. You will find that the only possible multipliers are $\chi(g) = |g_{11}||g_{33}|$ and Lebesgue measure on $R^p \cap M^c$ is the only (up to a positive constant) invariant measure.

12. Parts (i), (ii), (iii), and (iv) are routine. For (v), $J_1(f) = \int f(x)\mu(dx)$ and $J_2(f) = \int f(\tau^{-1}(y))\nu(dy)$ are both invariant integrals on $\mathcal{K}(\mathfrak{X})$. By Theorem 6.3, $J_1 = kJ_2$ for some constant k. To find k, take $f(x) = (\sqrt{2\pi})^{-n}s^n(x)\exp[-\frac{1}{2}x'x]$ so $J_1(f) = 1$. Since $s(\tau^{-1}(y)) = v$ for y = (u, v, w),

$$J_2(f) = (\sqrt{2\pi})^{-n} \int_{\mathcal{Y}} v^n \exp\left[-\frac{1}{2}v^2 - \frac{1}{2}nu^2\right] du \frac{dv}{v^2} v(dw)$$
$$= \frac{1}{2} \frac{\Gamma((n-1)/2)}{(\sqrt{\pi})^{n-1}} = \frac{1}{k}.$$

For (vi), the expected value of any function of \overline{x} and s(x), say $q(\overline{x}, s(x))$ is

$$\begin{split} \tilde{\varepsilon}q(\bar{x},s(x)) &= \int q(\bar{x},s(x))f(x)s^n(x)\mu(dx) \\ &= k\int q(u,v)f(\tau^{-1}(u,v,w))v^n\,du\frac{dv}{v^2}\nu(dw) \\ &= k\int q(u,v)\frac{v^{n-2}}{\sigma^2}h\bigg(\frac{v^2}{\sigma^2} + \frac{n(u-\delta)^2}{\sigma^2}\bigg)\,du\,dv \end{split}$$

Thus the joint density of \overline{x} and s(x) is

$$p(u, v) = \frac{kv^{n-2}}{\sigma^n} h\left(\frac{v^2}{\sigma^2} + \frac{n(u-\delta)^2}{\sigma^2}\right) \qquad \text{(with respect to } du \, dv\text{)}.$$

- 13. We need to show that, with Y(X) = X/||X||, P{||X|| ∈ B, Y ∈ C} = P{||X|| ∈ B}P{Y ∈ C}. If P{||X|| ∈ B} = 0, the above is obvious. If not, set ν(C) = P{Y ∈ C, ||X|| ∈ B}/P{||X|| ∈ B} so ν is a probability measure on the Borel sets of {y|||y|| = 1} ⊆ Rⁿ. But the relation φ(Γx) = Γφ(x) and the θ_n invariance of ℒ(X) implies that ν is an θ_n-invariant probability measure and hence is unique —(for all Borel B)—namely, ν is uniform probability measure on {y|||y|| = 1}.
- 14. Each $x \in \mathfrak{X}$ can be uniquely written as gy with $g \in \mathfrak{P}_n$ and $y \in \mathfrak{Y}$ (of course, y is the order statistic of x). Define \mathfrak{P}_n acting on $\mathfrak{P}_n \times \mathfrak{Y}$ by

g(P, y) = (gP, y). Then $\phi^{-1}(gx) = g\phi^{-1}(x)$. Since P(gx) = gP(x), the argument used in Problem 13 shows that P(X) and Y(X) are independent and P(X) is uniform on \mathfrak{P}_n .

CHAPTER 7

- 1. Apply Propositions 7.5 and 7.6.
- 2. Write $X = \psi U$ as in Proposition 7.3 so ψ and U are independent. Then $P(X) = \psi \psi'$ and S(X) = U'U and the independence is obvious.
- 3. First, write Q in the form

$$Q = M' \begin{pmatrix} I_r & 0\\ 0 & 0 \end{pmatrix} M$$

where M is $n \times n$ and nonsingular. Since M is nonsingular, it suffices to show that $(M^{-1}(A))^c$ has measure zero. Write $x = (\overset{i}{x})$ where \dot{x} is $r \times p$. It then suffices to show that $B^c = \{x | x \in \mathcal{L}_{p,n}, \operatorname{rank}(\dot{x}) = p\}^c$ has measure zero. For this, use the argument given in Proposition 7.1.

- 4. That the ϕ 's are the only equivariant functions follows as in Example 7.6.
- 5. Part (i) is obvious. For (ii), just observe that knowledge of F_n allows you to write down the order statistic and conversely.
- 6. Parts (i) and (ii) are clear. For (iii), write x = Px + Qx. If t is equivariant t(x + y) = t(x) + y, $y \in M$. This implies that t(Qx) = t(x) + Px (pick y = Px). Thus t(x) = Px + t(Qx). Since Q = I P, $Qx \in M^{\perp}$, so BQx = Qx for any B with $(B, y) \in G$. Since $t(Qx) \in M$, pick B such that Bx = -x for $x \in M$. The equivariance of t then gives t(Qx) = t(BQx) = Bt(Qx) = -t(Qx), so t(Qx) = 0.
- 7. Part (i) is routine as is the first part of (ii) (use Problem 6). An equivariant estimator of σ^2 must satisfy $t(a\Gamma x + b) = a^2 t(x)$. G acts transitively on \mathfrak{X} and \overline{G} acts transitively on $(0, \infty)$ (\mathfrak{Y} for this case) so Proposition 7.8 and the argument given in Example 7.6 apply.
- 8. When $X \in \mathfrak{X}$ with density f(x'x), then $Y = X\Sigma^{1/2} = (I_n \otimes \Sigma^{1/2})X$ has density $f(\Sigma^{-1/2}x'x\Sigma^{-1/2})$ since $dx/|x'x|^{n/2}$ is invariant under $x \to xA$ for $A \in Gl_p$. Also, when X has density f, then $\mathcal{L}((\Gamma \otimes \Delta)X)$ $= \mathcal{L}(X)$ for all $\Gamma \in \mathfrak{O}_n$ and $\Delta \in \mathfrak{O}_p$. This implies (see Proposition 2.19) that $\operatorname{Cov}(X) = cI_n \otimes I_p$ for some c > 0. Hence $\operatorname{Cov}((I_n \otimes \Sigma^{1/2})X) = cI_n \otimes \Sigma$. Part (ii) is clear and (iii) follows from Proposition 7.8 and Example 7.6. For (iv), the definition of C_0 and the assumption on f

imply $f(\Gamma C_0 \Gamma') = f(C_0 \Gamma' \Gamma) = f(C_0)$ for each $\Gamma \in \mathcal{O}_p$. The uniqueness of C_0 implies $C_0 = \alpha I_p$ for some $\alpha > 0$. Thus the maximum likelihood estimator of Σ must be $\alpha X' X$ (see Proposition 7.12 and Example 7.10).

- If L(X) = P₀, then L(||X||) is the same whenever L(X) ∈ {P|P = gP₀, g ∈ O(V)} since x → ||x|| is a maximal invariant under the action of O(V) on V. For (ii), L(||X||) depends on µ through ||µ||.
- Write V = ω ⊕ (M ω) ⊕ M[⊥]. Remove a set of Lebesgue measure zero from V and show the F ratio is a maximal invariant under the group action x → aΓx + b where a > 0, b ∈ ω, and Γ ∈ Θ(V) satisfies Γ(ω) ⊆ ω, Γ(M ω) ⊆ (M ω). The group action on the parameter (μ, σ²) is μ → aΓμ + b and σ² → a²σ². A maximal invariant parameter is ||P_{M-ω}μ||²/σ², which is zero when μ ∈ ω.
- 11. The statistic V is invariant under $x_i \rightarrow Ax_i + b$, i = 1, ..., n, where $b \in R^p$, $A \in Gl_p$, and det A = 1. The model is invariant under this group action where the induced group action on (μ, Σ) is $\mu \rightarrow A\mu + b$ and $\Sigma \rightarrow A\Sigma A'$. A direct calculation shows $\theta = \det(\Sigma)$ is a maximal invariant under the group action. Hence the distribution of V depends on (μ, Σ) only through θ .
- 12. For (i), if $h \in G$ and $B \in \mathfrak{B}$, $(hP)(B) = P(h^{-1}B) = \int_G (g\overline{Q})(h^{-1}B)$ $\mu(dg) = \int_G \overline{Q}(g^{-1}h^{-1}B)\mu(dg) = \int_G \overline{Q}((hg)^{-1}B)\mu(dg) = \int \overline{Q}(g^{-1}B)\mu(dg) =$ P(B), so hP = P for $h \in G$ and P is G invariant. For (ii), let Q be the distribution described in Proposition 7.16 (ii), so if $\mathcal{L}(X) = P$, then $\mathcal{L}(X) = \mathcal{L}(UY)$ where U is uniform on G and is independent of Y. Thus for any bounded \mathfrak{B} -measurable function f,

$$\int f(x) P(dx) = \int_G \int_{\mathfrak{Y}} f(gy) \mu(dg) Q(dy) = \int_G \int_{\mathfrak{Y}} f(gx) \mu(dg) \overline{Q}(dx).$$

Set $f = I_B$ and we have $P(B) = \int_G \overline{Q}(g^{-1}B)\mu(dg)$ so (7.1) holds.

13. For $y \in \mathcal{G}$ and $B \in \mathcal{B}$, define R(B|y) by $R(B|y) = \int_G I_B(gy)\mu(dg)$. For each y, $R(\cdot|y)$ is a probability measure on $(\mathfrak{K}, \mathfrak{B})$ and for fixed B, $R(B|\cdot)$ is $(\mathfrak{G}, \mathfrak{C})$ measurable. For $P \in \mathfrak{P}$, (ii) of Proposition 7.16 shows that

(7.2)
$$\int h(x)P(dx) = \int_{\mathcal{A}} \int_{G} h(gy)\mu(dg)Q(dy).$$

But by definition of $R(\cdot|\cdot)$, $\int_G h(gy)\mu(dg) = \int_{\Re} h(x)R(dx|y)$, so (7.2)

becomes

$$\int_{\mathfrak{N}} h(x) P(dx) = \int_{\mathfrak{N}} \int_{\mathfrak{N}} h(x) R(dx|y) Q(dy)$$

This shows that $R(\cdot|y)$ serves as a version of the conditional distribution of X given $\tau(X)$. Since R does not depend on $P \in \mathcal{P}$, $\tau(X)$ is sufficient.

- 14. For (i), that $t(gx) = g \circ t(x)$ is clear. Also, $X \overline{X}e = Q_e X$, which is $N(0, Q_e)$ so is ancillary. For (ii), $\mathcal{E}(f(X_1)|\overline{X} = t) = \mathcal{E}(f(X_1 \overline{X} + \overline{X})|\overline{X} = t) = \mathcal{E}(f(\varepsilon_1'Z(X) + \overline{X})|\overline{X} = t)$ since Z(X) has coordinates $X_i \overline{X}, i = 1, ..., n$. Since Z and \overline{X} are independent, this last conditional expectation (given $\overline{X} = t$) is just the integral over the distribution of Z with $\overline{X} = t$. But $\varepsilon_1'Z(X) = X_1 \overline{X}$ is $N(0, \delta^2)$ so the claimed integral expression holds. When f(x) = 1 for $x \le u_0$ and 0 otherwise, the integral is just $\Phi((u_0 t)/\delta)$ where Φ is the normal cumulative distribution function.
- Let B be the set $(-\infty, u_0]$ so $I_B(X_1)$ is an unbiased estimator of 15. h(a, b) when $\mathcal{L}(X) = (a, b)P_0$. Thus $\hat{h}(t(X)) = \mathcal{E}(I_B(X_1)|t(X))$ is an unbiased estimator of h(a, b) based on t(X). To compute \hat{h} , we have $\mathcal{E}(I_B(X_1)|t(X)) = P(X_1 \le u_0|t(X)) = P((X_1 - \overline{X})/s \le (u_0 - x_0))$ \overline{X} /s((s, \overline{X})). But $(X_1 - \overline{X})/s \equiv Z_1$ is the first coordinate of Z(X) so is independent of (s, \overline{X}) . Thus $\hat{h}(s, \overline{X}) = P_{Z_1} \{Z_1 \le (u_0 - \overline{X})/s\} =$ $F((u_0 - \overline{X})/s)$ where F is the distribution function of the first coordinate of Z. To find F, first observe that Z takes values in $\mathfrak{Z} = \{x | x \in$ R^n , x'e = 0, ||x|| = 1 and the compact group $\mathcal{O}_n(e)$ acts transitively on \mathfrak{Z} . Since $Z(\Gamma X) = \Gamma Z(X)$ for $\Gamma \in \mathfrak{O}_n(e)$, it follows that Z has a uniform distribution on \mathfrak{Z} (see the argument in Example 7.19). Let U be $N(0, I_n)$ so Z has the same distribution as $Q_n U / ||Q_n U||$ and $\mathcal{L}(Z_1)$ $= \mathcal{L}(\varepsilon_1'Q_eU/||Q_eU||^2) = \mathcal{L}((Q_e\varepsilon_1)'Q_eU/||Q_eU||^2). \text{ Since } ||Q_e\varepsilon_1||^2 = (n$ $(1/2e^{-1})/n$ and $Q_e U$ is $N(0, Q_e)$, it follows that $\mathcal{L}(Z_1) = \mathcal{L}(((n-1)/n)^{1/2}W_1)$ where $W_1 = U_1/(\Sigma_1^{n-1}U_i^2)^{1/2}$. The rest is a routine computation.
- 16. Part (i) is obvious and (ii) follows from

(7.3)
$$\mathfrak{S}(f(X)|\tau(X) = g) = \mathfrak{S}\left(f(\tau(X)(\tau(X))^{-1}X)|\tau(X) = g\right)$$
$$= \mathfrak{S}\left(f(\tau(X)Z(X))|\tau(X) = g\right).$$

Since Z(X) and $\tau(X)$ are independent and $\tau(X) = g$, the last member of (7.3) is just the expectation over Z of f(gZ). Part (iii) is just an application and Q_0 is the uniform distribution on $\mathcal{F}_{p,n}$. For (iv), let B be a fixed Borel set in \mathbb{R}^P and consider the parametric function $h(\Sigma) = P_{\Sigma}(X_1 \in B) = \int I_B(x)(\sqrt{2\pi})^{-p}|\Sigma|^{-1/2}\exp[-\frac{1}{2}x'\Sigma^{-1}x]dx$, where X'_1 is the first row of X. Since $\tau(X)$ is a complete sufficient statistic, the MVUE of $h(\Sigma)$ is

(7.4)

$$\hat{h}(T) = \mathcal{E}(I_B(X_1)|\tau(X) = T) = P\{T(\tau(X))^{-1}X_1 \in B|\tau(X) = T\}.$$

But $Z'_1 = (\tau^{-1}(X)X_1)'$ is the first row of Z(X) so is independent of $\tau(X)$. Hence $\hat{h}(T) = P_1(Z_1 \in T^{-1}(B))$ where P_1 is the distribution of Z_1 when Z has a uniform distribution on $\mathfrak{F}_{p,n}$. Since Z_1 is the first p coordinates of a random vector that is uniform on $\langle x || |x|| = 1, x \in \mathbb{R}^n$, it follows that Z_1 has a density $\psi(||u||^2)$ for $u \in \mathbb{R}^p$ where ψ is given by

$$\psi(v) = \begin{cases} c(1-v)^{(n-p-2)/2} & 0 < v < 1\\ 0 & \text{otherwise} \end{cases}$$

where $c = \Gamma(n/2)/\pi^{p/2}\Gamma((n-p)/2)$. Therefore $\hat{h}(T) = \int_{R^{p}} I_{B}(Tu)\psi(||u||^{2})du = (\det T)^{-1}\int_{R^{p}} I_{B}(u)\psi(||T^{-1}u||^{2})du$. Now, let *B* shrink to the point u_{0} to get that $(\det T)^{-1}\psi(||T^{-1}u_{0}||^{2})$ is the MVUE for $(\sqrt{2\pi})^{-p}|\Sigma|^{-1/2} \exp[-\frac{1}{2}u_{0}'\Sigma^{-1}u_{0}]$.

CHAPTER 8

- 1. Make a change of variables to r, $x_1 = s_{11}/\sigma_{11}$ and $x_2 = s_{22}/\sigma_{22}$, and then integrate out x_1 and x_2 . That $p(r|\rho)$ has the claimed form follows by inspection. Karlin's Lemma (see Appendix) implies that $\psi(\rho r)$ has a monotone likelihood ratio.
- 3. For $\alpha = 1/2, ..., (p-1)/2$, let $X_1, ..., X_r$ be i.i.d. $N(0, I_p)$ with $r = 2\alpha$. Then $S = X_i X_i'$ has ϕ_{α} as its characteristic function. For $\alpha > (p-1)/2$, the function $p_{\alpha}(s) = k(\alpha)|s|^{\alpha} \exp[-\frac{1}{2} \operatorname{tr} s]$ is a density with respect to $ds/|s|^{(p+1)/2}$ on \mathbb{S}_p^+ . The characteristic function of p_{α} is ϕ_{α} . To show that $\phi_{\alpha}(\Sigma A)$ is a characteristic function, let S satisfy $\mathcal{E} \exp(i\langle A, S \rangle) = \phi_{\alpha}(A) = |I_p 2iA|^{\alpha}$. Then $\Sigma^{1/2}S\Sigma^{1/2}$ has $\phi_{\alpha}(\Sigma A)$ as its characteristic function.
- 4. $\mathcal{L}(S) = \mathcal{L}(\Gamma S \Gamma')$ implies that $A = \mathcal{E}S$ satisfies $A = \Gamma A \Gamma'$ for all $\Gamma \in \mathcal{O}_p$. This implies $A = cI_p$ for some constant c. Obviously, $c = \mathcal{E}s_{11}$. For (ii) var(tr DS) = var($\Sigma f d_i s_{ii}$) = $\Sigma f d_i^2 var(s_{ii}) + \Sigma \Sigma_{i \neq j} d_i d_j cov(s_{ii}, s_{jj})$. Noting that $\mathcal{L}(S) = \mathcal{L}(\Gamma S \Gamma')$ for $\Gamma \in \mathcal{O}_p$, and in particular for permutation matrices, it follows that $\gamma = var(s_{ii})$ does not depend on i and $\beta = cov(s_{ii}, s_{ji})$ does not depend on i and j ($i \neq j$). Thus var $\langle D, S \rangle =$

 $\gamma \Sigma_{1}^{p} d_{i}^{2} + \beta \Sigma_{i \neq j} d_{i} d_{j} = (\gamma - \beta) \Sigma_{1}^{p} d_{i}^{2} + \beta (\Sigma_{1}^{p} d_{i})^{2}$. For (iii), write $A \in S_{p}$ as $\Gamma D \Gamma'$ so $\operatorname{var}\langle A, S \rangle = \operatorname{var}\langle \Gamma D \Gamma', S \rangle = \operatorname{var}\langle D, \Gamma' S \Gamma \rangle = \operatorname{var}\langle D, S \rangle = (\gamma - \beta) \Sigma_{1}^{p} d_{i}^{2} + \beta (\Sigma_{1}^{p} d_{i})^{2} = (\gamma - \beta) \operatorname{tr} A^{2} + \beta (\operatorname{tr} A)^{2} = (\gamma - \beta) \langle A, A \rangle + \beta \langle I, A \rangle^{2}$. With $T = (\gamma - \beta) I_{p} \otimes I_{p} + \beta I_{p} \Box I_{p}$, it follows that $\operatorname{var}\langle A, S \rangle = \langle A, TA \rangle$, and since T is self-adjoint, this implies that $\operatorname{Cov}(S) = T$.

- 5. Use Proposition 7.6.
- 6. Immediate from Problem 3.
- 7. For (i), it suffices to show that $\mathcal{L}((ASA')^{-1}) = W((A\Lambda A')^{-1}, r, \nu + r 1)$. Since $\mathcal{L}(S^{-1}) = W(\Lambda^{-1}, p, \nu + p 1)$, Proposition 8.9 implies that desired result. (ii) follows immediately from (i). For (iii), (i) implies $\tilde{S} = \Lambda^{-1/2}S\Lambda^{-1/2}$ is $IW(I_p, p, \nu)$ and $\mathcal{L}(\tilde{S}) = \mathcal{L}(\Gamma\tilde{S}\Gamma')$ for all $\Gamma \in \mathfrak{O}_p$. Now, apply Problem 4 to conclude that $\tilde{\mathcal{S}S} = cI_p$ where $c = \tilde{\mathcal{S}S}_{11}$. That $c = (\nu 2)^{-1}$ is an easy application of (i). Hence $(\nu 2)^{-1}I_p = \tilde{\mathcal{S}S} = \Lambda^{-1/2}(\tilde{\mathcal{S}S})\Lambda^{-1/2}$ so $\tilde{\mathcal{S}S} = (\nu 2)^{-1}\Lambda$. Also, $\operatorname{Cov}\tilde{S} = (\gamma \beta)I_p \otimes I_p + \beta I_p \Box I_p$ as in Problem 4. Thus $\operatorname{Cov}(\tilde{S}) = (\Lambda^{1/2} \otimes \Lambda^{1/2})(\operatorname{Cov}\tilde{S})(\Lambda^{1/2} \otimes \Lambda^{1/2}) = (\gamma \beta)\Lambda \otimes \Lambda + \beta\Lambda \Box \Lambda$. For (iv), that $\mathcal{L}(S_{11}) = IW(\Lambda_{11}, q, \nu)$, take $A = (I_q 0)$ in part (i). To show $\mathcal{L}(S_{22\cdot 1}^{-1}) = W(\Lambda_{22\cdot 1}^{-1}, r, \nu + q + r 1)$, use Proposition 8.8 on S^{-1} , which is $W(\Lambda^{-1}, p, \nu + p 1)$.
- 8. For (i), let p₁(x)p₂(s) denote the joint density of X and S with respect to the measure dx ds/|s|^{(p+1)/2}. Setting T = XS^{-1/2} and V = S, the joint density of T and V is p₁(tv^{1/2})p₂(v)|v|^{r/2} with respect to dt dv/|v|^{(p+1)/2}—the Jacobian of x → tv^{1/2} is |v|^{r/2}—see Proposition 5.10. Now, integrate out v to get the claimed density. That L(T) = L(ΓTΔ') is clear from the form of the density (also from (ii) below). Use Proposition 2.19 to show Cov(T) = c₁I_r ⊗ I_p. Part (ii) follows by integrating out v from the conditional density of T to obtain the marginal density of T as given in (i). For (iii) represent T as: T given V is N(0, I_r ⊗ V) where V is IW(I_p, p, v). Thus T₁₁ given V is N(0, I_k ⊗ V₁₁) where V₁₁ is the q × q upper left-hand corner of V. Since L(V₁₁) = IW(I_q, q, v), the claimed result follows from (ii).
- 9. With V = S₂^{-1/2}S₁S₂^{-1/2} and S = S₂⁻¹, the conditional distribution of V given S is W(S, p, m) and ℒ(S) = IW(I_p, p, v). Since V is unconditionally F(m, v, I_p), (i) follows. For (ii), ℒ(T) = T(v, I_r, I_p) means that ℒ(T) = ℒ(XS^{1/2}) where ℒ(X) = N(0, I_r ⊗ I_p) and ℒ(S) = IW(I_p, p, v). Thus ℒ(T'T) = ℒ(S^{1/2}X'XS^{1/2}). Since ℒ(X'X) = W(I_p, p, r), (ii) follows by definition of F(r, v, I_p). For (iii), write F = T'T where ℒ(T) = T(v, I_r, I_p), which has the density given in (i) of Problem 8. Since r ≥ p, Proposition 7.6 is directly applicable to yield the density of F. To establish (iv), first note that ℒ(F) = ℒ(ГFΓ')

for all $\Gamma \in \mathcal{O}_p$. Using Example 7.16, F has the same distributions as $\psi D\psi'$ where ψ is uniform on \mathcal{O}_p and is independent of the diagonal matrix D whose diagonal elements $\lambda_1 \ge \cdots \ge \lambda_p$ are distributed as the eigenvalues of F. Thus $\lambda_1, \ldots, \lambda_p$ are distributed as the eigenvalues of $S_2^{-1}S_1$ where S_1 is $W(I_p, p, r)$ and S_2^{-1} is $IW(I_p, p, \nu)$. Hence $\mathcal{C}(F^{-1}) = \mathcal{C}(\psi D^{-1}\psi') = \mathcal{C}(\psi D\psi')$ where the diagonal elements of D, say $\lambda_p^{-1} \ge \cdots \ge \lambda_1^{-1}$, are the eigenvalues of $S_1^{-1}S_2$. Since S_2 is $W(I_p, p, \nu + p - 1)$, it follows that $\psi D\psi'$ has the same distribution as an $F(\nu + p - 1, r - p + 1, I_p)$ matrix by just repeating the orthogonal invariance argument given above. (v) is established by writing F = T'T as in (ii) and partitioning T as $T_1: r \times q$ and $T_2: r \times (p - q)$ so

$$T'T = \begin{pmatrix} T'_1T_1 & T'_1T_2 \\ T'_2T_1 & T'_2T_2 \end{pmatrix}.$$

Since $\mathcal{L}(T_1) = T(\nu, I_r, I_q)$ and $F_{11} = T'_1T_1$, (ii) implies that $\mathcal{L}(F_{11}) = F(r, \nu, I_q)$. (vi) can be established by deriving the density of $XS^{-1}X'$ directly and using (iii), but an alternative argument is more instructive. First, apply Proposition 7.4 to X' and write $X = V^{1/2}\psi'$ where $V \in S_r^+$, V = XX' is $W(I_r, r, p)$ and is independent of $\psi : p \times r$, which is uniform on $\mathfrak{F}_{r,p}$. Then $XS^{-1}X' = V^{1/2}W^{-1}V^{1/2}$ where $W = (\psi'S^{-1}\psi)^{-1}$ and is independent of V. Proposition 8.1 implies that $\mathcal{L}(W) = W(I_r, r, m - p + r)$. Thus $\mathcal{L}(W^{-1}) = IW(I_r, r, m - p + 1)$. Now, use the orthogonal invariance of the distribution of $XS^{-1}X'$ to conclude that $\mathcal{L}(XS^{-1}X') = \mathcal{L}(\Gamma D \Gamma')$ where Γ and D are independent, Γ is uniform on \mathfrak{G}_r , and the diagonal elements of D are distributed as the ordered eigenvalues of $W^{-1}V$. As in the proof of (iv), conclude that $\mathcal{L}(\Gamma D \Gamma') = F(p, m - p + 1, I_r)$.

10. The function $S \to S^{1/2}$ on \mathbb{S}_p^+ to \mathbb{S}_p^+ satisfies $(\Gamma S \Gamma')^{1/2} = \Gamma S^{1/2} \Gamma'$ for $\Gamma \in \mathbb{O}_p$. With $B(S_1, S_2) = (S_1 + S_2)^{-1/2} S_1(S_1 + S_2)^{-1/2}$, it follows that $B(\Gamma S_1 \Gamma', \Gamma S_2 \Gamma') = \Gamma B(S_1, S_2) \Gamma'$. Since $\mathbb{C}(\Gamma S_i \Gamma') = \mathbb{C}(S_i)$, i = 1, 2, and S_1 and S_2 are independent, the above implies that $\mathbb{C}(B) = \mathbb{C}(\Gamma B \Gamma')$ for $\Gamma \in \mathbb{O}_p$. The rest of (i) is clear from Example 7.16. For (ii), let $B_1 = S_1^{1/2}(S_1 + S_2)^{-1}S_2^{1/2}$ so $\mathbb{C}(B_1) = \mathbb{C}(\Gamma B_1 \Gamma')$ for $\Gamma \in \mathbb{O}_p$. Thus $\mathbb{C}(B_1) = \mathbb{C}(\Psi D \Psi')$ where Ψ and D are independent, Ψ is uniform on \mathbb{O}_p . Also, the diagonal elements of D, say $\lambda_1 \ge \cdots \ge \lambda_p > 0$, are distributed as the ordered eigenvalues of $S_1(S_1 + S_2)^{-1}$ so B_1 is $B(m_1, m_2, I_p)$. (iii) is easy using (i) and (ii) and the fact that $F(I + F)^{-1}$ is symmetric. For (iv), let $B = X(S + X'X)^{-1}X'$ and observe that $\mathbb{C}(B) = \mathbb{C}(\Gamma B \Gamma')$, $\Gamma \in \mathbb{O}_p$. Since $m \ge p$, S^{-1} exists so $B = XS^{-1/2}(I_p + S^{-1/2}X'XS^{-1/2})^{-1}S^{-1/2}X'$. Hence $T = XS^{-1/2}$ is $T(m - p + 1, I_r, I_p)$. Thus $\mathbb{C}(B) = \mathbb{C}(\Psi D \Psi')$ where Ψ is uniform on \mathbb{O}_r and

is independent of *D*. The diagonal elements of *D*, say $\lambda_1, \ldots, \lambda_r$, are the eigenvalues of $T(I_p + T'T)^{-1}T'$. These are the same as the eigenvalues of $TT'(I_r + TT')^{-1}$ (use the singular value decomposition for *T*). But $\mathcal{L}(TT') = \mathcal{L}(XS^{-1}X') = F(p, m - p + 1, I_r)$ by Problem 9 (vi). Now use (iii) above and the orthogonal invariance of $\mathcal{L}(B)$. (v) is trivial.

CHAPTER 9

- 1. Let B have rows ν'_1, \ldots, ν'_k and form X in the usual way (see Example 4.3) so $\mathcal{E}X = ZB$ with an appropriate $Z: n \times k$. Let $R: 1 \times k$ have entries a_1, \ldots, a_k . Then $RB = \sum_{i=1}^{k} a_i \mu'_i$ and H_0 holds iff RB = 0. Now apply the results in Section 9.1.
- For (i), just do the algebra. For (ii), apply (i) with S₁ = (Y XB)'(Y XB) and S₂ = (X(B B))'(X(B B)), so φ(S₁) ≤ φ(S₁ + S₂) for every B. Since A ≥ 0, tr A(S₁ + S₂) = tr AS₁ + tr AS₂ ≥ tr AS₁ since tr AS₂ ≥ 0 as S₂ ≥ 0. To show det(A + S) is nondecreasing in S ≥ 0, First note that A + S₁ ≤ A + S₁ + S₂ in the sense of positive definiteness as S₂ ≥ 0. Thus the ordered eigenvalues of (A + S₁ + S₂), say λ₁,..., λ_p, satisfy λ_i ≥ μ_i, i = 1,..., p, where μ₁,..., μ_p are the ordered eigenvalues of A + S₁. Thus det(A + S₁ + S₂) ≥ det(A + S₁). This same argument solves (iv).
- Since L(Eψ'A') = L(EA') for ψ ∈ O_p, the distribution of EA' depends only on a maximal invariant under the action A → Aψ of ψ on Gl_p. This maximal invariant is AA'. (ii) is clear and (iii) follows since the reduction to canonical form is achieved via an orthogonal transformation ỹ = ΓY where Γ ∈ O_n. Thus ỹ = Γμ + ΓEA'. Γ is chosen so Γμ has the claimed form and H₀ is B₁ = 0. Setting Ẽ = ΓE, the model has the claimed form and L(E) = L(E) by assumption. The arguments given in Section 9.1 show that the testing problem is invariant and a maximal invariant is the vector of the t largest eigenvalues of Y₁(Y'₃Y₃)⁻¹Y'₁. Under H₀, Y₁ = E₁A', Y₃ = E₃A' so Y₁(Y'₃Y₃)⁻¹Y'₁ = E₁(E'₃E₃)⁻¹E'₁ ≡ W. When L(ΓE) = L(E) for all Γ ∈ O_n, write E = ψU according to Proposition 7.3 where ψ and U are independent and ψ is uniform on F_{p,n}. Partitioning ψ as E is partitioned, E_i = ψ_iU, i = 1, 2, 3, so W = ψ₁U((ψ₃U)'ψ₃U)⁻¹U'ψ'₁ = ψ₁(ψ'₃ψ₃)⁻¹ψ'₁. The rest is obvious as the distribution of W depends only on the distribution of ψ.
- 4. Use the independence of Y_1 and Y_3 and the fact that $\mathcal{E}(Y'_3Y_3)^{-1} = (m p 1)^{-1}\Sigma^{-1}$.

5. Let $\Gamma \in \mathfrak{O}_2$ be given by

$$\Gamma = \left(\sqrt{2}\right)^{-1} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}$$

and set $\tilde{Y} = Y\Gamma$. Then $\mathcal{L}(\tilde{Y}) = N(ZB\Gamma, I_n \otimes \Gamma'\Sigma\Gamma)$. Now, let $B\Gamma$ have columns β_1 and β_2 . Then H_0 is that $\beta_1 = 0$. Also $\Gamma'\Sigma\Gamma$ is diagonal with unknown diagonal elements. The results of Section 9.2 apply directly to yield the likelihood ratio test. A standard invariance argument shows the test is UMP invariant.

- 6. For (i), look at the i, j elements of the equation for Y. To show $M_2 \perp M_3$, compute as follows: $\langle \alpha u'_2, u_1 \beta' \rangle = \text{tr } \alpha u'_2 \beta u'_1 = u'_2 \beta u'_1 \alpha = 0$ from the side conditions on α and β . The remaining relations $M_1 \perp M_2$ and $M_1 \perp M_2$ are verified similarly. For (iii) consider $(I_m \otimes A)(\mu u_1 u_2')$ $+ \alpha u_{2}' + u_{1}\beta') = \mu u_{1}(Au_{2})' + \alpha(Au_{2})' + u_{1}(A\beta)' = \mu \gamma u_{1}u_{2}' + \gamma \alpha u_{2}'$ $+\delta u_1\beta' \in M$ where the relations $Pu_2 = u_2$ and $Q\beta = \beta$ when $u'_2\beta = 0$ have been used. This shows that M is invariant under each $I_m \otimes A$. It is now readily verified that $\hat{\mu} = \overline{Y}_{..}$, $\hat{\alpha}_i = \hat{Y}_{..} - \overline{Y}_{..}$ and $\hat{\beta}_i = \tilde{Y}_{..} - \overline{Y}_{..}$ For (iv), first note that the subspace $\omega = \{x | x \in M, \alpha = 0\}$ defined by H_0 is invariant under each $I_m \otimes A$. Obviously, $\omega = M_1 \oplus M_3$. Consider the group whose elements are $g = (c, \Gamma, b)$ where c is a positive scalar, $b \in M_1 \oplus M_3$, and Γ is an orthogonal transformation with invariant subspaces M_2 , $M_1 \oplus M_3$, and M^{\perp} . The testing problem is invariant under $x \rightarrow c\Gamma x + b$ and a maximal invariant is W (up to a set a measure zero). Since W has a noncentral F-distribution, the test that rejects for large values of W is UMP invariant.
- 7. (i) is clear. The column space of W is contained in the column space of Z and has dimension r. Let x₁,..., x_r, x_{r+1},..., x_k, x_{k+1},..., x_n be an orthonormal basis for Rⁿ such that span{x₁,..., x_r} = column space of W and span{x₁,..., x_k} = column space of Z. Also, let y₁,..., y_p be any orthonormal basis for R^p. Then {x_i □ y_j|i = 1,..., r, j = 1,..., p} is a basis for ℜ(P_W ⊗ I_p), which has dimension rp. Obviously, ℜ(P_W ⊗ I_p) ⊆ M. Consider x ∈ ω so x = ZB with RB = 0. Thus (P_W ⊗ I_p)x = P_WZB = W(W'W)⁻¹W'ZB = W(W'W)⁻¹R(Z'Z)⁻¹(ZZ)B = W(W'W)⁻¹RB = 0. Thus ℜ(P_W ⊗ I_p) ⊆ ω[⊥]. Hence ℜ(P_W ⊗ I_p) ⊆ M ∩ ω[⊥]. That dim ω = (k r)p can be shown by a reduction to canonical form as was done in Section 9.1. Since ω ⊆ M, dim(M ω) = dim M dim ω = rp, which entails ℜ(P_W ⊗ I_p) = M ω. Hence P_Z ⊗ I_p P_W ⊗ I_p is the orthogonal projection onto ω.
- 8. Use the fact that $\Gamma \Sigma \Gamma$ is diagonal with diagonal entries $\alpha_1, \alpha_2, \alpha_3, \alpha_3, \alpha_2$ (see Proposition 9.13 ff.) so the maximum likelihood estimators α_1, α_2 ,

and α_3 are easy to find—just transform the data by Γ . Let \hat{D} have diagonal entries $\hat{\alpha}_1$, $\hat{\alpha}_2$, $\hat{\alpha}_3$, $\hat{\alpha}_3$, $\hat{\alpha}_2$ so $\hat{\Sigma} = \Gamma \hat{D} \Gamma$ gives the maximum likelihood estimators of σ^2 , ρ_1 , and ρ_2 .

9. Do the problems in the complex domain first to show that if Z_1, \ldots, Z_n are i.i.d. $(\nabla N(0, 2H))$, then $\hat{H} = (1/2n)\sum_{j=1}^{n} Z_j Z_j^*$. But if $Z_j = U_j + iV_j$ and

$$X_j = \begin{pmatrix} U_j \\ V_j \end{pmatrix},$$

then $\hat{H} = (1/2n)\sum_{1}^{n}(U_{j} + iV_{j})(U_{j} - iV_{j})' = (1/2n)[(S_{11} + S_{22}) + i(S_{12} - S_{21})]$ so $\hat{\psi} = \{\hat{H}\}$. This gives the desired result.

- 10. Write $R = M(I_r, 0)\Gamma$ where M is $r \times r$ of rank r and $\Gamma \in \mathcal{O}_p$. With $\delta = \Gamma \mu$, the null hypothesis is $(I_r, 0)\delta = 0$. Now, transform the data by Γ and proceed with the analysis as in the first testing problem considered in Section 9.6.
- 11. First write $P_Z = P_1 + P_2$ where P_1 is the orthogonal projection onto eand P_2 is the orthogonal projection onto (column space of Z) \cap $(\text{span } e)^{\perp}$. Thus $P_M = P_1 \otimes I_p + P_2 \otimes I_p$. Also, write $A(\rho) = \gamma P_1 + \delta Q_1$ where $\gamma = 1 + (n - 1)\rho$, $\delta = 1 - \rho$, and $Q_1 = I_n - P_1$. The relations $P_1P_2 = 0 = Q_1P_1$ and $P_2Q_1 = Q_1P_2 = P_2$ show that M is invariant under $A(\rho) \otimes \Sigma$ for each value of ρ and Σ . Write $ZB = eb'_1 + \sum_{i=1}^{k} z_i b'_i$ so Q_1Y is $N(\sum_{i=1}^{k} (Q_1z_i)b'_i, (Q_1A(\rho)Q_1) \otimes \Sigma)$. Now, $Q_1A(\rho)Q_1 = \delta Q_1$ so Q_1Y is $N(\beta_2^k(Q_1z_j)b'_j, \delta Q_1 \otimes \Sigma)$. Also, P_1Y is $N(eb'_1, \gamma P_1 \otimes \Sigma)$. Since hypotheses of the form $\dot{R}\dot{B} = 0$ involve only b_2, \ldots, b_p , an invariance argument shows that invariant tests of H_0 will not involve P_1Y —so just ignore P_1Y . But the model for Q_1Y is of the MANOVA type; change coordinates so

$$Q_1 = \begin{pmatrix} I_{n-1} & 0\\ 0 & 0 \end{pmatrix}.$$

Now, the null hypothesis is of the type discussed in Section 9.1.

CHAPTER 10

1. Part (i) is clear since the number of nonzero canonical correlations is always the rank of Σ_{12} in the partitioned covariance of $\{X, Y\}$. For (ii), write

$$\operatorname{Cov}\{\tilde{X},\tilde{Y}\} = \begin{pmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{pmatrix}$$

where Σ_{12} has rank t, and $\Sigma_{11} > 0$, $\Sigma_{22} > 0$. First, consider the case when $q \leq r$, $\Sigma_{11} = I_q$, $\Sigma_{22} = I_r$, and

$$\Sigma_{12} = \begin{pmatrix} D & 0 \\ 0 & 0 \end{pmatrix}$$

where D > 0 is $t \times t$ and diagonal. Set

$$A = \begin{pmatrix} D^{1/2} \\ 0 \end{pmatrix} : q \times t, \qquad B = \begin{pmatrix} D^{1/2} \\ 0 \end{pmatrix} : r \times t$$

so $AB' = \Sigma_{12}$. Now, set $\Lambda_{11} = I_q - AA'$, $\Lambda_{22} = I_r - BB'$, and the problem is solved for this case. The general case is solved by using Proposition 5.7 to reduce the problem to the case above.

2. That $\Sigma_{12} = \delta e_1 e'_2$ for some $\delta \in \mathbb{R}^1$ is clear, and hence Σ_{12} has rank one-hence at most one nonzero canonical correlation. It is the square root of the largest eigenvalue of $\Sigma_{11}^{-1} \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21} = \delta^2 \Sigma_{11}^{-1} e_1 e'_2 \Sigma_{22}^{-1} e_2 e'_1$. The only nonzero (possibly) eigenvalue is $\delta^2 e'_1 \Sigma_{11}^{-1} e_1 e'_2 \Sigma_{22}^{-1} e_2$. To describe canonical coordinates, let

$$\tilde{v}_1 = \frac{\sum_{11}^{-1/2} e_1}{\|\sum_{11}^{-1/2} e_1\|}, \qquad \tilde{w}_1 = \frac{\sum_{22}^{-1/2} e_2}{\|\sum_{22}^{-1/2} e_2\|}$$

and then form orthonormal bases $\{\tilde{v}_1, \tilde{v}_2, \ldots, \tilde{v}_q\}$ and $\{\tilde{w}_1, \ldots, \tilde{w}_r\}$ for R^q and R^r . Now, set $v_i = \sum_{11}^{-1/2} \tilde{v}_i$, $w_j = \sum_{22}^{-1/2} \tilde{w}_j$ for $i = 1, \ldots, q$, $j = 1, \ldots, r$. Then verify that $X_i = v'_i X$ and $Y_j = w'_j Y$ form a set of canonical coordinates for X and Y.

- Part (i) follows immediately from Proposition 10.4 and the form of the covariance for {X, Y}. That δ(B) = tr A(I Q(B)) is clear and the minimization of δ(B) follows from Proposition 1.44. To describe B̂, let ψ: p × t have columns a₁,..., a_t so ψ'ψ = I_t and Q̂ = ψψ'. Then show directly that B̂ = ψ'Σ^{-1/2} is the minimizer and ĈB̂X = Σ^{1/2}Q̂Σ^{-1/2}X is the best predictor. (iii) is an immediate application of (ii).
- 4. Part (i) is easy. For (ii), with $u_i = x_i a_0$,

$$\Delta(M, a_0) = \sum_{i=1}^{n} ||x_i - (P(x_i - a_0) + a_0)||^2 = \sum_{i=1}^{n} ||u_i - Pu_i||^2$$
$$= \sum_{i=1}^{n} ||Qu_i||^2 = \sum_{i=1}^{n} \operatorname{tr} Qu_i u_i' = \operatorname{tr} Q \sum_{i=1}^{n} u_i u_i' = \operatorname{tr} S(a_0) Q.$$

Since $S(a_0) = S(\bar{x}) + n(\bar{x} - a_0)(\bar{x} - a_0)'$, (ii) follows. (iii) is an application of Proposition 1.44.

6. Part (i) follows from the singular value decomposition: For (ii), $\{x \in \mathcal{L}_{p,n} | x = \psi C, C \in \mathcal{L}_{p,k}\}$ is a linear subspace of $\mathcal{L}_{p,n}$ and the orthogonal projection onto this subspace is $(\psi\psi') \otimes I_p$. Thus the closest point to A is $((\psi\psi') \otimes I)A = \psi\psi'A$, and the C that achieves the minimum is $\hat{C} = \psi'A$. For $B \in \mathfrak{B}_k$, write $B = \psi C$ as in (i). Then

$$||A - B||^2 \ge \inf_{\psi} \inf_{C} ||A - \psi C||^2 = \inf_{\psi} ||A - \psi \psi' A||^2 = \inf_{Q} ||AQ||^2.$$

The last equality follows as each ψ determines a Q and conversely. Since $||AQ||^2 = \operatorname{tr} AQ(AQ)' = \operatorname{tr} AQ^2A' = \operatorname{tr} QAA'$,

$$||A - B||^2 \ge \inf_Q \operatorname{tr} QAA'.$$

Writing $A = \sum_{i}^{p} \lambda_{i} u_{i} v_{i}'$ (the singular value decomposition for A), $AA' = \sum_{i}^{p} \lambda_{i} u_{i} u_{i}'$ is a spectral decomposition for AA'. Using Proposition 1.44, it follows easily that

$$\inf_{Q} \operatorname{tr} QAA' = \sum_{k+1}^{p} \lambda_{i}^{2}.$$

That \hat{B} achieves the infimum is a routine calculation.

7. From Proposition 10.8, the density of W is

$$h(w|\theta) = \int_0^\infty p_{n-2}(w|\theta u^{1/2})f(u)du$$

where p_{n-2} is the density of a noncentral t distribution and f is the density of a χ^2_{n-1} distribution. For $\theta > 0$, set $v = \theta u^{1/2}$ so

$$h(w|\theta) = \frac{2}{\theta^2} \int_0^\infty p_{n-2}(w|v) f\left(\frac{v^2}{\theta^2}\right) v \, dv.$$

Since $p_{n-2}(w|v)$ has a monotone likelihood ratio in w and v and $f(v^2/\theta^2)$ has a monotone likelihood ratio in v and θ , Karlin's Lemma implies that $h(w|\theta)$ has a monotone likelihood ratio. For $\theta < 0$, set $v = \theta u^{-1/2}$, change variables, and use Karlin's Lemma again. The last assertion is clear.

8. For U_2 fixed, the conditional distribution of W given U_2 can be described as the ratio of two independent random variables—the numerator has a χ^2_{r+2K} distribution (given K) and K is Poisson with parameter $\Delta/2$ where $\Delta = \rho^2 (1 - \rho^2)^{-1} U_2$ and the denominator is χ^2_{n-r-1} . Hence, given U_2 , this ratio is $\mathcal{F}_{r+2K, n-r-1}$ with K described above, so the conditional density of W is

$$f_1(w|\rho, U_2) = \sum_{k=0}^{\infty} f_{r+2k, n-r-1}(w) \psi\left(k|\frac{\Delta}{2}\right)$$

where $\psi(\cdot|\Delta/2)$ is the Poisson probability function. Integrating out U_2 gives the unconditional density of W (at ρ). Thus it must be shown that $\mathcal{E}_{U_2}\psi(k|\Delta/2) = h(k|\rho)$ —this is a calculation. That $f(\cdot|\rho)$ has a monotone likelihood ratio is a direct application of Karlin's Lemma.

- 9. Let *M* be the range of *P*. Each $R \in \mathcal{P}_s$ can be represented as $R = \psi \psi'$ where ψ is $n \times s$, $\psi' \psi = I_s$, and $P \psi = 0$. In other words, *R* corresponds to orthonormal vectors ψ_1, \ldots, ψ_s (the columns of ψ) and these vectors are in M^{\perp} (of course, these vectors are not unique). But given any two such sets—say ψ_1, \ldots, ψ_s and $\delta_1, \ldots, \delta_s$, there is a $\Gamma \in \mathcal{O}(P)$ such that $\Gamma \psi_i = \delta_i$, $i = 1, \ldots, s$. This shows $\mathcal{O}(P)$ is compact and acts transitively on \mathcal{P}_s , so there is a unique $\mathcal{O}(P)$ invariant probability distribution on \mathcal{P}_s . For (iii), $\Delta R_0 \Delta'$ has an $\mathcal{O}(P)$ invariant distribution on \mathcal{P}_s —uniqueness does the rest.
- 10. For (i), use Proposition 7.3 to write $Z = \psi U$ with probability one where ψ and U are independent, ψ is uniform on $\mathcal{F}_{p,n}$, and $U \in G_U^+$. Thus with probability one, rank $(QZ) = \operatorname{rank}(Q\psi)$. Let $S \ge 0$ be independent of ψ with $\mathcal{C}(S^2) = W(I_p, p, n)$ so S has rank p with probability one. Thus rank $(Q\psi) = \operatorname{rank}(Q\psi S)$ with probability one. But ψS is $N(0, I_n \otimes I_p)$, which implies that $Q\psi S$ has rank p. Part (ii) is a direct application of Problem 9.
- 12. That ψ is uniform follows from the uniformity of Γ on \mathcal{O}_n . For (ii), $\mathcal{L}(\psi) = \mathcal{L}(Z(Z'Z)^{-1/2})$ and $\Delta = (I_k \ 0)\psi$ implies that $\mathcal{L}(\psi) =$ $\mathcal{L}(X(X'X + Y'Y)^{-1})$. (iii) is immediate from Problem 11, and (iv) is an application of Proposition 7.6. For (v), it suffices to show that $\int f(x)P_1(dx) = \int f(x)P_2(dx)$ for all bounded measurable f. The invariance of P_i implies that for i = 1, 2, $\int f(x)P_i(dx) = \int f(gx)P_i(dx)$, $g \in G$. Let ν be uniform probability measure on G and integrate the above to get $\int f(x)P_i(dx) = \int (\int_G f(gx)\nu(dg))P_i(dx)$. But the function $x \to \int_G f(gx)\nu(dg)$ is G-invariant and so can be written $\hat{f}(\tau(x))$ as τ is a maximal invariant. Since $P_1(\tau^{-1}(C)) = P_2(\tau^{-1}(C))$ for all measurable C, we have $\int k(\tau(x))P_1(dx) = \int k(\tau(x))P_2(dx)$ for all bounded

measurable k. Putting things together, we have $\int f(x)P_1(dx) = \int \hat{f}(\tau(x))P_1(dx) = \int \hat{f}(\tau(x))P_2(dx) = \int f(x)P_2(dx)$ so $P_1 = P_2$. Part (vi) is immediate from (v).

13. For (i), argue as in Example 4.4:

$$tr(Z - TB)\Sigma^{-1}(Z - TB)'$$

$$= tr(Z - T\hat{B} + T(\hat{B} - B))\Sigma^{-1}(Z - T\hat{B} + T(\hat{B} - B))'$$

$$= tr(QZ + T(\hat{B} - B))\Sigma^{-1}(QZ + T(\hat{B} - B))'$$

$$= tr(QZ)\Sigma^{-1}(QZ)' + tr T(\hat{B} - B)\Sigma^{-1}(\hat{B} - B)'T'$$

$$\ge tr(QZ)\Sigma^{-1}(QZ)' = tr Z'QZ\Sigma^{-1}.$$

The third equality follows from the relation QT = 0 as in the normal case. Since h is nonincreasing, this shows that for each $\Sigma > 0$,

$$\sup_{B} f(Z|B,\Sigma) = f(Z|\hat{B},\Sigma)$$

and it is obvious that $f(Z|\hat{B}, \Sigma) = |\Sigma|^{-n/2}h(\operatorname{tr} S\Sigma^{-1})$. For (ii), first note that S > 0 with probability one. Then, for S > 0,

$$\sup_{H_1 \cup H_0} f(Z|B, \Sigma) = \sup_{\Sigma > 0} f(Z|\hat{B}, \Sigma)$$
$$= \sup_{\Sigma > 0} |\Sigma|^{-n/2} h(\operatorname{tr} S\Sigma^{-1})$$
$$= |S|^{-n/2} \sup_{C > 0} |C|^{n/2} h(\operatorname{tr} C).$$

Under H_0 , we have

$$\sup_{H_0} f(Z|B, \Sigma)$$

$$= \sup_{\Sigma_{ii}>0, i=1,2} |\Sigma_{11}|^{-n/2} |\Sigma_{22}|^{-n/2} h\left(\operatorname{tr} \Sigma_{11}^{-1} S_{11} + \operatorname{tr} \Sigma_{22}^{-1} S_{22}\right)$$

$$= |S_{11}|^{-n/2} |S_{22}|^{-n/2} \sup_{C_{ii}>0, i=1,2} |C_{11}|^{n/2} |C_{22}|^{n/2} h\left(\operatorname{tr} C_{11} + \operatorname{tr} C_{22}\right).$$

This latter sup is bounded above by

$$\sup_{C>0} |C|^{n/2} h(\operatorname{tr} C) \equiv k,$$

which is finite by assumption. Hence the likelihood ratio test rejects for small values of $k_1|S_{11}|^{-n/2}|S_{22}|^{-n/2}|S|^{n/2}$, which is equivalent to rejecting for small values of $\Lambda(Z)$. The identity of part (iii) follows from the equations relating the blocks of Σ to the blocks of Σ^{-1} . Partition B into $B_1: k \times q$ and $B_2: k \times r$ so $\mathcal{E}X = TB_1$ and $\mathcal{E}Y = TB_2$. Apply the identity with $U = X - TB_1$ and $V = Y - TB_2$ to give

$$f(Z|B, \Sigma) = |\Sigma_{11}|^{-n/2} |\Sigma_{22 \cdot 1}|^{-n/2}$$

$$\times h \Big[tr \big(Y - TB_2 - (X - TB_1) \Sigma_{11}^{-1} \Sigma_{12} \big) \\$$

$$\times \Sigma_{22 \cdot 1}^{-1} \big(Y - TB_2 - (X - TB_1) \Sigma_{11}^{-1} \Sigma_{12} \big)'$$

$$+ tr \big(X - TB_1 \big) \Sigma_{11}^{-1} (X - TB_1)' \Big].$$

Using the notation of Section 10.5, write

$$f(X, Y|B, \Sigma) = |\Sigma_{11}|^{-n/2} |\Sigma_{22 \cdot 1}|^{-n/2}$$
$$\times h \Big[tr(Y - WC) \Sigma_{22 \cdot 1}^{-1} (Y - WC)' + tr(X - TB_1) \Sigma_{11}^{-1} (X - TB_1)' \Big].$$

Hence the conditional density of Y given X is

$$f_1(Y|C, B_1, \Sigma_{11}, \Sigma_{22 \cdot 1}, X)$$

= $|\Sigma_{22 \cdot 1}|^{-n/2} h(tr(Y - WC)\Sigma_{22 \cdot 1}^{-1}(Y - WC)' + \eta)\phi(\eta)$

where $\eta = \operatorname{tr}(X - TB_1)\Sigma_{11}^{-1}(X - TB_1)$ and $(\phi(\eta))^{-1} = \int_{\mathcal{C}_{r,n}} h(\operatorname{tr} uu' + \eta) du$. For (iv), argue as in (ii) and use the identities established in Proposition 10.17. Part (v) is easy, given the results of (iv)—just note that the sup over Σ_{11} and B_1 is equal to the sup over $\eta > 0$. Part (vi) is interesting—Proposition 10.13 is not applicable. Fix X, B_1 , and Σ_{11} and note that under H_0 , the conditional density of Y is

$$f_{2}(Y|C_{2}, \Sigma_{22 \cdot 1}, \eta)$$

= $|\Sigma_{22 \cdot 1}|^{-n/2}h(tr(Y - TC_{2})\Sigma_{22 \cdot 1}^{-1}(Y - TC_{2}) + \eta)\phi(\eta).$

This shows that Y has the same distribution (conditionally) as $\tilde{Y} =$

 $TC_2 + E\Sigma_{22\cdot 1}^{1/2}$ where $E \in \mathcal{L}_{r,n}$ has density $h(\text{tr } EE' + \eta)\phi(\eta)$. Note that $\mathcal{L}(\Gamma E\Delta) = \mathcal{L}(E)$ for all $\Gamma \in \mathcal{O}_n$ and $\Delta \in \mathcal{O}_r$. Let $t = \min(q, r)$ and, given any $n \times n$ matrix A with real eigenvalues, let $\lambda(A)$ be the vector of the t largest eigenvalues of A. Thus the squares of the sample canonical correlations are the elements of the vector $\lambda(R_YR_X)$ where $R_Y = (QY)(Y'QY)^{-1}(QY)$, $R_X = QX(X'QX)^{-1}QX$, since

$$S = \begin{pmatrix} X'QX & X'QY \\ Y'QX & Y'QY \end{pmatrix}.$$

(You may want to look at the discussion preceding Proposition 10.5.) Now, we use Problem 9 and the notation there—P = I - Q. First, $R_Y \in \mathcal{P}_r, R_X \in \mathcal{P}_q$, and $\mathcal{O}(P)$ acts transitively on \mathcal{P}_r and \mathcal{P}_q . Under H_0 (and X fixed), $\mathcal{L}(QY) = \mathcal{L}(QE\Sigma_{22:1}^{1/2})$, which implies that $\mathcal{L}(\Gamma R_Y \Gamma') = \mathcal{L}(R_Y)$, $\Gamma \in \mathcal{O}(P)$. Hence R_Y is uniform on \mathcal{P}_r for each X. Fix $R_0 \in \mathcal{R}_q$ and choose Γ_0 so that $\Gamma_0 R_0 \Gamma'_0 = R_X$, Then, for each X,

$$\begin{aligned} \mathcal{E}(\lambda(R_YR_0)) &= \mathcal{E}(\lambda(\Gamma_0R_YR_0\Gamma_0')) = \mathcal{E}(\lambda(\Gamma_0R_Y\Gamma_0'\Gamma_0R_0\Gamma_0')) \\ &= \mathcal{E}(\lambda(\Gamma_0R_Y\Gamma_0'R_X) = \mathcal{E}(\lambda(R_YR_X)). \end{aligned}$$

This shows that for each X, $\lambda(R_YR_X)$ has the same distribution as $\lambda(R_YR_0)$ for R_0 fixed where R_Y is uniform on \mathcal{P}_r . Since the distribution of $\lambda(R_YR_0)$ does not depend on X and agrees with what we get in the normal case, the solution is complete.