
Comments on Selected Problems 

CHAPTER 1 

4. This problem gives the direct sum version of partitioned matrices. For 
(ii), identify V ,  with vectors of the form { v , ,  0) E V,  @ V, and restrict 
T to these. This restriction is a map from V,  to V ,  @ & so T{v, ,  0)  = 

{ z l ( v l ) ,  z 2 ( v 1 ) )  where z , ( v , )  E V ,  and z,(v,)  E V,. Show that z ,  is a 
linear transformation on V,  to V,  and z, is a linear transformation on 
V,  to V,. This gives A,, and A,,. A similar argument gives A,, and A,,. 
Part (iii) is a routine computation. 

5. If x,, , = C;c,x,, then w,, , = C;c,w,. 
8. If u E Rk has coordinates u,,. . . , u,, then Au = Cfuix,  and all such 

vectors are just span {x,, . . . , x,). For (ii), r ( A )  = r(A') so 
dim 3 ( A'A ) = dim 3 ( AA'). 

10. The algorithm of projecting x,,. . . , x ,  onto {span x,)' is known as 
Bjork's algorithm (Bjork, 1967) and is an alternative method of doing 
Gram-Schdt.  Once you see that y,, . . . , y, are perpendicular to y,, 
this problem is not hard. 

11. The assumptions and linearity imply that [Ax ,  w] = [Bx,  w] for all 
x  E V and w E W. Thus [ ( A  - B)x ,  w] = 0 for all w. Choose w = ( A  
- B)x  so ( A  - B ) x  = 0. 

12. Choose z  such that [y , ,  z ]  * 0. Then [y , ,  z ] x ,  = [y,, z lx ,  so set 
c  = [y,, z ] / [ y , ,  z] .  Thus cx20  y, = x2 y2 SO cyl x2 = y20 x2. 
Hence cllx2112y, = 1 1 ~ ~ 1 1 ~ ~ ~  so y1 = cP'y2. 

13. This problem shows the topologies generated by inner products are all 
the same. We know [ x ,  y ]  = ( x ,  Ay) for some A > 0. Let c, be the 
minimum eigenvalue of A, and let c, be the maximum eigenvalue of A. 
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This is just the Cauchy-Schwarz Inequality. 

The classical two-way ANOVA table is a consequence of this problem. 
That A, B,, B,, and B, are orthogonal projections is a routine but 
useful calculation. Just keep the notation straight and verify that 
P 2  = P = P', which characterizes orthogonal projections. 
To show that I'(ML) C ML , verify that (u, r v )  = 0 for all u E M 
when v E ML . Use the fact that I''T = I and u = I'M, for some 
u ,  E M (since T(M) c M and I' is nonsingular). 
Use Cauchy-Schwarz and the fact that P,x = x for x E M. 
This is Cauchy-Schwarz for the non-negative definite bilinear form 
[C, Dl = tr ACBD'. 
Use Proposition 1.36 and the assumption that A is real. 
The representation a P  + P ( I  - P )  is a spectral type repre- 
sentation-see Theorem 1.2a. If M = %(P), let x,,  . . . , x,, x,, ,, . . . , 
x, be any orthonormal basis such that M = span{x,,. . . , x,). Then 
Ax, = axi, i = 1,. . . , r, and Ax, = fixi, i = r + 1,. . . , n.  The char- 
acteristic polynomial of A must be (a  - A)'(fi - A)"-'. 

Since A ,  = s u ~ ~ ~ ~ ~ ~ = ~ ( x ,  Ax), p, = supllxll= ,(x, Bx), and (x, Ax) >, 
(x, Bx), obviously A,  2 p,. Now, argue by contradiction-let j be the 
smallest index such that A j  < CL/. Consider eigenvectors x,,. . . , x, and 
y,,. . . , y, with Ax, = A,x, and By, = piyi, i = 1,. . . , n.  Let M = 

span{x,, x,, ,,. . . , x,) and let N = span{y,,. . . , y,). Since dim 
M = n - j + 1, dim M n N 2 1. Using the identities A j  = 

SUPxEM,Ilxll=l(~,  AX), P j  = i n f x ~ ~ , l l x l l = l ( ~ ~  Bx), for any x E M n N ,  
llxll = 1, we have (x, Ax) 6 A j  < pj g (x, Bx), which is a contradic- 
tion. 
Write S = C;AixiO xi in spectral form where A i  > 0, i = 1,. . . , n.  
Then 0 = (S, T )  = C;Ai(x,, Tx,), which implies (xi, Tx,) = 0 for i = 

1,. . . , n as T > 0. Thls implies T = 0. 
Since tr A and (A, I )  are both linear in A, it suffices to show equality 
for A's of the form A = xO y. But ( x u  y, I )  = (x, y). However, that 
tr x y = (x, y) is easily verified by choosing a coordinate system. 
Parts (i) and (ii) are easy but (iii) is not. It is false that A, B, and a 
2 x 2 matrix counter example is not hard to construct. It is true that 
A'/, >, ~'1,. TO see this, let C = B ' / ~ A - ' / ~ ,  so by hypothesis, I C'C. 
Note that the eigenvalues of C are real and positive-being the same 
as those of B ' / ~ A - ' / ~ B ' / ~  which is positive definite. If A is any 
eigenvalue for C, there is a corresponding eigenvector-say x such that 
llxll = 1 and Cx = Ax. The relation I 2 C'C implies A2 6 1, SO 0 < A 
g 1 as A is positive. Thus all the eigenvalues of C are in (O,1] so 
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the same is true of A-'/4B'/2A-'/4. Hence A- 1 / 4 ~ ' / 2 ~ - ' / 4  < I SO 

B ' / ~  < A ' / ~ .  

26. Since P is an orthogonal projection, all its eigenvalues are zero or one 
and the multiplicity of one is the rank of P. But tr P is just the sum of 
the eigenvalues of P. 

28. Since any A E C(V, V) can be written as (A + A')/2 + (A - A')/2, 
it follows that M + N = C(V, V). If A E M n N, then A = A' = -A, 
so A = 0. Thus C(V, V) is the direct sum of M and N so dim M + 
dim N = n2. A direct calculation shows that {x,O x, + x,O x,li < j )  
U {x,O x, - x,O x,li < j) is an orthogonal set of vectors, none of 
which is zero, and hence the set is linearly independent. Since the set 
has n 2  elements, it forms a basis for C(V, V). Because xi x, + x, q xi 
E M and x,O xj - xJ xi E N, dim M > n(n + 1)/2 and dim N >, 
n(n - 1)/2. Assertions (i), (ii), and (iii) now follow. For (iv), just 
verify that the map A + (A + Af)/2 is idempotent and self-adjoint. 

29. Part (i) is a consequence of suplloll= AvII = suplloll= '[Av, A V ] ' / ~  = 

suplloll= '(v, A'AV)' /~ and the spectral theorem. The triangle inequality 
follows from 1I(A + Bill = s u ~ ~ ~ ~ ~ ~ = ~  llAv + Boll < ~ ~ P ~ ~ ~ ~ ~ = ~ ( I I A ~ I I  + 
IIBvll) 9 ~ ~ P [ I , I I = I  llAvll + suPll"ll=l IIBvll. 

30. This problem is easy, but it is worth some careful thought-it provides 
more evidence that A 8 B has been defined properly and ( . , a )  is an 
appropriate inner produce on C(W, V). Assertion (i) is easy since 
(A 8 B)(x, q w,) = (Ax,) q (Bw,) = (A,x,) (p,~,)  = Aipjxi w,. 
Obviously, x,O w, is an eigenvector of the eigenvalue A,p,. Part (ii) 
follows since the two linear transformations agree on the basis 
{x,O w,li = 1,. . . , m, j  = 1,. . . , n) for C(W, V). For (iii), if the eigen- 
values of A and B are positive, so are the eigenvalues of A 8 B. Since 
the trace of a self-adjoint linear transformation in the sum of the 
eigenvalues (this is true even without self-adjointness, but the proof 
requires a bit more than we have established here), we have tr A 8 B 
= C,, ,hip, = (C,A,)(C,p,) = (tr A)(tr B). Since the determinant 
is the product of the eigenvalues, det(A 8 B) = n,, ,(A,pJ) = 

(llAi)n(npj)m = (det A)"(det B)". 

31. Since +'J, = I,, J, is a linearly isometry and its columns form an 
orthonormal set. Since R($) c M and the two subspaces have the 
same dimension, (i) follows. (ii) is immediate. 

32. If C is n X k and D is k X n,  the set of nonzero eigenvalues of CD is 
the same as the set of nonzero eigenvalues of DC. 

33. Apply Problem 32. 

34. Orthogonal transformations preserve angles. 
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35. This problem requires that you have a facility in dealing with condi- 
tional expectation. If you do, the problem requires a bit of calculation 
but not much more. If you don't, proceed to Chapter 2. 

CHAPTER 2 

1. Write x = C;c,x, so (x, X) = CC,(X,, X). Thus &l(x, X)I < 
C;lcilGl(xi, X)I and &l(x,, X)I is finite by assumption. To show that 
Cov(X) exists, it suffices to verify that var(x, X) exists for each 
x E V. But var(x, X)  = var{Cci(xi, X)} = CC cov{c,(xi, X), 
cj(xj, X)}. Then var{ci(xi, X)} = &[ci(xix)I2 - [&c,(x,, X)I2, which 
exists by assumption. The Cauchy-Schwarz Inequality shows that 
[cov{c,(xi, X), c,(x,, X)}I2 g var{ci(xi, X)} var{c,(x,, X)}. But, 
var{c,(x,, X)} exists by the above argument. 

2. All inner products on a finite dimensional vector space are related via 
the positive definite quadratic forms. An easy calculation yields the 
result of this problem. 

3. Let ( a ,  .), be an inner product on V; ,  i = 1,2. Since is linear on V; ,  
fi(x) = (x,, x), for xi E y,  i = 1,2. Thus if XI and X2 are uncorre- 
lated (the choice of inner product is irrelevant by Problem 2), (2.2) 
holds. Conversely, if (2.2) holds, then Cov{(x,, X,),,(x2, X,),} = 0 
for xi E y ,  i = 1,2 since (x,,  .), and (x,, .), are linear functions. 

4. Let s = n - r and consider r E Or and a Bore1 set Bl of Rr. Then 

P~{I'x E B,) = P~{I'x E B,, x E R ~ }  

The third equality holds since the matrix 

is in On. Thus x has an 8;invariant distribution. That x given x has an 
Or-invariant distribution is easy to prove when X has a density with 
respect to Lebesgue measure on Rn (the density has a version that 
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satisfies f(x) = f(+x)  for x E Rn, + E 0,). The general case requires 
some fiddling with conditional expections-this is left to the interested 
reader. 
Let A, = Cov(X,), i = 1,. . . , n. It suffices to show that var(x, ZX,) = 

Z(X, Aix). But (x, XI), i = 1,. . . , n, are uncorrelated, so var[Z(x, &)I 
= 2 var(x, 4) = Z(x, A,x). 
&U = Zpie, = p. Let U, have coordinates U,, . . . , Uk. Then Cov(U) = 

GUU' - pp' and UU' is a p x p matrix with elements q.U,. For i * j, 
U,U, = 0 and for i = j ,  q.U, = q. SinceGq = p i ,  &UU'= Dp. When 
0 < p i  < 1, Dp has rank k and the rank of Cov(U) is the rank of 
I, - Dp-1/2pp'Dp-1/2. Let u = Dp-'/2p, so u E Rk has length one. Thus 
I, - uu' is a rank k - 1 orthogonal projection. The null space of 
Cov U is span{e) where e is the vector of ones in Rk. The rest is easy. 
The random variable X takes on n! values-namely the n! permuta- 
tions of x-each with probability l/n!. A direct calculation gives 
&X = Xe where X = n-'Cyx,. The distribution of X is permutation 
invariant, whch implies that Cov X has the form a 2 ~  where a,, = 1 
and a,, = p for i * j where - l/(n - 1) < p G 1. Since var(e'X) = 0, 
we see that p = - l/(n - 1). Thus a 2  = var(Xl) = n-'[C;(x, - Q 2 ]  
where XI is the first coordinate of X. 
Setting D = -I ,  &X = -&X so &X = 0. For i * j, cov{X,, Xi) = 

COV{-4, 3) = - cov{Xi, X,) SO X, and X, are uncorrelated. The first 
equality is obtained by choosing D with d,, = - 1 and d,, = 1 in the 
relation e (  X) = C(DX). 
Ths  is a direct calculation. 
It suffices to verify the equality for A = xO y as both sides of the 
equality are linear in A. ForA = xO y, (A, 2 )  = (x, Zy) and (p, Ap) 
= (p, x)(p, y), so the equality is obvious. 
To say Cov(X) = In 8 Z is to say that cov{(tr AX'), (tr BX')) = 

tr AZB'. To show rows 1 and 2 are uncorrelated, pick A = e1v' and 
B = e2u' where u, v E R*. Let Xi and Xi be the first two rows of X. 
Then tr AX' = v'X,, tr BX' = u'X2, and tr AZB = 0. The desired 
equality is established by first showing that it is valid for A = xy', 
x, y E Rn, and using linearity. When A = xy', a useful equality is 
X'AX = C,C,x, y, X, Xi where the rows of X are Xi,. . . , X;. 
The equation rAr '  = A for r E Op implies that A = cIp for some c. 
Cov((r 8 I )  X) = Cov( X) implies Cov( X) = I 8 Z for some 2. 
Cov((I 8 J , ) X )  = Cov(X) then implies $21)' = Z, which necessitates 
Z = cI for some c >, 0. Part (ii) is immediate since r 8 J, is an 
orthogonal transformation on (C(V, W), ( , a ) ) .  
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14. This problem is a nasty calculation intended to inspire an appreciation 
for the equation Cov(X) = In 8 Z. 

15. Since C(X) = C ( - X), & X  = 0. Also, C(X) = C (TX) implies Cov(X) 
= cI for some c > 0. But JIX112 = 1 implies c = l/n. Best affine 
predictor of Xl given x is 0. I would predict XI by saying that Xl is 
4- with probability and XI is - 4- with probability 5 .  

16. This is just the definition of q . 
17. For (i), just calculate. For (ii), Cov(S) = 21, 8 I, by Proposition 2.23. 

The coordinate inner product on R~ is not the inner product ( , .) on 
S2. 

CHAPTER 3 

2. Since var(Xl)= var(Yl)= 1 and cov{Xl,Yl)= p, I p ( <  1. Form Z =  
(XY)-an n X 2 matrix. Then Cov(Z) = In 8 A where 

When Ipl < 1, A is positive definite, so I, 8 A is positive definite. 
Conditioning on Y, C(XIY) = N(pY,(l - p 2 ) ~ n ) ,  so C(Q(Y)XIY) = 

N(0, (1 - p2)Q(Y)) as Q(Y)Y = 0 and Q(Y) is an orthogonal projec- 
tion. Now, apply Proposition 3.8 for Y fixed to get C(W) = (1 - 
p2)x;-1. 

3. Just do the calculations. 
4. Since p ( x )  is zero in the second and fourth quadrants, X cannot be 

normal. Just find the marginal density of Xl to show that Xl is normal. 
5. Write U in the form X'AX where A is symmetric. Then apply Proposi- 

tions 3.8 and 3.11. 
6. Note that Cov(XO X) = 21  8 I by Proposition 2.23. Since (X, AX) 

= ( X  q X, A), and similarly for (X, BX), 0 = cov{(X, AX), 
(X, BX)) = cov{(Xn X, A), ( X u  X, B)) = (A, 2 ( 1 8  I ) B )  = 2 tr AB. 
Thus 0 = tr A ' /~BA' /~  SO A1l2~A1I2 = 0, which shows A1/2B1/2 = 0 
and hence AB = 0. 

7. Since &[exp(itW,)] = exp{itpj - ujltl], &[exp(itZa,W,.)] = exp[itZajp, 
- (Zla,lu,)ltl], so C(Za,W,.) = C(Za,p,, Zlajlu,). Part (ii) is immediate 
from (i). 

8. For (i), use the independence of R and Zo to compute as follows: 
P{U g u) = P(Zo g u/R) = j,"P{Zo Q u / t ) ~ ( d t )  = j,"@(u/t) 
G(dt) where 0 is the distribution function of Zo. Now, differentiate. 
Part (ii) is clear. 
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9. Let 3, be the sub a-algebra induced by T,(X) = X2 and let 9, be the 
sub a-algebra induced by T2(X) = X; X,. Since 3, c % ,, for any 
bounded function f(X), we have &( f(X)I%,) = &(&( f(X)1%,)1%,). 
But for f (X) = h (Xi XI), the conditional expectation given 3, can be 
computed via the conditional distribution of X;X, given X,, which is 

Hence &(h(X;X,)9,) is 3, measurable, so &(h(X;X,)(%,) = 

& (h ( X; Xl)I % , ). This implies that the conditional distribution (3.3) 
serves as a version of the conditional distribution of X; XI given X;X2. 

10. Show that T-IT, : Rn + Rn is an orthogonal transformation so l(C) 
= 1((T-'T,)(C)). Setting B = Tl(C), we have v,(B) = v,(B) for 
Bore1 B. 

11. The measures v, and v,  are equal up to a constant so all that needs to 
be calculated is v,(C)/v,(C) for some set C with 0 < v,(C) < + CQ. 

Do the calculation for C = {vl[v, v] G 1). 
12. The inner product ( . , .) on Sp is not the coordinate inner product. 

The "Lebesgue measure" on (S,, ( - , .)) given by our construction is 
not I(dS) = ni,dsjj, but is v,(dS) = ( f i ) ~ ( ~ - l ) l ( d ~ ) .  

13. Any matrix M of the form 

can be written as M = a[(p - 1)b + 1]A + a(l  - b)(I - A). This is 
a spectral decomposition for M so M has eigenvalues a((p - l)b + 1) 
and a( l  - b) (of multiplicityp - 1). Setting a = a[(p - l)b + 11 and 
j3 = a( l  - b) solves (i). Clearly, M-' = a-'A + p- ' ( I  - A) whenever 
a and p are not zero. To do part (ii), use the parameterization ( p ,  a, p )  
given above (a = a 2  and b = p). Then use the factorization criterion 
on the likelihood function. 

CHAPTER 4 

1. Part (i) is clear since Zp = Ctpizi for /3 E Rk. For (ii), use the singular 
value decomposition to write Z = C;hixiu: where r is the rank of Z, 
{x,,. . . , x,) is an orthonormal set in Rn, {u,,. . . , u,) is an orthonormal 
set in R ~ ,  M = span{x,,. . . , x,), and % ( Z )  = (span{u,,. . . , u , ) ) l .  
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Thus (ZtZ)- = C ; X ; 2 ~ i ~ j  and a direct calculation shows that 
Z(ZIZ)-Z1 = Cix,x[, which is the orthogonal projection onto M. 

2. Since C(Xi) = C(p + ei) where GE, = 0 and var(e,) = 1, it follows 
that C(X) = C(Pe + E) where & E  = 0 and COV(E) = I,. A direct ap- 
plication of least-squares yields = .%!for this linear model. For (iii), 
since the same /3 is added to each coordinate of E, the vector of ordered 
X's has the same distribution as the pe + v where v is the vector of 
ordered E'S. Thus C(U) = C(Pe + v) so &U = j3e + a, and Cov(U) = 

Cov(v) = C,. Hence C(U - a,) = C(Pe + (v - a,)). Based on this 
model, the Gauss-Markov estimator for /3 is = (etC;'e)-'efZ;'(U 
- a,) .  Since 1 = (l/n)et(U - a,) (show etao = 0 using the symme- 
try off  ), it follows from the Gauss-Markov Theorem that var(p) < 
var( P ). 

3. That M - w = M n w L  is clear since w G M. The condition (P, - 
P,)~ = PM - Po follows from observing that P,,,P, = P, P, = P,. 
Thus P, - P, is an orthogonal projection onto its range. That %(P, 
- Pa)=  M -  w is easily verified by writing x E V as x = x, + x, + 
x, where x, E w, x2 E M - 0 ,  and x3 E ML . Then (P, - P,)(x, + 
x, + x,) = x, + x, - x, = x,. Writing PM = PM - P, + P, and not- 
ing that (P, - P,)P, = 0 yields the final identity. 

4. That %(A) = M, is clear. To show %(B,) = M, - M,, first consider 
the transformation C defined by (Cy),, = yi., i = 1,. . . , I ,  j = 1,. . . , J. 
Then C2 = C = C', and clearly, %(C) G MI. But if y E M,, then 
Cy = y so C is the orthogonal projection onto MI. From Problem 3 
(with M = MI and w = M,), we see that C - A,  is the orthogonal 
projection onto M, - M,. But ((C - A,)y),, = x.- y.., which is just 
(B,y),,. Thus B, = C - A, so %(B,) = M, - M,. A similar argu- 
ment shows %(B2) = M, - M,. For (ii), use the fact that A, + Bl + 
B2 + B, is the identity and the four orthogonal projections are per- 
pendicular to each other. For (iii), first observe that M = MI + M2 
and M, n M, = M,. If p has the assumed representation, let v be the 
vector with vij = (Y + Pi and let [ be the vector with ti, = y,. Then 
v E MI and 5 E M, so p = v + + E MI + M2.. Conversely, suppose 
p E Mo @ (MI - M,) @ (M2 - M,)-say p = 6 + v + [. Since 6 E 

M,,S,, = &,foraui ,  j,sosetcu = &. .~incev E M, - M,,V~, - vik = o 
for all j ,  k for each fixed i and i.= 0. Take j = 1 and set Pi = vil. 
Then v . .  = Pi for j = 1,. . . , J and, since t.= 0, ZPi = 0. Similarly, 'J 
setting y, = +,,, ti, = y, for all i, j and since [..= 0, Zy, = 0. Thus 
pi, = (Y + Pi + yj where Zp, = Zy, = 0. 

5. With n = dimV, the density of Y is (up to constants) f(ylp, a2 )  = 

~ - " e x ~ [ - ( 1 / 2 a ~ ) ~ ~ ~  - p112]. Using the results and notation Problem 
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3, write V = o $ ( M - o ) $ M L  so ( M - o ) $ M L = o ' .  Under 
H,, p E o SO f i ,  = P, y is the maximum likelihood estimator of p and 

where Q, = I - P,. Maximizing (4.4) over a 2  yields 6: = n - 'llQ, ~ 1 1  2. 

A similar analysis under H, shows that the maximum likelihood 
estimator of p is f i l  = P M y  and 6: = n - ' l ( ~ , ~ 1 1 ~  is the maximum 
likelihood estimator of u2.  Thus the likelihood ratio test rejects for 
small values of the ratio 

But Q ,  = Q M  + pM-,  and QMPM-, = 0,  so l l Q W ~ 1 l 2  = llQMy112 + 
\ ~ P , _ , Y J ~ ~ .  But rejecting for small values of A ( y )  is equivalent to 
rejecting for large values of ( A (  y ) ) - 2 / n  - 1 = I(P M - w ~ ~ ~ 2 / ~ l Q M ~ ~ 1 2 .  
Under H,, p E o so C(PM-,Y) = N(0, a2~,-,) and C ( Q M Y )  = 

N(0, 02eM). Since QMPM-,  = 0,  Q M Y  and P,_ ,Y are independent 
and C(IJPM-,Y(I) = a 2 X :  where r = dim M - dim a .  Also, 
C(llQMY1I2)= a 2 X i - k  where k = dim M. 

6. We use the notation of Problems 4 and 5. In the parameterization 
described in (iii) of Problem 4, P I  = P2 = - . . = PI iff p E M2. Thus 
w = M2 so M - o = M I  - M,. Since M L  is the range of B3 (Problem 
1.15), l l ~ , ~ 1 l ~  = l l ~ ~ ~ 1 l ~ ,  and it is clear that llB3y112 = CC(y;, - & - 
J., + Y . . ) ~ .  Also, since M - o = M I  - M,, PM-, = PM, - PMo and 
llpM-,y112 = IlPM,y112 - llPM,y1I2 = CiCjY: - C,C,Y.* = JC,(Y,. - 
Y . . ) ~ .  

7. Since % ( X ' )  = % ( X ' X )  and X'y is in the range of X', there exists a 
b E R~ such that X'Xb = X'y. Now, suppose that b is any solution. 
First note that PMX = X since each column of X is in M. Since 
X'Xb = X'y, we have X'[Xb - P M y ]  = X'Xb - X'PMy = X'Xb - 
( P M X ) ' y  = X'Xb - X'y = 0. Thus the vector v = Xb - P M y  is per- 
pendicular to each column of X (X 'u  = 0 )  so v E M I  . But Xb E M ,  
and obviously, P M y  E M ,  so u E M. Hence v = 0,  so Xb = PMy. 

8. Since I E y, Gauss-Markov and least-squares agree iff 

(4.5) ( a p e  + pee) M c M, for all a, B > 0 .  

But (4.5) is equivalent to the two conditions P,M G M and Q,M C M. 
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But if e E M, then M = span{e) 8 MI where MI G (span{e))' . Thus 
P,M = span{e) c M and Q,M = M, E M, so Gauss-Markov equals 
least-squares. If e E ML , then M c {spane)' , so P,M = (0) and 
Q,M = M, so again Gauss-Markov equals least-squares. For (ii), if 
e E M I  and e P M, then one of the two conditions PeM c M or 
Q,M c M is violated, so least-squares and Gauss-Markov cannot 
agree for all a and P. For (ii), since M G (span{e))l and M * 
(span{e))' , we can write Rn = span{e) @ M @ MI where MI = 

(span{e))' - M  and MI * (0). Let PI be the orthogonal projection 
onto MI. Then the exponent in the density for Y is (ignoring the 
factor - 3) (y  - p)' (a-'P, + P-'Q,) (y  - p) = (P,y + P l y  + 
PM(Y - ~))'(a- 'p, + P-'Q,)(P,y + Ply + PM(Y - p)) = ~-'Y'P,Y 
+P-'y'P1y + PP1(y - p)'PM(y - p) where we have used the fact 
that Qe = PI + PM and PIPM = 0. Since det(aP, + PQ,) = aPn-I, 
the usual arguments yields fi = PMy, 6 = y'Pey, and b = ( n  - 
l)-ly'Ply as maximum likelihood estimators. When M = span{e), 
then the maximum likelihood estimators for (a, p) do not exist-other 
than the solution fi = P,y and 6 = 0 (which is outside the parameter 
space). The whole point is that when e E M, you must have replica- 
tions to estimate a when the covariance structure is aP, + PQ,. 

9. Define the inner product (- ,  .) on Rn by (x, y) = X'C;'~. In the inner 
product space (Rn, ( 0 ,  .)), GY = XP and Cov(Y) = a21. The transfor- 
mation P defined by the matrix X(X'C; 'x)- ' ~ ' 2 ;  ' satisfies P 2  = P 
and is self-adjoint in (Rn, (., .)). Thus P is an orthogonal projection 
onto its range, which is easily shown to be the column space of X. The 
Gauss-Markov Theorem implies that fi = PY as claimed. Since p = 

Xb, X'p = X'XP so /3 = (x 'x)-~x '~ .  Hence b = (x'x)-'x'fi, which 
is just the expression given. 

10. For (i), each r E Q(V) is nonsingular so T(M) c M is equivalent to 
r ( M )  = M-hence I'-l(M) = M and r-I = r' .  Parts (ii) and (iii) 
are easy. To verify (iv), t,(crY + x,) = PM(crY + x,) = cPMI'Y + 
x, = cI'PMY + x, = cI't,(Y) + x,. The identity PMI' = rPM for I' E 

QM(V) was used to obtain the third equality. For (v), first set r = I 
and x, = - PMy to obtain 

Then to calculate t, we need only know t for vectors u E M I  as 
QMy E M I .  Fix u E ML and let z = t(u) so z E M by assumption. 
Then there exists a I' E OM(V) such that I'u = u and rz  = -z. For 
this I', we have z = t(u) = ~ ( I ' u )  = rt(u) = I'z = - Z  SO z = 0. Hence 
t(u) = 0 for all u E M I  and the result follows. 
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11. Part (i) follows by showing directly that the regression subspace M is 
invariant under each I,, €3 A.  For (ii), an element of M has the form 
IJ. = {ZIP, ,  Z2P2) E '2,n for some p, E Rk and p, E Rk.  To obtain an 
example where M is not invariant under all I, €3 2, take k = 1, 
Z, = E , ,  and 2, = e2 so p is 

That the set of such p's is not invariant under all In 63 2 is easily 
verified. When 2, = Z,, then p = Z,B where B is k x 2 with ith 
column p,, i = 1,2. Thus Example 4.4 applies. For (iii), first observe 
that Z, and Z, have the same column space (when they are of full 
rank) iff Z, = Z,C where C is k x k and nonsingular. Now, apply part 
(ii) with p, replaced by Cp,, so M is the set of p's of the form p = Z, B 
where B E C,, k .  

CHAPTER 5 

1. Let a , ,  . . . , a, be the columns of A and apply Gram-Schmidt to these 
vectors in the order a,, a,- ,, . . . , a,. Now argue as in Proposition 5.2. 

2. Follows easily from the uniqueness of F(S). 
3. Just modify the proof of Proposition 5.4. 
4. Apply Proposition 5.7 
5. That F is one-to-one and onto follows from Proposition 5.2. Given 

A E C;,., F-'(A) E % , n  X G: is the pair (4, U) where A = $U. For 
(ii), F ( r+ ,  UT') = T+UT' = (T 8 T)(+U) = (r @ T)(F(+, U)). If 
F-'(A) = (+, U), then A = +U and $ and U are unique. Then ( r  63 
T)A = TAT' = r+UT' and rJ/ E %,, and UT' E GA. Uniqueness 
implies that F- ' (~+UT')  = (I?+, UT'). 

6. When Dg(xo) exists, it is the unique n x n matrix that satisfies 

(5.3) lim 
Ilg(x> - g(x0) - Dg(xo)(x - x0)ll 

= 0. 
x-X,, IIx - xoll 

But by assumption, (5.3) is satisfied by A (for Dg(xo)). By definition 
Jg(xo) = det(Dg(xo)). 
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7. With tii denoting the ith diagonal element of T, the set {TJt,, > 0) is 
open since the function T + tii is continuous on V to R1. But G: = 
n f{Tlti, > O}, which is open. That g has the given representation is 

just a matter of doing a little algebra. To establish the fact that 
limx-O(I(R(~)II/II~II) = 0, we are free to use any norm we want on V 
and S; (all norms defined by inner products define the same topology). 
Using the trace inner product on V and SJ, 1 1  R(x)1I2 = = 

trxx'xx' and 1 1 ~ 1 1 ~  = trxx', x E V. But for S > 0, t r s 2  6 ( t r ~ ) ,  SO 

1 1  R(x)ll/llxll G tr xx', which converges to zero as x -+ 0. For (iii), write 
S = L(x), string the S coordinates out as a column vector in the order 
sI1,  s,,, s,,, s3], s3,, s ~ ~ , .  . . , and string the x coordinates out in the 
same order. Then the matrix of L is lower triangular and its deterrni- 
nant is easily computed by induction. Part (iv) is immediate from 
Problem 6. 

8. Just write out the equations SS- ' = I in terms of the blocks and solve. 
9. That p2 = P is easily checked. Also, some algebra and Problem 8 

show that (Pu, v )  = (u, Po) so P is self-adjoint in the inner product 
(., .). Thus P is an orthogonal projection on (RP, (., .)). Obviously, 

Since 

A similar calculation yields IJ(I - p)x112 = z'Z;'z. For (iii), the expo- 
nent in the density of X is - t (x ,  x )  = - t l l ~ x l l ~  - tll(I - p)x112. 
Marginally, Z is N(0, Z,,), so the exponent in Z's  density is - $lJ(I - 
p)x112. Thus dividing shows that the exponent in the conditional 
density of Y given Z is - $ ( J P x ~ ~ ~ ,  which corresponds to a normal 
distribution with mean Z12Z,'Z and covariance (2")-I = Z 11 - 
ZI,Z,'Z,l. 

10. On Gg , for j < i, tij ranges from - cc to + cc and each integral 
contributes 6 - t h e r e  are p ( p  - 1)/2 of these. For j = i, t,, ranges 
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from 0 to co and the change of variable uii = t;/2 shows that the 
integral over t,i is ( f i ) r - i - ' I ' ( ( r  - i + 1)/2). Hence the integral is 
equal to 

which is just 2-Pc(r, p). 

CHAPTER 6 

1. Each g E GI(V)  maps a linearly independent set into a linearly 
independent set. Thus g ( M )  G M implies g ( M )  = M as g ( M )  and M 
have the same dimension. That G ( M )  is a group is clear. For (ii), 

( ) ( ) E M 
for y E Rq 

iff g,, y = 0 for y E Rq iff g,, = 0. But 

is nonsingular iff both g,, and g,, are nonsingular. That G ,  and G, are 
subgroups of G ( M )  is obvious. To show G, is normal, consider h E G, 
and g E G ( M ) .  Then 

has its 2,2 element I,, so is in G,. For (iv), that G I  n G, = { I )  is clear. 
Each g E G can be written as 

("""") = ( I q  0 ) (g;' "I) 
= 0 g,, 0  g22 

f 

which has the form g = hk with h E Gl and k E G,. The representa- 
tion is unique as G I  n G, = { I ) .  Also, g,g, = h , k , h 2 k ,  = 

h ,  h ,  h ;  ' k ,  h 2 k 2  = h ,  k ,  by the uniqueness of the representation. 
2. G ( M )  does not act transitively on V - (0) since the vector ($), y * 0 

remains in M under the action of each g E G. To show G ( M )  is 



484 COMMENTS ON SELECTED PROBLEMS 

transitive on V n Mc, consider 

with z, * 0 and z2 * 0. It is easy to argue there is a g E G(M) such 
that gx, = x2 (since z ,  * 0 and z2 * 0). 

3. Each n X n matrix r E 0, can be regarded as an n2-dimensional 
vector. A sequence {r,) converges to a point x E Rm iff each element 
of r, converges to the corresponding element of x. It is clear that the 
limit of a sequence of orthogonal matrices is another orthogonal 
matrix. To show 0, is a topological group, it must be shown that the 
map ( r ,  I)) + rI)' is continuous from 8, X 0, to On-this is routine. 
To show ~ ( r )  = 1 for all r ,  first observe that H = { x ( r ) ( r  E On) is a 
subgroup of the multiplicative group (0, oo) and H is compact as it is 
the continuous image of a compact set. Suppose r E H and r * 1. 
Then r J  E H for j = 1,2, . . . as H is a group, but {r j )  has no 
convergent subsequence-this contradicts the compactness of H. Hence 
r =  1. 

4. Set x = eu  and [(u) = log x(eU), u E R'. Then [(u, + u,) = [(u,) + 
[(u,) so [ is a continuous homomorphism on R1 to R1. It must be 
shown that [(u) = vu for some fixed real v. This follows from the 
solution to Problem 6 below in the special case that V = R'. 

5 .  Thls problem is easy, but the result is worth noting. 
6. Part (i) is easy and for part (ii), all that needs to be shown is that + is 

linear. First observe that 

so it remains to verify that +(Av) = AC#J(v) for A E R'. (6.6) implies 
+(0) = 0 and +(nv) = n+(v) for n = 1,2,. . . . Also, +(-v) = -+(v) 
follows from (6.6). Setting w = nv and dividing by n, we have +(w/n) 
= (l/n)+(w) for n = 1,2,. . . . Now +((m/n)v) = m+((l/n)v) = 

(m/n)+(v) and by continuity, C#J(Av) = A+(v) for A > 0. The rest is 
easy. 

7. Not hard with the outline given. 
8. By the spectral theorem, every rank r orthogonal projection can be 

written rx , r '  for some r E On. Hence transitivity holds. The equation 
rx , r '  = x, holds for I- E 8, iff r has the form 
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and thls gives the isotropy subgroup of x,. For r E On, rx,r '  = 

rx , (~x, ) '  and rx, has the form ($0) where $ : n X r has columns that 
are the first r columns of r .  Thus rx,r '  = $4'. Part (ii) follows by 
observing that $,$', = $,$; if $ l  = $,A for some A E Or. 

9. The only difficulty here is (iii). The problem is to show that the only 
continuous homomorphisms x on G, to (oo, oo) are t,", for some real a. 
Consider the subgroups G, and G4 of G, given by 

The group G ,  is isomorphic to RP- ' SO the only homomorphisms are 
x -+ exp[Cf -'six,] and G4 is isomorphic to (0, oo) so the only homo- 
morphisms are u + ua for some real a. For k E G,, write 

so ~ ( k )  = exp[Zaixi]ua. Now, use the condition x(k,k,) = x ( k l ) .  
~ ( k , )  to conclude a ,  = a, = . - . = a,-, = 0 so x has the claimed 
form. 

10. Use (6.4) to conclude that 

and then use Problem 5.10 to evaluate the integral over G:. You will 
find that, for 2y + n > p - 1, the integral is finite and is I, = 

(&)"pu(n, p)/u(2y + n, p). If 2y + n < p - 1, the integral di- 
verges. 

11. Examples 6.14 and 6.17 give A, for G(M) and all the continuous 
homomorphisms for G(M). Pick x, E RP n MC to be 

where z; = (1,0,. . . , O), z, E Rr. Then H, consists of those g's with 
the first column of g,, being 0 and the first column of g,, being z,. To 
apply Theorem 6.3, all that remains is to calculate the right-hand 
modulus of Ho-say A:. This is routine given the calculations of 
Examples 6.14 and 6.17. You will find that the only possible multi- 
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pliers are ~ ( g )  = lglllJg331 and Lebesgue measure on R* n MC is the 
only (up to a positive constant) invariant measure. 

12. Parts (i), (ii), (iii), and (iv) are routine. For (v), J ,(  f )  = jf(x)p(dx) 
and J2( f )  = j f ( ~ - l ( ~ ) ) v ( d ~ )  are both invariant integrals on X(%). 
By Theorem 6.3, J, = W2 for some constant k. To find k, take 
f(x) = (&)-"sn(x)exp[- ix'x] so J l (  f )  = 1. Since s ( ~ - ' ( ~ ) )  = v 
for y = (u, v, w), 

For (vi), the expected value of any function of E and s(x), say 
q ( X ,  s(x)) is 

u2 n (u -8) '  
du dv. 

u2 

Thus the joint density of X  and s(x) is 

kvn-2 v2 n ( ~ - 8 ) ~  
d " , ~ ) =  6 h ( 3  + u (with respect to du dv) . 

13. We need to show that, with Y(X)= X/llXll, P(llXll E B,Y E C ) =  
P(1IXII E B)P(Y E C). If P(I(XI1 E B) = 0, the above is obvious. If 
not, set v(C) = P(Y E C,llXll E B)/P(IIXII E B) so v is a probability 
measure on the Borel sets of (ylll yll = 1) G Rn. But the relation 
cp(rx) = rcp(x) and the 8, invariance of C(X) implies that v is an 
8,-invariant probability measure and hence is unique -(for all Borel 
B)-namely, v is uniform probability measure on (ylll yll = 1). 

14. Each x E % can be uniquely written as gy with g E 9, and y E 9 (of 
course, y is the order statistic of x). Define Tn acting on gn X 9 by 
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g(P, y )  = (gP, y). Then +-'(gx) = g+-'(x). Since P(gx) = gP(x), 
the argument used in Problem 13 shows that P(X)  and Y(X) are 
independent and P(X)  is uniform on 9,. 

CHAPTER 7 

1. Apply Propositions 7.5 and 7.6. 
2. Write X = J/U as in Proposition 7.3 so 4 and U are independent. Then 

P(X) = $4' and S(X) = U'U and the independence is obvious. 
3. First, write Q in the form 

where M is n x n and nonsingular. Since M is nonsingular, it suffices 
to show that (M-'(A))' has measure zero. Write x = (i.) where k is 
r X p. It then suffices to show that Bc = {x lx E EP, ,, rank(k) = p)" 
has measure zero. For this, use the argument given in Proposition 7.1. 

4. That the +'s are the only equivariant functions follows as in Example 
7.6. 

5. Part (i) is obvious. For (ii), just observe that knowledge of F, allows 
you to write down the order statistic and conversely. 

6. Parts (i) and (ii) are clear. For (iii), write x = Px + Qx. If t is 
equivariant t(x + y)  = t(x) + y, y E M. This implies that t(Qx) = 

t(x) + Px (picky = Px). Thus t(x) = Px + t(Qx). Since Q = I - P, 
Qx E M L  , so BQx = Qx for any B with (B, y)  E G. Since t(Qx) E M, 
pick B such that Bx = -x  for x E M. The equivariance of t then gives 
t(Qx) = t(BQx) = Bt(Qx) = -t(Qx), so t(Qx) = 0. 

7. Part (i) is routine as is the first part of (ii) (use Problem 6). An 
equivariant estimator of a 2  must satisfy t (arx  + b) = a2t(x). G acts 
transitively on % and G acts transitively on (0, ce) (9 for this case) so 
Proposition 7.8 and the argument given in Example 7.6 apply. 

8. When X E % with density f(x'x), then Y = XZ'l2 = (I, 8 Z ' / 2 ) ~  
has density f ( 2 -  '12x'xZ- 'I2) since dx/lx'xl n /2  is invariant under 
x + xA for A E GI,. Also, when X has density f ,  then C((r 8 A)X) 
= e( X) for all r E 8, and A E 8,. This implies (see Proposition 2.19) 
that Cov(X) = cI, 8 I, for some c > 0. Hence Cov((1, 8 Z'12)x) = 

cI, 8 Z. Part (ii) is clear and (iii) follows from Proposition 7.8 and 
Example 7.6. For (iv), the definition of C, and the assumption on f 
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imply f (I'C0Tf) = f (COrfr) = f (C,) for each r E Op. The uniqueness 
of C, implies C, = aIp for some a > 0. Thus the maximum likelhood 
estimator of Z must be aXfX(see Proposition 7.12 and Example 7.10). 

9. If C(X) = Po, then C(IIXII) is the same whenever C(X) E {PIP = 

gP,, g E O(V)) since x + llxll is a maximal invariant under the action 
of O(V) on V. For (ii), C(llXll) depends on p through )IpII. 

10. Write V = o @ (M - w) @ MI. Remove a set of Lebesgue measure 
zero from V and show the F ratio is a maximal invariant under the 
group action x + arx + b where a > 0, b E o, and r E B(V) satis- 
fies r(w) G w, r(M - o) G ( M  - w). The group action on the 
parameter (p, a2) is p + arp + b and a2 + a2a2. A maximal in- 
variant parameter is ll~,-,p11~/0~, which is zero when p E w. 

11. The statistic V is invariant under xi + Ax, + b, i = 1,. . . , n, where 
b E RP, A E GI,, and det A = 1. The model is invariant under this 
group action where the induced group action on (p, Z) is p + Ap + b 
and Z + AZA'. A direct calculation shows 8 = det(Z) is a maximal 
invariant under the group action. Hence the distribution of V depends 
on (p, 2) only through 8. 

12. For (i), if h E G and B E 9, (hP)(B) = P(h-l~) = jG(ge)(h-l~) 
~(dg)=jGC(g-lh-~~)~(dg)=!GP((hg)-~~)~(dg)=jQ(g-~~)p(dg)= 
P(B), so hP = P for h E G and P is G invariant. For (ii), let Q be 
the distribution described in Proposition 7.16 (ii), so if C(X) = P, 
then C(X) = C(UY) where U is uniform on G and is independent 
of Y. Thus for any bounded %-measurable function f ,  

Set f = I, and we have P(B) = jGe(g-l~)p(dg) so (7.1) holds. 
13. For y E % and B E 93, define R(B1y) by R(B1y) = J,I,(gv)p(dg). 

For each y, R(.l y) is a probability measure on (%, 93) and for fixed B, 
R(BI - ) is (3, C?) measurable. For P E 9, (ii) of Proposition 7.16 
shows that 

But by definition of R(.l ), jGh(gy)p(dg) = j,h(x)R(dxl y), so (7.2) 
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becomes 

This shows that R(.l y )  serves as a version of the conditional distribu- 
tion of X given r(X). Since R does not depend on P E 9, T(X) is 
sufficient. 

14. For (i), that t(gx) = g 0 t(x) is clear. Also, X - Xe  = Q,X, which is 
N(O, Q,) so is ancillary. For - (ii), - &( f (XI)\ X = t) = &( f (XI - X 
+X)lX = t )  = &( f(&;Z(X) + X)IX = t )  since Z(X)  has coordinates 
X, - X, i = 1,. . . , n. Since Z and X are independent, this last condi- 
tional expectation (given X = t) is just the integral over the distribu- 
tion of Z with X = t. But E;Z(X) = XI - Xis N(0, a2 )  so the claimed 
integral expression holds. When f (x)  = 1 for x G u, and 0 otherwise, 
the integral is just Q,((u, - t)/6) where Q, is the normal cumulative 
distribution function. 

15. Let B be the set (-a, u,] so IB(Xl) is an unbiased estimator of 
h(a, b) when C(X) = (a, b)P,. Thus h(t(X)) = G(IB(Xl)lt(X)) is an 
unbiased estimator of h(a, b) based on t(X). To compute h ,  we 
have &(IB(Xl)(t(X)) = P{X, G u,lt(X)) = P{(X, - X)/s G (u, - 
X)/s((s, X)). But (XI - X)/s = Z,  is the first coordinate of Z(X)  so 
is independent of (s, X). Thus h(s, X) = P,I(Z, G (u, - X)/s) = 

F((u, - X)/s) where F is the distribution function of the first coordi- 
nate of Z. To find F, first observe that Z takes values in % = {xlx E 

Rn, x'e = 0, llxll = 1) and the compact group Bn(e) acts transitively on 
%. Since Z ( r X )  = r Z ( X )  for r E B,(e), it follows that Z has a 
uniform distribution on Z (see the argument in Example 7.19). Let U 
be N(0, In )  so Z has the same distribution as QeU/llQeUII and C(Z,) 
= ~(~;Q,u/ l lQ,Ull~> = ~((Qe~1)'Qeu/llQeu112). since l l ~ , ~ ~ l l ~  = (n 
- l)/n and Q,U is N(0, Q,), it follows that C(Z,) = C(((n - 
l ) / n ) ' / 2 ~ , )  where W, = U,/(Z;-'q2)1/2. The rest is a routine com- 
putation. 

16. Part (i) is obvious and (ii) follows from 

Since Z(X)  and r (  X) are independent and r (X)  = g, the last member 
of (7.3) is just the expectation over Z of f(gZ). Part (iii) is just an 
application and Q, is the uniform distribution on $, .. For (iv), let B 
be a fixed Bore1 set in RP and consider the parametric function 
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h(Z) = P,(X, E B) = ~ ~ , ( x ) ( ~ ) - ~ ( Z ( - ~ / ~ e x ~ [ -  ix'Z-'xldx, 
where Xi is the first row of X. Since T(X) is a complete sufficient 
statistic, the MVUE of h(Z) is 

But Z; = (7-'(x)x,)' is the first row of Z(X) so is independent of 
r(X). Hence L(T) = P,{Z, E T-'(B)) where P, is the distribution of 
Z, when Z has a uniform distribution on 5, ,,. Since Z, is the first p 
coordinates of a random vector that is uniform on {XI llxll = 1, x E Rn), 
it follows that Z, has a density +(ll~11~) for u E RP where + is given by 

O < v < l  
otherwise 

where c = r ( n / 2 ) / ? r ~ / ~ r ( ( n  - p) /2) .  Therefore i ( T )  = 

J R p ~ B ( T ~ ) + ( ~ ~ ~ 1 1 2 ) d ~  = (det T ) - ' j R P ~ B ( u ) + ( ~ ~ T - ' u ~ ~ 2 ) d u .  Now, let B 
shrink to the point u, to get that (det T ) - ' + ( I I T - ' U , ~ ~ ~ )  is the MVUE 
for ( f i ) - ~ ~ ~ ~ - ' / ~ e x ~ [ -  + u ~ Z - ~ U , ] .  

CHAPTER 8 

1. Make a change of variables to r, x, = s,,/u,, and x, = s,,/u,,, and 
then integrate out x, and x,. That p(rlp) has the claimed form follows 
by inspection. Karlin's Lemma (see Appendix) implies that +(pr) has 
a monotone likelihood ratio. 

3. For a = 1/2 ,... , ( p  - 1)/2, let X,,.. . , X, be i.i.d. N(0, I,) with r = 

2a. Then S = Xi XI! has +a as its characteristic function. For a > ( p  - 
1)/2, the function pa(s) = k(a)ls 1" exp[ - 5 tr s ]  is a density with 
respect to d s / l s l ( ~ + ~ ) / ~  on S:. The characteristic function of pa is Ga. 
To show that c#I~(ZA) is a characteristic function, let S satisfy 
G exp(i(A, S)) = +a(A) = )Ip - 2iAJa. Then Z ' /2~Z' /2  has &(ZA) as 
its characteristic function. 

4. C(S) = C(rSl?') implies that A = FS satisfies A = FAr' for all l? E 8,. 
This implies A = cIp for some constant c. Obviously, c = Gs, ,. For (ii) 
var(tr DS) = var(Cpdisii) = Cfd?var(sii) + CC,,jd,d,cov(sii, s,,). 
Noting that C(S) = C(l?SI") for l? E O,, and in particular for permu- 
tation matrices, it follows that y = var(s,,) does not depend on i and 
p = cov(s,,, s,,) does not depend on i and j (i * j). Thus var(D, S )  = 
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YCfd: + PCC,,jd,d, = (y - P)Cfd? + P(Cfdi)2. For (iii), write A E 

$5, as FDr' so var(A, S )  = var(I'Dr1, S )  = var(D, I"SI') = 

var(D, S )  = (y - P)Cfd: + P(Cf'di)2 = (y - P)tr A2 + P(tr A ) ~  = 

(y - P)(A, A) + P(I, A)2. With T = (y - P)Ip 8 I, + PIpO I,, it 
follows that var(A, S )  = ( A ,  TA), and since T is self-adjoint, this 
implies that Cov(S) = T. 

5. Use Proposition 7.6. 
6. Immediate from Problem 3. 
7. For (i), it suffices to show that C((ASAr)-I) = w((AAA')-I, r, v + r 

- 1). Since C(S-I) = w(A-I, p,  v + p - l), Proposition 8.9 implies 
that desired result. (ii) follows immediately from (i). For (iii), (i) 
implies 3 = A-'/2SA-1/2 is IW( I,, p, v) and C(S) = C (rSI") for all 
r E Op. Now, apply Problem 4 to conclude that &S = cIp where 
c = GS,,. That c = (v - 2)- is an easy application of (i). Hence 
(v - 2)-'I, = &S = A- ' /~(&s)A- ' /~  SO &S = (V - 2)-'A. Also, 
cov S = ( y - 0 )  I,-@ I, + PI, I, as in Problem 4. Thus Cov (3) = 

( A ' / 2 8 A 1 / 2 ) ( C ~ ~ ~ ) ( A 1 / 2 8 A 1 / 2 ) = ( y - p j A 8 A + P A ~ A .  For 
(iv), that C(S,,) = IW(A,,, q, v), take A = (I, 0) in part (i). To show 
C(S,;!,) = W(A,'.,, r, v + q + r - 1), use Proposition 8.8 on S-I, 
which is W(A-I, p,  v + p - 1). 

8. For (i), letp,(x)p,(s) denote the joint density of X and S with respect 
to the measure dx ds/lsl(~+') /~.  Setting T = XS-'/2 and V = S, the 
joint density of T and V is p,(tv'/2)p2(v)lvlr/2 with respect to 
dt dv/Iv I(,+ ')I2-the Jacobian of x + is lv 1 'I2--see Proposition 
5.10. Now, integrate out v to get the claimed density. That C(T) = 

C(I'TA') is clear from the form of the density (also from (ii) below). 
Use Proposition 2.19 to show Cov(T) = c,Ir 8 I,. Part (ii) follows by 
integrating out v from the conditional density of T to obtain the 
marginal density of T as given in (i). For (iii) represent T as: T given V 
is N(0, I, 8 V) where Vis IW(I,, p, v). Thus T,, given Vis N(0, I, 8 
V,,) where Vl, is the q x q upper left-hand comer of V. Since 
C(Vl ,) = IW(I,, q, v), the claimed result follows from (ii). 

9. With V = S; ' / 2 ~ 1 ~ ~  'I2 and S = S; I ,  the conditional distribution of 
V given S is W(S, p, m) and C(S) = IW(I  , p, v). Since V is uncon- 
ditionally F(m, v, I,), (i) follows. For (ii), [(T) = T(v, I,, I,) means 
that C(T) = C(XS'l2) where C(X) = N(0, I, 8 I,) and C(S) = 

IW(I,, p,  v). Thus &(T'T) = C(S'I2X' XS1/'). Since C(X'X) = 

W(I,, p, r), (ii) follows by definition of F(r, v, I,). For (iii), write 
F = T'T where C(T) = T(v, I,, I,), which has the density given in (i) 
of Problem 8. Since r 2 p, Proposition 7.6 is directly applicable to 
yield the density of F. To establish (iv), first note that C(F) = C(rFI") 
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for all r E OP. Using Example 7.16, F has the same distributions as 
J,DJ,' where J, is uniform on 8, and is independent of the diagonal 
matrix D whose diagonal elements A ,  > . . . 2 A, are distributed as 
the eigenvalues of F. Thus A,, . . . , A, are distributed as the eigenvalues 
of ST IS, where S, is W(I,, p, r )  and S; ' is IW(Ip, p,  v). Hence 
C(FP') = C(J,D-'+') = C(J,DJ,') where the diagonal elements of D, 
say A; ' . . > A; ', are the eigenvalues of S; IS,. Since S2 is 
W(I,, p, v + p - l), it follows that J,D$' has the same distribution as 
an F(v + p - 1, r - p + 1, I,) matrix by just repeating the orthogo- 
nal invariance argument given above. (v) is established by writing 
F = T'T as in (ii) and partitioning T as Tl : r x q and T2 : r x ( p  - q) 
SO 

T'T = 

Since C(T,) = T(v, I,, I,) and Fll = TiTl, (ii) implies that C(F,,) = 

F(r, v, I,). (vi) can be established by deriving the density of XS-'X' 
directly and using (iii), but an alternative argument is more instructive. 
First, apply Proposition 7.4 to X' and write X = v'/~J,' where V E ST, 
V = XX' is W(I,, r,  p)  and is independent of J, : p x r, which 
is uniform on T,,. Then XS- 'X' = v ' /~w- ' v ' /~  where W = 

(4's-'I))-' and is independent of V. Proposition 8.1 implies that 
C(W) = W(I,, r, m - p + r). Thus C(WP') = IW(I,, r,  m - p + 1). 
Now, use the orthogonal invariance of the distribution of XS-'x' to 
conclude that C ( XS- 'X') = C ( r D r f )  where r and D are independent, 
r is uniform on Or, and the diagonal elements of D are distributed as 
the ordered eigenvalues of W-'V. As in the proof of (iv), conclude that 
C(rDTf) = F(p,  m - p + 1, I,). 

10. The function S + s'l2 on Sp+ to S; satisfies (I'SI")'/2 = rS'/2r' for 
r E 0,. With B(SI, S,) = (S1 + S 2 ) - 1 / 2 ~ 1 ( ~ 1  + S2)-'I2, it follows 
that B ( E , r ' ,  rS2rf)  = rB(SI, S2)rf .  Since C(rS,I") = C(Si), i = 1,2, 
and S, and S, are independent, the above implies that C(B) = C(rBT') 
for r E 8,. The rest of (i) is clear from Example 7.16. For (ii), let 
B, = S,'/2(Sl + S2)-'Si/2 so C(B,) = C(rBlr!) for r E 8,. Thus 
C(Bl) = C(J,DJ,') where J, and D are independent, J, is uniform on 8,. 
Also, the diagonal elements of D, say A ,  2 . . . 2 A, > 0, are distrib- 
uted as the ordered eigenvalues of Sl(Sl + S2)-' so Bl is 
B(ml, m,, I,). (iii) is easy using (i) and (ii) and the fact that F( I + 
F)-' is symmetric. For (iv), let B = X(S + X'X)-'X' and observe 
that C(B) = C(rBI"), r E 8,. Since m > p, S- '  exists so B = 

XS-'/~(I, + S-'/2~'~~-1/2)-1S-1/2~'. Hence T = XS-'/~ is T(m 
- p + 1, I,, I,). Thus C(B) = C(J,DJ,') where J, is uniform on 8, and 
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is independent of D. The diagonal elements of D, say A,,. . . , A,, are 
the eigenvalues of T(I  + TfT)-IT'. These are the same as the eigen- 
values of TT'(I, + T+')-' (use the singular value decomposition for 
T). But C(TT') = C(XS-'X') = F(p,  m - p + 1, I,) by Problem 9 
(vi). Now use (iii) above and the orthogonal invariance of C(B). (v) is 
trivial. 

CHAPTER 9 

1. Let B have rows v;, . . . , v; and form X in the usual way (see Example 
4.3) so &X = ZB with an appropriate Z :  n x k. Let R : 1 x k have 
entries a,, .  . . , a,. Then RB = Cfaipi and Ho holds iff RB = 0. Now 
apply the results in Section 9.1. 

2. For (i), just do the algebra. For (ii), apply (i) with S, = (Y - XB)'(Y 
- XB) and S2 = (X(B - B))'(X(B - B)), so @(S,) < +(S, + S,) for 
every B. Since A 2 0, tr A(S, + S,) = tr AS, + tr AS, 2 tr ASl since 
tr AS, 2 0 as S, 2 0. To show det(A + S )  is nondecreasing in S 2 0, 
First note that .4g + S, < A + S, + S2 in the sense of positive definite- 
ness as S, > 0. Thus the ordered eigenvalues of (A + S, + S,), say 
A,,. . . , A,, satisfy Xi  2 p,, i = 1,. . . , p,  where p,,. . . , p, are the 
ordered eigenvalues of A + S,. Thus det(A + S, + S,) > det(A + S , ) .  
This same argument solves (iv). 

3. Since C(EJ,'Af) = C(EAf) for J,  E O,, the distribution of EA' depends 
only on a maximal invariant under the action A -+ AJ, of J,  on GI,. 
This maximal invariant is AA'. (ii) is clear and (iii) follows since the 
reduction to canonical form is achieved via an orthogonal transforma- 
tion E = TY where T E 8,. Thus = r p  + I?EAf. r is chosen so Tp 
has the claimed form and Ho is B, = 0. Setting ,6 = rE ,  the model has 
the claimed form and C(E) = C(B) by assumption. The arguments 
given in Section 9.1 show that the testing problem is invariant and a 
maximal invariant is the vector of the t largest eigenvalues of 
Y,(~Y,)- 'Y;. Under H,, Y, = EIAf, Y,  = E,Ar so Y,(Y;Y,)-'Y; = 

E,(E;E,)-'E; = W. When C(rE) = C(E) for all T E On, write E = 

J,U according to Proposition 7.3 where J,  and U are independent and J,  
is uniform on %, ,. Partitioning J,  as E is partitioned, E, = J,,U, 
i = 1,2,3, so W = J,,u((JI,u)'J/,u)-'U'J,', = J , l ( J , ; J , 3 ) - ' J , ; .  The rest 
is obvious as the distribution of W depends only on the distribution 
of J,. 

4. Use the independence of Y, and Y,  and the fact that G(Y;Y,)-' = (m 
- p - l)-'Z-l. 
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5. Let I' E 0, be given by 

and set F = YI'. Then C(F) = N(ZBr, I, 8 I"ZT). Now, let BI' 
have columns p, and p,. Then H, is that PI = 0. Also I"X is 
diagonal with unknown diagonal elements. The results of Section 9.2 
apply directly to yield the likelihood ratio test. A standard invariance 
argument shows the test is UMP invariant. 

6. For (i), look at the i, j elements of the equation for Y. To show 
M2 I M,, compute as follows: (au;, u,P') = tr au;/3u; = u;pu;a = 0 
from the side conditions on a and p. The remaining relations MI I M, 
and M, I M, are verified similarly. For (iii) consider (I, 8 A)(pu,u; 
+ au; + u,Pf) = puI(Au2)' + ~(Au, ) '  + u,(AP)' = p y u , ~ ;  + yau; 
+6u,P1 E M where the relations Pu, = u, and QP = /3 when u;p = 0 
have been used. This shows that M is invariant under each I, 8 A. It 
is now readily verified that f i  = F. , 6 ,  = t. - F. and b, = Y., - Y .. 
For (iv), first note that the subspace w = {x(x E M, a = 0) defined by 
H, is invariant under each I, 8 A. Obviously, w = MI @ M,. Con- 
sider the group whose elements are g = (c, r ,  b) where c is a positive 
scalar, b E MI $ M,, and I' is an orthogonal transformation with 
invariant subspaces M,, MI $ M,, and ML . The testing problem is 
invariant under x + cI'x + b and a maximal invariant is W (up to a 
set a measure zero). Since W has a noncentral F-distribution, the test 
that rejects for large values of W is UMP invariant. 

7. (i) is clear. The column space of W is contained in the column space of 
Z and has dimension r. Let x,, .  . . , x,, x,,,,. . . , x,, x,,,,. . . , x, be 
an orthonormal basis for Rn such that span{x,, . . . , x,) = column 
space of W and span{x,,. . . , x,) = column space of Z. Also, let 
y,,. . . , y, be any orthonormal basis for RP. Then {x,O y,li = 1,. . . , 
r, j = 1,. . . , p )  is a basis for %(P, 8 I,), which has dimension rp. 
Obviously, %(P, 8 I,) G M. Consider x E w so x = ZB with 
RB = 0. Thus (P, 8 I,)x = P,ZB = W(WfW)-'W'ZB = 

w ( w t w ) - l ~ ( ~ f ~ ) - l ( ~ ~ ) ~  = w(wtw)-IRB = O. T ~ U S  %(P, 8 
I,) 2 w, which implies %(P, 8 I,) c w' . Hence %(PW 8 I*) c M 
n w L  . That dimw = (k - r )p  can be shown by a reduction to 
canonical form as was done in Section 9.1. Since w c M, dim(M - a )  
= dim M - dim w = rp, which entails %(P, 8 I,) = M - u. Hence 
P, 8 I, - P, 8 I, is the orthogonal projection onto a .  

8. Use the fact that TZI' is diagonal with diagonal entries a, ,  a,, a,, a,, a, 
(see Proposition 9.13 ff.) so the maximum likelihood estimators a, ,  a,, 
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and a, are easy to find-just transform the data by I'. Let D have 
diagonal entries ai l ,  ai,, ai,, ai,, ai, so 5 = ~ D T  gives the maximum 
likelihood estimators of a2,  p ,, and p,. 

9. Do the problems in the complex domain first to show that if Z , ,  . . . , Z ,  
are i.i.d. W ( 0 , 2  H ) ,  then H = (1/2n)CyZ,Z:. But if Z, = U, + i y  
and 

then H = (1/2n)C;(U, + iV,)(U, - i y ) '  = (1 /2n ) [ (S l l  + S22) + 
i ( S I 2  - S,,)] so 4 = { H } .  This gives the desired result. 

10. Write R = M ( I ,  O)r where M is r X r of rank r and I' E 0,. With 
6  = I'p, the null hypothesis is (I, 0)6 = 0. Now, transform the data by 
r and proceed with the analysis as in the first testing problem 
considered in Section 9.6. 

1 1 .  First write P, = PI + P2 where PI is the orthogonal projection onto e 
and P, is the orthogonal projection onto (column space of Z )  n 
{span e)' . Thus P,,, = PI 8 I, + P2 8 I,. Also, write A ( p )  = yPl + 
6Q1 where y  = 1 + ( n  - l )p ,  6  = 1 - p ,  and Q,  = I,  - PI.  The rela- 
tions PI P2 = 0  = Q ,  PI and P2Q, = Q,  P2 = P2 show that M is in- 
variant under A ( p )  8 2 for each value of p and 2. Write ZB = eb; + 
Ciz;bj' so QIYis  N(C';(Qlzj)bj ' , (QlA(~)Ql)  8 2). Now, QIA(P)Q,  = 
6Q1 so QIY  is ~ ( P , k ( ~ , z , ) b ; ,  6Q, 8 2) .  Also, P,Y is N(eb;, yP, 8 2). 
Since hypotheses of the form RB = 0  involve only b,, . . . , b,, an 
invariance argument shows that invariant tests of H, will not involve 
Ply-so just ignore Ply.  But the model for Q,Y is of the MANOVA 
type; change coordinates so 

Now, the null hypothesis is of the type discussed in Section 9.1. 

CHAPTER 10 

1. Part (i) is clear since the number of nonzero canonical correlations is 
always the rank of Z12  in the partitioned covariance of {X, Y } .  For (ii), 
write 
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where Z,, has rank t ,  and Z,,  > 0, Z,, > 0. First, consider the case 
when q g r, Z , ,  = I,, Z,, = I,, and 

where D > 0 is t x t and diagonal. Set 

so AB' = Z,,. Now, set A,, = I, - AA', A,, = I, - BB', and the 
problem is solved for this case. The general case is solved by using 
Proposition 5.7 to reduce the problem to the case above. 

2. That Z,, = 6e,e; for some 6 E R' is clear, and hence Z,, has rank 
one-hence at most one nonzero canonical correlation. It is the square 
root of the largest eigenvalue of Z;'Z,,Z,'Z,, = 62Z;'e,e;Z;'e2e;. 
The only nonzero (possibly) eigenvalue is 6 ,e; 2; 'e,e;Z,'e,. To de- 
scribe canonical coordinates, let 

and then form orthonormal bases (6,,  6,,. . . , 6,) and {a, , .  . . , a,.) for 
R4 and Rr. Now, set vi = 2,'/26,, W, = Z;21/2~ for i = 1,. . . , q, 
j = 1,. . . , r. Then verify that X, = viX and Y, = w,'Y form a set of 
canonical coordinates for X and Y. 

3. Part (i) follows immediately from Proposition 10.4 and the form of the 
covariance for {X, Y). That 6(B) = t rA(I  - Q(B)) is clear and the 
minimization of 6(B) follows from Proposition 1.44. To describe B, let 
+ : p X t have columns a,,  . . . , a ,  so +'+ = I, and Q = ++'. Then show 
directly that B = +'2-'/2 is the minimizer and ~ B X  = P ~ / ~ Q Z - I / ~ X  

is the best predictor. (iii) is an immediate application of (ii). 
4. Part (i) is easy. For (ii), with u i  = x, - a,, 
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Since S(ao) = S ( 2 )  + n(F - ao)(F - a,)', (ii) follows. (iii) is an ap- 
plication of Proposition 1.44. 

6. Part (i) follows from the singular value decomposition: For (ii), 
(x E eP,, lx = $C, C E eP, k )  is a linear subspace of eP,, and the 
orthogonal projection onto this subspace is ($4') 8 I,. Thus the 
closest point to A is (($4') 8 I)A = $$'A, and the C that achieves 
the minimum is = $'A. For B E a k ,  write B = $C as in (i). Then 

IIA - ~ 1 1 ~  2 inf infllA - $c112 = infllA - $ $ ' A I I ~  = i n f l l ~ Q l l ~ .  
4 c 4 Q 

The last equality follows as each $ determines a Q and conversely. 
Since llAQ1I2 = tr AQ(AQ)' = tr A Q 2 ~ '  = tr QAA', 

llA - B112 >, inf tr QAA'. 
Q 

Writing A = CfX,u,v: (the singular value decomposition for A), AA' 
= Cfhiuiuj is a spectral decomposition for AA'. Using Proposition 
1.44, it follows easily that 

P 

inf tr QAA' = A;. 
Q k +  1 

That B achieves the infimum is a routine calculation. 
7. From Proposition 10.8, the density of W is 

where pn-, is the density of a noncentral t distribution and f is the 
density of a X;-l distribution. For 19 > 0, set u = 0 ~ ' ' ~  so 

Since p,-,(wlv) has a monotone likelihood ratio in w and v and 
f (v2/02) has a monotone likelihood ratio in v and 13, Karlin's Lemma 
implies that h(w1S) has a monotone likelihood ratio. For 0 < 0, set 
v = 8 u- change variables, and use Karlin's Lemma again. The last 
assertion is clear. 
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8. For U2 fixed, the conditional distribution of W given U2 can be 
described as the ratio of two independent random variables-the 
numerator has a X;+2, distribution (gven K)  and K is Poisson with 
parameter A/2 where A = p2(1 - p2)-'U2 and the denominator is 
Xi-r- Hence, given U2, this ratio is $+2,,,-r-l with K described 
above, so the conditional density of W is 

where + (. 1 A/2) is the Poisson probability function. Integrating out U2 
gives the unconditional density of W (at p). Thus it must be shown 
that FU2+(klA/2) = h(k1p)-this is a calculation. That f (elp) has a 
monotone likelihood ratio is a direct application of Karlin's Lemma. 

9. Let M be the range of P. Each R E Os can be represented as R = $4' 
where + is n x s, +'+ = I,, and P+ = 0. In other words, R corresponds 
to orthonormal vectors + . . , I), (the colunins of +) and these vectors 
are in M I  (of course, these vectors are not unique). But given any two 
such sets-say +, , .  . . , +, and a,, .  . . , a,, there is a r E 6(P)  such that 
r+, = a,, i = 1,. . . , s. This shows O(P) is compact and acts transi- 
tively on 9,, so there is a unique O(P) invariant probability distribu- 
tion on OS. For (iii), AR,Af has an 8 (P)  invariant distribution on 
Os-uniqueness does the rest. 

10. For (i), use Proposition 7.3 to write Z = +U with probability one 
where + and U are independent, 4 is uniform on %, ,, and U E G:. 
Thus with probability one, rank(QZ) = rank(Q+). Let S > 0 be inde- 
pendent of + with C(S2) = W(Ip, p, n) so S has rankp with probabil- 
ity one. Thus rank(Q+) = rank(Q+S) with probability one. But rC/S is 
N(0, I, 8 I,), which implies that Q+S has rank p. Part (ii) is a direct 
application of Problem 9. 

12. That + is uniform follows from the uniformity of r on 8,. For 
(ii), C(+) = C(Z(ZfZ)-'/2) and A = (I, O)+ implies that C(+) = 

C ( X( X'X + YfY)- I). (iii) is immediate from Problem 1 1, and (iv) is 
an application of Proposition 7.6. For (v), it suffices to show that 
jf (x) PI (dx) = jf (x) P2(dx) for all bounded measurable f .  The invari- 
ance of Pi implies that for i = 1,2, jf(x)Pi(dx) = jf(gx)P,(dx), 
g E G. Let v be uniform probability measure on G and integrate the 
above to get jf (x) P,(dx) = j(jG f (gx)v(dg))P,(dx). But the function 
x -t j, f(gx)v(dg) is G-invariant and so can be writtenj'(r(x)) as 7 is 
a maximal invariant. Since P1(r-I(C)) = P2(7-I(C)) for a11 measur- 
able C, we have jk(r(x))P,(dx) = jk(r(x))P2(dx) for all bounded 
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measurable k. Putting things together, we have jf(x)P,(dx) = 

~ ~ ( T ( x ) ) P ~ ( ~ x )  = jj(7(x))p2(dx) = jf(x)P2(dx) so P1 = P2. Part 
(vi) is immediate from (v). 

13. For (i), argue as in Example 4.4: 

The third equality follows from the relation QT = 0 as in the normal 
case. Since h is nonincreasing, this shows that for each 2 > 0, 

and it is obvious that ~ ( Z I B ,  Z) = lZ~-"/~h(trSZ- ' ) .  For (ii), first 
note that S > 0 with probability one. Then, for S > 0, 

= sup lZ~-" /~h  (tr sZ- ' )  
2 1 0  

= SUP ~ C l " / ~ h ( t r  c) .  
C>O 

Under Ho, we have 

= SUP I Z ~ ~ I - " / ~ ) Z ~ ~ ~ - ~ / ~ ~  (tr 2i1Sli + tr 2 , ' ~ ~ ~ )  
Z, ,>O, i=1 ,2  

Thls latter sup is bounded above by 

sup J C ) " / ~ ~  (tr C)  = k, 
C> 0 
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which is finite by assumption. Hence the likelihood ratio test rejects 
for small values of k,  IS, lI-n/21S22~-n/2~~(n/2,  which is equivalent to 
rejecting for small values of A(Z). The identity of part (iii) follows 
from the equations relating the blocks of 2 to the blocks of 2- ' .  
Partition B into B, : k X q and B2 : k X r so & X  = TB, and & Y  = TB,. 
Apply the identity with U = X - TB, and V = Y - TB, to give 

Using the notation of Section 10.5, write 

Hence the conditional density of Y given X is 

where q = tr(X - TB,)Z,'(X - TB,) and (+(q))-' = je,,,h(tr uu' + 
q)du. For (iv), argue as in (ii) and use the identities established in 
Proposition 10.17. Part (v) is easy, given the results of (iv)-just note 
that the sup over Z,, and B, is equal to the sup over q > 0. Part (vi) is 
interesting-Proposition 10.13 is not applicable. Fix X, B,, and X I ,  
and note that under H,, the conditional density of Y is 

Thls shows that Y has the same distribution (conditionally) as E = 
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TC, + where E E Cr, , has density h(trEE' + q)+(q). Note 
that C(rEA) = C(E) for all r E 8, and A E fir. Let t = min(q, r )  
and, given any n x n matrix A with real eigenvalues, let h(A) be the 
vector of the t largest eigenvalues of A .  Thus the squares of the sample 
canonical correlations are the elements of the vector X(R ,RX) where 
R, = (QY)(YQY)-'(QY), R, = QX(X'QX)-'QX, since 

(You may want to look at the discussion preceding Proposition 10.5.) 
Now, we use Problem 9 and the notation there-P = I - Q. First, 
R, E qr, R, E Tq, and B(P) acts transitively on Tr and Tq. Under H, 

(and X fixed), C(QY) = C(QEZ;{T,), which implies that C(rR ,r') = 

C(R,), r E 8(P). Hence R, is uniform on Tr for each X. Fix 
R, E and choose r, so that To ROT; = Rx, Then, for each X, 

This shows that for each X, A(RyRx) has the same distribution as 
h(R ,R,) for R, fixed where R, is uniform on Tr. Since the distribu- 
tion of X(R,R,) does not depend on X and agrees with what we get in 
the normal case, the solution is complete. 
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