Comments on Selected Problems

CHAPTER 1

4. This problem gives the direct sum version of partitioned matrices. For (ii), identify V_{1} with vectors of the form $\left\{v_{1}, 0\right\} \in V_{1} \oplus V_{2}$ and restrict T to these. This restriction is a map from V_{1} to $V_{1} \oplus V_{2}$ so $T\left\{v_{1}, 0\right\}=$ $\left\{z_{1}\left(v_{1}\right), z_{2}\left(v_{1}\right)\right\}$ where $z_{1}\left(v_{1}\right) \in V_{1}$ and $z_{2}\left(v_{1}\right) \in V_{2}$. Show that z_{1} is a linear transformation on V_{1} to V_{1} and z_{2} is a linear transformation on V_{1} to V_{2}. This gives A_{11} and A_{21}. A similar argument gives A_{12} and A_{22}. Part (iii) is a routine computation.
5. If $x_{r+1}=\sum_{1}^{r} c_{i} x_{i}$, then $w_{r+1}=\sum_{1}^{r} c_{i} w_{i}$.
6. If $u \in R^{k}$ has coordinates u_{1}, \ldots, u_{k}, then $A u=\sum_{1}^{k} u_{i} x_{i}$ and all such vectors are just span $\left\{x_{1}, \ldots, x_{k}\right\}$. For (ii), $r(A)=r\left(A^{\prime}\right)$ so $\operatorname{dim} \Re\left(A^{\prime} A\right)=\operatorname{dim} \Re\left(A A^{\prime}\right)$.
7. The algorithm of projecting x_{2}, \ldots, x_{k} onto $\left\{\operatorname{span} x_{1}\right\}^{\perp}$ is known as Björk's algorithm (Björk, 1967) and is an alternative method of doing Gram-Schmidt. Once you see that y_{2}, \ldots, y_{k} are perpendicular to y_{1}, this problem is not hard.
8. The assumptions and linearity imply that $[A x, w]=[B x, w]$ for all $x \in V$ and $w \in W$. Thus $[(A-B) x, w]=0$ for all w. Choose $w=(A$ $-B) x$ so $(A-B) x=0$.
9. Choose z such that $\left[y_{1}, z\right] \neq 0$. Then $\left[y_{1}, z\right] x_{1}=\left[y_{2}, z\right] x_{2}$ so set $c=\left[y_{2}, z\right] /\left[y_{1}, z\right]$. Thus $c x_{2} \square y_{1}=x_{2} \square y_{2}$ so $c y_{1} \square x_{2}=y_{2} \square x_{2}$. Hence $c\left\|x_{2}\right\|^{2} y_{1}=\left\|x_{2}\right\|^{2} y_{2}$ so $y_{1}=c^{-1} y_{2}$.
10. This problem shows the topologies generated by inner products are all the same. We know $[x, y]=(x, A y)$ for some $A>0$. Let c_{1} be the minimum eigenvalue of A, and let c_{2} be the maximum eigenvalue of A.
11. This is just the Cauchy-Schwarz Inequality.
12. The classical two-way $A N O V A$ table is a consequence of this problem. That A, B_{1}, B_{2}, and B_{3} are orthogonal projections is a routine but useful calculation. Just keep the notation straight and verify that $P^{2}=P=P^{\prime}$, which characterizes orthogonal projections.
13. To show that $\Gamma\left(M^{\perp}\right) \subseteq M^{\perp}$, verify that $(u, \Gamma v)=0$ for all $u \in M$ when $v \in M^{\perp}$. Use the fact that $\Gamma^{\prime} \Gamma=I$ and $u=\Gamma u_{1}$ for some $u_{1} \in M$ (since $\Gamma(M) \subseteq M$ and Γ is nonsingular).
14. Use Cauchy-Schwarz and the fact that $P_{M} x=x$ for $x \in M$.
15. This is Cauchy-Schwarz for the non-negative definite bilinear form $[C, D]=\operatorname{tr} A C B D^{\prime}$.
16. Use Proposition 1.36 and the assumption that A is real.
17. The representation $\alpha P+\beta(I-P)$ is a spectral type repre-sentation-see Theorem 1.2a. If $M=\Re(P)$, let $x_{1}, \ldots, x_{r}, x_{r+1}, \ldots$, x_{n} be any orthonormal basis such that $M=\operatorname{span}\left\{x_{1}, \ldots, x_{r}\right\}$. Then $A x_{i}=\alpha x_{i}, i=1, \ldots, r$, and $A x_{i}=\beta x_{i}, i=r+1, \ldots, n$. The characteristic polynomial of A must be $(\alpha-\lambda)^{r}(\beta-\lambda)^{n-r}$.
18. Since $\lambda_{1}=\sup _{\|x\|=1}(x, A x), \mu_{1}=\sup _{\|x\|=1}(x, B x)$, and $(x, A x) \geqslant$ ($x, B x$), obviously $\lambda_{1} \geqslant \mu_{1}$. Now, argue by contradiction-let j be the smallest index such that $\lambda_{j}<\mu_{j}$. Consider eigenvectors x_{1}, \ldots, x_{n} and y_{1}, \ldots, y_{n} with $A x_{i}=\lambda_{i} x_{i}$ and $B y_{i}=\mu_{i} y_{i}, i=1, \ldots, n$. Let $M=$ $\operatorname{span}\left\{x_{j}, x_{j+1}, \ldots, x_{n}\right\}$ and let $N=\operatorname{span}\left\{y_{1}, \ldots, y_{j}\right\}$. Since dim $M=n-j+1, \operatorname{dim} M \cap N \geqslant 1$. Using the identities $\lambda_{j}=$ $\sup _{x \in M,\|x\|=1}(x, A x), \mu_{j}=\inf _{x \in N,\|x\|=1}(x, B x)$, for any $x \in M \cap N$, $\|x\|=1$, we have $(x, A x) \leqslant \lambda_{j}<\mu_{j} \leqslant(x, B x)$, which is a contradiction.
19. Write $S=\sum_{1}^{n} \lambda_{i} x_{i} \square x_{i}$ in spectral form where $\lambda_{i}>0, i=1, \ldots, n$. Then $0=\langle S, T\rangle=\sum_{1}^{n} \lambda_{i}\left(x_{i}, T x_{i}\right)$, which implies $\left(x_{i}, T x_{i}\right)=0$ for $i=$ $1, \ldots, n$ as $T \geqslant 0$. This implies $T=0$.
20. Since $\operatorname{tr} A$ and $\langle A, I\rangle$ are both linear in A, it suffices to show equality for A 's of the form $A=x \square y$. But $\langle x \square y, I\rangle=(x, y)$. However, that $\operatorname{tr} x \square y=(x, y)$ is easily verified by choosing a coordinate system.
21. Parts (i) and (ii) are easy but (iii) is not. It is false that $A^{2} \geqslant B^{2}$ and a 2×2 matrix counter example is not hard to construct. It is true that $A^{1 / 2} \geqslant B^{1 / 2}$. To see this, let $C=B^{1 / 2} A^{-1 / 2}$, so by hypothesis, $I \geqslant C^{\prime} C$. Note that the eigenvalues of C are real and positive-being the same as those of $B^{1 / 4} A^{-1 / 2} B^{1 / 4}$ which is positive definite. If λ is any eigenvalue for C, there is a corresponding eigenvector-say x such that $\|x\|=1$ and $C x=\lambda x$. The relation $I \geqslant C^{\prime} C$ implies $\lambda^{2} \leqslant 1$, so $0<\lambda$ $\leqslant 1$ as λ is positive. Thus all the eigenvalues of C are in (0,1] so
the same is true of $A^{-1 / 4} B^{1 / 2} A^{-1 / 4}$. Hence $A^{-1 / 4} B^{1 / 2} A^{-1 / 4} \leqslant I$ so $B^{1 / 2} \leqslant A^{1 / 2}$.
22. Since P is an orthogonal projection, all its eigenvalues are zero or one and the multiplicity of one is the rank of P. But $\operatorname{tr} P$ is just the sum of the eigenvalues of P.
23. Since any $A \in \mathcal{E}(V, V)$ can be written as $\left(A+A^{\prime}\right) / 2+\left(A-A^{\prime}\right) / 2$, it follows that $M+N=\mathcal{E}(V, V)$. If $A \in M \cap N$, then $A=A^{\prime}=-A$, so $A=0$. Thus $\mathfrak{E}(V, V)$ is the direct sum of M and N so $\operatorname{dim} M+$ $\operatorname{dim} N=n^{2}$. A direct calculation shows that $\left\{x_{i} \square x_{j}+x_{j} \square x_{i} \mid i \leqslant j\right\}$ $\cup\left\{x_{i} \square x_{j}-x_{j} \square x_{i} \mid i<j\right\}$ is an orthogonal set of vectors, none of which is zero, and hence the set is linearly independent. Since the set has n^{2} elements, it forms a basis for $\mathcal{L}(V, V)$. Because $x_{i} \square x_{j}+x_{j} \square x_{i}$ $\in M$ and $x_{i} \square x_{j}-x_{j} \square x_{i} \in N, \operatorname{dim} M \geqslant n(n+1) / 2$ and $\operatorname{dim} N \geqslant$ $n(n-1) / 2$. Assertions (i), (ii), and (iii) now follow. For (iv), just verify that the map $A \rightarrow\left(A+A^{\prime}\right) / 2$ is idempotent and self-adjoint.
24. Part (i) is a consequence of $\sup _{\|v\|=1}\|A v\|=\sup _{\|v\|=1}[A v, A v]^{1 / 2}=$ $\sup _{\|v\|=1}\left(v, A^{\prime} A v\right)^{1 / 2}$ and the spectral theorem. The triangle inequality follows from $\|\mid A+B\|\left\|=\sup _{\|v\|=1}\right\| A v+B v \| \leqslant \sup _{\|v\|=1}(\|A v\|+$ $\|B v\|) \leqslant \sup _{\|v\|=1}\|A v\|+\sup _{\|v\|=1}\|B v\|$.
25. This problem is easy, but it is worth some careful thought-it provides more evidence that $A \otimes B$ has been defined properly and $\langle\cdot, \cdot\rangle$ is an appropriate inner produce on $\mathcal{L}(W, V)$. Assertion (i) is easy since $(A \otimes B)\left(x_{i} \square w_{j}\right)=\left(A x_{i}\right) \square\left(B w_{j}\right)=\left(\lambda_{i} x_{i}\right) \square\left(\mu_{j} w_{j}\right)=\lambda_{i} \mu_{j} x_{i} \square w_{j}$. Obviously, $x_{i} \square w_{j}$ is an eigenvector of the eigenvalue $\lambda_{i} \mu_{j}$. Part (ii) follows since the two linear transformations agree on the basis $\left\{x_{i} \square w_{j} \mid i=1, \ldots, m, j=1, \ldots, n\right\}$ for $\mathcal{L}(W, V)$. For (iii), if the eigenvalues of A and B are positive, so are the eigenvalues of $A \otimes B$. Since the trace of a self-adjoint linear transformation in the sum of the eigenvalues (this is true even without self-adjointness, but the proof requires a bit more than we have established here), we have $\operatorname{tr} A \otimes B$ $=\sum_{i, j} \lambda_{i} \mu_{j}=\left(\sum_{i} \lambda_{i}\right)\left(\sum_{j} \mu_{j}\right)=(\operatorname{tr} A)(\operatorname{tr} B)$. Since the determinant is the product of the eigenvalues, $\operatorname{det}(A \otimes B)=\Pi_{i, j}\left(\lambda_{i} \mu_{j}\right)=$ $\left(\Pi \lambda_{i}\right)^{n}\left(\Pi \mu_{j}\right)^{m}=(\operatorname{det} A)^{n}(\operatorname{det} B)^{m}$.
26. Since $\psi^{\prime} \psi=I_{p}, \psi$ is a linearly isometry and its columns form an orthonormal set. Since $R(\psi) \subseteq M$ and the two subspaces have the same dimension, (i) follows. (ii) is immediate.
27. If C is $n \times k$ and D is $k \times n$, the set of nonzero eigenvalues of $C D$ is the same as the set of nonzero eigenvalues of $D C$.
28. Apply Problem 32.
29. Orthogonal transformations preserve angles.
30. This problem requires that you have a facility in dealing with conditional expectation. If you do, the problem requires a bit of calculation but not much more. If you don't, proceed to Chapter 2.

CHAPTER 2

1. Write $x=\sum_{1}^{n} c_{i} x_{i}$ so $(x, X)=\sum c_{i}\left(x_{i}, X\right)$. Thus $\mathcal{E}|(x, X)| \leqslant$ $\sum_{1}^{n}\left|c_{i}\right| \mathcal{E}\left|\left(x_{i}, X\right)\right|$ and $\mathcal{E}\left|\left(x_{i}, X\right)\right|$ is finite by assumption. To show that $\operatorname{Cov}(X)$ exists, it suffices to verify that $\operatorname{var}(x, X)$ exists for each $x \in V$. But $\operatorname{var}(x, X)=\operatorname{var}\left\{\sum c_{i}\left(x_{i}, X\right)\right\}=\Sigma \Sigma \operatorname{cov}\left\{c_{i}\left(x_{i}, X\right)\right.$, $\left.c_{j}\left(x_{j}, X\right)\right\}$. Then $\operatorname{var}\left\{c_{i}\left(x_{i}, X\right)\right\}=\mathcal{E}\left[c_{i}\left(x_{i} X\right)\right]^{2}-\left[\mathcal{E} c_{i}\left(x_{i}, X\right)\right]^{2}$, which exists by assumption. The Cauchy-Schwarz Inequality shows that $\left[\operatorname{cov}\left\{c_{i}\left(x_{i}, X\right), c_{j}\left(x_{j}, X\right)\right\}\right]^{2} \leqslant \operatorname{var}\left\{c_{i}\left(x_{i}, X\right)\right\} \operatorname{var}\left\{c_{j}\left(x_{j}, X\right)\right\}$. But, $\operatorname{var}\left\{c_{i}\left(x_{i}, X\right)\right\}$ exists by the above argument.
2. All inner products on a finite dimensional vector space are related via the positive definite quadratic forms. An easy calculation yields the result of this problem.
3. Let $(\cdot, \cdot)_{i}$ be an inner product on $V_{i}, i=1,2$. Since f_{i} is linear on V_{i}, $f_{i}(x)=\left(x_{i}, x\right)_{i}$ for $x_{i} \in V_{i}, i=1,2$. Thus if X_{1} and X_{2} are uncorrelated (the choice of inner product is irrelevant by Problem 2), (2.2) holds. Conversely, if (2.2) holds, then $\operatorname{Cov}\left\{\left(x_{1}, X_{1}\right)_{1},\left(x_{2}, X_{2}\right)_{2}\right\}=0$ for $x_{i} \in V_{i}, i=1,2$ since $\left(x_{1}, \cdot\right)_{1}$ and $\left(x_{2}, \cdot\right)_{2}$ are linear functions.
4. Let $s=n-r$ and consider $\Gamma \in \mathcal{O}_{r}$ and a Borel set B_{1} of R^{r}. Then

$$
\begin{aligned}
\operatorname{Pr}\left\{\Gamma \dot{X} \in B_{1}\right\} & =\operatorname{Pr}\left\{\Gamma \dot{X} \in B_{1}, \ddot{X} \in R^{s}\right\} \\
& =\operatorname{Pr}\left\{\left(\begin{array}{cc}
\Gamma & 0 \\
0 & I_{s}
\end{array}\right)\binom{\dot{X}}{\ddot{X}} \in B_{1} \times R^{s}\right\} \\
& =\operatorname{Pr}\left\{\binom{\dot{X}}{\ddot{X}} \in B_{1} \times R^{s}\right\}=\operatorname{Pr}\left\{\dot{X} \in B_{1}\right\} .
\end{aligned}
$$

The third equality holds since the matrix

$$
\left(\begin{array}{cc}
\Gamma & 0 \\
0 & I_{s}
\end{array}\right)
$$

is in θ_{n}. Thus \dot{X} has an θ_{r}-invariant distribution. That \dot{X} given \ddot{X} has an θ_{r}-invariant distribution is easy to prove when X has a density with respect to Lebesgue measure on R^{n} (the density has a version that
satisfies $f(x)=f(\psi x)$ for $\left.x \in R^{n}, \psi \in \mathcal{O}_{n}\right)$. The general case requires some fiddling with conditional expections-this is left to the interested reader.
5. Let $A_{i}=\operatorname{Cov}\left(X_{i}\right), i=1, \ldots, n$. It suffices to show that $\operatorname{var}\left(x, \Sigma X_{i}\right)=$ $\Sigma\left(x, A_{i} x\right)$. But $\left(x, X_{i}\right), i=1, \ldots, n$, are uncorrelated, so $\operatorname{var}\left[\Sigma\left(x, X_{i}\right)\right]$ $=\Sigma \operatorname{var}\left(x, X_{i}\right)=\Sigma\left(x, A_{i} x\right)$.
6. $\mathcal{E} U=\Sigma p_{i} \varepsilon_{i}=p$. Let U have coordinates U_{1}, \ldots, U_{k}. Then $\operatorname{Cov}(U)=$ $\mathfrak{E} U U^{\prime}-p p^{\prime}$ and $U U^{\prime}$ is a $p \times p$ matrix with elements $U_{i} U_{j}$. For $i \neq j$, $U_{i} U_{j}=0$ and for $i=j, U_{i} U_{j}=U_{i}$. Since $\mathcal{E} U_{i}=p_{i}, \mathcal{E} U U^{\prime}=D_{p}$. When $0<p_{i}<1, D_{p}$ has rank k and the rank of $\operatorname{Cov}(U)$ is the rank of $I_{k}-D_{p}^{-1 / 2} p p^{\prime} D_{p}^{-1 / 2}$. Let $u=D_{p}^{-1 / 2} p$, so $u \in R^{k}$ has length one. Thus $I_{k}-u u^{\prime}$ is a rank $k-1$ orthogonal projection. The null space of $\operatorname{Cov} U$ is $\operatorname{span}\{e\}$ where e is the vector of ones in R^{k}. The rest is easy.
7. The random variable X takes on n ! values-namely the n ! permutations of x-each with probability $1 / n!$. A direct calculation gives $\mathcal{E} X=\bar{x} e$ where $\bar{x}=n^{-1} \sum_{1}^{n} x_{i}$. The distribution of X is permutation invariant, which implies that $\operatorname{Cov} X$ has the form $\sigma^{2} A$ where $a_{i i}=1$ and $a_{i j}=\rho$ for $i \neq j$ where $-1 /(n-1) \leqslant \rho \leqslant 1$. Since $\operatorname{var}\left(e^{\prime} X\right)=0$, we see that $\rho=-1 /(n-1)$. Thus $\sigma^{2}=\operatorname{var}\left(X_{1}\right)=n^{-1}\left[\sum_{1}^{n}\left(x_{i}-\bar{x}\right)^{2}\right]$ where X_{1} is the first coordinate of X.
8. Setting $D=-I, \mathcal{E} X=-\mathfrak{E} X$ so $\mathfrak{E} X=0$. For $i \neq j, \operatorname{cov}\left\{X_{i}, X_{j}\right\}=$ $\operatorname{cov}\left\{-X_{i}, X_{j}\right\}=-\operatorname{cov}\left\{X_{i}, X_{j}\right\}$ so X_{i} and X_{j} are uncorrelated. The first equality is obtained by choosing D with $d_{i i}=-1$ and $d_{j j}=1$ in the relation $\mathfrak{E}(X)=\mathscr{E}(D X)$.
9. This is a direct calculation.
10. It suffices to verify the equality for $A=x \square y$ as both sides of the equality are linear in A. For $A=x \square y,\langle A, \Sigma\rangle=(x, \Sigma y)$ and $(\mu, A \mu)$ $=(\mu, x)(\mu, y)$, so the equality is obvious.
11. To say $\operatorname{Cov}(X)=I_{n} \otimes \Sigma$ is to say that $\operatorname{cov}\left\{\left(\operatorname{tr} A X^{\prime}\right),\left(\operatorname{tr} B X^{\prime}\right)\right\}=$ $\operatorname{tr} A \Sigma B^{\prime}$. To show rows 1 and 2 are uncorrelated, pick $A=\varepsilon_{1} v^{\prime}$ and $B=\varepsilon_{2} u^{\prime}$ where $u, v \in R^{p}$. Let X_{1}^{\prime} and X_{2}^{\prime} be the first two rows of X. Then $\operatorname{tr} A X^{\prime}=v^{\prime} X_{1}, \operatorname{tr} B X^{\prime}=u^{\prime} X_{2}$, and $\operatorname{tr} A \Sigma B=0$. The desired equality is established by first showing that it is valid for $A=x y^{\prime}$, $x, y \in R^{n}$, and using linearity. When $A=x y^{\prime}$, a useful equality is $X^{\prime} A X=\sum_{i} \sum_{j} x_{i} y_{j} X_{i} X_{j}^{\prime}$ where the rows of X are $X_{1}^{\prime}, \ldots, X_{n}^{\prime}$.
12. The equation $\Gamma A \Gamma^{\prime}=A$ for $\Gamma \in \vartheta_{p}$ implies that $A=c I_{p}$ for some c.
13. $\operatorname{Cov}((\Gamma \otimes I) X)=\operatorname{Cov}(X)$ implies $\operatorname{Cov}(X)=I \otimes \Sigma$ for some Σ. $\operatorname{Cov}((I \otimes \psi) X)=\operatorname{Cov}(X)$ then implies $\psi \Sigma \psi^{\prime}=\Sigma$, which necessitates $\Sigma=c I$ for some $c \geqslant 0$. Part (ii) is immediate since $\Gamma \otimes \psi$ is an orthogonal transformation on $(\mathcal{L}(V, W),\langle\cdot, \cdot\rangle)$.
14. This problem is a nasty calculation intended to inspire an appreciation for the equation $\operatorname{Cov}(X)=I_{n} \otimes \Sigma$.
15. Since $\mathfrak{L}(X)=\mathfrak{L}(-X), \mathcal{E} X=0$. Also, $\mathfrak{L}(X)=\mathfrak{L}(\Gamma X)$ implies $\operatorname{Cov}(X)$ $=c I$ for some $c>0$. But $\|X\|^{2}=1$ implies $c=1 / n$. Best affine predictor of X_{1} given \dot{X} is 0 . I would predict X_{1} by saying that X_{1} is $\sqrt{1-\dot{X}^{\prime} \dot{X}}$ with probability $\frac{1}{2}$ and X_{1} is $-\sqrt{1-\dot{X}^{\prime} \dot{X}}$ with probability $\frac{1}{2}$.
16. This is just the definition of
17. For (i), just calculate. For (ii), $\operatorname{Cov}(S)=2 I_{2} \otimes I_{2}$ by Proposition 2.23. The coordinate inner product on R^{3} is not the inner product $\langle\cdot, \cdot\rangle$ on δ_{2}.

CHAPTER 3

2. Since $\operatorname{var}\left(X_{1}\right)=\operatorname{var}\left(Y_{1}\right)=1$ and $\operatorname{cov}\left\{X_{1}, Y_{1}\right\}=\rho,|\rho| \leqslant 1$. Form $Z=$ ($X Y$)-an $n \times 2$ matrix. Then $\operatorname{Cov}(Z)=I_{n} \otimes A$ where

$$
A=\left(\begin{array}{ll}
1 & \rho \\
\rho & 1
\end{array}\right)
$$

When $|\rho|<1, A$ is positive definite, so $I_{n} \otimes A$ is positive definite. Conditioning on $Y, \mathfrak{E}(X \mid Y)=N\left(\rho Y,\left(1-\rho^{2}\right) I_{n}\right)$, so $\mathscr{L}(Q(Y) X \mid Y)=$ $N\left(0,\left(1-\rho^{2}\right) Q(Y)\right)$ as $Q(Y) Y=0$ and $Q(Y)$ is an orthogonal projection. Now, apply Proposition 3.8 for Y fixed to get $\mathcal{L}(W)=(1-$ $\left.\rho^{2}\right) \chi_{n-1}^{2}$.
3. Just do the calculations.
4. Since $p(x)$ is zero in the second and fourth quadrants, X cannot be normal. Just find the marginal density of X_{1} to show that X_{1} is normal.
5. Write U in the form $X^{\prime} A X$ where A is symmetric. Then apply Propositions 3.8 and 3.11.
6. Note that $\operatorname{Cov}(X \square X)=2 I \otimes I$ by Proposition 2.23. Since $(X, A X)$ $=\langle X \square X, A\rangle$, and similarly for $(X, B X), 0=\operatorname{cov}\{(X, A X)$, $(\mathrm{X}, \mathrm{BX})\}=\operatorname{cov}\langle\langle X \square X, A\rangle,\langle X \square X, B\rangle\}=\langle A, 2(I \otimes I) B\rangle=2 \operatorname{tr} A B$. Thus $0=\operatorname{tr} A^{1 / 2} B A^{1 / 2}$ so $A^{1 / 2} B A^{1 / 2}=0$, which shows $A^{1 / 2} B^{1 / 2}=0$ and hence $A B=0$.
7. Since $\mathcal{E}\left[\exp \left(i t W_{j}\right)\right]=\exp \left\{i t \mu_{j}-\sigma_{j}|t|\right], \mathcal{E}\left[\exp \left(i t \Sigma a_{j} W_{j}\right)\right]=\exp \left[i t \Sigma a_{j} \mu_{j}\right.$ - $\left.\left(\Sigma\left|a_{j}\right| \sigma_{j}\right)|t|\right]$, so $\mathcal{L}\left(\Sigma a_{j} W_{j}\right)=C\left(\Sigma a_{j} \mu_{j}, \Sigma\left|a_{j}\right| \sigma_{j}\right)$. Part (ii) is immediate from (i).
8. For (i), use the independence of R and Z_{0} to compute as follows: $P\{U \leqslant u\}=P\left\{Z_{0} \leqslant u / R\right\}=\int_{0}^{\infty} P\left\{Z_{0} \leqslant u / t\right\} G(d t)=\int_{0}^{\infty} \Phi(u / t)$ $G(d t)$ where Φ is the distribution function of Z_{0}. Now, differentiate. Part (ii) is clear.
9. Let \mathscr{B}_{1} be the sub σ-algebra induced by $T_{1}(X)=X_{2}$ and let \mathscr{B}_{2} be the sub σ-algebra induced by $T_{2}(X)=X_{2}^{\prime} X_{2}$. Since $\mathscr{B}_{2} \subseteq \mathscr{B}_{1}$, for any bounded function $f(X)$, we have $\mathcal{E}\left(f(X) \mid \mathscr{B}_{2}\right)=\mathcal{E}\left(\mathcal{E}\left(f(X) \mid \mathscr{B}_{1}\right) \mid \mathscr{B}_{2}\right)$. But for $f(X)=h\left(X_{2}^{\prime} X_{1}\right)$, the conditional expectation given \mathscr{B}_{1} can be computed via the conditional distribution of $X_{2}^{\prime} X_{1}$ given X_{2}, which is

$$
\begin{equation*}
\mathcal{L}\left(X_{2}^{\prime} X_{1} \mid X_{2}\right)=N\left(X_{2}^{\prime} X_{2} \Sigma_{22}^{-1} \Sigma_{21}, X_{2}^{\prime} X_{2} \otimes \Sigma_{11 \cdot 2}\right) \tag{3.3}
\end{equation*}
$$

Hence $\mathcal{E}\left(h\left(X_{2}^{\prime} X_{1}\right) \mathscr{B}_{1}\right)$ is \mathscr{B}_{2} measurable, so $\mathcal{E}\left(h\left(X_{2}^{\prime} X_{1}\right) \mid \mathscr{B}_{2}\right)=$ $\mathcal{E}\left(h\left(X_{2}^{\prime} X_{1}\right) \mid \mathscr{B}_{1}\right)$. This implies that the conditional distribution (3.3) serves as a version of the conditional distribution of $X_{2}^{\prime} X_{1}$ given $X_{2}^{\prime} X_{2}$.
10. Show that $T^{-1} T_{1}: R^{n} \rightarrow R^{n}$ is an orthogonal transformation so $l(C)$ $=l\left(\left(T^{-1} T_{1}\right)(C)\right)$. Setting $B=T_{1}(C)$, we have $\nu_{0}(B)=\nu_{1}(B)$ for Borel B.
11. The measures ν_{0} and ν_{1} are equal up to a constant so all that needs to be calculated is $\nu_{0}(C) / \nu_{1}(C)$ for some set C with $0<\nu_{1}(C)<+\infty$. Do the calculation for $C=\{v \| v, v] \leqslant 1\}$.
12. The inner product $\langle\cdot, \cdot\rangle$ on \mathfrak{S}_{p} is not the coordinate inner product. The "Lebesgue measure" on $\left(\Im_{p},\langle\cdot, \cdot\rangle\right)$ given by our construction is not $l(d S)=\Pi_{i \leqslant j} d s_{i j}$, but is $\nu_{0}(d S)=(\sqrt{2})^{p(p-1)} l(d S)$.
13. Any matrix M of the form

$$
M=a\left(\begin{array}{cccc}
1 & b & \cdots & b \\
b & 1 & & \vdots \\
\vdots & & \ddots & b \\
b & \cdots & b & 1
\end{array}\right): p \times p
$$

can be written as $M=a[(p-1) b+1] A+a(1-b)(I-A)$. This is a spectral decomposition for M so M has eigenvalues $a((p-1) b+1)$ and $a(1-b)$ (of multiplicity $p-1)$. Setting $\alpha=a[(p-1) b+1]$ and $\beta=a(1-b)$ solves (i). Clearly, $M^{-1}=\alpha^{-1} A+\beta^{-1}(I-A)$ whenever α and β are not zero. To do part (ii), use the parameterization (μ, α, β) given above ($a=\sigma^{2}$ and $b=p$). Then use the factorization criterion on the likelihood function.

CHAPTER 4

1. Part (i) is clear since $Z \beta=\sum_{1}^{k} \beta_{i} z_{i}$ for $\beta \in R^{k}$. For (ii), use the singular value decomposition to write $Z=\sum_{1}^{r} \lambda_{i} x_{i} u_{i}^{\prime}$ where r is the rank of Z, $\left\{x_{1}, \ldots, x_{r}\right\}$ is an orthonormal set in $R^{n},\left\{u_{1}, \ldots, u_{r}\right\}$ is an orthonormal set in $R^{k}, M=\operatorname{span}\left\{x_{1}, \ldots, x_{r}\right\}$, and $\mathscr{N}(Z)=\left(\operatorname{span}\left\{u_{1}, \ldots, u_{r}\right\}\right)^{\perp}$.

Thus $\left(Z^{\prime} Z\right)^{-}=\sum_{1}^{r} \lambda_{i}^{-2} u_{i} u_{i}^{\prime}$ and a direct calculation shows that $Z\left(Z^{\prime} Z\right)^{-} Z^{\prime}=\sum_{1}^{r} x_{i} x_{i}^{\prime}$, which is the orthogonal projection onto M.
2. Since $\mathcal{L}\left(X_{i}\right)=\mathcal{L}\left(\beta+\varepsilon_{i}\right)$ where $\mathcal{E}_{i}=0$ and $\operatorname{var}\left(\varepsilon_{i}\right)=1$, it follows that $\mathcal{L}(X)=\mathcal{L}(\beta e+\varepsilon)$ where $\mathcal{E}_{\varepsilon} \varepsilon=0$ and $\operatorname{Cov}(\varepsilon)=I_{n}$. A direct application of least-squares yields $\hat{\beta}=\bar{X}$ for this linear model. For (iii), since the same β is added to each coordinate of ε, the vector of ordered X 's has the same distribution as the $\beta e+\nu$ where ν is the vector of ordered ε 's. Thus $\mathcal{L}(U)=\mathcal{L}(\beta e+\nu)$ so $\mathcal{E} U=\beta e+a_{0}$ and $\operatorname{Cov}(U)=$ $\operatorname{Cov}(\nu)=\Sigma_{0}$. Hence $\mathcal{L}\left(U-a_{0}\right)=\mathcal{E}\left(\beta e+\left(\nu-a_{0}\right)\right)$. Based on this model, the Gauss-Markov estimator for β is $\tilde{\beta}=\left(e^{\prime} \Sigma_{0}^{-1} e\right)^{-1} e^{\prime} \Sigma_{0}^{-1}(U$ $\left.-a_{0}\right)$. Since $\bar{X}=(1 / n) e^{\prime}\left(U-a_{0}\right)$ (show $e^{\prime} a_{0}=0$ using the symmetry of f), it follows from the Gauss-Markov Theorem that $\operatorname{var}(\tilde{\beta})<$ $\operatorname{var}(\hat{\beta})$.
3. That $M-\omega=M \cap \omega^{\perp}$ is clear since $\omega \subseteq M$. The condition ($P_{M}-$ $\left.P_{\omega}\right)^{2}=P_{M}-P_{\omega}$ follows from observing that $P_{M} P_{\omega}=P_{\omega} P_{M}=P_{\omega}$. Thus $P_{M}-P_{\omega}$ is an orthogonal projection onto its range. That $\Re\left(P_{M}\right.$ $\left.-P_{\omega}\right)=M-\omega$ is easily verified by writing $x \in V$ as $x=x_{1}+x_{2}+$ x_{3} where $x_{1} \in \omega, x_{2} \in M-\omega$, and $x_{3} \in M^{\perp}$. Then $\left(P_{M}-P_{\omega}\right)\left(x_{1}+\right.$ $\left.x_{2}+x_{3}\right)=x_{1}+x_{2}-x_{1}=x_{2}$. Writing $P_{M}=P_{M}-P_{\omega}+P_{\omega}$ and noting that $\left(P_{M}-P_{\omega}\right) P_{\omega}=0$ yields the final identity.
4. That $\Re(A)=M_{0}$ is clear. To show $\Re\left(B_{1}\right)=M_{1}-M_{0}$, first consider the transformation C defined by $(C y)_{i j}=\bar{y}_{i}, i=1, \ldots, I, j=1, \ldots, J$. Then $C^{2}=C=C^{\prime}$, and clearly, $\Re(C) \subseteq M_{1}$. But if $y \in M_{1}$, then $C y=y$ so C is the orthogonal projection onto M_{1}. From Problem 3 (with $M=M_{1}$ and $\omega=M_{0}$), we see that $C-A_{0}$ is the orthogonal projection onto $M_{1}-M_{0}$. But $\left(\left(C-A_{0}\right) y\right)_{i j}=\bar{y}_{i}-\bar{y}$. ., which is just $\left(B_{1} y\right)_{i j}$. Thus $B_{1}=C-A_{0}$ so $\Re\left(B_{1}\right)=M_{1}-M_{0}$. A similar argument shows $\Re\left(B_{2}\right)=M_{2}-M_{0}$. For (ii), use the fact that $A_{0}+B_{1}+$ $B_{2}+B_{3}$ is the identity and the four orthogonal projections are perpendicular to each other. For (iii), first observe that $M=M_{1}+M_{2}$ and $M_{1} \cap M_{2}=M_{0}$. If μ has the assumed representation, let ν be the vector with $\nu_{i j}=\alpha+\beta_{i}$ and let ξ be the vector with $\xi_{i j}=\gamma_{j}$. Then $\nu \in M_{1}$ and $\xi \in M_{2}$ so $\mu=\nu+\xi \in M_{1}+M_{2}$. Conversely, suppose $\mu \in M_{0} \oplus\left(M_{1}-M_{0}\right) \oplus\left(M_{2}-M_{0}\right)$-say $\mu=\delta+\nu+\xi$. Since $\delta \in$ $M_{0}, \delta_{i j}=\bar{\delta} .$. for all i, j, so set $\alpha=\bar{\delta}$.. Since $\nu \in M_{1}-M_{0}, \nu_{i j}-\nu_{i k}=0$ for all j, k for each fixed i and $\bar{\nu}_{. .}=0$. Take $j=1$ and set $\beta_{i}=\nu_{i 1}$. Then $\nu_{i j}=\beta_{i}$ for $j=1, \ldots, J$ and, since $\bar{\nu}_{. .}=0, \Sigma \beta_{i}=0$. Similarly, setting $\gamma_{j}=\xi_{1 j}, \xi_{i j}=\gamma_{j}$ for all i, j and since $\xi_{. .}=0, \Sigma \gamma_{j}=0$. Thus $\mu_{i j}=\alpha+\beta_{i}+\gamma_{j}$ where $\Sigma \beta_{i}=\Sigma \gamma_{j}=0$.
5. With $n=\operatorname{dim} V$, the density of Y is (up to constants) $f\left(y \mid \mu, \sigma^{2}\right)=$ $\sigma^{-n} \exp \left[-\left(1 / 2 \sigma^{2}\right)\|y-\mu\|^{2}\right]$. Using the results and notation Problem

3, write $V=\omega \oplus(M-\omega) \oplus M^{\perp}$ so $(M-\omega) \oplus M^{\perp}=\omega^{\perp}$. Under $H_{0}, \mu \in \omega$ so $\hat{\mu}_{0}=P_{\omega} y$ is the maximum likelihood estimator of μ and

$$
\begin{equation*}
f\left(y \mid \mu_{0}, \sigma^{2}\right)=\sigma^{-n} \exp \left[-\frac{1}{2 \sigma^{2}}\left\|Q_{\omega} y\right\|^{2}\right] \tag{4.4}
\end{equation*}
$$

where $Q_{\omega}=I-P_{\omega}$. Maximizing (4.4) over σ^{2} yields $\hat{\sigma}_{0}^{2}=n^{-1}\left\|Q_{\omega} y\right\|^{2}$. A similar analysis under H_{1} shows that the maximum likelihood estimator of μ is $\hat{\mu}_{1}=P_{M} y$ and $\hat{\sigma}_{1}^{2}=n^{-1}\left\|Q_{M} y\right\|^{2}$ is the maximum likelihood estimator of σ^{2}. Thus the likelihood ratio test rejects for small values of the ratio

$$
\Lambda(y)=\frac{f\left(y \mid \hat{\mu}_{0}, \hat{\sigma}_{0}^{2}\right)}{f\left(y \mid \hat{\mu}_{1}, \hat{\sigma}_{1}^{2}\right)}=\frac{\hat{\sigma}_{0}^{-n}}{\hat{\sigma}_{1}^{-n}}=\left(\frac{\left\|Q_{M} y\right\|^{2}}{\left\|Q_{\omega} y\right\|^{2}}\right)^{n / 2}
$$

But $Q_{\omega}=Q_{M}+P_{M-\omega}$ and $Q_{M} P_{M-\omega}=0$, so $\left\|Q_{\omega} y\right\|^{2}=\left\|Q_{M} y\right\|^{2}+$ $\left\|P_{M-\omega} Y\right\|^{2}$. But rejecting for small values of $\Lambda(y)$ is equivalent to rejecting for large values of $(\Lambda(y))^{-2 / n}-1=\left\|P_{M-\omega} y\right\|^{2} /\left\|Q_{M} y\right\|^{2}$. Under $H_{0}, \mu \in \omega$ so $\mathcal{L}\left(P_{M-\omega} Y\right)=N\left(0, \sigma^{2} P_{M-\omega}\right)$ and $\mathcal{E}\left(Q_{M} Y\right)=$ $N\left(0, \sigma^{2} Q_{M}\right)$. Since $Q_{M} P_{M-\omega}=0, Q_{M} Y$ and $P_{M-\omega} Y$ are independent and $\mathcal{L}\left(\left\|P_{M-\omega} Y\right\|\right)=\sigma^{2} \chi_{r}^{2}$ where $r=\operatorname{dim} M-\operatorname{dim} \omega$. Also, $\mathcal{L}\left(\left\|Q_{M} Y\right\|^{2}\right)=\sigma^{2} \chi_{n-k}^{2}$ where $k=\operatorname{dim} M$.
6. We use the notation of Problems 4 and 5. In the parameterization described in (iii) of Problem 4, $\beta_{1}=\beta_{2}=\cdots=\beta_{I}$ iff $\mu \in M_{2}$. Thus $\omega=M_{2}$ so $M-\omega=M_{1}-M_{0}$. Since M^{\perp} is the range of B_{3} (Problem 1.15), $\left\|B_{3} y\right\|^{2}=\left\|Q_{M} y\right\|^{2}$, and it is clear that $\left\|B_{3} y\right\|^{2}=\Sigma \Sigma\left(y_{i j}-\bar{y}_{i}-\right.$ $\left.\bar{y}_{. j}+\bar{y}_{.}\right)^{2}$. Also, since $M-\omega=M_{1}-M_{0}, P_{M-\omega}=P_{M_{1}}-P_{M_{0}}$ and $\left\|P_{M-\omega} y\right\|^{2}=\left\|P_{M_{1}} y\right\|^{2}-\left\|P_{M_{0}} y\right\|^{2}=\sum_{i} \sum_{j} \bar{y}_{i}^{2}-\sum_{i} \sum_{j} \bar{y}_{.}=J \sum_{i}\left(\bar{y}_{i}\right.$. $\bar{y}.)^{2}$.
7. Since $\Re\left(X^{\prime}\right)=\Re\left(X^{\prime} X\right)$ and $X^{\prime} y$ is in the range of X^{\prime}, there exists a $b \in R^{k}$ such that $X^{\prime} X b=X^{\prime} y$. Now, suppose that b is any solution. First note that $P_{M} X=X$ since each column of X is in M. Since $X^{\prime} X b=X^{\prime} y$, we have $X^{\prime}\left[X b-P_{M} y\right]=X^{\prime} X b-X^{\prime} P_{M} y=X^{\prime} X b-$ $\left(P_{M} X\right)^{\prime} y=X^{\prime} X b-X^{\prime} y=0$. Thus the vector $v=X b-P_{M} y$ is perpendicular to each column of $X\left(X^{\prime} v=0\right)$ so $v \in M^{\perp}$. But $X b \in M$, and obviously, $P_{M} y \in M$, so $v \in M$. Hence $v=0$, so $X b=P_{M} y$.
8. Since $I \in \gamma$, Gauss-Markov and least-squares agree iff

$$
\begin{equation*}
\left(\alpha P_{e}+\beta Q_{e}\right) M \subseteq M, \quad \text { for all } \alpha, \beta>0 \tag{4.5}
\end{equation*}
$$

But (4.5) is equivalent to the two conditions $P_{e} M \subseteq M$ and $Q_{e} M \subseteq M$.

But if $e \in M$, then $M=\operatorname{span}\{e\} \oplus M_{1}$ where $M_{1} \subseteq(\operatorname{span}\{e\})^{\perp}$. Thus $P_{e} M=\operatorname{span}\{e\} \subseteq M$ and $Q_{e} M=M_{1} \subseteq M$, so Gauss-Markov equals least-squares. If $e \in M^{\perp}$, then $M \subseteq\{\text { span } e\}^{\perp}$, so $P_{e} M=\{0\}$ and $Q_{e} M=M$, so again Gauss-Markov equals least-squares. For (ii), if $e \notin M^{\perp}$ and $e \notin M$, then one of the two conditions $P_{e} M \subseteq M$ or $Q_{e} M \subseteq M$ is violated, so least-squares and Gauss-Markov cannot agree for all α and β. For (ii), since $M \subseteq(\operatorname{span}\{e\})^{\perp}$ and $M \neq$ $(\operatorname{span}\{e\})^{\perp}$, we can write $R^{n}=\operatorname{span}\{e\} \oplus M \oplus M_{1}$ where $M_{1}=$ $(\operatorname{span}\{e\})^{\perp}-M$ and $M_{1} \neq\{0\}$. Let P_{1} be the orthogonal projection onto M_{1}. Then the exponent in the density for Y is (ignoring the factor $\left.-\frac{1}{2}\right)(y-\mu)^{\prime}\left(\alpha^{-1} P_{e}+\beta^{-1} Q_{e}\right)(y-\mu)=\left(P_{e} y+P_{1} y+\right.$ $\left.P_{M}(y-\mu)\right)^{\prime}\left(\alpha^{-1} P_{e}+\beta^{-1} Q_{e}\right)\left(P_{e} y+P_{1} y+P_{M}(y-\mu)\right)=\alpha^{-1} y^{\prime} P_{e} y$ $+\beta^{-1} y^{\prime} P_{1} y+\beta^{-1}(y-\mu)^{\prime} P_{M}(y-\mu)$ where we have used the fact that $Q_{e}=P_{1}+P_{M}$ and $P_{1} P_{M}=0$. Since $\operatorname{det}\left(\alpha P_{e}+\beta Q_{e}\right)=\alpha \beta^{n-1}$, the usual arguments yields $\hat{\mu}=P_{M} y, \hat{\alpha}=y^{\prime} P_{e} y$, and $\hat{\beta}=(n-$ $1)^{-1} y^{\prime} P_{1} y$ as maximum likelihood estimators. When $M=\operatorname{span}\{e\}$, then the maximum likelihood estimators for (α, μ) do not exist-other than the solution $\hat{\mu}=P_{e} y$ and $\hat{\alpha}=0$ (which is outside the parameter space). The whole point is that when $e \in M$, you must have replications to estimate α when the covariance structure is $\alpha P_{e}+\beta Q_{e}$.
9. Define the inner product (\cdot, \cdot) on R^{n} by $(x, y)=x^{\prime} \sum_{1}^{-1} y$. In the inner product space $\left(R^{n},(\cdot, \cdot)\right), \mathcal{E} Y=X \beta$ and $\operatorname{Cov}(Y)=\sigma^{2} I$. The transformation P defined by the matrix $X\left(X^{\prime} \Sigma_{1}^{-1} X\right)^{-1} X^{\prime} \Sigma_{1}^{-1}$ satisfies $P^{2}=P$ and is self-adjoint in $\left(R^{n},(\cdot, \cdot)\right)$. Thus P is an orthogonal projection onto its range, which is easily shown to be the column space of X. The Gauss-Markov Theorem implies that $\hat{\mu}=P Y$ as claimed. Since $\mu=$ $X \beta, X^{\prime} \mu=X^{\prime} X \beta$ so $\beta=\left(X^{\prime} X\right)^{-1} X^{\prime} \mu$. Hence $\hat{\beta}=\left(X^{\prime} X\right)^{-1} X^{\prime} \hat{\mu}$, which is just the expression given.
10. For (i), each $\Gamma \in \mathcal{O}(V)$ is nonsingular so $\Gamma(M) \subseteq M$ is equivalent to $\Gamma(M)=M$-hence $\Gamma^{-1}(M)=M$ and $\Gamma^{-1}=\Gamma^{\prime}$. Parts (ii) and (iii) are easy. To verify (iv), $t_{0}\left(c \Gamma Y+x_{0}\right)=P_{M}\left(c \Gamma Y+x_{0}\right)=c P_{M} \Gamma Y+$ $x_{0}=c \Gamma P_{M} Y+x_{0}=c \Gamma t_{0}(Y)+x_{0}$. The identity $P_{M} \Gamma=\Gamma P_{M}$ for $\Gamma \in$ $\theta_{M}(V)$ was used to obtain the third equality. For (v), first set $\Gamma=I$ and $x_{0}=-P_{M} y$ to obtain

$$
\begin{equation*}
t(y)=t\left(Q_{M} y\right)+P_{M} y . \tag{4.6}
\end{equation*}
$$

Then to calculate t, we need only know t for vectors $u \in M^{\perp}$ as $Q_{M} y \in M^{\perp}$. Fix $u \in M^{\perp}$ and let $z=t(u)$ so $z \in M$ by assumption. Then there exists a $\Gamma \in \mathcal{O}_{M}(V)$ such that $\Gamma u=u$ and $\Gamma z=-z$. For this Γ, we have $z=t(u)=t(\Gamma u)=\Gamma t(u)=\Gamma z=-z$ so $z=0$. Hence $t(u)=0$ for all $u \in M^{\perp}$ and the result follows.
11. Part (i) follows by showing directly that the regression subspace M is invariant under each $I_{n} \otimes A$. For (ii), an element of M has the form $\mu=\left\{Z_{1} \beta_{1}, Z_{2} \beta_{2}\right\} \in \mathcal{L}_{2, n}$ for some $\beta_{1} \in R^{k}$ and $\beta_{2} \in R^{k}$. To obtain an example where M is not invariant under all $I_{n} \otimes \Sigma$, take $k=1$, $Z_{1}=\varepsilon_{1}$, and $Z_{2}=\varepsilon_{2}$ so μ is

$$
\mu=\left(\begin{array}{cc}
\beta_{1} & 0 \\
0 & \beta_{2} \\
0 & 0 \\
\vdots & \vdots \\
0 & 0
\end{array}\right)
$$

That the set of such μ 's is not invariant under all $I_{n} \otimes \Sigma$ is easily verified. When $Z_{1}=Z_{2}$, then $\mu=Z_{1} B$ where B is $k \times 2$ with i th column $\beta_{i}, i=1,2$. Thus Example 4.4 applies. For (iii), first observe that Z_{1} and Z_{2} have the same column space (when they are of full rank) iff $Z_{2}=Z_{1} C$ where C is $k \times k$ and nonsingular. Now, apply part (ii) with β_{2} replaced by $C \beta_{2}$, so M is the set of μ 's of the form $\mu=Z_{1} B$ where $B \in \mathcal{L}_{2, k}$.

CHAPTER 5

1. Let a_{1}, \ldots, a_{p} be the columns of A and apply Gram-Schmidt to these vectors in the order $a_{p}, a_{p-1}, \ldots, a_{1}$. Now argue as in Proposition 5.2.
2. Follows easily from the uniqueness of $F(S)$.
3. Just modify the proof of Proposition 5.4.
4. Apply Proposition 5.7
5. That F is one-to-one and onto follows from Proposition 5.2. Given $A \in \mathcal{L}_{p, n}^{0}, F^{-1}(A) \in \mathscr{F}_{p, n} \times G_{u}^{+}$is the pair (ψ, U) where $A=\psi U$. For (ii), $F\left(\Gamma \psi, U T^{\prime}\right)=\Gamma \psi U T^{\prime}=(\Gamma \otimes T)(\psi U)=(\Gamma \otimes T)(F(\psi, U))$. If $F^{-1}(A)=(\psi, U)$, then $A=\psi U$ and ψ and U are unique. Then $(\Gamma \otimes$ T) $A=\Gamma A T^{\prime}=\Gamma \psi U T^{\prime}$ and $\Gamma \psi \in \mathscr{F}_{p, n}$ and $U T^{\prime} \in G_{U}^{+}$. Uniqueness implies that $F^{-1}\left(\Gamma \psi U T^{\prime}\right)=\left(\Gamma \psi, U T^{\prime}\right)$.
6. When $D_{g}\left(x_{0}\right)$ exists, it is the unique $n \times n$ matrix that satisfies

$$
\begin{equation*}
\lim _{x \rightarrow x_{0}} \frac{\left\|g(x)-g\left(x_{0}\right)-D_{g}\left(x_{0}\right)\left(x-x_{0}\right)\right\|}{\left\|x-x_{0}\right\|}=0 \tag{5.3}
\end{equation*}
$$

But by assumption, (5.3) is satisfied by A (for $\left.D_{g}\left(x_{0}\right)\right)$. By definition $J_{g}\left(x_{0}\right)=\operatorname{det}\left(D_{g}\left(x_{0}\right)\right)$.
7. With $t_{i i}$ denoting the i th diagonal element of T, the set $\left\{T \mid t_{i i}>0\right\}$ is open since the function $T \rightarrow t_{i i}$ is continuous on V to R^{1}. But $G_{T}^{+}=$ $\cap p\left\{T \mid t_{i i}>0\right\}$, which is open. That g has the given representation is just a matter of doing a little algebra. To establish the fact that $\lim _{x \rightarrow 0}(\|R(x)\| /\|x\|)=0$, we are free to use any norm we want on V and S_{p}^{+}(all norms defined by inner products define the same topology). Using the trace inner product on V and $\delta_{p}^{+},\|R(x)\|^{2}=\left\|x x^{\prime}\right\|^{2}=$ $\operatorname{tr} x x^{\prime} x x^{\prime}$ and $\|x\|^{2}=\operatorname{tr} x x^{\prime}, x \in V$. But for $S \geqslant 0, \operatorname{tr} S^{2} \leqslant(\operatorname{tr} S)^{2}$ so $\|R(x)\| /\|x\| \leqslant \operatorname{tr} x x^{\prime}$, which converges to zero as $x \rightarrow 0$. For (iii), write $S=L(x)$, string the S coordinates out as a column vector in the order $s_{11}, s_{21}, s_{22}, s_{31}, s_{32}, s_{33}, \ldots$, and string the x coordinates out in the same order. Then the matrix of L is lower triangular and its determinant is easily computed by induction. Part (iv) is immediate from Problem 6.
8. Just write out the equations $S S^{-1}=I$ in terms of the blocks and solve.
9. That $P^{2}=P$ is easily checked. Also, some algebra and Problem 8 show that $(P u, v)=(u, P v)$ so P is self-adjoint in the inner product (\cdot, \cdot). Thus P is an orthogonal projection on $\left(R^{p},(\cdot, \cdot)\right)$. Obviously,

$$
R(P)=\left\{x \left\lvert\, x=\binom{y}{z}\right., z=0\right\} .
$$

Since

$$
\begin{aligned}
P x & =\binom{y-\Sigma_{12} \Sigma_{22}^{-1} z}{0}, \\
\|P x\|^{2} & =(P x, P x)=\binom{y-\Sigma_{12} \Sigma_{22}^{-1} z}{0}^{\prime} \Sigma^{-1}\binom{y-\Sigma_{12} \Sigma_{22}^{-1} z}{0} \\
& =\left(y-\Sigma_{12} \Sigma_{22}^{-1} z\right)^{\prime} \Sigma^{11}\left(y-\Sigma_{12} \Sigma_{22}^{-1} z\right) .
\end{aligned}
$$

A similar calculation yields $\|(I-P) x\|^{2}=z^{\prime} \Sigma_{22}^{-1} z$. For (iii), the exponent in the density of X is $-\frac{1}{2}(x, x)=-\frac{1}{2}\|P x\|^{2}-\frac{1}{2}\|(I-P) x\|^{2}$. Marginally, Z is $N\left(0, \Sigma_{22}\right)$, so the exponent in Z 's density is $-\frac{1}{2} \|(I-$ $P) x \|^{2}$. Thus dividing shows that the exponent in the conditional density of Y given Z is $-\frac{1}{2}\|P x\|^{2}$, which corresponds to a normal distribution with mean $\Sigma_{12} \Sigma_{22}^{-1} Z$ and covariance $\left(\Sigma^{11}\right)^{-1}=\Sigma_{11}$ $\Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}$.
10. On G_{T}^{+}, for $j<i, t_{i j}$ ranges from $-\infty$ to $+\infty$ and each integral contributes $\sqrt{2 \pi}$-there are $p(p-1) / 2$ of these. For $j=i, t_{i i}$ ranges
from 0 to ∞ and the change of variable $u_{i i}=t_{i i}^{2} / 2$ shows that the integral over $t_{i i}$ is $(\sqrt{2})^{r-i-1} \Gamma((r-i+1) / 2)$. Hence the integral is equal to

$$
\pi^{(p(p-1)) / 4} 2^{(p(p-1)) / 4} 2^{1 / 2 \Sigma(r-i-1)} \prod_{1}^{p} \Gamma\left(\frac{r-i+1}{2}\right)
$$

which is just $2^{-p} c(r, p)$.

CHAPTER 6

1. Each $g \in G l(V)$ maps a linearly independent set into a linearly independent set. Thus $g(M) \subseteq M$ implies $g(M)=M$ as $g(M)$ and M have the same dimension. That $G(M)$ is a group is clear. For (ii),

$$
\left(\begin{array}{ll}
g_{11} & g_{12} \\
g_{21} & g_{22}
\end{array}\right)\binom{y}{0} \in M \quad \text { for } y \in R^{q}
$$

iff $g_{21} y=0$ for $y \in R^{q}$ iff $g_{21}=0$. But

$$
\left(\begin{array}{cc}
g_{11} & g_{12} \\
0 & g_{22}
\end{array}\right)
$$

is nonsingular iff both g_{11} and g_{22} are nonsingular. That G_{1} and G_{2} are subgroups of $G(M)$ is obvious. To show G_{2} is normal, consider $h \in G_{2}$ and $g \in G(M)$. Then

$$
g h g^{-1}=\left(\begin{array}{cc}
g_{11} & g_{12} \\
0 & g_{22}
\end{array}\right)\left(\begin{array}{cc}
h_{11} & h_{12} \\
0 & I_{r}
\end{array}\right)\left(\begin{array}{cc}
g_{11}^{-1} & -g_{11}^{-1} g_{12} g_{22}^{-1} \\
0 & g_{22}^{-1}
\end{array}\right)
$$

has its 2,2 element I_{r}, so is in G_{2}. For (iv), that $G_{1} \cap G_{2}=\{I\}$ is clear. Each $g \in G$ can be written as

$$
g=\left(\begin{array}{cc}
g_{11} & g_{12} \\
0 & g_{22}
\end{array}\right)=\left(\begin{array}{cc}
I_{q} & 0 \\
0 & g_{22}
\end{array}\right)\left(\begin{array}{cc}
g_{11} & g_{12} \\
0 & I_{r}
\end{array}\right)
$$

which has the form $g=h k$ with $h \in G_{1}$ and $k \in G_{2}$. The representation is unique as $G_{1} \cap G_{2}=\{I\}$. Also, $g_{1} g_{2}=h_{1} k_{1} h_{2} k_{2}=$ $h_{1} h_{2} h_{2}^{-1} k_{1} h_{2} k_{2}=h_{3} k_{3}$ by the uniqueness of the representation.
2. $G(M)$ does not act transitively on $V-\{0\}$ since the vector $\binom{y}{0}, y \neq 0$ remains in M under the action of each $g \in G$. To show $G(M)$ is
transitive on $V \cap M^{c}$, consider

$$
x_{i}=\binom{y_{i}}{z_{i}}, \quad i=1,2
$$

with $z_{1} \neq 0$ and $z_{2} \neq 0$. It is easy to argue there is a $g \in G(M)$ such that $g x_{1}=x_{2}$ (since $z_{1} \neq 0$ and $z_{2} \neq 0$).
3. Each $n \times n$ matrix $\Gamma \in \theta_{n}$ can be regarded as an n^{2}-dimensional vector. A sequence $\left\{\Gamma_{j}\right\}$ converges to a point $x \in R^{m}$ iff each element of Γ_{j} converges to the corresponding element of x. It is clear that the limit of a sequence of orthogonal matrices is another orthogonal matrix. To show θ_{n} is a topological group, it must be shown that the map $(\Gamma, \psi) \rightarrow \Gamma \psi^{\prime}$ is continuous from $\theta_{n} \times \theta_{n}$ to θ_{n}-this is routine. To show $\chi(\Gamma)=1$ for all Γ, first observe that $H=\left\{\chi(\Gamma) \mid \Gamma \in \mathcal{O}_{n}\right\}$ is a subgroup of the multiplicative group $(0, \infty)$ and H is compact as it is the continuous image of a compact set. Suppose $r \in H$ and $r \neq 1$. Then $r^{j} \in H$ for $j=1,2, \ldots$ as H is a group, but $\left\{r^{j}\right\}$ has no convergent subsequence-this contradicts the compactness of H. Hence $r=1$.
4. Set $x=e^{u}$ and $\xi(u)=\log \chi\left(e^{u}\right), u \in R^{1}$. Then $\xi\left(u_{1}+u_{2}\right)=\xi\left(u_{1}\right)+$ $\xi\left(u_{2}\right)$ so ξ is a continuous homomorphism on R^{1} to R^{1}. It must be shown that $\xi(u)=\nu u$ for some fixed real ν. This follows from the solution to Problem 6 below in the special case that $V=R^{1}$.
5. This problem is easy, but the result is worth noting.
6. Part (i) is easy and for part (ii), all that needs to be shown is that ϕ is linear. First observe that

$$
\begin{equation*}
\phi\left(v_{1}+v_{2}\right)=\phi\left(v_{1}\right)+\phi\left(v_{2}\right) \tag{6.6}
\end{equation*}
$$

so it remains to verify that $\phi(\lambda v)=\lambda \phi(v)$ for $\lambda \in R^{1}$. (6.6) implies $\phi(0)=0$ and $\phi(n v)=n \phi(v)$ for $n=1,2, \ldots$. Also, $\phi(-v)=-\phi(v)$ follows from (6.6). Setting $w=n v$ and dividing by n, we have $\phi(w / n)$ $=(1 / n) \phi(w)$ for $n=1,2, \ldots$. Now $\phi((m / n) v)=m \phi((1 / n) v)=$ $(m / n) \phi(v)$ and by continuity, $\phi(\lambda v)=\lambda \phi(v)$ for $\lambda>0$. The rest is easy.
7. Not hard with the outline given.
8. By the spectral theorem, every rank r orthogonal projection can be written $\Gamma x_{0} \Gamma^{\prime}$ for some $\Gamma \in \mathcal{O}_{n}$. Hence transitivity holds. The equation $\Gamma x_{0} \Gamma^{\prime}=x_{0}$ holds for $\Gamma \in \mathcal{O}_{n}$ iff Γ has the form

$$
\Gamma=\left(\begin{array}{cc}
\Gamma_{11} & 0 \\
0 & \Gamma_{22}
\end{array}\right) \in \mathcal{O}_{n}
$$

and this gives the isotropy subgroup of x_{0}. For $\Gamma \in \mathcal{O}_{n}, \Gamma x_{0} \Gamma^{\prime}=$ $\Gamma x_{0}\left(\Gamma x_{0}\right)^{\prime}$ and Γx_{0} has the form ($\left.\psi 0\right)$ where $\psi: n \times r$ has columns that are the first r columns of Γ. Thus $\Gamma x_{0} \Gamma^{\prime}=\psi \psi^{\prime}$. Part (ii) follows by observing that $\psi_{1} \psi_{1}^{\prime}=\psi_{2} \psi_{2}^{\prime}$ if $\psi_{1}=\psi_{2} \Delta$ for some $\Delta \in \theta_{r}$.
9. The only difficulty here is (iii). The problem is to show that the only continuous homomorphisms χ on G_{2} to (∞, ∞) are $t_{p p}^{\alpha}$ for some real α. Consider the subgroups G_{3} and G_{4} of G_{2} given by

$$
G_{3}=\left\{\left.\left(\begin{array}{cc}
I_{p-1} & 0 \\
x & 1
\end{array}\right) \right\rvert\, x^{\prime} \in R^{p-1}\right\}, \quad G_{4}=\left\{\left.\left(\begin{array}{cc}
I_{p-1} & 0 \\
0 & u
\end{array}\right) \right\rvert\, u \in(0, \infty)\right\} .
$$

The group G_{3} is isomorphic to R^{p-1} so the only homomorphisms are $x \rightarrow \exp \left[\sum_{1}^{p-1} a_{i} x_{i}\right]$ and G_{4} is isomorphic to $(0, \infty)$ so the only homomorphisms are $u \rightarrow u^{\alpha}$ for some real α. For $k \in G_{2}$, write

$$
k=\left(\begin{array}{cc}
I_{p-1} & 0 \\
x & u
\end{array}\right)=\left(\begin{array}{cc}
I_{p-1} & 0 \\
x & 1
\end{array}\right)\left(\begin{array}{cc}
I_{p-1} & 0 \\
0 & u
\end{array}\right)
$$

so $\chi(k)=\exp \left[\Sigma a_{i} x_{i}\right] u^{\alpha}$. Now, use the condition $\chi\left(k_{1} k_{2}\right)=\chi\left(k_{1}\right)$. $\chi\left(k_{2}\right)$ to conclude $a_{1}=a_{2}=\cdots=a_{p-1}=0$ so χ has the claimed form.
10. Use (6.4) to conclude that

$$
I_{\gamma}=2^{p}(\sqrt{2 \pi})^{n p} \omega(n, p) \int_{G_{U}^{+}} \prod_{1}^{p} U_{i i}^{2 \gamma+n-i} \exp \left[-\frac{1}{2} \sum_{i \leqslant j} U_{i j}^{2}\right] d U
$$

and then use Problem 5.10 to evaluate the integral over G_{U}^{+}. You will find that, for $2 \gamma+n>p-1$, the integral is finite and is $I_{\gamma}=$ $(\sqrt{2 \pi})^{n p} \omega(n, p) / \omega(2 \gamma+n, p)$. If $2 \gamma+n \leqslant p-1$, the integral diverges.
11. Examples 6.14 and 6.17 give Δ_{r} for $G(M)$ and all the continuous homomorphisms for $G(M)$. Pick $x_{0} \in R^{p} \cap M^{c}$ to be

$$
x_{0}=\binom{0}{z_{0}}
$$

where $z_{0}^{\prime}=(1,0, \ldots, 0), z_{0} \in R^{r}$. Then H_{0} consists of those g 's with the first column of g_{12} being 0 and the first column of g_{22} being z_{0}. To apply Theorem 6.3, all that remains is to calculate the right-hand modulus of H_{0}-say Δ_{r}^{0}. This is routine given the calculations of Examples 6.14 and 6.17. You will find that the only possible multi-
pliers are $\chi(g)=\left|g_{11}\right|\left|g_{33}\right|$ and Lebesgue measure on $R^{p} \cap M^{c}$ is the only (up to a positive constant) invariant measure.
12. Parts (i), (ii), (iii), and (iv) are routine. For (v), $J_{1}(f)=\int f(x) \mu(d x)$ and $J_{2}(f)=\int f\left(\tau^{-1}(y)\right) \nu(d y)$ are both invariant integrals on $\mathscr{K}(\mathfrak{X})$. By Theorem 6.3, $J_{1}=k J_{2}$ for some constant k. To find k, take $f(x)=(\sqrt{2 \pi})^{-n} s^{n}(x) \exp \left[-\frac{1}{2} x^{\prime} x\right]$ so $J_{1}(f)=1$. Since $s\left(\tau^{-1}(y)\right)=v$ for $y=(u, v, w)$,

$$
\begin{aligned}
J_{2}(f) & =(\sqrt{2 \pi})^{-n} \int_{y} v^{n} \exp \left[-\frac{1}{2} v^{2}-\frac{1}{2} n u^{2}\right] d u \frac{d v}{v^{2}} \nu(d w) \\
& =\frac{1}{2} \frac{\Gamma((n-1) / 2)}{(\sqrt{\pi})^{n-1}}=\frac{1}{k}
\end{aligned}
$$

For (vi), the expected value of any function of \bar{x} and $s(x)$, say $q(\bar{x}, s(x))$ is

$$
\begin{aligned}
\mathcal{E} q(\bar{x}, s(x)) & =\int q(\bar{x}, s(x)) f(x) s^{n}(x) \mu(d x) \\
& =k \int q(u, v) f\left(\tau^{-1}(u, v, w)\right) v^{n} d u \frac{d v}{v^{2}} \nu(d w) \\
& =k \int q(u, v) \frac{v^{n-2}}{\sigma^{2}} h\left(\frac{v^{2}}{\sigma^{2}}+\frac{n(u-\delta)^{2}}{\sigma^{2}}\right) d u d v .
\end{aligned}
$$

Thus the joint density of \bar{x} and $s(x)$ is

$$
p(u, v)=\frac{k v^{n-2}}{\sigma^{n}} h\left(\frac{v^{2}}{\sigma^{2}}+\frac{n(u-\delta)^{2}}{\sigma^{2}}\right) \quad \text { (with respect to } d u d v \text {). }
$$

13. We need to show that, with $Y(X)=X /\|X\|, P\{\|X\| \in B, Y \in C\}=$ $P\{\|X\| \in B\} P\{Y \in C\}$. If $P\{\|X\| \in B\}=0$, the above is obvious. If not, set $\nu(C)=P\{Y \in C,\|X\| \in B\} / P\{\|X\| \in B\}$ so ν is a probability measure on the Borel sets of $\{y \mid\|y\|=1\} \subseteq R^{n}$. But the relation $\phi(\Gamma x)=\Gamma \phi(x)$ and the θ_{n} invariance of $\mathcal{L}(X)$ implies that ν is an Θ_{n}-invariant probability measure and hence is unique -(for all Borel B-namely, ν is uniform probability measure on $\{y \mid\|y\|=1\}$.
14. Each $x \in \mathcal{X}$ can be uniquely written as $g y$ with $g \in \mathscr{P}_{n}$ and $y \in \mathscr{Y}$ (of course, y is the order statistic of x). Define \mathscr{P}_{n} acting on $\mathscr{P}_{n} \times \mathscr{Y}$ by
$g(P, y)=(g P, y)$. Then $\phi^{-1}(g x)=g \phi^{-1}(x)$. Since $P(g x)=g P(x)$, the argument used in Problem 13 shows that $P(X)$ and $Y(X)$ are independent and $P(X)$ is uniform on \mathscr{P}_{n}.

CHAPTER 7

1. Apply Propositions 7.5 and 7.6.
2. Write $X=\psi U$ as in Proposition 7.3 so ψ and U are independent. Then $P(X)=\psi \psi^{\prime}$ and $S(X)=U^{\prime} U$ and the independence is obvious.
3. First, write Q in the form

$$
Q=M^{\prime}\left(\begin{array}{cc}
I_{r} & 0 \\
0 & 0
\end{array}\right) M
$$

where M is $n \times n$ and nonsingular. Since M is nonsingular, it suffices to show that $\left(M^{-1}(A)\right)^{c}$ has measure zero. Write $x=\binom{\dot{x}}{\dot{x}}$ where \dot{x} is $r \times p$. It then suffices to show that $B^{c}=\left\{x \mid x \in \mathcal{L}_{p, n}, \operatorname{rank}(\dot{x})=p\right\}^{c}$ has measure zero. For this, use the argument given in Proposition 7.1.
4. That the ϕ 's are the only equivariant functions follows as in Example 7.6.
5. Part (i) is obvious. For (ii), just observe that knowledge of F_{n} allows you to write down the order statistic and conversely.
6. Parts (i) and (ii) are clear. For (iii), write $x=P x+Q x$. If t is equivariant $t(x+y)=t(x)+y, y \in M$. This implies that $t(Q x)=$ $t(x)+P x$ (pick $y=P x$). Thus $t(x)=P x+t(Q x)$. Since $Q=I-P$, $Q x \in M^{\perp}$, so $B Q x=Q x$ for any B with $(B, y) \in G$. Since $t(Q x) \in M$, pick B such that $B x=-x$ for $x \in M$. The equivariance of t then gives $t(Q x)=t(B Q x)=B t(Q x)=-t(Q x)$, so $t(Q x)=0$.
7. Part (i) is routine as is the first part of (ii) (use Problem 6). An equivariant estimator of σ^{2} must satisfy $t(a \Gamma x+b)=a^{2} t(x) . G$ acts transitively on \mathscr{X} and \bar{G} acts transitively on $(0, \infty)(\mathscr{Y}$ for this case) so Proposition 7.8 and the argument given in Example 7.6 apply.
8. When $X \in X$ with density $f\left(x^{\prime} x\right)$, then $Y=X \Sigma^{1 / 2}=\left(I_{n} \otimes \Sigma^{1 / 2}\right) X$ has density $f\left(\Sigma^{-1 / 2} x^{\prime} x \Sigma^{-1 / 2}\right)$ since $d x /\left|x^{\prime} x\right|^{n / 2}$ is invariant under $x \rightarrow x A$ for $A \in G l_{p}$. Also, when X has density f, then $\mathcal{E}((\Gamma \otimes \Delta) X)$ $=\mathscr{L}(X)$ for all $\Gamma \in \theta_{n}$ and $\Delta \in \mathcal{O}_{p}$. This implies (see Proposition 2.19) that $\operatorname{Cov}(X)=c I_{n} \otimes I_{p}$ for some $c>0$. Hence $\operatorname{Cov}\left(\left(I_{n} \otimes \Sigma^{1 / 2}\right) X\right)=$ $c I_{n} \otimes \Sigma$. Part (ii) is clear and (iii) follows from Proposition 7.8 and Example 7.6. For (iv), the definition of C_{0} and the assumption on f
imply $f\left(\Gamma C_{0} \Gamma^{\prime}\right)=f\left(C_{0} \Gamma^{\prime} \Gamma\right)=f\left(C_{0}\right)$ for each $\Gamma \in \mathcal{O}_{p}$. The uniqueness of C_{0} implies $C_{0}=\alpha I_{p}$ for some $\alpha>0$. Thus the maximum likelihood estimator of Σ must be $\alpha X^{\prime} X$ (see Proposition 7.12 and Example 7.10).
9. If $\mathcal{L}(X)=P_{0}$, then $\mathcal{L}(\|X\|)$ is the same whenever $\mathcal{L}(X) \in\{P \mid P=$ $\left.g P_{0}, g \in \mathcal{O}(V)\right\}$ since $x \rightarrow\|x\|$ is a maximal invariant under the action of $\mathcal{O}(V)$ on V. For (ii), $\mathcal{L}(\|X\|)$ depends on μ through $\|\mu\|$.
10. Write $V=\omega \oplus(M-\omega) \oplus M^{\perp}$. Remove a set of Lebesgue measure zero from V and show the F ratio is a maximal invariant under the group action $x \rightarrow a \Gamma x+b$ where $a>0, b \in \omega$, and $\Gamma \in \mathcal{O}(V)$ satisfies $\Gamma(\omega) \subseteq \omega, \Gamma(M-\omega) \subseteq(M-\omega)$. The group action on the parameter $\left(\mu, \sigma^{2}\right)$ is $\mu \rightarrow a \Gamma \mu+b$ and $\sigma^{2} \rightarrow a^{2} \sigma^{2}$. A maximal invariant parameter is $\left\|P_{M-\omega} \mu\right\|^{2} / \sigma^{2}$, which is zero when $\mu \in \omega$.
11. The statistic V is invariant under $x_{i} \rightarrow A x_{i}+b, i=1, \ldots, n$, where $b \in R^{p}, A \in G l_{p}$, and $\operatorname{det} A=1$. The model is invariant under this group action where the induced group action on (μ, Σ) is $\mu \rightarrow A \mu+b$ and $\Sigma \rightarrow A \Sigma A^{\prime}$. A direct calculation shows $\theta=\operatorname{det}(\Sigma)$ is a maximal invariant under the group action. Hence the distribution of V depends on (μ, Σ) only through θ.
12. For (i), if $h \in G$ and $B \in \mathscr{B},(h P)(B)=P\left(h^{-1} B\right)=\int_{G}(g \bar{Q})\left(h^{-1} B\right)$ $\mu(d g)=\int_{G} \bar{Q}\left(g^{-1} h^{-1} B\right) \mu(d g)=\int_{G} \bar{Q}\left((h g)^{-1} B\right) \mu(d g)=\int \bar{Q}\left(g^{-1} B\right) \mu(d g)=$ $P(B)$, so $h P=P$ for $h \in G$ and P is G invariant. For (ii), let Q be the distribution described in Proposition 7.16 (ii), so if $\mathcal{L}(X)=P$, then $\mathcal{L}(X)=\mathscr{L}(U Y)$ where U is uniform on G and is independent of Y. Thus for any bounded \mathscr{B}-measurable function f,

$$
\int f(x) P(d x)=\int_{G} \int_{\mathscr{Y}} f(g y) \mu(d g) Q(d y)=\int_{G} \int_{\mathscr{X}} f(g x) \mu(d g) \bar{Q}(d x) .
$$

Set $f=I_{B}$ and we have $P(B)=\int_{G} \bar{Q}\left(g^{-1} B\right) \mu(d g)$ so (7.1) holds.
13. For $y \in \mathscr{Y}$ and $B \in \mathscr{B}$, define $R(B \mid y)$ by $R(B \mid y)=\int_{G} I_{B}(g y) \mu(d g)$. For each $y, R(\cdot \mid y)$ is a probability measure on ($\mathcal{X}, \mathscr{B})$ and for fixed B, $R(B \mid \cdot)$ is (\mathscr{Y}, \mathcal{C}) measurable. For $P \in \mathscr{P}$, (ii) of Proposition 7.16 shows that

$$
\begin{equation*}
\int h(x) P(d x)=\int_{\mathscr{O}} \int_{G} h(g y) \mu(d g) Q(d y) \tag{7.2}
\end{equation*}
$$

But by definition of $R(\cdot \mid \cdot), \int_{G} h(g y) \mu(d g)=\int_{\mathscr{X}} h(x) R(d x \mid y)$, so (7.2)
becomes

$$
\int_{\mathscr{X}} h(x) P(d x)=\int_{\mathscr{Y}} \int_{\mathscr{X}} h(x) R(d x \mid y) Q(d y) .
$$

This shows that $R(\cdot \mid y)$ serves as a version of the conditional distribution of X given $\tau(X)$. Since R does not depend on $P \in \mathscr{P}, \tau(X)$ is sufficient.
14. For (i), that $t(g x)=g \circ t(x)$ is clear. Also, $X-\bar{X} e=Q_{e} X$, which is $N\left(0, Q_{e}\right)$ so is ancillary. For (ii), $\mathcal{E}\left(f\left(X_{1}\right) \mid \bar{X}=t\right)=\mathcal{E}\left(f\left(X_{1}-\bar{X}\right.\right.$ $+\bar{X}) \mid \bar{X}=t)=\mathcal{E}\left(f\left(\varepsilon_{1}^{\prime} Z(X)+\bar{X}\right) \mid \bar{X}=t\right)$ since $Z(X)$ has coordinates $X_{i}-\bar{X}, i=1, \ldots, n$. Since Z and \bar{X} are independent, this last conditional expectation (given $\bar{X}=t$) is just the integral over the distribution of Z with $\bar{X}=t$. But $\varepsilon_{1}^{\prime} Z(X)=X_{1}-\bar{X}$ is $N\left(0, \delta^{2}\right)$ so the claimed integral expression holds. When $f(x)=1$ for $x \leqslant u_{0}$ and 0 otherwise, the integral is just $\Phi\left(\left(u_{0}-t\right) / \delta\right)$ where Φ is the normal cumulative distribution function.
15. Let B be the set $\left(-\infty, u_{0}\right.$] so $I_{B}\left(X_{1}\right)$ is an unbiased estimator of $h(a, b)$ when $\mathcal{L}(X)=(a, b) P_{0}$. Thus $\hat{h}(t(X))=\mathcal{E}\left(I_{B}\left(X_{1}\right) \mid t(X)\right)$ is an unbiased estimator of $h(a, b)$ based on $t(X)$. To compute \hat{h}, we have $\mathcal{E}\left(I_{B}\left(X_{1}\right) \mid t(X)\right)=P\left\{X_{1} \leqslant u_{0} \mid t(X)\right\}=P\left\{\left(X_{1}-\bar{X}\right) / s \leqslant\left(u_{0}-\right.\right.$ $\bar{X}) / s \mid(s, \bar{X})\}$. But $\left(X_{1}-\bar{X}\right) / s \equiv Z_{1}$ is the first coordinate of $Z(X)$ so is independent of (s, \bar{X}). Thus $\hat{h}(s, \bar{X})=P_{Z_{1}}\left\{Z_{1} \leqslant\left(u_{0}-\bar{X}\right) / s\right\}=$ $F\left(\left(u_{0}-\bar{X}\right) / s\right)$ where F is the distribution function of the first coordinate of Z. To find F, first observe that Z takes values in $\mathscr{Z}=\{x \mid x \in$ $\left.R^{n}, x^{\prime} e=0,\|x\|=1\right\}$ and the compact group $\theta_{n}(e)$ acts transitively on \not{Z}. Since $Z(\Gamma X)=\Gamma Z(X)$ for $\Gamma \in \mathcal{O}_{n}(e)$, it follows that Z has a uniform distribution on \mathscr{Z} (see the argument in Example 7.19). Let U be $N\left(0, I_{n}\right)$ so Z has the same distribution as $Q_{e} U /\left\|Q_{e} U\right\|$ and $\mathcal{L}\left(Z_{1}\right)$ $=\mathcal{L}\left(\varepsilon_{1}^{\prime} Q_{e} U /\left\|Q_{e} U\right\|^{2}\right)=\mathcal{L}\left(\left(Q_{e} \varepsilon_{1}\right)^{\prime} Q_{e} U /\left\|Q_{e} U\right\|^{2}\right)$. Since $\left\|Q_{e} \varepsilon_{1}\right\|^{2}=(n$ $-1) / n$ and $Q_{e} U$ is $N\left(0, Q_{e}\right)$, it follows that $\mathcal{E}\left(Z_{1}\right)=\mathcal{L}(((n-$ 1) $/ n)^{1 / 2} W_{1}$) where $W_{1}=U_{1} /\left(\sum_{1}^{n-1} U_{i}^{2}\right)^{1 / 2}$. The rest is a routine computation.
16. Part (i) is obvious and (ii) follows from

$$
\begin{align*}
\mathcal{E}(f(X) \mid \tau(X)=g) & =\mathcal{E}\left(f\left(\tau(X)(\tau(X))^{-1} X\right) \mid \tau(X)=g\right) \tag{7.3}\\
& =\mathcal{E}(f(\tau(X) Z(X)) \mid \tau(X)=g)
\end{align*}
$$

Since $Z(X)$ and $\tau(X)$ are independent and $\tau(X)=g$, the last member of (7.3) is just the expectation over Z of $f(g Z)$. Part (iii) is just an application and Q_{0} is the uniform distribution on $\mathscr{F}_{p, n}$. For (iv), let B be a fixed Borel set in R^{P} and consider the parametric function
$h(\Sigma)=P_{\Sigma}\left(X_{1} \in B\right)=\int I_{B}(x)(\sqrt{2 \pi})^{-p}|\Sigma|^{-1 / 2} \exp \left[-\frac{1}{2} x^{\prime} \Sigma^{-1} x\right] d x$, where X_{1}^{\prime} is the first row of X. Since $\tau(X)$ is a complete sufficient statistic, the MVUE of $h(\Sigma)$ is

$$
\begin{equation*}
\hat{h}(T)=\mathcal{E}\left(I_{B}\left(X_{1}\right) \mid \tau(X)=T\right)=P\left\{T(\tau(X))^{-1} X_{1} \in B \mid \tau(X)=T\right\} . \tag{7.4}
\end{equation*}
$$

But $Z_{1}^{\prime}=\left(\tau^{-1}(X) X_{1}\right)^{\prime}$ is the first row of $Z(X)$ so is independent of $\tau(X)$. Hence $\hat{h}(T)=P_{1}\left\{Z_{1} \in T^{-1}(B)\right\}$ where P_{1} is the distribution of Z_{1} when Z has a uniform distribution on $\mathscr{F}_{p, n}$. Since Z_{1} is the first p coordinates of a random vector that is uniform on $\left\{x \mid\|x\|=1, x \in R^{n}\right\}$, it follows that Z_{1} has a density $\psi\left(\|u\|^{2}\right)$ for $u \in R^{p}$ where ψ is given by

$$
\psi(v)=\left\{\begin{array}{cc}
c(1-v)^{(n-p-2) / 2} & 0<v<1 \\
0 & \text { otherwise }
\end{array}\right.
$$

where $c=\Gamma(n / 2) / \pi^{p / 2} \Gamma((n-p) / 2)$. Therefore $\hat{h}(T)=$ $\int_{R^{P}} I_{B}(T u) \psi\left(\|u\|^{2}\right) d u=(\operatorname{det} T)^{-1} \int_{R^{P}} I_{B}(u) \psi\left(\left\|T^{-1} u\right\|^{2}\right) d u$. Now, let B shrink to the point u_{0} to get that $(\operatorname{det} T)^{-1} \psi\left(\left\|T^{-1} u_{0}\right\|^{2}\right)$ is the MVUE for $(\sqrt{2 \pi})^{-p}|\Sigma|^{-1 / 2} \exp \left[-\frac{1}{2} u_{0}^{\prime} \Sigma^{-1} u_{0}\right]$.

CHAPTER 8

1. Make a change of variables to $r, x_{1}=s_{11} / \sigma_{11}$ and $x_{2}=s_{22} / \sigma_{22}$, and then integrate out x_{1} and x_{2}. That $p(r \mid \rho)$ has the claimed form follows by inspection. Karlin's Lemma (see Appendix) implies that $\psi(\rho r)$ has a monotone likelihood ratio.
2. For $\alpha=1 / 2, \ldots,(p-1) / 2$, let X_{1}, \ldots, X_{r} be i.i.d. $N\left(0, I_{p}\right)$ with $r=$ 2α. Then $S=X_{i} X_{i}^{\prime}$ has ϕ_{α} as its characteristic function. For $\alpha>(p-$ 1)/2, the function $p_{\alpha}(s)=k(\alpha)|s|^{\alpha} \exp \left[-\frac{1}{2} \operatorname{tr} s\right]$ is a density with respect to $d s /|s|^{(p+1) / 2}$ on δ_{p}^{+}. The characteristic function of p_{α} is ϕ_{α}. To show that $\phi_{\alpha}(\Sigma A)$ is a characteristic function, let S satisfy $\mathcal{E} \exp (i\langle A, S\rangle)=\phi_{\alpha}(A)=\left|I_{p}-2 i A\right|^{\alpha}$. Then $\Sigma^{1 / 2} S \Sigma^{1 / 2}$ has $\phi_{\alpha}(\Sigma A)$ as its characteristic function.
3. $\mathcal{L}(S)=\mathcal{L}\left(\Gamma S \Gamma^{\prime}\right)$ implies that $A=\mathcal{E} S$ satisfies $A=\Gamma A \Gamma^{\prime}$ for all $\Gamma \in \mathcal{O}_{p}$. This implies $A=c I_{p}$ for some constant c. Obviously, $c=\mathscr{E} s_{11}$. For (ii) $\operatorname{var}(\operatorname{tr} D S)=\operatorname{var}\left(\sum_{p} d_{i} s_{i i}\right)=\sum p d_{i}^{2} \operatorname{var}\left(s_{i i}\right)+\sum \sum_{i \neq j} d_{i} d_{j} \operatorname{cov}\left(s_{i i}, s_{j j}\right)$. Noting that $\mathcal{L}(S)=\mathcal{L}\left(\Gamma S \Gamma^{\prime}\right)$ for $\Gamma \in \mathcal{O}_{p}$, and in particular for permutation matrices, it follows that $\gamma=\operatorname{var}\left(s_{i i}\right)$ does not depend on i and $\beta=\operatorname{cov}\left(s_{i i}, s_{j j}\right)$ does not depend on i and $j(i \neq j)$. Thus var $\langle D, S\rangle=$
$\gamma \sum_{i} d_{i}^{2}+\beta \Sigma \sum_{i \neq j} d_{i} d_{j}=(\gamma-\beta) \sum p d_{i}^{2}+\beta\left(\sum_{p} d_{i}\right)^{2}$. For (iii), write $A \in$ δ_{p} as $\Gamma D \Gamma^{\prime}$ so $\operatorname{var}\langle A, S\rangle=\operatorname{var}\left\langle\Gamma D \Gamma^{\prime}, S\right\rangle=\operatorname{var}\left\langle D, \Gamma^{\prime} S \Gamma\right\rangle=$ $\operatorname{var}\langle D, S\rangle=(\gamma-\beta) \sum_{p}^{p} d_{i}^{2}+\beta\left(\sum_{p}^{p} d_{i}\right)^{2}=(\gamma-\beta) \operatorname{tr} A^{2}+\beta(\operatorname{tr} A)^{2}=$ $(\gamma-\beta)\langle A, A\rangle+\beta\langle I, A\rangle^{2}$. With $T=(\gamma-\beta) I_{p} \otimes I_{p}+\beta I_{p} \square I_{p}$, it follows that $\operatorname{var}\langle A, S\rangle=\langle A, T A\rangle$, and since T is self-adjoint, this implies that $\operatorname{Cov}(S)=T$.
4. Use Proposition 7.6.
5. Immediate from Problem 3.
6. For (i), it suffices to show that $\mathcal{L}\left(\left(A S A^{\prime}\right)^{-1}\right)=W\left(\left(A \Lambda A^{\prime}\right)^{-1}, r, \nu+r\right.$ - 1). Since $\mathcal{E}\left(S^{-1}\right)=W\left(\Lambda^{-1}, p, \nu+p-1\right)$, Proposition 8.9 implies that desired result. (ii) follows immediately from (i). For (iii), (i) implies $\tilde{S}=\Lambda^{-1 / 2} S \Lambda^{-1 / 2}$ is $I W\left(I_{p}, p, \nu\right)$ and $\mathcal{L}(\tilde{S})=\mathscr{E}\left(\Gamma \tilde{S} \Gamma^{\prime}\right)$ for all $\Gamma \in \mathcal{O}_{p}$. Now, apply Problem 4 to conclude that $\mathcal{E} \tilde{S}=c I_{p}$ where $c=\mathscr{E} \tilde{s}_{11}$. That $c=(\nu-2)^{-1}$ is an easy application of (i). Hence $(\nu-2)^{-1} I_{p}=\mathcal{E} \tilde{S}=\Lambda^{-1 / 2}(\mathcal{E} S) \Lambda^{-1 / 2}$ so $\mathcal{E} S=(\nu-2)^{-1} \Lambda$. Also, $\operatorname{Cov} \tilde{S}=(\gamma-\beta) I_{p} \otimes I_{p}+\beta I_{p} \square I_{p}$ as in Problem 4. Thus $\operatorname{Cov}(\tilde{S})=$ $\left(\Lambda^{1 / 2} \otimes \Lambda^{1 / 2}\right)(\operatorname{Cov} \tilde{S})\left(\Lambda^{1 / 2} \otimes \Lambda^{1 / 2}\right)=(\gamma-\beta) \Lambda \otimes \Lambda+\beta \Lambda \square \Lambda$. For (iv), that $\mathcal{L}\left(S_{11}\right)=I W\left(\Lambda_{11}, q, \nu\right)$, take $A=\left(I_{q} 0\right)$ in part (i). To show $\mathcal{L}\left(S_{22 \cdot 1}^{-1}\right)=W\left(\Lambda_{22 \cdot 1}^{-1}, r, \nu+q+r-1\right)$, use Proposition 8.8 on S^{-1}, which is $W\left(\Lambda^{-1}, p, \nu+p-1\right)$.
7. For (i), let $p_{1}(x) p_{2}(s)$ denote the joint density of X and S with respect to the measure $d x d s /|s|^{(p+1) / 2}$. Setting $T=X S^{-1 / 2}$ and $V=S$, the joint density of T and V is $p_{1}\left(t v^{1 / 2}\right) p_{2}(v)|v|^{r / 2}$ with respect to $d t d v /|v|^{(p+1) / 2}$-the Jacobian of $x \rightarrow t v^{1 / 2}$ is $|v|^{r / 2}$-see Proposition 5.10. Now, integrate out v to get the claimed density. That $\mathcal{L}(T)=$ $\mathcal{E}\left(\Gamma T \Delta^{\prime}\right)$ is clear from the form of the density (also from (ii) below). Use Proposition 2.19 to show $\operatorname{Cov}(T)=c_{1} I_{r} \otimes I_{p}$. Part (ii) follows by integrating out v from the conditional density of T to obtain the marginal density of T as given in (i). For (iii) represent T as: T given V is $N\left(0, I_{r} \otimes V\right)$ where V is $I W\left(I_{p}, p, \nu\right)$. Thus T_{11} given V is $N\left(0, I_{k} \otimes\right.$ V_{11}) where V_{11} is the $q \times q$ upper left-hand corner of V. Since $\mathcal{L}\left(V_{11}\right)=I W\left(I_{q}, q, v\right)$, the claimed result follows from (ii).
8. With $V=S_{2}^{-1 / 2} S_{1} S_{2}^{-1 / 2}$ and $S=S_{2}^{-1}$, the conditional distribution of V given S is $W(S, p, m)$ and $\mathcal{L}(S)=I W\left(I_{p}, p, \nu\right)$. Since V is unconditionally $F\left(m, \nu, I_{p}\right)$, (i) follows. For (ii), $\mathcal{L}(T)=T\left(\nu, I_{r}, I_{p}\right)$ means that $\mathcal{L}(T)=\mathcal{L}\left(X S^{1 / 2}\right)$ where $\mathcal{L}(X)=N\left(0, I_{r} \otimes I_{p}\right)$ and $\mathcal{L}(S)=$ $I W\left(I_{p}, p, \nu\right)$. Thus $\mathcal{E}\left(T^{\prime} T\right)=\mathfrak{L}\left(S^{1 / 2} X^{\prime} X S^{1 / 2}\right)$. Since $\mathfrak{L}\left(X^{\prime} X\right)=$ $W\left(I_{p}, p, r\right)$, (ii) follows by definition of $F\left(r, \nu, I_{p}\right)$. For (iii), write $F=T^{\prime} T$ where $\mathcal{L}(T)=T\left(\nu, I_{r}, I_{p}\right)$, which has the density given in (i) of Problem 8. Since $r \geqslant p$, Proposition 7.6 is directly applicable to yield the density of F. To establish (iv), first note that $\mathcal{L}(F)=\mathfrak{L}\left(\Gamma F \Gamma^{\prime}\right)$
for all $\Gamma \in \vartheta_{p}$. Using Example 7.16, F has the same distributions as $\psi D \psi^{\prime}$ where ψ is uniform on ϑ_{p} and is independent of the diagonal matrix D whose diagonal elements $\lambda_{1} \geqslant \cdots \geqslant \lambda_{p}$ are distributed as the eigenvalues of F. Thus $\lambda_{1}, \ldots, \lambda_{p}$ are distributed as the eigenvalues of $S_{2}^{-1} S_{1}$ where S_{1} is $W\left(I_{p}, p, r\right)$ and S_{2}^{-1} is $I W\left(I_{p}, p, \nu\right)$. Hence $\mathcal{L}\left(F^{-1}\right)=\mathcal{L}\left(\psi D^{-1} \psi^{\prime}\right)=\mathcal{L}\left(\psi \tilde{D} \psi^{\prime}\right)$ where the diagonal elements of \tilde{D}, say $\lambda_{p}^{-1} \geqslant \cdots \geqslant \lambda_{1}^{-1}$, are the eigenvalues of $S_{1}^{-1} S_{2}$. Since S_{2} is $W\left(I_{p}, p, \nu+p-1\right)$, it follows that $\psi \tilde{D} \psi^{\prime}$ has the same distribution as an $F\left(\nu+p-1, r-p+1, I_{p}\right)$ matrix by just repeating the orthogonal invariance argument given above. (v) is established by writing $F=T^{\prime} T$ as in (ii) and partitioning T as $T_{1}: r \times q$ and $T_{2}: r \times(p-q)$ so

$$
T^{\prime} T=\left(\begin{array}{ll}
T_{1}^{\prime} T_{1} & T_{1}^{\prime} T_{2} \\
T_{2}^{\prime} T_{1} & T_{2}^{\prime} T_{2}
\end{array}\right) .
$$

Since $\mathcal{L}\left(T_{1}\right)=T\left(\nu, I_{r}, I_{q}\right)$ and $F_{11}=T_{1}^{\prime} T_{1}$, (ii) implies that $\mathcal{L}\left(F_{11}\right)=$ $F\left(r, \nu, I_{q}\right)$. (vi) can be established by deriving the density of $X S^{-1} X^{\prime}$ directly and using (iii), but an alternative argument is more instructive. First, apply Proposition 7.4 to X^{\prime} and write $X=V^{1 / 2} \psi^{\prime}$ where $V \in \delta_{r}^{+}$, $V=X X^{\prime}$ is $W\left(I_{r}, r, p\right)$ and is independent of $\psi: p \times r$, which is uniform on $\mathscr{F}_{r, p}$. Then $X S^{-1} X^{\prime}=V^{1 / 2} W^{-1} V^{1 / 2}$ where $W=$ $\left(\psi^{\prime} S^{-1} \psi\right)^{-1}$ and is independent of V. Proposition 8.1 implies that $\mathcal{E}(W)=W\left(I_{r}, r, m-p+r\right)$. Thus $\mathcal{E}\left(W^{-1}\right)=I W\left(I_{r}, r, m-p+1\right)$. Now, use the orthogonal invariance of the distribution of $X S^{-1} X^{\prime}$ to conclude that $\mathcal{L}\left(X S^{-1} X^{\prime}\right)=\mathcal{L}\left(\Gamma D \Gamma^{\prime}\right)$ where Γ and D are independent, Γ is uniform on \mathcal{O}_{r}, and the diagonal elements of D are distributed as the ordered eigenvalues of $W^{-1} V$. As in the proof of (iv), conclude that $\mathcal{L}\left(\Gamma D \Gamma^{\prime}\right)=F\left(p, m-p+1, I_{r}\right)$.
10. The function $S \rightarrow S^{1 / 2}$ on ς_{p}^{+}to ς_{p}^{+}satisfies $\left(\Gamma S \Gamma^{\prime}\right)^{1 / 2}=\Gamma S^{1 / 2} \Gamma^{\prime}$ for $\Gamma \in \mathcal{O}_{p}$. With $B\left(S_{1}, S_{2}\right)=\left(S_{1}+S_{2}\right)^{-1 / 2} S_{1}\left(S_{1}+S_{2}\right)^{-1 / 2}$, it follows that $B\left(\Gamma S_{1} \Gamma^{\prime}, \Gamma S_{2} \Gamma^{\prime}\right)=\Gamma B\left(S_{1}, S_{2}\right) \Gamma^{\prime}$. Since $\mathcal{L}\left(\Gamma S_{i} \Gamma^{\prime}\right)=\mathcal{L}\left(S_{i}\right), i=1,2$, and S_{1} and S_{2} are independent, the above implies that $\mathcal{L}(B)=\mathcal{L}\left(\Gamma B \Gamma^{\prime}\right)$ for $\Gamma \in \mathcal{O}_{p}$. The rest of (i) is clear from Example 7.16. For (ii), let $B_{1}=S_{1}^{1 / 2}\left(S_{1}+S_{2}\right)^{-1} S_{2}^{1 / 2}$ so $\mathcal{L}\left(B_{1}\right)=\mathcal{L}\left(\Gamma B_{1} \Gamma^{\prime}\right)$ for $\Gamma \in \mathcal{O}_{p}$. Thus $\mathcal{L}\left(B_{1}\right)=\mathcal{L}\left(\psi D \psi^{\prime}\right)$ where ψ and D are independent, ψ is uniform on ϑ_{p}. Also, the diagonal elements of D, say $\lambda_{1} \geqslant \cdots \geqslant \lambda_{p}>0$, are distributed as the ordered eigenvalues of $S_{1}\left(S_{1}+S_{2}\right)^{-1}$ so B_{1} is $B\left(m_{1}, m_{2}, I_{p}\right)$. (iii) is easy using (i) and (ii) and the fact that $F(I+$ $F)^{-1}$ is symmetric. For (iv), let $B=X\left(S+X^{\prime} X\right)^{-1} X^{\prime}$ and observe that $\mathcal{L}(B)=\mathfrak{E}\left(\Gamma B \Gamma^{\prime}\right), \Gamma \in \Theta_{p}$. Since $m \geqslant p, S^{-1}$ exists so $B=$ $X S^{-1 / 2}\left(I_{p}+S^{-1 / 2} X^{\prime} X S^{-1 / 2}\right)^{-1} S^{-1 / 2} X^{\prime}$. Hence $T=X S^{-1 / 2}$ is $T(m$ $\left.-p+1, I_{r}, I_{p}\right)$. Thus $\mathcal{L}(B)=\mathcal{L}\left(\psi D \psi^{\prime}\right)$ where ψ is uniform on \mathcal{O}_{r} and
is independent of D. The diagonal elements of D, say $\lambda_{1}, \ldots, \lambda_{r}$, are the eigenvalues of $T\left(I_{p}+T^{\prime} T\right)^{-1} T^{\prime}$. These are the same as the eigenvalues of $T T^{\prime}\left(I_{r}+T T^{\prime}\right)^{-1}$ (use the singular value decomposition for T). But $\mathcal{E}\left(T T^{\prime}\right)=\mathcal{L}\left(X S^{-1} X^{\prime}\right)=F\left(p, m-p+1, I_{r}\right)$ by Problem 9 (vi). Now use (iii) above and the orthogonal invariance of $\mathcal{L}(B)$. (v) is trivial.

CHAPTER 9

1. Let B have rows $\nu_{1}^{\prime}, \ldots, \nu_{k}^{\prime}$ and form X in the usual way (see Example 4.3) so $\mathcal{E} X=Z B$ with an appropriate $Z: n \times k$. Let $R: 1 \times k$ have entries a_{1}, \ldots, a_{k}. Then $R B=\sum_{1}^{k} a_{i} \mu_{i}^{\prime}$ and H_{0} holds iff $R B=0$. Now apply the results in Section 9.1.
2. For (i), just do the algebra. For (ii), apply (i) with $S_{1}=(Y-X \hat{B})^{\prime}(Y$ $-X \hat{B})$ and $S_{2}=(X(B-\hat{B}))^{\prime}\left(X(B-\hat{B})\right.$), so $\phi\left(S_{1}\right) \leqslant \phi\left(S_{1}+S_{2}\right)$ for every B. Since $A \geqslant 0, \operatorname{tr} A\left(S_{1}+S_{2}\right)=\operatorname{tr} A S_{1}+\operatorname{tr} A S_{2} \geqslant \operatorname{tr} A S_{1}$ since $\operatorname{tr} A S_{2} \geqslant 0$ as $S_{2} \geqslant 0$. To show $\operatorname{det}(A+S)$ is nondecreasing in $S \geqslant 0$, First note that $4+S_{1} \leqslant A+S_{1}+S_{2}$ in the sense of positive definiteness as $S_{2} \geqslant 0$. Thus the ordered eigenvalues of ($A+S_{1}+S_{2}$), say $\lambda_{1}, \ldots, \lambda_{p}$, satisfy $\lambda_{i} \geqslant \mu_{i}, i=1, \ldots, p$, where μ_{1}, \ldots, μ_{p} are the ordered eigenvalues of $A+S_{1}$. Thus $\operatorname{det}\left(A+S_{1}+S_{2}\right) \geqslant \operatorname{det}\left(A+S_{1}\right)$. This same argument solves (iv).
3. Since $\mathcal{E}\left(E \psi^{\prime} A^{\prime}\right)=\mathscr{E}\left(E A^{\prime}\right)$ for $\psi \in \mathcal{O}_{p}$, the distribution of $E A^{\prime}$ depends only on a maximal invariant under the action $A \rightarrow A \psi$ of ψ on $G l_{p}$. This maximal invariant is $A A^{\prime}$. (ii) is clear and (iii) follows since the reduction to canonical form is achieved via an orthogonal transformation $\tilde{Y}=\Gamma Y$ where $\Gamma \in \theta_{n}$. Thus $\tilde{Y}=\Gamma \mu+\Gamma E A^{\prime}$. Γ is chosen so $\Gamma \mu$ has the claimed form and H_{0} is $\tilde{B}_{1}=0$. Setting $\tilde{E}=\Gamma E$, the model has the claimed form and $\mathcal{L}(E)=\mathcal{E}(\tilde{E})$ by assumption. The arguments given in Section 9.1 show that the testing problem is invariant and a maximal invariant is the vector of the t largest eigenvalues of $Y_{1}\left(Y_{3}^{\prime} Y_{3}\right)^{-1} Y_{1}^{\prime}$. Under $H_{0}, Y_{1}=E_{1} A^{\prime}, Y_{3}=E_{3} A^{\prime}$ so $Y_{1}\left(Y_{3}^{\prime} Y_{3}\right)^{-1} Y_{1}^{\prime}=$ $E_{1}\left(E_{3}^{\prime} E_{3}\right)^{-1} E_{1}^{\prime} \equiv W$. When $\mathcal{L}(\Gamma E)=\mathcal{L}(E)$ for all $\Gamma \in \mathcal{O}_{n}$, write $E=$ ψU according to Proposition 7.3 where ψ and U are independent and ψ is uniform on $\mathscr{F}_{p, n}$. Partitioning ψ as E is partitioned, $E_{i}=\psi_{i} U$, $i=1,2,3$, so $W=\psi_{1} U\left(\left(\psi_{3} U\right)^{\prime} \psi_{3} U\right)^{-1} U^{\prime} \psi_{1}^{\prime}=\psi_{1}\left(\psi_{3}^{\prime} \psi_{3}\right)^{-1} \psi_{1}^{\prime}$. The rest is obvious as the distribution of W depends only on the distribution of ψ.
4. Use the independence of Y_{1} and Y_{3} and the fact that $\mathcal{E}\left(Y_{3}^{\prime} Y_{3}\right)^{-1}=(m$ $-p-1)^{-1} \Sigma^{-1}$.
5. Let $\Gamma \in \theta_{2}$ be given by

$$
\Gamma=(\sqrt{2})^{-1}\left(\begin{array}{rr}
1 & 1 \\
-1 & 1
\end{array}\right)
$$

and set $\tilde{Y}=Y \Gamma$. Then $\mathcal{L}(\tilde{Y})=N\left(Z B \Gamma, I_{n} \otimes \Gamma^{\prime} \Sigma \Gamma\right)$. Now, let $B \Gamma$ have columns β_{1} and β_{2}. Then H_{0} is that $\beta_{1}=0$. Also $\Gamma^{\prime} \Sigma \Gamma$ is diagonal with unknown diagonal elements. The results of Section 9.2 apply directly to yield the likelihood ratio test. A standard invariance argument shows the test is UMP invariant.
6. For (i), look at the i, j elements of the equation for Y. To show $M_{2} \perp M_{3}$, compute as follows: $\left\langle\alpha u_{2}^{\prime}, u_{1} \beta^{\prime}\right\rangle=\operatorname{tr} \alpha u_{2}^{\prime} \beta u_{1}^{\prime}=u_{2}^{\prime} \beta u_{1}^{\prime} \alpha=0$ from the side conditions on α and β. The remaining relations $M_{1} \perp M_{2}$ and $M_{1} \perp M_{2}$ are verified similarly. For (iii) consider $\left(I_{m} \otimes A\right)\left(\mu u_{1} u_{2}^{\prime}\right.$ $\left.+\alpha u_{2}^{\prime}+u_{1} \beta^{\prime}\right)=\mu u_{1}\left(A u_{2}\right)^{\prime}+\alpha\left(A u_{2}\right)^{\prime}+u_{1}(A \beta)^{\prime}=\mu \gamma u_{1} u_{2}^{\prime}+\gamma \alpha u_{2}^{\prime}$ $+\delta u_{1} \beta^{\prime} \in M$ where the relations $P u_{2}=u_{2}$ and $Q \beta=\beta$ when $u_{2}^{\prime} \beta=0$ have been used. This shows that M is invariant under each $I_{m} \otimes A$. It is now readily verified that $\hat{\mu}=\bar{Y}_{. .}, \hat{\alpha}_{i}=\hat{Y}_{i}-\bar{Y}_{. .}$and $\hat{\beta}_{j}=\hat{Y}_{. j}-\bar{Y}_{\text {.. }}$. For (iv), first note that the subspace $\omega=\{x \mid x \in M, \alpha=0\}$ defined by H_{0} is invariant under each $I_{m} \otimes A$. Obviously, $\omega=M_{1} \oplus M_{3}$. Consider the group whose elements are $g=(c, \Gamma, b)$ where c is a positive scalar, $b \in M_{1} \oplus M_{3}$, and Γ is an orthogonal transformation with invariant subspaces $M_{2}, M_{1} \oplus M_{3}$, and M^{\perp}. The testing problem is invariant under $x \rightarrow c \Gamma x+b$ and a maximal invariant is W (up to a set a measure zero). Since W has a noncentral F-distribution, the test that rejects for large values of W is UMP invariant.
7. (i) is clear. The column space of W is contained in the column space of Z and has dimension r. Let $x_{1}, \ldots, x_{r}, x_{r+1}, \ldots, x_{k}, x_{k+1}, \ldots, x_{n}$ be an orthonormal basis for R^{n} such that $\operatorname{span}\left\{x_{1}, \ldots, x_{r}\right\}=$ column space of W and $\operatorname{span}\left\{x_{1}, \ldots, x_{k}\right\}=$ column space of Z. Also, let y_{1}, \ldots, y_{p} be any orthonormal basis for R^{p}. Then $\left\{x_{i} \square y_{j} \mid i=1, \ldots\right.$, $r, j=1, \ldots, p\}$ is a basis for $\Re\left(P_{W} \otimes I_{p}\right)$, which has dimension $r p$. Obviously, $\Re\left(P_{W} \otimes I_{p}\right) \subseteq M$. Consider $x \in \omega$ so $x=Z B$ with $R B=0$. Thus $\left(P_{W} \otimes I_{p}\right) x=P_{W} Z B=W\left(W^{\prime} W\right)^{-1} W^{\prime} Z B=$ $W\left(W^{\prime} W\right)^{-1} R\left(Z^{\prime} Z\right)^{-1}(Z Z) B=W\left(W^{\prime} W\right)^{-1} R B=0$. Thus $\mathfrak{\Re}\left(P_{W} \otimes\right.$ $\left.I_{p}\right) \supseteq \omega$, which implies $\Re\left(P_{W} \otimes I_{p}\right) \subseteq \omega^{\perp}$. Hence $\Re\left(P_{W} \otimes I_{p}\right) \subseteq M$ $\cap \omega^{\perp}$. That $\operatorname{dim} \omega=(k-r) p$ can be shown by a reduction to canonical form as was done in Section 9.1. Since $\omega \subseteq M, \operatorname{dim}(M-\omega)$ $=\operatorname{dim} M-\operatorname{dim} \omega=r p$, which entails $\Re\left(P_{W} \otimes I_{p}\right)=M-\omega$. Hence $P_{Z} \otimes I_{p}-P_{W} \otimes I_{p}$ is the orthogonal projection onto ω.
8. Use the fact that $\Gamma \Sigma \Gamma$ is diagonal with diagonal entries $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{3}, \alpha_{2}$ (see Proposition 9.13 ff .) so the maximum likelihood estimators α_{1}, α_{2},
and α_{3} are easy to find-just transform the data by Γ. Let \hat{D} have diagonal entries $\hat{\alpha}_{1}, \hat{\alpha}_{2}, \hat{\alpha}_{3}, \hat{\alpha}_{3}, \hat{\alpha}_{2}$ so $\hat{\Sigma}=\Gamma \hat{D} \Gamma$ gives the maximum likelihood estimators of σ^{2}, ρ_{1}, and ρ_{2}.
9. Do the problems in the complex domain first to show that if Z_{1}, \ldots, Z_{n} are i.i.d. $\$ N(0,2 H)$, then $\hat{H}=(1 / 2 n) \sum_{1}^{n} Z_{j} Z_{j}^{*}$. But if $Z_{j}=U_{j}+i V_{j}$ and

$$
X_{j}=\binom{U_{j}}{V_{j}},
$$

then $\hat{H}=(1 / 2 n) \sum_{1}^{n}\left(U_{j}+i V_{j}\right)\left(U_{j}-i V_{j}\right)^{\prime}=(1 / 2 n)\left[\left(S_{11}+S_{22}\right)+\right.$ $\left.i\left(S_{12}-S_{21}\right)\right]$ so $\hat{\psi}=\{\hat{H}\}$. This gives the desired result.
10. Write $R=M\left(I_{r} 0\right) \Gamma$ where M is $r \times r$ of $\operatorname{rank} r$ and $\Gamma \in \mathcal{O}_{p}$. With $\delta=\Gamma \mu$, the null hypothesis is $\left(I_{r} 0\right) \delta=0$. Now, transform the data by Γ and proceed with the analysis as in the first testing problem considered in Section 9.6.
11. First write $P_{Z}=P_{1}+P_{2}$ where P_{1} is the orthogonal projection onto e and P_{2} is the orthogonal projection onto (column space of Z) \cap $\{\operatorname{span} e\}^{\perp}$. Thus $P_{M}=P_{1} \otimes I_{p}+P_{2} \otimes I_{p}$. Also, write $A(\rho)=\gamma P_{1}+$ δQ_{1} where $\gamma=1+(n-1) \rho, \delta=1-\rho$, and $Q_{1}=I_{n}-P_{1}$. The relations $P_{1} P_{2}=0=Q_{1} P_{1}$ and $P_{2} Q_{1}=Q_{1} P_{2}=P_{2}$ show that M is invariant under $A(\rho) \otimes \Sigma$ for each value of ρ and Σ. Write $Z B=e b_{1}^{\prime}+$ $\sum_{2}^{k} z_{j} b_{j}^{\prime}$ so $Q_{1} Y$ is $N\left(\sum_{2}^{k}\left(Q_{1} z_{j}\right) b_{j}^{\prime},\left(Q_{1} A(\rho) Q_{1}\right) \otimes \Sigma\right)$. Now, $Q_{1} A(\rho) Q_{1}=$ δQ_{1} so $Q_{1} Y$ is $N\left(\beta_{2}^{k}\left(Q_{1} z_{j}\right) b_{j}^{\prime}, \delta Q_{1} \otimes \Sigma\right)$. Also, $P_{1} Y$ is $N\left(e b_{1}^{\prime}, \gamma P_{1} \otimes \Sigma\right)$. Since hypotheses of the form $\dot{R} \dot{B}=0$ involve only b_{2}, \ldots, b_{p}, an invariance argument shows that invariant tests of H_{0} will not involve $P_{1} Y$-so just ignore $P_{1} Y$. But the model for $Q_{1} Y$ is of the MANOVA type; change coordinates so

$$
Q_{1}=\left(\begin{array}{cc}
I_{n-1} & 0 \\
0 & 0
\end{array}\right)
$$

Now, the null hypothesis is of the type discussed in Section 9.1.

CHAPTER 10

1. Part (i) is clear since the number of nonzero canonical correlations is always the rank of Σ_{12} in the partitioned covariance of $\{X, Y\}$. For (ii), write

$$
\operatorname{Cov}\langle\tilde{X}, \tilde{Y}\}=\left(\begin{array}{ll}
\Sigma_{11} & \Sigma_{12} \\
\Sigma_{21} & \Sigma_{22}
\end{array}\right)
$$

where Σ_{12} has rank t, and $\Sigma_{11}>0, \Sigma_{22}>0$. First, consider the case when $q \leqslant r, \Sigma_{11}=I_{q}, \Sigma_{22}=I_{r}$, and

$$
\Sigma_{12}=\left(\begin{array}{cc}
D & 0 \\
0 & 0
\end{array}\right)
$$

where $D>0$ is $t \times t$ and diagonal. Set

$$
A=\binom{D^{1 / 2}}{0}: q \times t, \quad B=\binom{D^{1 / 2}}{0}: r \times t
$$

so $A B^{\prime}=\Sigma_{12}$. Now, set $\Lambda_{11}=I_{q}-A A^{\prime}, \Lambda_{22}=I_{r}-B B^{\prime}$, and the problem is solved for this case. The general case is solved by using Proposition 5.7 to reduce the problem to the case above.
2. That $\Sigma_{12}=\delta e_{1} e_{2}^{\prime}$ for some $\delta \in R^{1}$ is clear, and hence Σ_{12} has rank one-hence at most one nonzero canonical correlation. It is the square root of the largest eigenvalue of $\Sigma_{11}^{-1} \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}=\delta^{2} \Sigma_{11}^{-1} e_{1} e_{2}^{\prime} \Sigma_{22}^{-1} e_{2} e_{1}^{\prime}$. The only nonzero (possibly) eigenvalue is $\delta^{2} e_{1}^{\prime} \Sigma_{11}^{-1} e_{1} e_{2}^{\prime} \Sigma_{22}^{-1} e_{2}$. To describe canonical coordinates, let

$$
\tilde{v}_{1}=\frac{\Sigma_{11}^{-1 / 2} e_{1}}{\left\|\Sigma_{11}^{-1 / 2} e_{1}\right\|}, \quad \tilde{w}_{1}=\frac{\Sigma_{22}^{-1 / 2} e_{2}}{\left\|\Sigma_{22}^{-1 / 2} e_{2}\right\|}
$$

and then form orthonormal bases $\left\{\tilde{v}_{1}, \tilde{v}_{2}, \ldots, \tilde{v}_{q}\right\}$ and $\left\{\tilde{w}_{1}, \ldots, \tilde{w}_{r}\right\}$ for R^{q} and R^{r}. Now, set $v_{i}=\Sigma_{11}^{-1 / 2} \tilde{v}_{i}, w_{j}=\Sigma_{22}^{-1 / 2} \tilde{w}_{j}$ for $i=1, \ldots, q$, $j=1, \ldots, r$. Then verify that $X_{i}=v_{i}^{\prime} X$ and $Y_{j}=w_{j}^{\prime} Y$ form a set of canonical coordinates for X and Y.
3. Part (i) follows immediately from Proposition 10.4 and the form of the covariance for $\{X, Y\}$. That $\delta(B)=\operatorname{tr} A(I-Q(B))$ is clear and the minimization of $\delta(B)$ follows from Proposition 1.44. To describe \hat{B}, let $\psi: p \times t$ have columns a_{1}, \ldots, a_{t} so $\psi^{\prime} \psi=I_{t}$ and $\hat{Q}=\psi \psi^{\prime}$. Then show directly that $\hat{B}=\psi^{\prime} \Sigma^{-1 / 2}$ is the minimizer and $\hat{C} \hat{B} X=\Sigma^{1 / 2} \hat{Q} \Sigma^{-1 / 2} X$ is the best predictor. (iii) is an immediate application of (ii).
4. Part (i) is easy. For (ii), with $u_{i}=x_{i}-a_{0}$,

$$
\begin{aligned}
\Delta\left(M, a_{0}\right) & =\sum_{1}^{n}\left\|x_{i}-\left(P\left(x_{i}-a_{0}\right)+a_{0}\right)\right\|^{2}=\sum_{1}^{n}\left\|u_{i}-P u_{i}\right\|^{2} \\
& =\sum_{1}^{n}\left\|Q u_{i}\right\|^{2}=\sum_{1}^{n} \operatorname{tr} Q u_{i} u_{i}^{\prime}=\operatorname{tr} Q \sum_{1}^{n} u_{i} u_{i}^{\prime}=\operatorname{tr} S\left(a_{0}\right) Q .
\end{aligned}
$$

Since $S\left(a_{0}\right)=S(\bar{x})+n\left(\bar{x}-a_{0}\right)\left(\bar{x}-a_{0}\right)^{\prime}$, (ii) follows. (iii) is an application of Proposition 1.44.
6. Part (i) follows from the singular value decomposition: For (ii), $\left\{x \in \mathcal{L}_{p, n} \mid x=\psi C, C \in \mathfrak{L}_{p, k}\right\}$ is a linear subspace of $\mathfrak{L}_{p, n}$ and the orthogonal projection onto this subspace is $\left(\psi \psi^{\prime}\right) \otimes I_{p}$. Thus the closest point to A is $\left(\left(\psi \psi^{\prime}\right) \otimes I\right) A=\psi \psi^{\prime} A$, and the C that achieves the minimum is $\hat{C}=\psi^{\prime} A$. For $B \in \mathscr{B}_{k}$, write $B=\psi C$ as in (i). Then

$$
\|A-B\|^{2} \geqslant \inf _{\psi} \inf _{C}\|A-\psi C\|^{2}=\inf _{\psi}\left\|A-\psi \psi^{\prime} A\right\|^{2}=\inf _{Q}\|A Q\|^{2}
$$

The last equality follows as each ψ determines a Q and conversely. Since $\|A Q\|^{2}=\operatorname{tr} A Q(A Q)^{\prime}=\operatorname{tr} A Q^{2} A^{\prime}=\operatorname{tr} Q A A^{\prime}$,

$$
\|A-B\|^{2} \geqslant \inf _{Q} \operatorname{tr} Q A A^{\prime}
$$

Writing $A=\sum_{P}^{p} \lambda_{i} u_{i} v_{i}^{\prime}$ (the singular value decomposition for A), $A A^{\prime}$ $=\sum_{1}^{p} \lambda_{i} u_{i} u_{i}^{\prime}$ is a spectral decomposition for $A A^{\prime}$. Using Proposition 1.44, it follows easily that

$$
\inf _{Q} \operatorname{tr} Q A A^{\prime}=\sum_{k+1}^{p} \lambda_{i}^{2}
$$

That \hat{B} achieves the infimum is a routine calculation.
7. From Proposition 10.8 , the density of W is

$$
h(w \mid \theta)=\int_{0}^{\infty} p_{n-2}\left(w \mid \theta u^{1 / 2}\right) f(u) d u
$$

where p_{n-2} is the density of a noncentral t distribution and f is the density of a χ_{n-1}^{2} distribution. For $\theta>0$, set $v=\theta u^{1 / 2}$ so

$$
h(w \mid \theta)=\frac{2}{\theta^{2}} \int_{0}^{\infty} p_{n-2}(w \mid v) f\left(\frac{v^{2}}{\theta^{2}}\right) v d v
$$

Since $p_{n-2}(w \mid v)$ has a monotone likelihood ratio in w and v and $f\left(v^{2} / \theta^{2}\right)$ has a monotone likelihood ratio in v and θ, Karlin's Lemma implies that $h(w \mid \theta)$ has a monotone likelihood ratio. For $\theta<0$, set $v=\theta u^{-1 / 2}$, change variables, and use Karlin's Lemma again. The last assertion is clear.
8. For U_{2} fixed, the conditional distribution of W given U_{2} can be described as the ratio of two independent random variables-the numerator has a $\chi_{r+2 K}^{2}$ distribution (given K) and K is Poisson with parameter $\Delta / 2$ where $\Delta=\rho^{2}\left(1-\rho^{2}\right)^{-1} U_{2}$ and the denominator is χ_{n-r-1}^{2}. Hence, given U_{2}, this ratio is $\mathscr{F}_{r+2 K, n-r-1}$ with K described above, so the conditional density of W is

$$
f_{1}\left(w \mid \rho, U_{2}\right)=\sum_{k=0}^{\infty} f_{r+2 k, n-r-1}(w) \psi\left(k \left\lvert\, \frac{\Delta}{2}\right.\right)
$$

where $\psi(\cdot \mid \Delta / 2)$ is the Poisson probability function. Integrating out U_{2} gives the unconditional density of W (at ρ). Thus it must be shown that $\mathcal{E}_{U_{2}} \psi(k \mid \Delta / 2)=h(k \mid \rho)$-this is a calculation. That $f(\cdot \mid \rho)$ has a monotone likelihood ratio is a direct application of Karlin's Lemma.
9. Let M be the range of P. Each $R \in \mathscr{P}_{s}$ can be represented as $R=\psi \psi^{\prime}$ where ψ is $n \times s, \psi^{\prime} \psi=I_{s}$, and $P \psi=0$. In other words, R corresponds to orthonormal vectors $\psi_{1}, \ldots, \psi_{s}$ (the columns of ψ) and these vectors are in M^{\perp} (of course, these vectors are not unique). But given any two such sets-say $\psi_{1}, \ldots, \psi_{s}$ and $\delta_{1}, \ldots, \delta_{s}$, there is a $\Gamma \in \mathcal{O}(P)$ such that $\Gamma \psi_{i}=\delta_{i}, i=1, \ldots, s$. This shows $\theta(P)$ is compact and acts transitively on \mathscr{P}_{s}, so there is a unique $\mathcal{O}(P)$ invariant probability distribution on \mathscr{P}_{s}. For (iii), $\Delta R_{0} \Delta^{\prime}$ has an $\mathcal{\theta}(P)$ invariant distribution on \mathscr{P}_{s}-uniqueness does the rest.
10. For (i), use Proposition 7.3 to write $Z=\psi U$ with probability one where ψ and U are independent, ψ is uniform on $\mathscr{F}_{p, n}$, and $U \in G_{U}^{+}$. Thus with probability one, $\operatorname{rank}(Q Z)=\operatorname{rank}(Q \psi)$. Let $S \geqslant 0$ be independent of ψ with $\mathcal{L}\left(S^{2}\right)=W\left(I_{p}, p, n\right)$ so S has rank p with probability one. Thus $\operatorname{rank}(Q \psi)=\operatorname{rank}(Q \psi S)$ with probability one. But ψS is $N\left(0, I_{n} \otimes I_{p}\right)$, which implies that $Q \psi S$ has rank p. Part (ii) is a direct application of Problem 9.
12. That ψ is uniform follows from the uniformity of Γ on Θ_{n}. For (ii), $\mathcal{L}(\psi)=\mathcal{L}\left(Z\left(Z^{\prime} Z\right)^{-1 / 2}\right)$ and $\Delta=\left(I_{k} 0\right) \psi$ implies that $\mathcal{L}(\psi)=$ $\mathcal{L}\left(X\left(X^{\prime} X+Y^{\prime} Y\right)^{-1}\right)$. (iii) is immediate from Problem 11, and (iv) is an application of Proposition 7.6. For (v), it suffices to show that $\int f(x) P_{1}(d x)=\int f(x) P_{2}(d x)$ for all bounded measurable f. The invariance of P_{i} implies that for $i=1,2, \int f(x) P_{i}(d x)=\int f(g x) P_{i}(d x)$, $g \in G$. Let ν be uniform probability measure on G and integrate the above to get $\int f(x) P_{i}(d x)=\int\left(\int_{G} f(g x) \nu(d g)\right) P_{i}(d x)$. But the function $x \rightarrow \int_{G} f(g x) \nu(d g)$ is G-invariant and so can be written $\hat{f}(\tau(x))$ as τ is a maximal invariant. Since $P_{1}\left(\tau^{-1}(C)\right)=P_{2}\left(\tau^{-1}(C)\right)$ for all measurable C, we have $\int k(\tau(x)) P_{1}(d x)=\int k(\tau(x)) P_{2}(d x)$ for all bounded
measurable k. Putting things together, we have $\int f(x) P_{1}(d x)=$ $\int \hat{f}(\tau(x)) P_{1}(d x)=\int \hat{f}(\tau(x)) P_{2}(d x)=\int f(x) P_{2}(d x)$ so $P_{1}=P_{2}$. Part (vi) is immediate from (v).
13. For (i), argue as in Example 4.4:

$$
\begin{aligned}
\operatorname{tr}(Z & -T B) \Sigma^{-1}(Z-T B)^{\prime} \\
& =\operatorname{tr}(Z-T \hat{B}+T(\hat{B}-B)) \Sigma^{-1}(Z-T \hat{B}+T(\hat{B}-B))^{\prime} \\
& =\operatorname{tr}(Q Z+T(\hat{B}-B)) \Sigma^{-1}(Q Z+T(\hat{B}-B))^{\prime} \\
& =\operatorname{tr}(Q Z) \Sigma^{-1}(Q Z)^{\prime}+\operatorname{tr} T(\hat{B}-B) \Sigma^{-1}(\hat{B}-B)^{\prime} T^{\prime} \\
& \geqslant \operatorname{tr}(Q Z) \Sigma^{-1}(Q Z)^{\prime}=\operatorname{tr} Z^{\prime} Q Z \Sigma^{-1} .
\end{aligned}
$$

The third equality follows from the relation $Q T=0$ as in the normal case. Since h is nonincreasing, this shows that for each $\Sigma>0$,

$$
\sup _{B} f(Z \mid B, \Sigma)=f(Z \mid \hat{B}, \Sigma)
$$

and it is obvious that $f(Z \mid \hat{B}, \Sigma)=|\Sigma|^{-n / 2} h\left(\operatorname{tr} S \Sigma^{-1}\right)$. For (ii), first note that $S>0$ with probability one. Then, for $S>0$,

$$
\begin{aligned}
\sup _{H_{1} \cup H_{0}} f(Z \mid B, \Sigma) & =\sup _{\Sigma>0} f(Z \mid \hat{B}, \Sigma) \\
& =\sup _{\Sigma>0}|\Sigma|^{-n / 2} h\left(\operatorname{tr} S \Sigma^{-1}\right) \\
& =|S|^{-n / 2} \sup _{C>0}|C|^{n / 2} h(\operatorname{tr} C)
\end{aligned}
$$

Under H_{0}, we have

$$
\begin{array}{rl}
\sup _{H_{0}} & f(Z \mid B, \Sigma) \\
& =\sup _{\Sigma_{i i}>0, i=1,2}\left|\Sigma_{11}\right|^{-n / 2}\left|\Sigma_{22}\right|^{-n / 2} h\left(\operatorname{tr} \Sigma_{11}^{-1} S_{1 i}+\operatorname{tr} \Sigma_{22}^{-1} S_{22}\right) \\
& =\left|S_{11}\right|^{-n / 2}\left|S_{22}\right|^{-n / 2} \sup _{C_{i i}>0, i=1,2}\left|C_{11}\right|^{n / 2}\left|C_{22}\right|^{n / 2} h\left(\operatorname{tr} C_{11}+\operatorname{tr} C_{22}\right) .
\end{array}
$$

This latter sup is bounded above by

$$
\sup _{C>0}|C|^{n / 2} h(\operatorname{tr} C) \equiv k
$$

which is finite by assumption. Hence the likelihood ratio test rejects for small values of $k_{1}\left|S_{11}\right|^{-n / 2}\left|S_{22}\right|^{-n / 2}|S|^{n / 2}$, which is equivalent to rejecting for small values of $\Lambda(Z)$. The identity of part (iii) follows from the equations relating the blocks of Σ to the blocks of Σ^{-1}. Partition B into $B_{1}: k \times q$ and $B_{2}: k \times r$ so $\mathcal{E} X=T B_{1}$ and $\mathcal{E} Y=T B_{2}$. Apply the identity with $U=X-T B_{1}$ and $V=Y-T B_{2}$ to give

$$
\begin{aligned}
f(Z \mid B, \Sigma)= & \left|\Sigma_{11}\right|^{-n / 2}\left|\Sigma_{22 \cdot 1}\right|^{-n / 2} \\
& \times h\left[\operatorname{tr}\left(Y-T B_{2}-\left(X-T B_{1}\right) \Sigma_{11}^{-1} \Sigma_{12}\right)\right. \\
& \times \Sigma_{22 \cdot 1}^{-1}\left(Y-T B_{2}-\left(X-T B_{1}\right) \Sigma_{11}^{-1} \Sigma_{12}\right)^{\prime} \\
& \left.+\operatorname{tr}\left(X-T B_{1}\right) \Sigma_{11}^{-1}\left(X-T B_{1}\right)^{\prime}\right]
\end{aligned}
$$

Using the notation of Section 10.5, write

$$
\begin{aligned}
f(X, Y \mid B, \Sigma)= & \left|\Sigma_{11}\right|^{-n / 2}\left|\Sigma_{22 \cdot 1}\right|^{-n / 2} \\
& \times h\left[\operatorname{tr}(Y-W C) \Sigma_{22 \cdot 1}^{-1}(Y-W C)^{\prime}\right. \\
& \left.+\operatorname{tr}\left(X-T B_{1}\right) \Sigma_{11}^{-1}\left(X-T B_{1}\right)^{\prime}\right]
\end{aligned}
$$

Hence the conditional density of Y given X is

$$
\begin{aligned}
& f_{1}\left(Y \mid C, B_{1}, \Sigma_{11}, \Sigma_{22 \cdot 1}, X\right) \\
& \quad=\left|\Sigma_{22 \cdot 1}\right|^{-n / 2} h\left(\operatorname{tr}(Y-W C) \Sigma_{22 \cdot 1}^{-1}(Y-W C)^{\prime}+\eta\right) \phi(\eta)
\end{aligned}
$$

where $\eta=\operatorname{tr}\left(X-T B_{1}\right) \Sigma_{11}^{-1}\left(X-T B_{1}\right)$ and $(\phi(\eta))^{-1}=\int_{\mathcal{E}_{r, n}} h\left(\operatorname{tr} u u^{\prime}+\right.$ $\eta) d u$. For (iv), argue as in (ii) and use the identities established in Proposition 10.17. Part (v) is easy, given the results of (iv)-just note that the sup over Σ_{11} and B_{1} is equal to the sup over $\eta>0$. Part (vi) is interesting-Proposition 10.13 is not applicable. Fix X, B_{1}, and Σ_{11} and note that under H_{0}, the conditional density of Y is

$$
\begin{aligned}
& f_{2}\left(Y \mid C_{2}, \Sigma_{22 \cdot 1}, \eta\right) \\
& \quad=\left|\Sigma_{22 \cdot \mid}\right|^{-n / 2} h\left(\operatorname{tr}\left(Y-T C_{2}\right) \Sigma_{22 \cdot 1}^{-1}\left(Y-T C_{2}\right)+\eta\right) \phi(\eta)
\end{aligned}
$$

This shows that Y has the same distribution (conditionally) as $\tilde{Y}=$
$T C_{2}+E \Sigma_{22 \cdot 1}^{1 / 2}$ where $E \in \mathcal{L}_{r, n}$ has density $h\left(\operatorname{tr} E E^{\prime}+\eta\right) \phi(\eta)$. Note that $\mathcal{L}(\Gamma E \Delta)=\mathcal{L}(E)$ for all $\Gamma \in \mathcal{O}_{n}$ and $\Delta \in \mathcal{O}_{r}$. Let $t=\min (q, r)$ and, given any $n \times n$ matrix A with real eigenvalues, let $\lambda(A)$ be the vector of the t largest eigenvalues of A. Thus the squares of the sample canonical correlations are the elements of the vector $\lambda\left(R_{Y} R_{X}\right)$ where $R_{Y}=(Q Y)\left(Y^{\prime} Q Y\right)^{-1}(Q Y), R_{X}=Q X\left(X^{\prime} Q X\right)^{-1} Q X$, since

$$
S=\left(\begin{array}{cc}
X^{\prime} Q X & X^{\prime} Q Y \\
Y^{\prime} Q X & Y^{\prime} Q Y
\end{array}\right)
$$

(You may want to look at the discussion preceding Proposition 10.5.) Now, we use Problem 9 and the notation there- $P=I-Q$. First, $R_{Y} \in \mathscr{P}_{r}, R_{X} \in \mathscr{P}_{q}$, and $\mathcal{O}(P)$ acts transitively on \mathscr{P}_{r} and \mathscr{P}_{q}. Under H_{0} (and X fixed), $\mathcal{L}(Q Y)=\mathcal{L}\left(Q E \Sigma_{22 \cdot 1}^{1 / 2}\right)$, which implies that $\mathcal{L}\left(\Gamma R_{Y} \Gamma^{\prime}\right)=$ $\mathcal{E}\left(R_{Y}\right), \Gamma \in O(P)$. Hence R_{Y} is uniform on \mathscr{P}_{r} for each X. Fix $R_{0} \in \Re_{q}$ and choose Γ_{0} so that $\Gamma_{0} R_{0} \Gamma_{0}^{\prime}=R_{X}$, Then, for each X,

$$
\begin{aligned}
\mathscr{L}\left(\lambda\left(R_{Y} R_{0}\right)\right) & =\mathfrak{L}\left(\lambda\left(\Gamma_{0} R_{Y} R_{0} \Gamma_{0}^{\prime}\right)\right)=\mathfrak{L}\left(\lambda\left(\Gamma_{0} R_{Y} \Gamma_{0}^{\prime} \Gamma_{0} R_{0} \Gamma_{0}^{\prime}\right)\right) \\
& =\mathfrak{L}\left(\lambda\left(\Gamma_{0} R_{Y} \Gamma_{0}^{\prime} R_{X}\right)=\mathscr{L}\left(\lambda\left(R_{Y} R_{X}\right)\right) .\right.
\end{aligned}
$$

This shows that for each $X, \lambda\left(R_{Y} R_{X}\right)$ has the same distribution as $\lambda\left(R_{Y} R_{0}\right)$ for R_{0} fixed where R_{Y} is uniform on \mathscr{P}_{r}. Since the distribution of $\lambda\left(R_{Y} R_{0}\right)$ does not depend on X and agrees with what we get in the normal case, the solution is complete.

