
First Applications 
of Invariance 

We now begin to reap some of the benefits of the labor of Chapter 6. The 
one unifying notion throughout this chapter is that of a group of transfor- 
mations acting on a space. Within thls framework independence and 
distributional properties of random vectors are discussed and a variety of 
structural problems are considered. In particular, invariant probability 
models are introduced and the invariance of likelihood ratio tests and 
maximum likelihood estimators is established. Further, maximal invariant 
statistics are discussed in detail. 

7.1. LEFT 0, INVARIANT DISTRIBUTIONS ON n X p MATRICES 

The main concern of this section is conditions under which the two matrices 
\k and U in the decomposition X = \kU (see Example 6.20) are stochasti- 
cally independent when X is a random n x p matrix. Before discussing this 
problem, a useful construction of the uniform distribution on %,,! is 
presented. Throughout this section, 5% denotes the space of n x p matnces 
of rank p so n > p. First, a technical result. 

Proposition 7.1. Let X E CP, have a normal distribution with mean zero 
and Cov( X) = I, @ I,. Then P( X E 5%) = 1 and the complement of 5% in 
C.,, has Lebesgue measure zero. 

Proof. Let XI,. . . , X, denote the p columns of X. Thus XI,. . . , Xp are 
independent random vectors in Rn and &(Xi) = N(0, I,), i = 1,. . . , p. It is 
shown that P(X E 5%") = 0. To say that X E 5%' is to say that, for some 
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Xi E span{'l j * i). 

Therefore. 

[& E span{X, j * i)]) 
i =  1 

P 
g CP{X, E span{X,l j * i)). 

1 

However, 4 is independent of the set of random vectors (X,l j # i)  and the 
probability of any subspace M of dimension less than n is zero. Since p g n, 
the subspace span ( $ 1  j * i) has dimension less than n. Thus conditioning 
on X, for j * i, we have 

P{X, E span{X,l j * i)) = &P{x~ E span{X,lj * i)lX,, j * i)  = 0. 

Hence P(X E Xc) = 0. Since Xc has probability zero under the normal 
distribution on C,, , and since the normal density function with respect to 
Lebesgue measure is strictly positive on Cp, ,, it follows the GXc has Lebesgue 
measure zero. 

If X E C,,, is a random vector that has a density with respect to 
Lebesgue measure, the previous result shows that P(X E X) = 1 since Xc 
has Lebesgue measure zero. In particular, if X E Cp,, has a normal distribu- 
tion with a nonsingular covariance, then P(X E GX) = 1, and we often 
restrict such normal distributions to GX in order to insure that X has rank p. 
For many of the results below, it is assumed that Xis a random vector in X, 
and in applications X is a random vector in %, ,,, which has been restricted 
to X after it has been verified that Xc has probability zero under the 
distribution of X. 

Proposition 7.2. Suppose X E X has a normal distribution with C(X) = 

N(0, I, @ I,). Let XI,. . . , X, be the columns of X and let \k E $, , be the 
random matrix whose p columns are obtained by applying the 
Gram-Schmidt orthogonalization procedure to XI,. . . , X,. Then \k has 
the uniform distribution on $, ,, that is, the distribution of \k is the unique 
probability measure on $, ,, that is invariant under the action of 8, on %, , 
(see Example 6.16). 
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Proof. Let Q be the probability distribution of \k of 5, ,. It must be 
verified that 

for all Bore1 sets B of %,,. If r E On, it is clear that C(TX) = C(X). Also, 
it is not difficult to venfy that \k, which we now write as a function of X, 
say *(X), satisfies 

This follows by loolung at the Gram-Schmidt Procedure, which defined the 
columns of 9. Thus 

for all r E 8,. The second equality above follows from the observation that 
C(X) = C(I'X). Hence Q is an 0,-invariant probability measure on %, , 
and the uniqueness of such a measure shows that Q is what was called the 
uniform distribution on $$,, ,. 

Now, consider the two spaces % and $$,, , X G:. Let + be the function on 
% to %, , X G: that maps X into the unique pair (*, U) such that 
X = 'kU. Obviously, $I-'(*, U) = \kU E %. 

Definition 7.1. If X E %is  a random vector with a distribution P ,  then P 
is left invariant under 0, if C(X) = C(TX) for all r E 0,. 

The remainder of this section is devoted to a characterization of the 
0,-left invariant distributions on %. It is shown that, if X E %has an 0,-left 
invariant distribution, then for +(X) = (\k, U) E $, x G:, \k and U are 
stochastically independent and \k has a uniform distribution on 3, ,. This 
assertion and its converse are given in the following proposition. 

Proposition 7.3. Suppose X E % is a random vector with an On-left in- 
variant distribution P and write (*, U) = +(X). Then \k and U are 
stochastically independent and \k has a uniform distribution on %,,. 
Conversely, if \k E 3, , and U E G: are independent and if \k has a 
uniform distribution on %, ,, then X = \kU has an 0,-left invariant distribu- 
tion on %. 
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Proof. The joint distribution Q of (q, U) is determined by 

where B, is a Borel subset of $,, and B, is a Borel subset of G:. Also, 

for any Borel measurable function that is integrable. The group 8, acts on 
the left of %,, X G: by 

r(*, U )  = (r*, U )  

and it is clear that 

+ ( r x )  = r + ( x )  for X E %, r E 8,. 

We now show that Q is invariant under this group action and apply 
Proposition 6.10. For r E O,, 

Therefore, Q is 8,-invariant and, by Proposition 6.10, Q is a product 
measure Q, X Q, where Q, is taken to be the uniform distribution on %, ,. 
That Q, is a probability measure is clear since Q is a probability measure. 
The first assertion has been established. For the converse, let Q, and Q, be 
the distributions of * and U so Q, is the uniform distribution on 5, and 
Q, x Q, is the joint distribution of ( 9 ,  U) in %, , X G:. The distribution P 
of X = \kU = +-I(*, U) is determined by the equation 

for all integrable f .  To show P is 6,-left invariant, it must be verified that 
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for all integrable f and r E 8,. But 

where the next to the last equality follows from the 8,-invariance of Ql. 
Thus P is 8,-left invariant. 

Whenp = 1, Proposition 7.3 is interesting. In this case % = Rn - (0) and 
the 0,-left invariant distributions on % are exactly the orthogonally in- 
variant distributions on Rn that have no probability at 0 € Rn. If X € Rn - 
(0) has an orthogonally invariant distribution, then + = X/llXll E 'TI,, is 
independent of U = 1 1  XI 1 and + has a uniform distribution on 'TI , , . 

There is an analogue of Proposition 7.3 for the decomposition of X E !X 
into (+, A) where \k E $, and A E Sp+ (see Proposition 5.5). 

Proposition 7.4. Suppose X E % is a random vector with an 0,-left in- 
variant distribution and write + ( X )  = (+, A) where + E %, n and A E S; 
are the unique matrices such that X = +A. Then + and A are independent 
and 9 has a uniform distribution on 3, ,. Conversely, if \k E $, , and 
A E $5; are independent and if \k has a uniform distribution on $, ., then 
X = +A has an 8,-left invariant distribution on 5%. 

ProoJ: The proof is essentially the same as that of Proposition 7.3 and is 
left to the reader. 

Thus far, it has been shown that if X E % has an 8,-left invariant 
distribution for X = +U, 'k and U are independent and + has a uniform 
distribution. However, nothing has been said about the distribution of 
U E GL. The next result gives the density function of U with respect to the 
right invariant measure 

in the case that X has a density of a special form. 
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Proposition 7.5. Suppose X E % has a distribution P given by a density 
function 

with respect to the measure 

on %. Then the density function of U (with respect to vr) in the representa- 
tion X = \kU is 

Prooj If X E %, U(X) denotes the unique element of G: such that 
X = \kU(X) for some \k E Tp, ,. To show go is the density function of U, it 
is sufficient to verify that 

for all integrable functions h.  Since X'X = U'(X)U(X), the results of 
Example 6.20 show that 

where c = 2p(&)"~w(n, p). Since go(U) = cf0(Uf U), go is the density 
of U. 

A similar argument gives the density of S = X'X. 

Proposition 7.6. Suppose X E % has distribution P given by a density 
function 

f0(X1X), X E  % 

with respect to the measure p. Then the density of S = X'X is 

go@) = ( m n P w ( n ,  p)fo(S) 



with respect to the measure 

Proof. With the notation S(X) = X'X, it is sufficient to verify that 

for all integrable functions h .  Combining the identities (6.4) and (6.5), we 
have 

where c = (&)"~w(n, p). Since go = cfo, the proof is complete. 

When X E % has the density assumed in Propositions 7.5 and 7.6, it is 
clear that the distribution of Xis On-left invariant. In this case, for X = \kU, 
\k and U are independent, + has a uniform distribution on $$, ., and U has 
the density given in Proposition 7.5. Thus the joint distribution of \k and U 
has been completely described. Similar remarks apply to the situation 
treated in Proposition '7.6. The reader has probably noticed that the 
distribution of S = X'X was derived rather than the distribution of A in the 
representation X = \kA for \k E $$, and A E 5;. Of course, S = SO A 
is the unique positive definite square root of S. The reason for giving the 
distribution of S rather than that of A is quite simple-the distribution of A 
is substantially more complicated than that of S and harder to derive. 

In the following example, we derive the distributions of U and S when 
X E % has a nonsingular On-left invariant normal distribution. 

+ Example 7.1. Suppose X E % has a normal distribution with a 
nonsingular covariance and also assume that C(X) = C(I'X) for all 
r E On. Thus &X = I'GX for all E On, which implies that GX = 0. 
Also, Cov(X) must satisfy Cov((r 8 Ip)X) = Cov(X) since C(X) 
= C((r 8 Ip)X). From Proposition 2.19, this implies that 

for some positive definite Z as Cov(X) is assumed to be nonsingu- 
lar. In summary, if X has a normal distribution in 5% that is 0,-left 
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invariant, then 

C(X)  = N(0, In 8 2 ) .  

Conversely, if X is normal with mean zero and Cov(X) = In 8 Z, 
then C(X) = C(rX)  for all r E 0,. Now that the On-left invariant 
normal distributions on % have been described, we turn to the 
distribution of S = X'X and U described in Propositions 7.5 and 
7.6. When C(X) = N(0, In 8 Z), the density function of X with 
respect to the measure p(dX) = ~ X / I X ' X ~ " / ~  is 

Therefore, the density of S with respect to the measure 

is given by 

 go(^) = w(n, p ) l ~ - ' ~ ~ n / 2 e x p [ -  tr Z-'S] 

according to Proposition 7.6. This density is called the Wishart 
density with parameters Z, p ,  and n. Here, p is the dimension of S 
and n is called the degrees of freedom. When S has such a density 
function, we write C(S) = W(Z, p, n), which is read "the distribu- 
tion of S is Wishart with parameters Z, p, and n." A slightly more 
general definition of the Wishart distribution is gven in the next 
chapter, where a thorough discussion of the Wishart distribution is 
presented. A direct application of Proposition 7.5 yields the density 

with respect to measure 

when X = \kU, \k E %, ., and U E GL . Here, the nonzero elements 
of U are u i j ,  1 < i < j < p. When Z = I,, g, becomes 
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In G:, the diagonal elements of U range between 0 and cc and the 
elements above the diagonal range between - cc and + cc. Writing 
the density above as 

we see that this density factors into a product of functions that are, 
when normalized by a constant, density functions. It is clear by 
inspection that 

C(ui,)= N(0,l)  f o r i < j .  

Further, a simple change of variable shows that 

Thus when Z = I,, the nonzero elements of U are independent, the 
elements above the diagonal are all N(0, l), and the square of the 
ith diagonal element has a chi-square distribution with n - i + 1 
degrees of freedom. T h s  result is sometimes useful for deriving the 
distribution of functions of S = U'U. + 

7.2. GROUPS ACTING ON SETS 

Suppose %is  a set and G is a group that acts on the left of % according to 
Definition 6.3. The group G defines a natural equivalence relation between 
elements of %-namely, write x, = x, if there exists a g E G such that 
x, = gx,. It is easy to check that = is in fact an equivalence relation. Thus 
the group G partitions the set % into disjoint equivalence classes, say 

where A is an index set and the equivalence classes %, are disjoint. For each 
x E X, the set {gxlg E G) is the orbit of x under the action of G. From the 
definition of the equivalence relation, it is clear that, if x E %,, then %, is 
just the orbit of x. Thus the decomposition of %into equivalence classes is 
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simply a decomposition of EX into disjoint orbits and two points are 
equivalent iff they are in the same orbit. 

Definition 7.2. Suppose G acts on the left of %. A function f on % to 9 is 
invariant if f ( x )  = f ( g x )  for all x E EX and g E G. The function f is 
maximal invariant i ff  is invariant and f ( x , )  = f ( x , )  implies that x ,  = gx, 
for some g E G. 

Obviously, f is invariant iff f is constant on each orbit in X. Also, f is 
maximal invariant iff it is constant on each orbit and takes different values 
on different orbits. 

Proposition 7.7. Suppose f maps EX onto 9 and f is maximal invariant. 
Then h, mapping % into 2,  is invariant iff h ( x )  = k ( f ( x ) )  for some 
function k mapping 9 into 2. 

Proot If h ( x )  = k (  f ( x ) ) ,  then h is invariant as f is invariant. Conversely, 
suppose h is invariant. Given y E 9, the set (XI f ( x )  = y }  is exactly one 
orbit in EX since f is maximal invariant. Let z E 2 be the value of h on this 
orbit ( h  is invariant), and define k ( y )  = z .  Obviously, k is well defined and 
k ( f ( x ) )  = h ( x ) .  

Proposition 7.7 is ordinarily paraphrased by saying that a function is 
invariant iff it is a function of a maximal invariant. Once a maximal 
invariant function has been constructed, then all the invariant functions are 
known-namely, they are functions of the maximal invariant function. If 
the group G acts transitively on %, then there is just one orbit and the only 
invariant functions are the constants. We now turn to some examples. 

+ Example 7.2. Let % = R n  - (0)  and let G = 8, act on EX as a 
group of matrices acts on a vector space. Given x E %, it is clear 
that the orbit of x is {ylllyll = Ilxll}. Let Sr = {xlllxll = r } ,  so 

is the decomposition of % into equivalence classes. The real number 
r > 0 indexes the orbits. That f ( x )  = llxll is a maximal invariant 
function follows from the invariance off and the fact that f takes a 
different value on each orbit. Thus a function is invariant under the 
action of G on 9C iff it is a function of Ilxll. Now, consider the space 
S ,  x (0 ,  w )  and define the function C#I on 9C to S ,  X (0 ,  co) by 
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+(x) = (x/llxll, llxll). Obviously, + is one-to-one, onto, and 
+-'(u, r )  = ru for ( u ,  r)  E S, X (0, a ) .  Further, the group action 
on 5% corresponds to the group action on S, x (0, co) gven by 

( u ,  r )  = ( u ,  r )  r E On.  

In other words, +(rx)  = r+(x) so + is an equivariant function (see 
Definition 6.14). Since 0, acts transitively on S,, a function h on 
S, x (0, co) is invariant iff h(u, r )  does not depend on u. For this 
example, the space % has been mapped onto S, x (0, co) by + so 
that the group action on % corresponds to a special group action on 
S, x (0, a)--namely, 0, acts transitively on S, and is the identity 
on (0, co). The whole point of introducing S, x (0, co) is that the 
function ho(u, r )  = r is obviously a maximal invariant function due 
to the special way in which 0, acts on S, x (0, a ) .  To say it another 
way, the orbits in S, x (0, co) are S, x (r), r > 0, so the product 
space structure provides a convenient way to index the orbits and 
hence to give a maximal invariant function. This type of product 
space structure occurs in many other examples. + 

The following example provides a useful generalization of the example 
above. 

+ Example 7.3. Suppose % is the space of all n x p matrices of rank 
p, p d n.  Then On acts on the left of %by matrix multiplication. The 
first claim is that fo(X) = X'X is a maximal invariant function. 
That fo is invariant is clear, so assume that fo(X,) = f,(X,). Thus 
X;X, = X;X, and, by Proposition 1.31, there exists a r E 8, such 
that rX, = X,. This proves that fo is a maximal invariant. Now, the 
question is: where did fo come from? To answer this question, recall 
that each X E % has a unique representation as X = \kA where 
\k E %, and A E 5;. Let + denote the map that sends X into the 
pair (\k, A) E % , n  X Sp+ such that X = *A. The group 8, acts on 
5, n X Sp+ by 

and + satisfies 

It is clear that ho(\kA) = A is a maximal invariant function on 
%, X 5; under the action of 8, since 8, acts transitively on %, .. 
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Also, the orbits in %, , x S; are 5$,, , x {A) for A E S; . It follows 
immediately from the equivariance of 4 that 

are the orbits in % under the action of 8,. Thus we have a 
convenient indexing of the orbits in % given by A. A maximal 
invariant function on % must be a one-to-one function of an orbit 
index-namely, A E SJ. However, fo(X) = X'X = A2 when 

X E  { X J X =  *A, for some* E 5$,,,). 

Since A is the unique positive definite square root of A2 = X'X, we 
have explicitly shown why fo is a one-to-one function of the orbit 
index A. A similar orbit indexing in % can be given by elements 
U E G: by representing each X E % as X = *U, \k E Tp, ,, and 
U E G:. The details of this are left to the reader. + 

+ Example 7.4. In this example, the set % is (RP - (0)) X S; . The 
group GIp acts on the left of % in the following manner: 

for (y, S )  E % and A E G1,. A useful method for finding a maxi- 
mal invariant function is to consider a point (y, S )  E GX and then 
"reduce" (y, S )  to a convenient representative in the orbit of 
(y, S). The orbit of (y, S)  is {A( y, S)I A E G1,). To reduce a given 
point (y, S )  by A E GIp, first choose A = I'S-'/2 where E OP 
and S-1/2 is the inverse of the positive definite square root of S.  
Then 

and 

A(y,  S )  = ( r ~ - ' / ~ ~ ,  I ) ,  

which is in the orbit of (y, S). Since S-'/2y and IIS-1/2yllel have 
the same length (E; = (1,0,. . . , O)), we can choose r E fIp such that 

Therefore, for each (y, S )  E %, the point 
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is in the orbit of (y, S). Let 

The above reduction argument suggests, but does not prove, that f, 
is maximal invariant. However, the reduction argument does pro- 
vide a method for checlung that f, is maximal invariant. First, f, is 
invariant. To show f, is maximal invariant, iffo(yl, S,)  = f0(y2, S,), 
we must show there exists an A E GI, such that A(y,, S,)  = (y,, S,). 
From the reduction argument, there exists A, E G1, such that 

11S,'/~~,ll = lIs;1/2~211 

and this shows that 

AI(YI, Sl) = A 2 ( ~ 2 ,  S2) 

Setting A = AT'A,, we see that A(y,, S,)  = (y,, S,) so fo is maxi- 
mal invariant. As in the previous two examples, it is possible to 
represent % as a product space where a maximal invariant is 
obvious. Let 

9 = {(u, S)lu E R p ,  S E S+ P .  , u f S ' u  = 1). 

Then GI, acts on the left of 9 by 

A(u, S )  = (Au, ASA'). 

The reduction argument used above shows that the action of GI, is 
transitive on 9. Consider the map C$ from %to  % X (0, co) given by 

The group action of GI, on 9 X (0, co) is 
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and a maximal invariant function is 

since GIp is transitive on 9. Clearly, + is a one-to-one onto function 
and satisfies 

Thus f , (+(x, S)) = X'S- 'x is maximal invariant. + 
In the three examples above, the space X has been represented as a 

product space 9 x Q in such a way that the group action on X corresponds 
to a group action on '24 X %--namely, 

and G acts transitively on 9. Thus it is obvious that 

is maximal invariant for G acting on 9 X Q. However, the correspondence 
cp, a one-to-one onto mapping, satisfies 

~ ( ~ x )  = g+(x) for g E G, x E X. 

The conclusion is that f,(cp(x)) is a maximal invariant function on 5%. A 
direct proof in the present generality is easy. Since 

f,(cp(x)) is invariant. If f,(+(x,)) = fl(+(x2)), then there is a g E G such 
that g+(x,) = +(x,) since f ,  is maximal invariant on 9 X %. But g+(x,) = 

+(gx,) = +(x,), so gx, = x, as cp is one-to-one. Thus f,(cp(x)) is maximal 
invariant. In the next example, a maximal invariant function is easily found 
but the product space representation in the form just discussed is not 
available. 

+ Example 7.5. The group Op acts on 5; by 

A maximal invariant function is easily found using a reduction 
argument similar to that given in Example 7.4. From the spectral 
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theorem for matrices, every S E S; can be written in the form 
S = r , D r ;  where TI E Op and D is a diagonal matrix whose diag- 
onal elements are the ordered eigenvalues of S, say 

Thus r;Sr, = D, which shows that D is in the orbit of S. Let fo on 
S; to RP be defined by: fo(S) is the vector of ordered eigenvalues 
of S. Obviously, f, is Op-invariant and, to show fo is maximal 
invariant, suppose fo(S,) = f0(S2). Then S, and S2 have the same 
eigenvalues and we have 

where D is the diagonal matrix of eigenvalues of Si, i = 1,2. Thus 
r2r;Sl(r2r;) '  = S2, SO fO is maximal invariant. To describe the 
technical difficulty when we try to write S,f as a product space, first 
consider the case p = 2. Then S: = X I  U %, where 

and 

That 0, acts on both %, and %, is clear. The function +, defined 
on X I  by +,(S) = X,(S) E (0, oo) is maximal invariant and +, 
establishes a one-to-one correspondence between %, and (0, 03). 
For %,, define +, by 

so +2 is a maximal invariant function and takes values in the set 9 
of all 2 X 2 diagonal matrices with diagonal elements y, and y,, 
y, > y2 > 0. Let 9, be the subgroup of 8, consisting of those 
diagonal matrices with rt 1 for each diagonal element. The argu- 
ment given in Example 6.21 shows that the mapping constructed 
there establishes a one-to-one onto correspondence between %, and 
(8,/9,) x 9 ,  and 0, acts on (8,/9,) x '3 by 
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Further, + satisfies 

Thus for p = 2, S: has been decomposed into GX, and %,, whch 
are both invariant under 8,. The action of 8, on X I  is trivial in that 
Tx = x for all x E GX, and a maximal invariant function on GX, is 
the identity function. Also, %, was decomposed into a product 
space where 8, acted transitively on the first component of the 
product space and trivially on the second component. From ths  
decomposition, a maximal invariant function was obvious. Similar 
decompositions for p > 2 can be given for S;, but the number of 
component spaces increases. For example, when p = 3, let A,(S) > 
A, (S) >, A, (S) denote the ordered eigenvalues of S E 5:. The 
relevant decomposition for S: is 

where 

Each of the four components is acted on by 8, and can be written as 
a product space with the structure described previously. The details 
of this are left to the reader. In some situations, it is sufficient to 
consider the subset % of S; where 

The argument given in Example 6.21 shows how to write % as a 
product space so that a maximal invariant function is obvious under 
the action of Op on Z. + 

Further examples of maximal invariants are given as the need arises. We 
end this section with a brief discussion of equivariant functions. Recall (see 
Definition 6.14) that a function + on % onto 9 is called equivariant if 
+(gx) = g+(x) where G acts on %, G acts on 9, and G is a homomorphic 
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image of G. If G = (2) consists only of the identity, then equivariant 
functions are invariant under G. In thls case, we have a complete descrip- 
tion of all the equivariant functions-namely, a function is equivariant iff it 
is a function of a maximal invariant function on %. In the general case 
when G is not the trivial group, a useful description of all the equivariant 
functions appears to be rather difficult. However, there is one special case 
when the equivariant functions can be characterized. 

Assume that G acts transitively on % and G acts transitively on 9, where 
G is a homomorphic image of G. Fix xo E % and let 

The subgroup Ho of G is called the isotropy subgroup of x,. Also, fix yo E 9 
and let 

be the isotropy subgroup of yo. 

Proposition 7.8. In order that there exist an equivariant function + on % to 
% such that + ( x o )  =yo ,  it is necessary and sufficient that & G KO. Here 
4 c G is the image of Ho under the given homomorphism. 

Proof First, suppose that + is equivariant and satisfies + ( x o )  = yo. Then, 
for g E Ho, 

so g E KO. Thus Ro c KO. Conversely, suppose that G K,. For x E %, 
the transitivity of G on % implies that x = gx, for some-g. ~ e f i n e  + on % to 
9 by 

+ ( x )  = gyo where x = gxo. 

It must be shown that is well defined and is equivariant. If x = g,xo = - 
g2xo,  then g; 'g, E Ho so g; 'g,  E KO. Thus 

since 
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Therefore + is well defined and is onto 9 since G acts transitively on 9. 
That 4 is equivariant is easily checked. 

The proof of Proposition 7.8 shows that an equivariant function is 
determined by its value at one point when G  acts transitively on 96. More 
precisely, if +, and +, are equivariant functions on % such that + , ( x , )  = 

+ , ( x , )  for some x ,  E %, then + , ( x )  = + , ( x )  for all x.  To see thls, write 
x  = gx, so 

Thus to characterize all the equivariant functions, it is sufficient to de- 
termine the possible values of + ( x , )  for some fixed x ,  E %. The following 
example illustrates these ideas. 

+ Example 7.6. Suppose % = 9 = 5; and G = G = GI where the 
homomorphism is the identity. The action of GIp on s ip is  

To characterize the equivariant functions, pick x ,  = I, E S;. An 
equivariant function + must satisfy 

for all r E Op.  By Proposition 2.13, a matrix + ( I p )  satisfies this 
equation iff $ ( I p )  = kIp for some real constant k .  Since + ( I p )  E S;, 
k  > 0. Thus 

and for S  E S;, 

Therefore, every equivariant function has the form + ( S )  = kS for 
some k > 0. + 

Further applications of the above ideas occur in the following sections 
after it is shown that, under certain conditions, maximum likelihood estima- 
tors are equivariant functions. 
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7.3. INVARIANT PROBABILITY MODELS 

Invariant probability models provide the mathematical framework in which 
the connection between statistical problems and invariance can be studied. 
Suppose (%, 3)  is a measurable space and G is a group of transformations 
acting on X such that each g E G is a one-to-one onto measurable function 
from % to 5%. If P is a probability measure on ( O X ,  3) and g E G, the 
probability measure gP on (%, 3 )  is defined by 

It is easily verified that ( g l g 2 ) P  = g , (g ,P)  so the group G acts on the space 
of all probability measures defined on (X, 3). 

Definition 7.3. Let 9 be a set of probability measures defined on (%, 3). 
The set 9 is invariant under G if for each P E 9, gP E 9 for all g f G. Sets 
of probability measures 9 are called probability models, and when 9 is 
invariant under G, we speak of a G-invariant probability model. 

If X E X is a random vector with C ( X )  = P ,  then C ( g X )  = gP for 
g E G since 

Thus 9 is invariant under G iff whenever C ( X )  E 9 ,  C ( g X )  E 9 for all 
g E G. 

There are a variety of ways to construct invariant probability models 
from other invariant probability models. For example, if Ta, a E A, are 
G-invariant probability models, it is clear that 

U Ta and (7 
a € A  a € A  

are both G-invariant. Now, given (%, 3) and a G-invariant probability 
model 9, form the product space 

%'"'= G X X  % x  . . .  x % 

and the product a-algebra a ( " )  on %("I. For P E 9 ,  define P ( " )  on a ( " )  by 
first defining 
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where B, E 3; Once P(")  is defined on sets of the form B ,  x - . . x B,, its 
extension to %(") is unique. Also, define G acting on %(" by 

for x = ( x , , .  . . , x,) E %("). 

Proposition 7.9. Let 9 ( " )  = {P(") lP  E 9). Then 9 ( " )  is a G-invariant 
probability model on (%("), a(")) when 9 is G-invariant. 

Proof: It must be shown that gP(") E T ( " )  for g E G and P(")  E 9 ( " ) .  
However, P(")  is the product measure 

P ( " ' = P ~  P X  a . 3  X P ;  P E T  

and P(")  is determined by its values on sets of the form B ,  x - . . x B,. But 

where the first equality follows from the definition of the action of G on 
EX("). Then g ~ ( " )  is the product measure 

which is in 9(") as gP E 9. 

For an application of Proposition 7.9, suppose Xis a random vector with 
C(X) E 9 where 9 is a G-invariant probability model on %. If XI,. . . , X, 
are independent and identically distributed with C(Xi) E 9, then the ran- 
dom vector 

Y =  (XI,  ..., X,) E %(") 

has distribution P(")  E 9 ( " )  when C(Xi) = P, i = 1 , .  . . , n. Thus 9 ( " )  is a 
G-invariant probability model for Y. 

In most applications, probability models 9 are described in the form 
9 = { PB 18 E 8 )  where 8 is a parameter and O is the parameter space. When 
discussing indexed families of probability measures, the term "parameter 
space" is used only in the case that the indexing is one-to-one-that is, 
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POI = PO2 implies that 8 ,  = 8,. Now, suppose 9 = { P B ) 8  E O) is G-invariant. 
Then for each g E G and 8 E O, gP, E 9, so gP, = Po, for some unique 
8' E O. Define a function g on 6) to O by 

In other words, g8 is the unique point in O that satisfies the above equation. 

Proposition 7.10. Each g is a one-to-one onto function from O to O. Let 
G = { g l g  E G). Then G is a group under the group operation of function 
composition and the mapping g -* g is a group homomorphism from G to 
G, that is: 

ProoJ: To show that g is one-to-one, suppose go, = g8,. Then 

which implies that Pol = Po so 8 = 8,. The verification that g is onto goes 
2 1 

as follows. If 8 E O, let 8' = g- '8 .  Then 

so go' = 8 .  Equations (i) and (ii) follow by calculations similar to those 
above. This shows that G is the homomorphic image of G and G is a group. 

An important special case of a G-invariant parametric model is the 
following. Suppose G acts on (%, 91) and assume that v is a o-finite measure 
on (%, 3 )  that is relatively invariant with multiplier X, that is, 

for all integrable functions f .  Assume that 9 = {Pole E O) is a parametric 
model and 

for all measurable sets B. Thusp(.le) is a density for P, with respect to v. If 
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9 is G-invariant, then 

gP,=P,, f o r g € G , B ~ O .  

Therefore, 

for all measurable sets B. Thus the density p must satisfy 

x(g- ' )p(g- 'xle)  = P(xIEe) a-e. ( 4  

or, equivalently, 

~ ( ~ 1 8 )  = P(gxlEe)x(g) a.e. ( 4 .  

It should be noted that the null set where the above equality does not hold 
may depend on both 8 and g. However, in most applications, a version of 
the density is available so the above equality is valid everywhere. Thls leads 
to the following definition. 

Definition 7.4. The family of densities (p(-le)le E O} with respect to the 
relatively invariant measure v with multiplier x is (G - G)-invariant if 

~ ( x l e )  = P(gxlse)x(g)  

for all x, 8, and g. 

It is clear that if a family of densities is (G - G)-invariant where G is a 
homomorphic image of G that acts on O, then the family of probability 
measures defined by these densities is a G-invariant probability model. A 
few examples illustrate these notions. 
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+ Example 7.7. Let % = Rn and suppose f(11~)1~) is a density with 
respect to Lebesgue measure on Rn. For p E Rn and 2: E S;, set 

For each p and Z, p(.lp, 2:) is a density on Rn. The affine group Al, 
acts on Rn by (A, b)x = Ax + b and Lebesgue measure is relatively 
invariant with multiplier 

where (A, b) E Al,. Consider the parameter space Rn x S; and the 
family of densities 

The group Al, acts on the parameter space Rn X S; by 

(A, b)(p, 2:)  = (Ap + b, A2:Ar). 

It is now verified that the family of densities above is (G - G)- 
invariant where G = G = Al,. For (A, b) E Al,, 

Therefore, the parametric model determined by the family of densi- 
ties is Al,-invariant. + 

A useful method for generating a G-invariant probability model on a 
measurable space (%, 3 )  is to consider a fixed probability measure Po on 
(%, 3 )  and set 

9 = {gPolg E G). 

Obviously, 9 is G-invariant. However, in many situations, the group G does 
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not serve as a parameter space for 9' since g, Po = g2 Po does not necessarily 
imply that g, = g , .  For example, consider % = Rn and let Po be given by 

where f(11~11~) is the density on Rn of Example 7.7. Also, let G = Al,. To 
obtain the density of gPo, suppose X is a random vector with C(X) = Po. 
For g = (A, b) E Al,, (A, b)X = AX + b has a density given by 

p(xlb, AA') = ~ d e t ( ~ ~ ' ) ~ - ' / ~ f ( ( x  - ~) ' (AA' ) - ' (x  - b)) 

and this is the density of (A, b)Po. Thus the parameter space for 

is Rn x S;. Of course, the reason that Al, is not a parameter space for 9 is 
that 

for all n x n orthogonal matrices r. In other words, Po is an orthogonally 
invariant probability on Rn. 

Some of the linear models introduced in Chapter 4 provide interesting 
examples of parametric models that are generated by groups of transforma- 
tions. 

4 Example 7.8. Consider an inner product space (V, [. , -1) and let Po 
be a probability measure on V so that if C ( X) = Po, then GX = 0 
and Cov(X) = I. Given a subspace M of V, form the group G 
whose elements consist of pairs (a, x)  with a > 0 and x E M. The 
group operation is 

The probability model 9' = {gPolg E G) consists of all the distri- 
butions of (a, x ) X  = a x  + x where C(X) = Po. Clearly, 

G ( a X + x ) = x  and C o v ( a X + x ) = a 2 1 .  

Therefore, if C(Y) E 9, then GY E M and Cov(Y) = a21  for some 
a 2  > 0, so 9' is a linear model for Y. For this particular example the 
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group G is a parameter space for 9. This linear model is generated 
by G in the sense that 9 is obtained by transforming a fixed 
probability measure Po by elements of G. + 

An argument similar to that in Example 7.8 shows that the multivariate 
linear model introduced in Example 4.4 is also generated by a group of 
transformations. 

+ Example 7.9. Let C,, , be the linear space of real n x p matrices 
with the usual inner product ( , .) on C,,,. Assume that Po is a 
probability measure on C,,, so that, if C(X) = Po, then GX = 0 
and Cov(X) = I, 8 I,. To define a regression subspace M, let Z be 
a fixed n x k real matrix and set 

Obviously, M is a subspace of gp, ,. Consider the group G whose 
elements are pairs (A, y) with A E GI, and y E M. Then G acts on 
'p, n by 

(A, y)x  = xA' + y = (I, 8 A)x + y, 

and the group operation is 

The probability model 9 = (gPolg E G) consists of the distribu- 
tions of (A, y )X = (I, 8 A)X + y where C(X) = Po. Since 

and 

Cov((1, 8 A)X + y )  = I, 8 AA', 

if C(Y) E 9 ,  then GY E M and Cov(Y) = I, 8 2 for some p x p 
positive definite matrix 2.  Thus 9 is a multivariate linear model as 
described in Example 4.4. If p > 1, the group G is not a parameter 
space for 9 ,  but G does generate 9 .  + 

Most of the probability models discussed in later chapters are examples 
of probability models generated by groups of transformations. Thus these 
models are G-invariant and this invariance can be used in a variety of ways. 
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First, invariance can be used to give easy derivations of maximum likeli- 
hood estimators and to suggest test statistics in some situations. In addition, 
distributional and independence properties of certain statistics are often 
best explained in terms of invariance. 

7.4. THE INVARIANCE OF LIKELIHOOD METHODS 

In this section, it is shown that under certain conditions maximum likeli- 
hood estimators are equivariant functions and likelihood ratio tests are 
invariant functions. Throughout this section, G is a group of transforma- 
tions that act measurably on (GX, 91) and v is a o-finite relatively invariant 
measure on (GX, 91) with multiplier X. Suppose that 9 = {P,(B E O) is a 
G-invariant parametric model such that each Po has a density p(.le), which 
satisfies 

for all x E %, 8 E 0, and g E G. The group G = {glg E G) is the homo- 
morphic image of G described in Proposition 7.10. In the present context, a 
point estimator of 0, say t ,  mapping %into O, is equivariant (see Definition 
6.14) if 

Proposition 7.11. Given the (G - G)-invariant family of densities 
(p(.le)lO E O), assume there exists a unique function 8 mapping % into O 
that satisfies 

Then 8 is an equivariant function-that is, 

Proof. By assumption, 8(gx) is the unique point in 0 that satisfies 

But 
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SO 

= x(g- ' )P(xle(x))  = p ( g x l d ( x ) ) .  

Thus 

and, by the uniqueness assumption, 

Of course, the estimator d(x) whose existence and uniqueness is assumed 
in Proposition 7.11 is the maximum likelihood estimator of 8. That 8 is an 
equivariant function is useful information about the maximum likelihood 
estimator, but the above result does not indicate how to use invariance to 
find the maximum likelihood estimator. The next result rectifies this situa- 
tion. 

Proposition 7.12. Let {p(.le)l8 E @} be a (G  - G)-invariant family of 
densities on (%, 93). Fix a point xo E % and let Oxo be the orbit of x,. 
Assume that 

and that 8, is unique. For x E Q0, define e(x) by 

d(x) = gx8, where x = gxxo. 

Then e is well defined on Fxo and satisfies 

(i) &gx) = &x), x E Oxo. 
( 4  s u ~ e , e ~ ( x l e )  = P ( x I ~ ( x ) ) ,  x E oxo. 

Furthermore, 9 is unique. 

Proof. The density p (. 18) satisfies 
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where x is a multiplier on G. To show 8 is well defined on Qo, it must be - 
verified that if x  = gxxo = h x x o ,  then gxeo = hxOO. Set k = so k x ,  = 

x ,  and we need to show that kB, = 8,. But 

By the uniqueness assumption, kB, = 8, so 8 is well defined on Oxo. To 
establish (i), if x  = gxxo ,  then gx = ( g g x ) x o  so 

For (ii), x  = gxxo so 

To establish the uniqueness of 8, fix x  E Oxo and consider 8 ,  * &B,. Then 

The strict inequality follows from the uniqueness assumption concerning 8,. 

In applications, Proposition 7.12 is used as follows. From each orbit in 
the sample space %, we pick a convenient point x ,  and show that p ( x , l e )  is 
uniquely maximized at 8,. Then for other points x  in this orbit, write 
x  = g,x, and set 8 ( x )  = gxBo. The function 8 is then the maximum likeli- 
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hood estimator of 8 and is equivariant. In some si-tuations, there is only one 
orbit in % SO this method is relatively easy to apply. 

+ Example 7.10. Consider % = 0 = S; and let 

for S E S; and Z E $5;. The constant w(n, p), n 2 p, was defined 
in Example 5.1. That p(  . IZ) is a density with respect to the measure 

follows from Example 5.1. The group GIp acts on S; by 

A ( S )  = ASA' 

for A E G1, and S E S; and the measure v is invariant. Also, it is 
clear that the density p(.IZ) satisfies 

To find the maximum likelihood estimator of Z E S; , we apply the 
technique described above. Consider the point I, E S; and note 
that the orbit of I, under the action of GIp is S; so in this case there 
is only one orbit. Thus to apply Proposition 7.12, it must be verified 
that 

sup P ( I ~ I ~ )  = p(~,lZo) 
xss ;  

where Zo is unique. Taking the logarithm of p(IplZ) and ignoring 
the constant term, we have 

n 
= sup [z: loghi - 

A , > O  1 

where A,,. . . , A, are the eigenvalues of B = 2-' E S;. However, 
for A > 0, nlog A - X is a strictly concave function of A and is 
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uniquely maximized at X = n. Thus the function 

is uniquely maximized at A, = . - = A, = n, which means that 

n 1 
- loglBl - - t rB  2 2 

is uniquely maximized at B = nI. Therefore, 

and (l/n)I, is the unique point in S; that achieves this supremum. 
To find the maximum likelihood estimator of Z, say f ( S ) ,  write 
S = AA' for A E GI,. Then 

In summary, 

is the unique maximum likelihood estimator of Z and 

- 1 "/2 

= a n ,  S )  4 exp[- t r ( : ~ ) - ' ~ ]  

The results of this example are used later to derive the maximum 
likelihood estimator of a covariance matrix in a variety of multi- 
variate normal models. + 

We now turn to the invariance of likelihood ratio tests. First, invariant 
testing problems need to be defined. Let 9' = {P,Id E O) be a parametric 
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probability model on (%, 3 )  and suppose that G acts measurably on %. 
Let 0, and 0, be two disjoint subsets of 0. On the basis of an observation 
vector X E % with C(X) E 9, U 9, where 

suppose it is desired to test the hypothesis 

H, : C(X) E 9, 

against the alternative 

H,  : C(X) E 9 , .  

Definition 7.5. The above hypothesis testing problem is invariant under G 
if 9, and 9, are both G-invariant probability models. 

Now suppose that 9, = {Pole E 0,) and 9, = (PB(8 E 0 , )  are disjoint 
families of probability measures on (%, 9) such that each P has a density 
p(.10) with respect to a a-finite measure v. Consider 

For testing the null hypothesis that C(X) E 9, versus the alternative that 
C(X) E 9 , ,  the test that rejects the null hypothesis iff A(x) < k ,  where k is 
chosen to control the level of the test, is commonly called the likelihood ratio 
test. 

Proposition 7.13. Given the family of densities {p(.le)le E 0, U o, ) ,  
assume the testing problem for C(X) E 9, versus C(X) E 9, is invariant 
under a group G and suppose that 

for some multiplier X. Then the likelihood ratio 

is an invariant function. 
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Proot It must be shown that A(x) = A(gx) for x E % and g E G. For 
g E G, 

The next to the last equality follows from the positivity of x and the 
invariance of 0, and 0, U O , . 

For invariant testing problems, Proposition 7.13 shows that that test 
function determined by A, namely 

is an invariant function. More generally, any test function $I is invariant if 
+(x) = +(gx) for all x E % and g E G. The whole point of the above 
discussion is to show that, when attention is restricted to invariant tests for 
invariant testing problems, the likelihood ratio test is never excluded from 
consideration. Furthermore, if a particular invariant test has been shown to 
have an optimal property among invariant tests, then this test has been 
compared to the likelihood ratio test. Illustrations of these comments are 
given later in this section when we consider testing problems for the 
multivariate normal distribution. 

Comments similar to those above apply to equivariant estimators. Sup- 
pose (p(.lO)lO E @) is a ( G  - G)-invariant family of densities and satisfies 

for some multiplier X. If the conditions of Proposition 7.12 hold, then an 
equivariant maximum likelihood estimator exists. Thus if an equivariant 
estimator t with some optimal property (relative to the class of all equiv- 
ariant estimators) has been found, then this property holds when t is 
compared to the maximum likelihood estimator. The Pitman estimator, 
derived in the next example, is an illustration of this situation. 



+ Example 7.11. Let f  be a density on RP with respect to Lebesgue 
measure and consider the translation family of densities {p( . l8)18  
E RP) defined by 

For this example, X = O = G = RP and the group action is 

g ( x )  = x  + g, x ,  g E RP. 

It is clear that 

p ( g x l g @ )  = ~ ( x l e ) ,  

so the family of densities is invariant and the multiplier is unity. It 
is assumed that 

L P  

xf ( x )  dx = 0  and /[lxl12f ( x )  dx < + m. 

Initially, assume we have one observation X  with C ( X )  E { p ( - l 8 ) \ 8  
E RP). The problem is to estimate the parameter 8 .  As a measure of 
how well an estimator t  performs, consider 

If t ( X )  is close to 8  on the average, then R(t,  8 )  should be small. 
We now want to show that, if t  is an equivariant estimator of 8 ,  then 

and the equivariant estimator to ( X )  = X  minimizes R ( t ,  0 )  over all 
equivariant estimators. If t  is an equivariant estimator, then 

t ( x  + g )  = t ( x )  + g  

so, with g  = - x ,  

t ( x )  = x  + t ( 0 ) .  

Therefore, every equivariant estimator has the form t ( x )  = x  + c 
where c E RP is a constant. Conversely, any such estimator t ( x )  = 
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x  + c is equivariant. For t ( x )  = x + c, 

To minimize R ( t ,  0 )  over all equivariant t ,  the integral 

must be minimized by an appropriate choice of c. But 

minimizes the above integral. Hence t , ( X )  = X  minimizes R ( t ,  0 )  
over all equivariant estimators. Now, we want to generalize t h s  
result to the case when X I , .  . . , X, are independent and identically 
distributed with C(&) E { p ( . l e ) l e  E RP), i = 1 , .  . . , p .  The argu- 
ment is essentially the same as when n = 1. An estimator t  is 
equivariant if 

t ( x l  + g , . .  ., X ,  + g )  = t ( x l , .  . ., x , )  + g 

so, setting g = - x , ,  

t ( x l  ,..., X , )  = X 1  + t ( 0 , x 2  - X I  ,..., X ,  - X I ) .  

Conversely, if 

t ( x l  ,..., X , )  = X l  + + ( x 2  - X I  ,..., X ,  - X I )  

then t  is equivariant. Here, is some measurable function taking 
values in RP. Thus a complete description of the equivariant estima- 
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tors has been given. For such an estimator, 

= &,llt(Xl ,..., Xn)l12 = R(t,O). 

To minimize R(t, 0), we need to choose the function \k to minimize 

R(t,O) = GollXl + \E(& - X,,. . ., X, - XI)1l2. 

Let q. = Xi - XI, i = 2,. . . , n.  Then 

R(t,O) = &,IIXl + 'k(u2,. . ., Un)1I2 

= & ( & { I I ~ ,  + w , , .  .. , U,)1121U,,. . ., u,)). 

However, conditional on (U,, . . . , U,) = U, 

& ( l l ~ I  + ' E ( ~ ) I I ~ I ~ )  = & ( l l ~ l  - &(XIlU) + &(XllU) + 'k(u)l121u) 

= & ( l l ~ I  - &(xllu)l121u) + Il&(XIlU) + W ) 1 l 2 .  

Thus it is clear that 

'ko(u)  = -&(X11U) 

minimizes R(t, 0). Hence the equivariant estimator 

t o ( x  I , . . . ,  x , )  = XI - & o ( x l ~ x 2  - x I , . . . ,  x, - x , )  

satisfies 

~ ( t , ,  e )  = R ( ~ , , o )  G R ( ~ , o )  = ~ ( t ,  e )  

for all 8 E RP and all equivariant estimators t. The estimator to is 
commonly called the Pitman estimator. + 

7.5. DISTRIBUTION THEORY AND INVARIANCE 

When a family of distributions is invariant under a group of transforma- 
tions, useful information can often be obtained about the distribution of 
invariant functions by using the invariance. For example, some of the 
results in Section 7.1 are generalized here. 
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The first result shows that the distribution of an invariant function 
depends invariantly on a parameter. Suppose (%, 3 )  is a measurable space 
acted on measurably by a group G. Consider an invariant probability model 
9 = {P,(8 E 0 )  and let G be the induced group of transformations on O. 
Thus 

A measurable mapping r on (%, $8) to (9, C?) induces a family of distribu- 
tions on (9, C?), {Q,le E O} given by 

Proposition 7.14. If 7 is G-invariant, then Q, = Qp for 6' E O and g E G. 

Proof. For each C E C?, it must be shown that 

or, equivalently, that 

But 

Since rg = r as r is invariant, 

An alternative formulation of Proposition 7.14 is useful. If C( X) E {P018 
E 0 )  and if 7 is G-invariant, then the induced distribution of Y = r(X), 
which is Q,, satisfies Qe = ego. In other words, the distribution of an 
invariant function depends only on a maximal invariant parameter. By 
definition, a maximal invariant parameter is any function defined on O that 
is maximal invariant under the action of Gon O. Of course, O is usually not 
a parameter space for the family {Q,l6' E O} as Q, = Q,-,, but any maximal 
G-invariant function on O often serves as a parameter index for the 
distribution of Y = r(X). 

+ Example 7.12. In this example, we establish a property of the 
distribution of the bivariate sample correlation coefficient. Consider 
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a family of densitiesp(.Ip, Z) on R2 given by 

where p E R2 and Z E 5:. Hence 

and it is assumed that 

Since the distribution on R2 determined by fo is orthogonally 
invariant, if Z E R2 has density fo(llxl12), then 

GZ = 0 and Cov(Z) = cI, 

for some c > 0 (see Proposition 2.13). Also, Z, = 2 ' / 2 ~  + p has 
densityp(.Ip, 2 )  when Z has density fo(llxl12). Thus 

GZ, = p and Cov(Zl) = cZ. 

The group Al, acts on R, by 

(A, b)x = Ax + b 

and it is clear that the family of distributions, say 9 = {P,,,I(p, Z) 
E CR2 X S:), having the densities p(.lp, Z), p E R2, Z E S l ,  is 
invariant under this group action. Lebesgue measure on R2 is 
relatively invariant with multiplier 

x u ,  b) = ldet(A)I 

and 

P ( X I P ,  2 )  = P((A,  ~ ) X I A P  + b, AZA')X(A, b) .  

Obviously, the group action on the parameter space is 

(A,  b)(p, 2 )  = (Ap + b, AZA') 

and 

( A  , = A ,  B ) , )  p,', , E 9. 
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Now, let X,, . . . , X,, n 2 3, be a random sample with C(Xi) E 9 SO 

the probability model for the random sample is A12-invariant by 
Proposition 7.9. Consider X = (l/n)C;X, and S = C;(& - X)(X, 
- X)' so X is the sample mean and S is the sample covariance 
matrix (not normalized). Obviously, S = S(X,,. . . , X,) is a func- 
tion of XI,. . . , X, and 

S(AX, + b,. . . , AX, + b) = AS(X,,. . . , X,)A'. 

That is, S is an equivariant function on (R2)" to S: where the 
group action on S l  is 

(A, b)(S) = ASA'. 

Writing S E S: as 

the sample correlation coefficient is 

Also, the population correlation coefficient is 

when the distribution under consideration is P,, ,, and 

Now, given that the random sample is from P,,,, the question is: 
how does the distribution of r depend on ( p ,  I ) ?  To show that the 
distribution of r depends only on p, we use an invariance argument. 
Let G be the subgroup of Al, defined by 

(A, b)l(A, b) E A12, A = 1122),ai, > 0, i = 1,2 

For (A, b) E G, a bit of calculation shows that r = r(Xl,. . . , X,) = 
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r ( A X ,  + b , .  . . , AX, + b )  so r  is a G-invariant function of X,,. . . , 
X,. By Proposition 7.14, the distribution of r ,  say Q,,=, satisfies 

Thus Q,, , depends on p,  Z only through a maximal invariant 
function on the parameter space R2 X S l  under the action of G. Of 
course, the action of G is 

We now claim that 

is a maximal G-invariant function. To see this, consider ( p ,  Z )  E R2 
x S: . By choosing 

and b = - A p ,  ( A ,  b )  E G and 

so this point is in the orbit of (p, 2 )  and an orbit index is p. Thus p 
is maximal invariant and the distribution of r depends only on 
( p ,  Z )  through the maximal invariant function p. Obviously, the 
distribution of r  also depends on the function f,, but f, was 
considered fixed in this discussion. 4 

Proposition 7.14 asserts that the distribution of an invariant function 
depends only on a maximal invariant parameter, but this result is not 
especially useful if the exact distribution of an invariant function is desired. 
The remainder of the section is concerned with using invariance arguments, 
when G is compact, to derive distributions of maximal invariants and to 
characterize the G-invariant distributions. 

First, we consider the distribution of a maximal invariant function when 
a compact topological group G acts measurably on a space (%, 3). Suppose 
that po is a a-finite G-invariant measure on (%, 3) and f  is a density with 
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respect to p,. Let r  be a measurable mapping from ( X ,  3 )  onto ( 9 ,  (3). 
Then r  induces a measure on (%, C?), say v,, given by 

v o w  = p o ( r - ' ( c ) )  

and the equation 

holds for all integrable functions h on ( 9 ,  t?). Since the group G is compact, 
there exists a unique probability measure, say 6, that is left and right 
invariant. 

Proposition 7.15. Suppose the mapping T from ( X ,  3) onto ( 9 ,  e) is 
maximal invariant under the action of G on %. If X E %has density f with 
respect to p,, then the density of Y = r ( X )  with respect to v, is given by 

Proof. First, the integral 

is a G-invariant function of x and thus can be written as a function of the 
maximal invariant r .  This defines the function q on 9. To show that q is the 
density of Y,  it suffices to show that 

for all bounded measurable functions k. But 

The last equality holds since po is G-invariant and r  is G-invariant. Since 6  is 
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a probability measure 

Using Fubini's Theorem, the definition of q and the relationship between y o  
and v,, we have 

In most situations, the compact group G will be the orthogonal group or 
some subgroup of the orthogonal group. Concrete applications of Proposi- 
tion 7.15 involve two separate steps. First, the function q must be calculated 
by evaluating 

Also, given p o  and the maximal invariant r ,  the measure v, must be found. 

+ Example 7.13. Take % = Rn and let y o  be Lebesgue measure. The 
orthogonal group 0, acts on Rn and a maximal invariant function is 
r ( x )  = 11x11~ SO 9 = [O, a). If a random vector X E R" has a 
density f with respect to Lebesgue measure, Proposition 7.15 tells us 
how to find the density of Y = 1 1  x112 with respect to the measure v,. 
To find vo, consider the particular density 

Thus C ( X )  = N(0, I,), so C ( Y )  = X: and the density of Y with 
respect to Lebesgue measure dy on [0, co) is 

Therefore, 

where 
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Since f , ( r x )  = f , (x ) ,  the integration of f, over 8, is trivial and 

4 0 ( Y )  = (J21;)-"exp[-Syl. 

Solving for v , (dy) ,  we have 

since r ( 4 )  = 6. Now that v, has been found, consider a general 
density f  on Rn. Then 

and q ( y )  is the density of Y = llX1)2 with respect to v,. When the 
density f is given by 

then it is clear that 

so the distribution of Y has been found in this case. The noncentral 
chi-square distribution of Y = 1 1 ~ 1 1 ~  provides an interesting exam- 
ple where the integration over 8, is not trivial. Suppose C ( X )  = 

N ( P ,  In) so 

Thus 

Since x and Ilxll~, have the same length, x = l l x l l r , ~ ,  for some 
I?, E Qn where E ,  is the first standard unit vector in Rn. Similarly, 
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p = lIpllr2&l for some r, E 8,. Setting h = llp112, 

q ( y )  = (&)-"exp[- i ~ ] e x p [ -  3y l  

Thus to evaluate q, we need to calculate 

H ( u )  = ~ne~p[~~;I ' ;I"I '2&,]8(dI' ) .  

Since 8 is left and right invariant, 

where y,, is the (1,l) element of I?. The representation of the 
uniform distribution on On given in Proposition 7.2 shows that when 
I' is uniform on O,, then 

where C(Z) = N(0, I,) and 2, is the first coordinate of 2. Expand- 
ing the exponential in a power series, we have 

Thus the moments of U, = Z1/llZll need to be found. Obviously, 
C(Ul) = C(- U,), so all odd moments of U, are zero. Also, Uf = 

z:/(z: + 2$2,2), whch has a beta distribution with parameters 3 
and ( n  - 1)/2. Therefore, 
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Hence 

is the density of Y with respect to the measure v,. A bit of algebra 
and some manipulation with the gamma function shows that 

where 

is the density of a X k  distribution. This is the expression for the 
density of the noncentral chi-square distribution discussed in 
Chapter 3. + 

+ Example 7.14. In this example, we derive the density function of 
the order statistic of a random vector X E Rn. Suppose X has a 
density f with respect to Lebesgue measure and let X,, . . . , Xn be the 
coordinates of X. Consider the space 94 c Rn defined by 

The order statistic of X is the random vector Y E 3 consisting of 
the ordered values of the coordinates of X. More precisely, Y, is the 
smallest coordinate of X, Y2 is the next smallest coordinate of X, 
and so on. Thus Y = r(X)  where r maps each x E Rn into the 
ordered coordinates of x-say r (x)  E 94. To derive the density 
function of Y, we show that Y is a maximal invariant under a 
compact group operating on Rn and then apply Proposition 7.15. 
Let G be the group of all one-to-one onto functions from {l,2,. . . , n) 
to {1,2,. . . , n)-that is, G is the permutation group of {1,2,. . . , n). 
Of course, the group operation is function composition, the group 
inverse is function inverse, and G has n! elements. The group G acts 
on the left of Rn in the following way. For x E Rn and T E G, 
define TX E Rn to have ith coordinate x(mP'(i)). Thus the ith 
coordinate of ~ r x  is the mP'(i) coordinate of x, so 
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The reason for the inverse on m in this definition is so that G acts on 
the left of Rn-that is, 

It is routine to verify that the function r on % to 9 is a maximal 
invariant under the action of G on Rn. Also, Lebesgue measure, say 
I, is invariant so Proposition 7.15 is applicable as G is a finite group 
and hence compact. Obviously, the density q of Y = r(X)  is 

for y E 9 .  To derive the measure v, on 9 ,  consider a measurable 
subset C c 9. Then 

and 

The third equality follows since (mlC) n (m2C) has Lebesgue mea- 
sure zero for m, * m2 as the boundary of 9 in Rn has Lebesgue 
measure zero. Thus v, is just n! times I restricted to 9. Therefore, 
the density of the order statistic Y, with respect to v, restricted to 9, 
is 

When f is invariant under perinutations, as is the case when 
XI,. . . , Xn are independent and identically distributed, we have 

The next example is an extension of Example 7.13 and is related to the 
results in Proposition 7.6. 
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+ Example 7.15. Suppose Xis a random vector in f?,, ,, n > p,  which 
has a density f with respect to Lebesgue measure dx on $,.,. Let r 
map C,,, onto the space of p x p positive semidefinite matrices, say 
S l ,  by r(x) = x'x. The problem in this example is to derive the 
density of S = r(X) = X'X. The compact group 0, acts on C,, , and 
a group element r E 8, sends x into rx.  It follows immediately 
from Proposition 1.31 that r is a maximal invariant function under 
the action of 8, on C,, ,,. Since dx is invariant under On, Proposition 
7.15 shows that the density of S is 

with respect to the measure V, on 5; induced by dx and r. To find 
the measure v,, we argue as in Example 7.13. Consider the particu- 
lar density 

on C,, so C(X) = N(0,  In 8 I,). For this f,, the density of S is 

with respect to v,. However, by Propostion 7.6, the density of S 
with respect to dS/JSJ(P+ ')I2 is 

q l ( s )  = w(n, p ) l ~ J " / ~ e x ~ [ -  + t r ( ~ ) ] .  

Therefore, 

which shows that 
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In the above argument, we have ignored the set of Lebesgue 
measure zero where x E C,, has rank less than p. The justification 
for this is left to the reader. Now that v, has been found, the density 
of S for a general density f is obtained by calculating 

When f (x)  = h(x'x), then f ( r x )  = h(x'x) = h(7(x)) and q(S) = 

h(S). In this case, the integration over 6, is trivial. Another example 
where the integration over On is not trivial is given in the next 
chapter when we discuss the noncentral Wishart distribution. + 

As motivation for the next result of this section, consider the situation 
discussed in Proposition 7.3. This result gives a characterization of the 
On-left invariant distributions by representing each of these distributions as a 
product measure where one measure is a fixed On-invariant distribution and 
the other measure is arbitrary. The decomposition of the space X into the 
product space $,, , X G: provided the framework in whlch to state this 
representation of On-left invariant distributions. In some situations, this 
product space structure is not available (see Example 7.5) but a product 
measure representation for On-invariant distributions can be obtained. It is 
established below that, under some mild regularity conditions, such a 
representation can be given for probability measures that are invariant 
under any compact topological group that acts on the sample space. We 
now turn to the technical details. 

In what follows, G is a compact topological group that acts measurably 
on a measure space ( X ,  3 )  and P is a G-invariant probability measure on 
(%, 9). The unique invariant probability measure on G is denoted by p and 
the symbol U E G denotes a random variable with values in G and 
distribution p. The a-algebra for G is the Bore1 a-algebra of open sets so U 
is a measurable function defined on some probability space with induced 
distribution p. Since G acts on %, % can be written as a disjoint union of 
orbits, say 

where @is an index set for the orbits and %, n %,, = @ if a * a'. Let x, be 
a fixed element of X, = (gx,Jg E G). Also, set 
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and assume that 9 is a measurable subset of 5%. The function r defined on 
3i to ?I by 

is obviously a maximal invariant function under the action of G on 5%. It is 
assumed that r is a measurable function from 5% to 9 where 9 has the 
a-algebra inherited from %. A subset B ,  c 9 is measurable iff B ,  = 9 n B 
for some B E 3. If X E 5% has distribution P, then the maximal invariant 
Y = 7(X) has the induced distribution Q defined by 

for measurable subsets Bl c 9. What we would like to show is that P is 
represented by the product measure p X Q on G x 9 in the following sense. 
If Y E 9 has the distribution Q and is independent of U E G, then the 
random variable Z = UY E !X has the distribution P. In other words, 
C ( X) = C (UY) where U and Y are independent. Here, UY means the group 
element U operating on the point Y E 5%. The intuitive argument that 
suggests this representation is the following. The distribution of X, condi- 
tional on r (X)  = x,, should be G-invariant on !X, as the distribution of X 
is G-invariant. But G acts transitively on 5%, and, since G is compact, there 
should be a unique invariant probability distribution on %, that is induced 
by p on G. In other words, conditional on r (X)  = x,, X should have the 
same distribution as Ux, where U is "uniform" on G. The next result makes 
all of ths  precise. 

Proposition 7.16. Consider %, 9, and G to be as above with their 
respective a-algebras. Assume that the mapping h on G X 9 to Si given by 
h(g, y )  = gy is measurable. 

(i) If U E G and Y E 9 are independent with e(U)  = p and C(Y) = Q, 
then the distribution of X = UYis a G-invariant distribution on 5%. 

(ii) If X E 5% has a G-invariant distribution, say P,  let the maximal 
invariant Y = 7(X) have an induced distribution Q on 9. Let 
U E G have the distribution p and be independent of X. Then 
C(X) = C(UY). 

Proof. For the proof of (i), it suffices to show that 
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for all integrable functions f and all g E G. But 

In the above calculation, we have used the assumption that U and Y are 
independent, so conditional on Y, C(U) = C(gU) for g E G. 

To prove (ii) it suffices to show that 

for all integrable f. Since the distribution of X is G-invariant 

& f ( X ) = & f ( g X ) ,  g E G .  

Therefore, 

& f ( X )  = &u&,f(UX), 

as U and X are independent. Thus 

However, for x E there exists an element k E G such that x = kx,. 
Using the definition of r and the right invariance of p, we have 

= j i ( g r ( x ) ) d d g ) .  

Hence 

where the second equality follows from the definition of the induced 
measure Q. In terms of the random variables, 

& f ( X )  = &U&,f(UY) 

where U and Y are independent as U and X are independent. 
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The technical advantage of Proposition 7.16 over the method discussed in 
Section 7.1 is that the space % is not assumed to be in one-to-one 
correspondence with the product space G X %. Obviously, the mapping h 
on G x 9 to %is  onto, but h will ordinarily not be one-to-one. 

+ Example 7.16. In this example, take 9€ = S,, the set of all p x p 
symmetric matrices. The group G = 0, acts on Sp by 

For S E S,, let 

where y, 2 . . . 2 y, are ordered eigenvalues of S and the off-diag- 
onal elements of Y are zero. Also, let % = {YIY = r(S), S E 5,). 
The spectral theorem shows that r is a maximal invariant function 
under the action of Op and the elements of % index the orbits in S,. 
The measurability assumptions of Proposition 7.16 are easily veri- 
fied, so every On-invariant distribution on S,, say P ,  has the repre- 
sentation given by 

where p is the uniform distribution on 8, and Q is the induced 
distribution of Y. In terms of random variables, if C(S) = P and 
C(rSrl)  = C(S) for all r E Op, then 

where \k is uniform on 0, and is independent of the matrix of 
eigenvalues of S. As a particular case, consider the probability 
measure Po on S,f G S, with the Wishart density 

where n 2 p, I (S)  = 1 if S E $5; and is ze'ro otherwise. That po is a 
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density on Sp with respect to Lebesgue measure dS on Sp follows 
from Example 5.1. Also, p, is Op-invariant since dS is Op-invariant 
and p,(rSr') = p,(S) for all S E Sp and I? E Op. Thus the above 
results are applicable to this particular Wishart distribution. 4 

The final example of this section deals with the singular value decomposi- 
tion of a random n x p matrix. 

4 Example 7.17. The compact group On X Op acts on the space Cp,, 
by 

For definiteness, we take p ,< n. Define r on fp, , by 

where A ,  >, . . . > A, > 0 and A:, . . . , A: are the ordered eigenval- 
ues of X'X. Let 9 G Cp, , be the range of r SO 9 is a closed subset of 
Cp, ,. It is clear that r(rXAf) = r (X)  for r E 8, and A E Op SO r is 
invariant. That r is a maximal invariant follows easily from the 
singular value decomposition theorem. Thus the elements of 9 
index the orbits in Cp, , and every X E Cp, , can be written as 

for some y E 9 and (I?, A) E On X Op. The measurability assump- 
tions of Proposition 7.16 are easily checked. Thus if P is an 
(8, x aP)-invariant probability measure on Cp,, and C(X) = P, 
then 

where (I?, A) has a uniform distribution on 0, x Op, Y has a 
distribution Q induced by r and P, and Y and (r, A) are indepen- 
dent. However, we can say a bit more. Since 8, X Op is a product 
group, the unique invariant probability measure on 8, X Op is the 
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product measure p1 x p2 where p,(p2) is the unique invariant 
probability measure on On(Op) .  Thus I' and A are independent and 
each is uniform in its respective group. In summary, 

where T, Y, and A are mutually independent with the distributions 
given above. As a particular case, consider the density 

with respect to Lebesgue measure on C,, ,. Since f0(TXAr) = fo(X) 
and Lebesgue measure is (8, x OP)-invariant, the probability mea- 
sure defined by fo is (8, x 0,)-invariant. Therefore, when C(X) = 

N(0, I, x I,), X has the same distribution as TYA' where T and A 
are uniform and Y has the induced distribution Q on %. + 

7.6. INDEPENDENCE AND INVARIANCE 

Considerations that imply the stochastic independence of an invariant 
function and an equivariant function are the subject of this section. To 
motivate the abstract discussion to follow, we begin with the familiar 
random sample from a univariate normal distribution. Consider X E % 
with C(X) = N(pe, a21,) where p E R, a 2  > 0, and e is the vector of ones 
in Rn. The set % is Rn - span{e) and the reason for choosing this as the 
sample space is to guarantee that Zy(xi - x ) ~  > 0 for x E %. The coordi- 
nates of X, say XI,. .  . , X,, are independent and C(&) = N(p, a 2 )  for 
i = 1,. . . , n.  When p and a 2  are unknown parameters, the statistic t(X) = 

(s, X) where 

is minimal sufficient and complete. The reason for using s rather than s 2  in 
the definition of t(X) is based on invariance considerations. The affine 
group Al, acts on %by  

(a ,  b)x = ax + be 

for (a, b) E All. Let G be the subgroup of Al, given by G = {(a, b)l(a, b) E 

All, a > 0) so G also acts on %. 
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The probability model for X E % is generated by G in the sense that if 
Z E %and C(Z) = N(0, I,), 

C((a, b ) ~ )  = C(aZ + be) =  be, a21,). 

Thus the set of distributions 9 = {N(pe, U ~ I , ) I ~  E R, a2 > 0) is obtained 
from an N(0, I,) distribution by a group operation. For this example, the 
group G serves as a parameter space for 9. Further, the statistic t takes its 
values in G and satisfies 

t((a,  b)X)  = (a ,  b)(s, X), 

that is, t evaluated at (a, b)X = a x  + be is the same as the group element 
(a, b) composed with the group element (s, x). Thus t is an equivariant 
function defined on % to G and G acts on both % and G. Now, which 
functions of X, say h(X), might be independent of t(X)? Intuitively, since 
t(X) is sufficient, t(X) "contains all the information in X about the 
parameters." Thus if h(X) has a distribution that does not depend on the 
parameter value (such an h(X) will be called ancillary), there is some reason 
to believe that h(X) and t(X) might be independent. However, the group 
structure given above provides a method for constructing ancillary statistics. 
If h is an invariant function of X, then the distribution of h is an invariant 
function of the parameter (p, a2). But the group G acts transitively on the 
parameter space (i.e., G), so any invariant function will be ancillary. Also, h 
is invariant iff h is a function of a maximal invariant statistic. This suggests 
that a maximal invariant statistic will be independent of t(X). Consider the 
statistic 

where the inverse on t(X) denotes the group inverse in G. The verification 
that Z(X) is maximal invariant partially justifies choosing t to have values 
in G. For (a, b) E G, 

Z((a,  b ) ~ )  = ( t ( (a ,  b ) ~ ) ) - ' ( a ,  b)X = ((a,  b ) t ( ~ ) ) - ' ( a ,  b)X 

so Z is invariant. Also, if 
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then 

y = [ t ( y ) ( t ( x ) ) - ' ]  x ,  

so X and Y are in the same orbit. Thus Z is maximal invariant and is an 
ancillary statistic. That Z(X) and t(X) are stochastically independent for 
each value of p and a 2  follows from Basu's Theorem given in the Appendix. 
The whole purpose of this discussion was to show that sufficiency coupled 
with the invariance suggested the independence of Z(X) and t(X). The role 
of the equivariance of t is not completely clear, but it is essential in the more 
abstract treatment that follows. 

Let Po be a fixed probability on (56, 9 )  and suppose that G is a group 
that acts measurably on (%, 9). Consider a measurable function t on 
(%, 9 )  to ( 9 ,  C?,) and assume that c i s  a homomorphic image of G that 
acts transitively on ( 9 ,  C?,) and that 

Thus t is an equivariant function. For technical reasons that become 
apparent later, it is assumed that G is a locally compact and a-compact 
topological group endowed with the Bore1 a-algebra. Also, the mapping 
(g, y)  + gy from G X 9 to 9 is assumed to be jointly measurable. 

Now, let h be a measurable function on (%, 9 )  to ( 2 ,  C?,), whlch is 
G-invariant. If X E % and C(X) = Po, we want to find conditions under 
which Y = t(X) and Z = h(X) are stochastically independent. The follow- 
ing informal argument, which is made precise later, suggests the conditions 
needed. To show that Y and Z are independent, it is sufficient to verify that, 
for all bounded measurable functions f on ( 2 ,  C?,), 

is constant for y E 9. That this condition is sufficient follows by integrating 
H with respect to the induced distribution of Y, say Q,. More precisely, if k 
is a bounded function on (3, C? ,) and H( y) = H( yo) for y E 9 ,  then 
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and this implies independence. The assumption that H is constant justifies 
the next to the last equality while the last equality follows from 

when H is constant. Thus under what conditions will H be constant? Since 
G acts transitively on 94, if H is G-invariant, then H must be constant and 
conversely. However, 

The equivariance of t and the invariance of h justify the third and fourth 
equalities while the last equality is a consequence of C(gX) = gP, when 
C(X) = Po. Now, if t(X) is a sufficient statistic for the family 9 = {gPolg 
E G), then the last member of the above string of equalities is just H(y). 
Under this sufficiency assumption, H(y) = H(g-'y) so H is invariant and 
hence is a constant. The technical problem with this argument is caused by 
the nonuniqueness of conditional expectations. The conclusion that H( y) = 

H(g-Iy) should really be H(y) = H(g-'y) except for y E Ng where Ng is a 
set of Qo measure zero. Since this null set can depend on g, even the 
conclusion that H is a constant a.e. (Q,) is not justified without some 
further work. Once these technical problems are overcome, we prove that, if 
t(X) is sufficient for {gPolg E G), then for each g E G, h(X) and t(X) are 
stochastically independent when C(X) = gPo. 

The first gap to fill concerns almost invariant functions. 

Definition 7.6. Let ( X I ,  $73,) be a measurable space that is acted on 
measurably by a group GI. If p is a a-finite measure on ( X I ,  91 , )  and f is a 
real-valued Bore1 measurable function, f is almost GI-invariant if for each 
g E GI, the set N, = {XI f (x)  + f(gx)) has p measure zero. 

The following result shows that under certain conditions, an almost 
G,-invariant function is equal a.e. (p) to a GI-invariant function. 
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Proposition 7.17. Suppose that GI acts measurably on (XI ,  9 ,) and that 
G,  is a locally compact and a-compact topological group with the Borel 
a-algebra. Assume that the mapping (g, x)  + gx from GI x %, to XI  is 
measurable. If p is a a-finite measure on (EX ,, 9 ,) and f is a bounded almost 
GI-invariant function, then there exists a measurable invariant function f, 
such that f = f,  a.e. (p). 

Proof: This follows from Theorem 4, p. 227 of Lehmann (1959) and the 
proof is not repeated here. 

The next technical problem has to do with conditional expectations. 

Proposition 7.18. In the notation introduced earlier, suppose (%, 9) and 
( 9 ,  '2,) are measurable spaces acted on by groups G and G where G is a 
homomorphic image of G. Assume that r is an equivariant function from X 
to 9 .  Let Po be a probability measure on (%, 3 )  and let Q, be the induced 
distribution of r (X)  when C(X) = Po. If f is a bounded G-invariant 
function on %. let 

and 

Then H,(gy) = H(y) a.e. (Q,) for each fixed g E G. 

Proof. The conditional expectations are well defined since f is bounded. 
H(y)  is the unique a.e. (Q,) function that satisfies the equation 

for all bounded measurable k. The probability measure gP, satisfies the 
equation 

for all bounded f,. Since r is equivariant, this implies that if C(X) = gPo, 
then C(r(X)) = gQO. Using this, the invariance off, and the characterizing 



property of conditional expectation, we have for all bounded k, 

Since the first and the last terms in this equality are equal for all bounded k, 
we have that H(y) = Hl(gy) a.e. (Q,). 

With the technical problems out of the way, the main result of this 
section can be proved. 

Proposition 7.19. Consider measurable spaces (GX, 3 )  and ( 9 ,  e l ) ,  which 
are acted on measurably by groups G and G where G is a homomorphic 
image of G. It is assumed that the conditions of Proposition 7.17 hold for 
the group and the space (%, e l ) ,  and that G acts transitively on 9 .  Let r 
on X to 9 be measurable and equivariant. Also let (Q, e,) be a measurable 
space and let h be a G-invariant measurable function from GX to '2. For a 
random variable X E % with C( X) = Po, set Y = r( X) and Z = h ( X) and 
assume that r (X)  is a sufficient statistic for the family (gP,Jg E G) of 
distributions on (%, 93). Under these assumptions, Y and Z are indepen- 
dent when C(X) = gPo, g E G. 

Proof. First we prove that Y and Z are independent when C(X) = Po. Fix 
a bounded measurable function f on Z and let 

Since r (X)  is a sufficient statistic, there is a measurable function H on 3 
such that 

H,(Y) = H ( Y )  fory P N, 

where Ng is a set of gQo-measure zero. Thus (gQo)(Ng) = QO(g-'Ng) = 0. 
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Let e denote the identity in G. We now claim that H is a Q, almost 
G-invariant function. By Proposition 7.18, H,(y)  = Hg(gy) a.e. (Q,). How- 
ever, H(y) = He(y) a.e. Q, and Hg(gy) = H(gy) for gy P N,, where 
Q,(~-'N,) = 0. Thus H,(gy) = H(gy) a.e. Q,, and this implies that H(y) 
= H(gy) a.e. Q,. Therefore, there exists a G-invariant measurable function, 
say H, such that H = H a.e. Q,. Since G is transitive on 9, H must be a 
constant, so H is a constant a.e. Q,. Therefore, 

is a constant a.e. Q, and, as noted earlier, this implies that Z = h(X) and 
Y = T(X) are independent when C ( X) = Po. When C ( X) = g, Po, let Po = 

glP, and note that {gP,lg E G) = igP0lg E G) so T(X) is sufficient for 
(gP,Jg E G). The argument given for Po now applies for Po. Thus Z and Y 
are independent when C ( X )  = gl Po. 

A few comments concerning this result are in order. Since G acts 
transitively on {gP,lg E G) and Z = h(X) is G-invariant, the distribution 
of Z is the same under each gP,, g E G. In other words, Z is an ancillary 
statistic. Basu's Theorem, given in the A~pendix, asserts that a sufficient 
statistic, whose induced family of distributions is complete, is independent 
of an ancillary statistic. Although no assumptions concerning invariance are 
made in the statement of Basu's Theorem, most applications are to prob- 
lems where invariance is used to show a statistic is ancillary. In Proposition 
7.19, the completeness assumption of Basu's Theorem has been replaced by 
the invariance assumptions and, most particularly, by the assumption that 
the group G acts transitively on the space %. 

+ Example 7.18. The normal distribution example at the beginning 
of this section provided a situation where the sample mean and 
sample variance are independent of a scale and translation invariant 
statistic. We now consider a generalization of that situation. Let 
X = Rn - (span{e)) where e is the vector of ones in Rn and 
suppose that a random vector X E % has a density f(11~11~) with 
respect to Lebesgue measure dx on X. The group G in the example 
at the beginning of this section acts on X by 

( a ,  b)x = ax + be, ( a ,  b) E G. 

Consider the statistic t(X) = (s, X) where 

and 
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Then t  takes values in G and satisfies 

t ( ( a ,  b ) X )  = ( a ,  b ) t ( X )  

for ( a ,  b )  E G. It is shown that t ( X )  and the G-invariant statistic 

are independent. The verification that Z ( X )  is invariant goes as 
follows: 

= ( ( a ,  b ) t ( ~ ) ) - ' ( a ,  b ) X  = ( t ( ~ ) ) - ' X  = Z ( X )  

To apply Proposition 7.19, let Po be the probability measure with 
density f (11x11 2 ,  on X and let G = G = 9. Thus t ( X )  is equivariant 
and Z ( X )  is invariant. The sufficiency of t ( X )  for the parametric 
family {gPolg E G) is established by using the factorization theo- 
rem. For ( a ,  b )  E G, it is not difficult to show that ( a ,  b)Po has a 
density k ( x ( a ,  b )  with respect to dx given by 

Since 

the density k(x la ,  b )  is a function of Cx? and Cx,  so the pair 
( C X , ~ , C & )  is a sufficient statistic for the family {gP,)g E G). 
However, t ( X )  = (s, z) is a one-to-one function of ( C q 2 ,  C q )  SO 

t ( X )  is a sufficient statistic. The remaining assumptions of Proposi- 
tion 7.19 are easily verified. Therefore, t ( X )  and Z ( X )  are indepen- 
dent under each of the measures ( a ,  b)Po for ( a ,  b )  in G. + 

Before proceeding with the next example, an extension of Proposition 7.1 
is needed. 
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Proposition 7.20. Consider the space %, ,, n >, p, and let Q be an n x n 
rank k orthogonal projection. If k 2 p, then the set 

has Lebesgue measure zero. 

Proof: Let X E C,, be a random vector with C ( X) = N(0, In @ I,) = Po. 
It suffices to show that Po(B) = 0 since Po and Lebesgue measure are 
absolutely continuous with respect to each other. Also, write Q as 

where 

Since 

rank(I"DI'X) = rank(Dl?X) 

and C(rX) = C(X), it suffices to show that 

Now, partition X as 

Thus rank(DX) = rank(Xl). Since k > p and C(X,) = N(0, I, 8 I,), Pro- 
position 7.1 implies that XI has rank p with probability one. Thus Po(B) = 0 
so B has Lebesgue measure zero. 

+ Example 7.19. This is generalization of Example 7.18 and deals 
with the general multivariate linear model discussed in Chapter 4. 
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As in Example 4.4, let M be a linear subspace of C,,. defined by 

M = ( x ~ x  E Cp,n, x = ZB,  B E C,, k) 

where Z is a fixed n X k matrix of rank k. For reasons that are 
apparent in a moment, it is assumed that n - k >, p. The orthogo- 
nal projection onto M relative to the natural inner product ( . , .) 

on C,, is PM = P, 8 I, where 

is a rank k orthogonal projection on Rn. Also, QM = Q, 8 I,, 
where Q, = I, - P, is the orthogonal projection onto M I  and Q, is 
a rank n - k orthogonal projection on Rn. For this example, the 
sample space % is 

Since n - k >, p, Proposition 7.20 implies that the complement of 
% has Lebesgue measure zero in ep, .. In this example, the group G 
has elements that are pairs (T, u) with T E G; where T is p x p 
and u E M. The group operation is 

and the action of G on % is 

(T, u)x = xT' + u. 

For this example, 9 = G = G and t on % to G is defined by 

where T(x) is the unique element in G; such that xfQ,x = 

T(x)Tf(x). The assumption that n - k 2 p insures that x'Q,x has 
rank p. It is now routine to verify that 

for x E % and (T, u) E G. Using this relationship, the function 
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is easily shown to be a maximal invariant under the action of G on 
5%. Now consider a random vector X E X with C(X) = Po where Po 
has a density f ( ( x ,  x ) )  with respect to Lebesgue measure on %. We 
apply Proposition 7.19 to show that t ( X )  and h ( X )  are indepen- 
dent under gPo for each g E G. Since 9 = = G, t  is an equiv- 
ariant function and acts transitively on 9. The measurability 
assumptions of Proposition 7.19 are easily checked. It remains to 
show that t ( X )  is a sufficient statistic for the family (gPolg E G). 
For g = ( T ,  p )  E G, gPo has a density given by 

Letting B = TT' and arguing as in Example 4.4, it follows that 

since p  E M. Therefore, the density p(x l (T ,  p ) )  is a function of the 
pair ( x f Q , x ,  P M x )  so this pair is a sufficient statistic for the family 
{gPolg E G). However, T ( x )  is a one-to-one function of xfQ ,x  so 

is also a sufficient statistic. Thus Proposition 7.19 implies that t ( X )  
and h ( X )  are stochastically independent under each probability 
measure gPo for g E G. Of course, the choice o f f  that motivated 
thls example is 

f (w)  = (&)-"*exp[- i w ]  

so that Po is the probability measure of a N(0,  I, 8 I,) distribution 
on %. 

One consequence of Proposition 7.19 is that the statistic h  ( X )  is 
ancillary. But for the case at hand, we now describe the distribution 
of h ( X )  and show that its distribution does not even depend on the 
particular density f used to define Po. Recall that 

where T ( x ) T f ( x )  = xfQ ,x  and T ( x )  E G:. Fix x  E % and set 
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'k = ( Q , x ) ( T f ( x ) ) - I .  First note that 

so \k is a linear isometry. Let N  be the orthogonal complement in 
R n  of the linear subspace spanned by the columns of the matrix Z. 
Clearly, dim(N) = n - k and the range of \k is contained in N  
since Q,  is the orthogonal projection onto N.  Therefore, \k is an 
element of the space 

F p ( N )  = {*I*'* = I,, range(*) G N } .  

Further, the group 

H = {rlr E 13,, r ( N )  = N )  

is compact and acts transitively on % ( N )  under the group action 

Now, we return to the original problem of describing the distribu- 
tion of W  = h ( X )  when C ( X )  = Po. The above argument shows 
that W E % ( N ) .  Since the compact group H acts transitively on 
% ( N ) ,  there is a unique invariant probability measure v on % ( N ) .  
It will be shown that C ( W )  = v by proving C(I 'W)  = C ( W )  for all 
r E H. It is not difficult to verify that I'Q, = Q,r for r E H. Since 
C ( I ' X )  = C (  X )  and T ( T X )  = T ( X ) ,  we have 

Therefore, the distribution of Wis H-invariant so C(W) = v. + 
Further applications of Proposition 7.19 occur in the next three chapters. 

In particular, this result is used to derive the distribution of the determinant 
of a certain matrix that arises in testing problems for the general linear 
model. 
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PROBLEMS 

1. Suppose the random n X p matrix X E % (GX as in Section 7.1) has a 
density given by f (x)  = klx'xlYexp[- 4 trx'x] with respect to dx. The 
constant k depends on n, p, and y (see Problem 6.10). Derive the 
density of S = X'X and the density of U in the representation X = \kU 
with U E Gg and \k E s, n. 

2. Suppose X E GX has an On-left invariant distribution. Let P(X)  = 

X(XIX)-'x' and S(X) = X'X. Prove that P(X)  and S(X) are inde- 
pendent. 

3. Let Q be an n X n non-negative definite matrix of rank r and set 
A = {xlx E Cp, ,, x'Qx has rank p). Show that, if r 2 p, then A' has 
Lebesgue measure zero. 

4. With GX as in Section 7.1, On X GIp acts on %by x + rxA' for r E 8, 
and A E GI,. Also, 0, X GI, acts on S; by S + ASA'. Show that 
$(x) = kx'x is equivariant for each constant k > 0. Are these the only 
equivariant functions? 

5. The permutation group Tn acts on Rn via matrix multiplication x + gx, 
g E Tn. Let 9 = {yly E Rn, y, g y2 =S . . - < y,). Define f :  Rn + 9 
by f (x)  is the vector of ordered values of the set {x,,. . . , x,) with 
multiple values listed. 

(i) Show f is a maximal invariant. 
(ii) Set I,(u) = 1 if u 2 0 and 0 if u < 0. Define F,(t) = n-'Z;l,(t 

- xi) for t E R1. Show Fn is also a maximal invariant. 

6. Let M be a proper subspace of the inner product space (V, (., .)). Let 
A, be defined by A,x = - x for x E M and A,x = x for x E M L  . 

(i) Verify that the set of pairs (B, y), with y E M and B either A, or 
A:, forms a subgroup of the affine group AI(V). Let G be this 
group. 

(ii) Show that G acts on M and on V. 
(iii) Suppose t : V + M is equivariant (t(Bx + y) = Bt(x) + y for 

(B, y)  E G and x E V). Prove that t(x) = P,x. 

7. Let M be a subspace of Rn ( M  * Rn) so the complement of GX = Rn 
n Mc has Lebesgue measure zero. Suppose X E %has a density given 
by 
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where p E M and a > 0. Assume that dx < + m. For 
a > 0, I? E O,(M), and b E M, the affine transformation (a, I?, b)x = 

aTx + b acts on %. 
(i) Show that the probability model for X (p E M, a > 0) is in- 

variant under the above affine transformations. What is the 
induced group action on (p, a2)? 

(ii) Show that the only equivariant estimator of p is P,x. Show that 
any equivariant estimator of a 2  has the form kllQx112 for some 
k > 0. 

8. With % as in Section 7.1, suppose f is a function defined on GI, to 
[0, a ) ,  which satisfies f (AB) = f (BA) and 

(i) Show that f (xfxZ- '), Z E S;, is a density on % with respect to 
d ~ / ( x ' x l " / ~  and under this density, the covariance (assuming it 
exists) is cI, @ 2 where c > 0. 

(ii) Show that the family of distributions of (i) indexed by Z E S; is 
invariant under the group 8, x GI, acting on % by (T, A)x = 

rxAf. Also, show that (I?, A)Z = AZAf. 

(iii) Show that the equivariant estimators of Z all have the form 
kXfX, k > 0. 

Now, assume that 

where Co E Sp, is unique. 

(iv) Show Co = alp for some a > 0. 

(v) Find the maximum likelihood estimator of Z (expressed in terms 
of X and a in (iv)). 

9. In an inner product space (V, (., -)), suppose X has a distribution Po. 

(i) Showthat C(llXll)= C(llYll) wheneverC(Y)= gP0 ,g €  O(V). 
(ii) In the special case that C(X) = C(p + Z )  where p is a fixed 

vector and Z has an B(V)-invariant distribution, how does the 
distribution of J(XJ1 depend on p? 

10. Under the assumptions of Problem 4.5, use an invariance argument to 
show that the distribution of F depends on (p, a 2 )  only through the 
parameter ( 1 ~ ~ 1 1 ~  - 1 1  ~ ~ p 1 1 ~ ) / a ~ .  What happens when p E a? 
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1. Suppose XI,. . . , Xn is a random sample from a distribution on RP 
(n > p )  with densityp(xlp, 2 )  = (Z(-'/2f ((x - p)'Z- '(x - p)) where 
p E RP and Z E S;. The parameter 8 = det(2) is sometimes called 
the population generalized variance. The sample generalized variance is 
V = det((l/n)S) where S = 2;(xi - %)(xi - K)'. Show that the dis- 
tribution of V depends on (p, 2 )  only through 8. 

12. Assume the conditions under which Proposition 7.16 was proved. 
Given a probability Q on 9 ,  let e denote the extension of Q to 
%-that is, Q(B) = Q(B n 9 )  for B E 3. For g E G, g e i s  defined 
in the usual way-(~Q)(B) = e ( g - ' ~ ) .  
(i) Assume that P is a probability measure on % and 

that is, 

Show that P is G-invariant. 

(ii) If P is G-invariant, show that (7.1) holds for some Q. 

13. Under the assumptions used to prove Proposition 7.16, let 9 be all the 
G-invariant distributions. Prove that r (X)  is a sufficient statistic for 
the family 9. 

14. Suppose X E Rn has coordinates XI,. . . , Xn that are i.i.d. N(p, l), 
p E R'. Thus the parameter space for the distributions of X is the 
additive group G = R'. The function t : Rn + G given by t(x) = % 
gives a complete sufficient statistic for the model for X. Also, G acts on 
Rn by gx = x + ge where e E Rn is the vector of ones. 

(i) Show that t(gx) = gt(x) and that Z(X) = ( t ( ~ ) ) - ' X  is an 
ancillary statistic. Here, (t(X))-I means the group inverse of 
t(X) E G so (t(X))-Ix = X - Xe .  What is the distribution of 
Z( X)? 

(ii) Suppose we want to find a minimum variance unbiased estima- 
tor (MVUE) of h(p) = &, f(Xl)  where f is a given function. 
The Rao-Blackwell Theorem asserts that the MVUE is 
&( f(Xl)lt(X) = t). Show that this conditional expectation is 
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where a 2  = var(X, - X) = ( n  - l)/n. Evaluate this for f (x)  = 

1 i f x  g u,and f ( x ) =  Oif x > u,. 

(iii) What is the MVUE of the parametric function (&%-'exp 
[ -  &(x, - p)2]  where x, is a fixed number? 

15. Using the notation, results, and assumptions of Example 7.18, find an 
unbiased estimator based on t(X) of the parametric function h(a, b) 
= ((a, b) Po)(Xl g u,) where u, is a fixed number and XI is the first 
coordinate of X. Express the answer in terms of the distribution of 2, 
-the first coordinate of Z. What is this distribution? In the case that 
Po is the N(0, I,) distribution, show this gives a MVUE for h(a, b). 

16. This problem contains an abstraction of the technique developed in 
Problems 14 and 15. Under the conditions used to prove Proposition 
7.19, assume the space (9, ('2,) is (G, 3,) and G = G. The equivari- 
ance assumption on r then becomes r(gx) = g o r(x) since r(x) E G. 
Of course, r (X)  is assumed to be a sufficient statistic for {gP,lg E G). 

(i) Let Z( X) = ( r (  X))-IX where ( r (  x))-' is the group inverse of 
r(X). Show that Z(X) is a maximal invariant and Z(X) is 
ancillary. Hence Proposition 7.19 applies. 

(ii) Let Q, denote the distribution of Z when C(X) is one of the 
distributions gPo, g E G. Show that a version of the conditional 
expectation &( f(X)Ir(X) = g) is f(gZ) for any bounded 
measurable f .  

(iii) Apply the above to the case when Po is N(0, I, @ I,) on % (as in 
Section 7.1) and take G = G ; .  The group action is x + xT' for 
x E X and T E G;. The map r is r(X) = T in the representa- 
tion X = 9T '  with E %, , and T E Gg. What is Qo? 

(iv) When X E % is N(0, I, 8 Z) with Z E Sp+, use (iii) to find a 
MVUE of the parametric function 

where uo is a fixed vector in RP. 

NOTES AND REFERENCES 

1. For some inaterial related to Proposition 7.3, see Dawid (1978). The 
extension' of Proposition 7.3 to arbitrary compact groups (Proposition 
7.16) is due to Farrell (1962). A related paper is Das Gupta (1979). 
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2. If G acts on 5% and t is a function from %. onto 9, it is natural to ask if 
we can define a group action on 9 (using t and G) so that t becomes 
equivariant. The obvious thlng to do is to picky E %, write y = t(x), 
and then define gy to be t(gx). In order that this definition make sense 
it is necessary (and sufficient) that whenever t(x) = t(%), then t(gx) = 

t(g%) for all g E G. When this condition holds, it is easy to show that G 
then acts on % via the above definition and t is equivariant. For some 
further discussion, see Hall, Wijsman, and Ghosh (1965). 

Some of the early work on invariance by Stein, and Hunt and Stein, 
first appeared in print in the work of other authors. For example, the 
famous Hunt-Stein Theorem given in Lehrnann (1959) was established 
in 1946 but was never published. This early work laid the foundation 
for much of the material in this chapter. Other early invariance works 
include Hotelling (1931), Pitman (1939), and Peisakoff (1950). The 
paper by Kiefer (1957) contains a generalization of the Hunt-Stein 
Theorem. For some additional discussion on the development of invari- 
ance arguments, see Hall, Wijsman, and Ghosh (1965). 

4. Proposition 7.15 is probably due to Stein, but I do not know a 
reference. 

5. Make the assumptions on %, 9, and G that lead to Proposition 7.16, 
and note that % is just a particular representation of the quotient space 
%/G. If v is any a-finite G-invariant measure on %, let S be the 
measure on 9 defined by 

Then (see Lehmann, 1959, p. 39), 

for all measurable functions h .  The proof of Proposition 7.16 shows that 
for any v-integrable function f ,  the equation 

holds. In an attempt to make sense of (7.2) when G is not compact, let 
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pr denote a right invariant measure on G. For f E X ( X ) ,  set 

Assuming this integral is well defined (it may not be in certain examples 
-e.g., X = Rn - (0) and G = GI,), it follows that ](hx) = f (x )  for 
h E G. Thus j is invariant and can be regarded as a function on 
9 = %/G. For any measure 6 on 3, write j j d6  to mean the integral of 
j ,  expressed as a function of y,  with respect to the measure 6. In this 
case, the right-hand side of (7.2) becomes 

However, for h E G, it is easy to show 

so J is a relatively invariant integral. As usual, A, is the right-hand 
modulus of G. Thus the left-hand side of (7.2) must also be relatively 
invariant with multiplier A; I .  The argument thus far shows that when p 
in (7.2) is replaced by p, (this choice looks correct so that the inside 
integral defines an invariant function), the resulting integral J is rela- 
tively invariant with multiplier A; I .  Hence the only possible measures v 
for which (7.2) can hold must be relatively invariant with multiplier 
A;'. However, given such a v, further assumptions are needed in order 
that (7.2) hold for some 6 (when G is not compact and p is replaced by 
p,). Some examples where (7.2) is valid for noncompact groups are 
given in Stein (1956), but the first systematic account of such a result is 
Wijsman (1966), who uses some Lie group theory. A different approach 
due to Schwarz is reported in Farrell (1976). The description here 
follows Andersson (1982) most closely. 

6. Proposition 7.19 is a special case of a result in Hall, Wijsman, and 
Ghosh (1965). Some version of this result was known to Stein but never 
published by him. The development here is a modification of that which 
I learned from Bondesson (1977). 
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