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SYMMETRIES OF SURFACES OF CONSTANT WIDTH

JAY P. FILLMORE

1. Introduction

A hypersurface of constant width in Euclidean space En is a compact con-
tinuous (n— l)-dimensional submanifold enclosing an open convex set and
having the property that the distance between the two supporting hyperplanes
having a given unit vector ξ as normals is independent of ξ.

Examples of such hypersurface in E2 are the Reuleux triangle and a parallel
curve of constant distance from a Reuleux triangle [4, p. 199]; these curves
are continuous and of class C1 respectively.

Assume that the coordinate origin of En is inside the region enclosed by the
hypersurface. Given a unit vector ξ, let h(ξ) denote the distance from the
origin to the supporting hyperplane having ξ as normal and such that the vector
from the origin to the point of contact makes an acute angle with ξ. h(ξ) is
the Minkowski support function and

Λ(f) + A(—ξ) = constant = 2a

is necessary and sufficient for the hypersurface to be of constant width.
In E2 we may take ξ = (cos θ, sin θ) and h = a + b cos 30 (0 < 86 < a).

The resulting curve

xλ — h cos θ — sin θ , x2 == h sin θ + cos θ
dθ dβ

is analytic and of constant width—an analytic version of the Reuleux triangle.
If we rotate this curve in En about an (n — 2)-dimensional axis perpendicular
to the line θ — 0, we obtain an analytic surface of constant width in En, which
is not a sphere.

The hypersurfaces just described admit many symmetries—orthogonal
transformations (including the improper ones) which, when combined with a
translation, carry the hypersurface into itself. In this paper we show that there
exist in En analytic hypersurfaces of constant width, which do not admit any
symmetries other than the identity.

In the final section we establish which closed subgroups of the proper and

Received February 28, 1968.



104 JAY P. FILLMORE

the full rotation groups in E3 can occur as groups of symmetries of surfaces of
constant width and which cannot.

2. Christoffel's theorem, spherical harmonics

Let x = (x19 - > ,xn) denote coordinates in En, and set r = <Jx\ + . + x2

n.
Define H(x) for x Φ 0 by H(x) = rh(xjr, . . , xn/r), where h(ξ) is the
support function of a compact convex hypersurface in En. H(x) is homogeneous
of degree 1 with respect to positive constants. If the hypersurface is of differ-
entiability class Cα, then H(x) is of class Ca~ι on En less the origin. Given such
an H(x), dH/dXi is homogeneous of degree 0 and thus depends only on ξ — x/r.
The vector grad H = (dH/dx^ , dH/dxn) furnishes the coordinates of the
hypersurface as a function of ξ on the (n — l)-sphere Sn~ι in En [1, p, 135].

Let — φ(ξ) denote the sum of the principal radii of curvature at the point
of the hypersurface having normal ξ. Define Φ(x) in En less the orgin by Φ(x)
— r~ιψ{xjr), so Φ(x) is homogeneous of degree — 1. A consequence of
Rodrigues' formula is that Φ{x) = ΔH(x) where Δ is the Laplacian in En [1,
p. 134].

The theorem of Christoβel ([1, p. 136] and [3]) states that a function φ(ξ)
on Sn~ι arises from a conpact convex hypersurface (of class C4) as described
above, if and only if, first: the integral

J Kξ)φ(ξ)dξ = 0

for every f(ξ) which is the restriction of one of the n functions F(x) = xi9

and second: the integral

J (ξ £")*(? fOKgrad Φ)(f) f"W£ > 0
-Srn-l

for all I7, f" € 571"1, which are orthogonal (£'•£" = 0), and strict inequality
holds for some such ξ\ ζ". Here dξ denotes rotation invariant measure on
S*-1, (grad Φ)(ξ) is the restriction to S71'1 of the gradient of Φ(x), and θ{t) is a
certain function of one variable which need not be explicitly written down
here (See [3]). Furthermore, <p(ξ) determines the hypersurface uniquely up to
translations, and the hypersurface is C°° or analytic as φ(ξ) is C°° or analytic.

A spherical harmonic f(ξ) of degree k is the restriction to Sn~ι of a
homogeneous polynomial F(x) of degree k which is harmonic: ΔF(x) = 0.
F(x) and /(£) are related by F(x) = rkj{xjr). For fixed &, the spherical
harmonics of degree & are a finite dimensional vector space. Any two spherical
harmonics of different degrees are orthogonal with respect to integrating the
product over Sn~ι. If f(ξ) is any square integrable function on Sn~ι, then there
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is a unique expansion /(£) = Σ fk(ξ)> where fk(ξ) is a spherical harmonic of

degree k and the series converges in mean to /(£), [2]. A spherical harmonic
of degree k is an odd function, i.e., satisfies /(—ξ) — —f(ξ) if and only if k
is odd.

If σ is an orthogonal transformation of En (proper or not), then a sends Sn~ι

onto itself. If f(ξ) is a spherical harmonic of degree k, then so is fiσξ) this
follows from Δ(F{σx)) = (JFXσ t), i.e., the invariance of Δ under orthogonal
transformations.

3. Construction of analytic hypersurfaces of constant
width without symmetries

Let — φ(ξ) be the sum of the principal radii of curvature of a compact
convex hypersurface. If σ is an orthogonal transformation in En, and σ maps
the hypersurface onto itself, then σ leaves invariant the support function and
thus <p(ξ), i.e., φ(σξ) = φ(ξ) for all ξ. Since φ(ξ) determines the hypersurface
up to translation, the group of symmetries of the hypersurface consists of those

σ preserving φ(ξ). If we expand φ(ξ) = Σ fk(ξ) into spherical harmonics fk(ξ)

of degree k, the uniqueness of the expansion implies that φ(σξ) = φ(ξ) for all
ξ if and only if fk(σξ) = fk(ξ) for all ξ and k. Thus the determination of
symmetries of a hypersurface is reduced to studying invariance of spherical
harmonics under orthogonal maps.

We denote by O(ή) and SO{n) the groups of all orthogonal and proper
orthogonal transformations of En respectively.

Lemma 1. Let k > 1 be odd and σ e O(ri) different from the identity.
Then there exists a spherical harmonic f(ξ) of degree k which is not left
invariant by σ, i.e., f(σξ) ψ f(ξ) for some ξ.

This lemma is simply the statement that the representation of O(ri) on the
space of spherical functions of degree n given by sending σ into the left
translation f(ξ) -+ /(σ"1?) is faithful. We give here a proof of the lemma based
on elementary properties of Gegenbauer polynomials [2].

Suppose a € O(n) has the property that f(σξ) = /(£) for all ξ for every
spherical harmonic f(ξ) of degree k. We must show a is the identity. Let
/i(f)> '"9 /d(ί) be an orthonormal basis of the space of spherical harmonics of

d

degree k. Then 2 fi(ξ)fi(v) depends only on the inner product £• w, and in fact
this sum can be expressed as Cλ

k(ξ η) where Cλ

k(h) is the Gegenbauer polynomial
(coefficients of /* in the expansion of (l—2ht + t2)~λ) with λ = (n/2) — 1. Since
fίiσξ) = fi(ξ), Ck(σξ-ξ) = Cfc(l) for all f. Now Ck(h) has a trigonometric
expansion

Q(cos θ) = Σ aiak-i c o s (* -



106 JAY P. FILLMORE

with

a _
1-2 ( / - l)ί

From this we conclude that | Cfc(cos 0) | < CΛ(1), and equality holds if and only
if cos (k - 200 = 1 for i = 0, 1, •, Λ. If Cft(cos 0) = C fc(l) and k is odd,
then cos0 = 1. Hence from Ck(σξ ξ) = C fc(l) we have σξ-ξ = 1 for all ξ.
Thus σ is the identity as desired.

Lemma 2. Let C > 0, and /2(f), /3(£), , be spherical harmonics on
oo

Sn~ι, fk(ξ) of degree k, such that Σ /*(£) w 0/ c t o j C1. TΛe/z /or | e | sufficiently

small, the function —φ(ξ), where

φ(ξ) = C + ε Σ fk(S) ,

is the sum of the principal radii of curvature of a compact convex hypersurface
in En. A support function for such a surface is given by

n - l Ά (k- l)(n + k - 3)

The first condition of ChristofϊeΓs theorem is satisfied since spherical
harmonics of degree 1 are absent from φ(ξ). That the inequality in the second
condition is satisfied, is seen as follows. The integral is strictly > 0 for some
orthogonal pair ξ', ξ" when φ(ξ) is constant since this corresponds to a sphere.
By symmetry on the sphere (O(ή) moves such £', ξ" transitively), the integral
is strictly > 0 for all orthogonal pairs ξ', ξ". Since the integral is linear in φ(ξ),
the choice for φ(ξ) as in the lemma will yield an integral which is strictly > 0
for sufficiently small | e | .

That the support function yields the given φ(ξ) is seen by computing that

= -(Λ - l)(π + k - l)r-1-*Ft(jc)

k - \)r-

using Euler's identity for the homogeneous function Fk(x) and the fact that

Fk(x) is harmonic.
Theorem 1. There exists an analytic hypersurface of constant width in En

which admits no symmetries other than the identity.
Choose σx <= O(ri), σλ not the identity. Let fkl(ξ) be a spherical harmonic of

odd degree kx > 3, which is not left invariant by σi9 and suppose
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Gλ = {σ e O(ή) I fkl(σξ) = fkl(ξ) all ξ}. Then Gx is a closed subgroup of O(ri),
therefore a Lie group, and a proper subgroup of O(ri). If Gλ is not the identity,
choose σ2 e G19 σ2 not the identity. Let fk2(ξ) be a spherical function of odd
degree k2 > /̂  which is not left invariant by σ2. Put G2 — {σ e O(ri)\fk(σξ)
= /fc(f) for all £ and for k — kx, k2). G2 is a closed subgroup of O(ή) and a
proper subgroup of Gλ. Continue in this fashion to obtain a chain O(ri) 2 Gt

2 G 2 2 . At each step, either the dimension of the Lie group or the
number of its components decreases, so after finitely many steps we reach the
identity group. Thus we have spherical functions fkι(ξ), •••,/*,(£) of odd
degrees ki9 3 < k < . < ks, such that if a € O(n) and fφξ) = fk.(ξ) for all
ξ and i = 1, , s, then σ is the identity.

Let C > 0 and ε ^ 0 sufficiently small so that

is the negative of the sum of the principal radii of curvature of a compact
convex hypersurface. If σ e O(ri) is a symmetry of the surface, then σ leaves
invariant φ(ξ) and thus all fki(ξ), and therefore is the identity. Since φ(ξ) is
analytic, the hypersurface is analytic. Finally, from the form of the support
function in Lemma 2, h(ξ) + h{—ξ) = 2C/(n — 1). Hence the hypersurface
has constant width.

In a like fashion one can show
Theorem 2. Let G be the group of symmetries of a compact convex

hypersurface of class C4 in En, then G is a closed subgroup of O(ή) and there
exists an analytic compact convex hypersurface in En having G as its group
of symmetries. If the original hypersurface is of constant width, then the
analytic hypersurface may be taken to be of constant width.

The hypothesis that the hypersurface be O may be relaxed to C1. For the
support function of the hypersurface may be smoothed to a C°° function without
changing the group of symmetries while maintaining the form constant plus an
odd function.

If we imitate the construction of a Reuleux triangle in n-dimension, a parallel
hypersurface at constant distance from this hypersurface is of class C1 and has
the symmetry group (a finite group) of the regular n-simplex. Thus:

Corollary. There exists an analytic hypersurface of constant width in En

having the same group of symmetries as a regular n-simplex.
For n > 3 quite different hypersurfaces of constant width can have the

same symmetry groups. See, for example, [7, p. 81].

4. Symmetry groups of analytic surfaces of constant width

Let R and R' denote 5O(3) and 0(3) respectively. We wish to determine
which of the closed subgroups of these groups can occur as the group of
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symmetries of a C4 or analytic surface of constant width. In view of the
previous paragraphs, this is equivalent to determining whether or not there
exist odd spherical harmonics on S2 or harmonic (homogeneous) polynomials
in three variables, which are invariant under a given closed subgroup. The
latter question is answered for the finite subgoups by Polya and Meyer in [5].

We begin with JR and its 1-dimensional subgroups. Any 1-dimensional
subgroup of R is conjugate to either Gl9 the group of rotations of E3 about
the Xj-axis, or G2, the rotations of E3 which either fix or reverse the Xj-axis.
These groups have one and two connected components respectively.

The spherical harmonics of degree k on S2, which are left invariant by Gl9

form a 1-dimensional real vector space. Indeed, they are constant on the
intersection of S2 with planes perpendicular to the jc3-axis and are the so-called
zonal harmonics [6]. These arise as solutions of Legendre's equation and the
analytic solutions of this equation are a 1-dimensional space. If a spherical
harmonic of degree k is invariant under G2, it is invariant under G1? as well
as a rotation of π about the * r axis. The corresponding solution of the Legendre
equation must be left invariant, so k is necessarily even.

G2 cannot occur as the group of symmetries of an analytic surface of constant
width, since φ(ξ) = C + (a sum of spherical harmonics of odd degree) implies
φ(ξ) = C, and the surface would be a sphere and admit R for its symmetries.
Gx can occur as such a group of symmetries, since φ(ξ) = C + ef3(ξ), where
C > 0, /3(f) q/= 0 is a spherical harmonic of degree 3, and ε Φ 0 is sufficiently
small, is left invariant by Gx but by no larger group (necessarily G2 or R). <p(ξ)
defines the surface as in ChristofϊeΓs theorem.

The case of Gx and G2 are geometrically obvious: Gx occurs as symmetries
of an analytic Reuleux triangle rotated about an axis of symmetry, and G2 is
excluded by considering the intersection of the surface with a plane containing
the jc3-axis.

We turn to the finite subgroups of R. These are [8]: the tetrahedral T,
octahedral 0 , icosahedral /, cyclic CJji > 1), and dihedral Dn(n > 2) groups
of orders 12, 24, 60, n, and 2n respectively.

Introduce spherical coordinates on S2 by ξ = (sin θ cos <p, sin θ sin φ, cos θ).
Reflection through the origin corresponds to (θ, φ) —> (TΓ — θ, π + <p), and
rotation through an angle of π about the jcΓaxis corresponds to (0, φ)
—> (π — θ, — φ). The functions cos nφ P%(cos θ) and sin nφP%(cos θ), where

P£(cos θ) is an associated Legendre function [6], are spherical harmonics of
degree k, odd functions on S2 if k is odd, and are left invariant under rotation
through an angle of 2π/n around the *3-axis. Letting k be odd, we easily check
that cos nφ Pi (cos θ) for n odd and sin nφ P£(cos θ) for n even are left invariant
under rotation through π about the jcraxis. Thus each Dn(n > 2) is the group
of rotations in R leaving invariant a spherical function of odd degree. Hence,
as above, each Dn is the group of symmetries of an analytic surface of constant
width. The Legendre function PΛ+2(cos θ), with k odd, is left invariant under
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Cn C Dn but not by rotation about the *Γaxis. Adding this to the functions
above gives Cn as the group of rotations leaving invariant an odd analytic
function. Hence each Cn(n > 1) is the group of symmetries of a surface of
constant width.

The group T was shown to be the group of symmetries of a surface of
constant width in the last section. Let now G be O or /. In [5], Polya and
Meyer determine the dimensions of the spaces of harmonic polynomials which
are invariant under a given finite subgroup of SO(3). From their results it
follows that there exists a spherical harmonic fk(ξ) of degree k which is
invariant under G. (The first such A: is 9 and 15 for G — O and I respectively.)
G is contained in the group {σ e R\fk(σξ) — fk(ξ) all ξ} which is a proper
subgroup of JR. It cannot be Cn, Dn,Gγ, or G2 since these send an axis into
itself and G does not. Thus this subgroup is O or /. Since O and / have 24 and
60 elements respectively, we conclude G = {σ e R \ fk(σξ) = fk(ξ) all ξ} and
that G is the group of symmetries of an analytic surface of constant width.

Thus we have
Theorem 3. With the exception of subgroups conjugate to G2, every closed

subgroup of R is the group of symmetries of an analytic surface of constant
width.

In a like manner one can determine which closed subgroups of R' = 0(3)
are of the form {σ € R' \ f(σξ) — f(ξ) all ξ} for some odd (analytic) function
/(£) on S\

We use the following notation [5]. If G is a subgroup of R, G' denotes the
subgroup of R' generated by G and reflection through the origin. If G is a
subgroup of R having a subgroup H of index 2, then (G, H) denotes the
subgroup of R' consisting of H and the elements of G not in H composed with
reflection through the origin. These two types of closed subgroups of R; along
with the closed subgroups of R are, up to conjugacy, all closed subgroups of
R'.

Theorem 4. The following closed subgroups of R' are the groups of
symmetries of an analytic surface of constant width:

T, O, /, Cn(n > 1), Dn(n > 2), «9, T) ,

Φn, Cn)(n > ϊ), (C2n, Cn)(n > 1) ,

(D2n, Dn)(n > 2), (G2, GJ, R' ,

and the following are not:

r, o', r, cn (n > l), jyn(n > 2),

G 1 5 G 2 , G(, Gg, R .
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