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ON NONSTANDARD PRODUCT MEASURE SPACES

JOSEF BERGER, HORST OSSWALD, YENENG SUN, AND JIANG-LUN WU

Abstract. The aim of this paper is to investigate systematically the re-

lationship between the two different types of product probability spaces
based on the Loeb space construction. For any two atomless Loeb
spaces, it is shown that for fixed r < s in [0, 1] there exists an increas-

ing sequence (At)r<t<s,t∈[0,1] of in the new sense product measurable
sets such that At has measure t and, with respect to the usual prod-

uct, the inner and outer measures are equal to r and s, respectively.
By constructing a continuum of increasing Loeb product null sets with
large gaps, the Loeb product is shown to be much richer than the usual
product even on null sets. General results in terms of outer and in-
ner measures with respect to the usual product are also obtained for
Loeb product measurable sets that are composed of almost independent
events.

1. Introduction

Let (Ω, Lµ(A), µ̂) and (T,Lν(T ), ν̂) be the respective Loeb probability
spaces constructed from any internal probability spaces (Ω,A, µ) and (T, T , ν),
where A and T are internal algebras of sets, and µ and ν are finitely additive
internal measures. Let (Ω × T,A ⊗ T , µ ⊗ ν) be the internal product of the
internal probability spaces (Ω,A, µ) and (T, T , ν), where A⊗T is simply the
internal algebra of all ∗finite disjoint unions of rectangles A× B with A ∈ A
and B ∈ T . The corresponding Loeb space of (Ω×T,A⊗T , µ⊗ν) is denoted
by (Ω × T,Lµ⊗ν(A ⊗ T ), µ̂⊗ ν) and called the Loeb product space. On the
other hand, the completion of the usual product of the two Loeb spaces is
denoted by (Ω× T,Lµ(A)⊗ Lν(T ), µ̂⊗ ν̂).

As already noted by Anderson [2], the usual product σ-algebra Lµ(A) ⊗
Lν(T ) is contained in the Loeb product algebra Lµ⊗ν(A ⊗ T ), and µ̂⊗ ν is
an extension of µ̂⊗ ν̂. D. Hoover and D. Norman provided a specific example
showing that this inclusion can be proper (see Albeverio et al. [1, p. 74]). This
example is based on a hyperfinite set T and its internal power set Ω, where
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both T and Ω are endowed with the counting probability measure. A general
result was presented in Proposition 6.6 of [15] by the third named author of
this paper. It shows that the stated inclusion is always proper as long as the
relevant Loeb probability spaces are atomless. The proof of this result was
based on the general incompatibility of independence and joint-measurability
in the usual sense as shown in Proposition 6.5 in [15] and Proposition 1.1 in
[14]. Such incompatibility was already observed by Doob [5] in the setting of
iid processes with a Lebesgue parameter space.

The purpose of this paper is to provide a systematic study of the relation-
ship between the Loeb product space (Ω × T,Lµ⊗ν(A ⊗ T ), µ̂⊗ ν) and its
counterpart, the usual product space (Ω×T,Lµ(A)⊗Lν(T ), µ̂⊗ ν̂) of the two
Loeb spaces. Note that the distinction between these two types of nonstandard
product measures is the starting point for the discovery of some completely
new phenomena involving independence (see [13]–[16]). Loeb product mea-
sures are also useful in the hyperfinite contexts of model theory (see Keisler
[7]) and chaos decompositions (see Cutland and Ng [4] and for details in [11]).
An important property for the larger Loeb product framework is the Fubini
property, as first shown by Keisler [7] (see also [1] and [10]). In this paper, we
consider only the interesting case that the arbitrarily given Loeb measures µ̂
and ν̂ are atomless. For the convenience of the reader, some general proper-
ties of atomless probability spaces and atomless Loeb spaces are discussed in
Section 2.

In Section 3, an explicit example is constructed to show the existence of
a class of sets {Rs ∈ Lµ⊗ν(A ⊗ T ) : s ∈ [0, 1]} such that for each s ∈ [0, 1],
µ̂⊗ ν(Rs) = 0 and (µ̂ ⊗ ν̂)outer(Rs) = 1, and for all s1, s2 ∈ [0, 1] with
s1 < s2, Rs1 ⊂ Rs2 and (µ̂ ⊗ ν̂)outer(Rs2 \ Rs1) = 1. This means that there
is a continuum of increasing Loeb product null sets with large gaps in the
sense that their set differences have µ̂ ⊗ ν̂-outer measure one. Thus, the
Loeb product space is much richer than the usual product even on null sets.
Hence, each product measurable set in Lµ(A) ⊗ Lν(T ) can be modified by
a null set in the Loeb product space such that the modified set is no longer
measurable in Lµ(A) ⊗ Lν(T ). Note that our argument for constructing all
such non-product Loeb measurable sets is novel. In addition, another simple
and concrete construction of sets in Lµ⊗ν(A⊗T ) \Lµ(A)⊗Lν(T ) is given in
this section.

In Section 4, general results in terms of outer and inner measures with
respect to the usual product measure µ̂⊗ ν̂ are also considered for those Loeb
product measurable sets that are composed of almost independent nontrivial
events. Some further consequences of the results in Section 3 are given in
Section 5. In particular, it is shown that for a set in the Loeb product algebra
Lµ⊗ν(A⊗T ) its measure s and its outer measure t and inner measure r with
respect to the usual product measure µ̂⊗ν̂ can be completely arbitrary subject
to the obvious condition 0 ≤ r ≤ s ≤ t ≤ 1. In addition, it is pointed out that
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every set E in Lµ⊗ν(A⊗ T ) has a subset A ∈ Lµ⊗ν(A⊗ T ) with µ̂⊗ ν̂-inner
measure 0 that has the same µ̂⊗ ν̂-outer measure and µ̂⊗ ν-measure as E.

2. Properties of atomless Loeb spaces

A measurable set A in a finite measure space (Λ,F , P ) is called an atom
if P (A) > 0 and for any measurable subset B of A, P (B) is P (A) or 0.
The measure space (Λ,F , P ) is called atomless if it has no atoms. The well
known Lyapunov theorem says that the range of the atomless measure P is the
closed bounded interval [0, P (Λ)]. It is thus obvious that for any non-negative
real numbers α1, α2, . . . , αn with total sum P (Λ), there exists a partition
B1, . . . , Bn ∈ F of Λ such that P (Bi) = αi for i = 1, 2, . . . , n. It is easy to show
that an atomless probability space has the following well known universality
property. (For example, a version of this result was quoted in Proposition 2.2
in [8].)

Lemma 2.1. Let (Λ,F , P ) be an atomless probability space. Then, for any
Borel probability distribution τ on a complete separable metric space X, there
is a Borel measurable mapping f from (Λ,F , P ) to X such that the distribution
of f is the given distribution τ , i.e., Pf−1(B) = τ(B) for any Borel set B in
X.

For any Loeb probability space (T,Lν(T ), ν̂), by saturation, the internal
algebra T is rich enough to guarantee that each element of Lν(T ) is equivalent
to an element of T in the sense that for each B ∈ Lν(T ) there exists an A ∈ T
such that ν̂(A∆B) = 0, where A∆B is the symmetric difference of A and B.
In this case A is called a ν̂-approximation of B (see [6]).

Throughout this paper we assume that the given Loeb probability spaces
(Ω, Lµ(A), µ̂) and (T,Lν(T ), ν̂) are atomless. For simplicity, we denote the
product σ-algebra Lµ(A) ⊗ Lν(T ) by U . Let P denote the set of all finite
unions X1 × Y1 ∪ · · · ∪Xn × Yn of rectangles Xi × Yi such that Xi ∈ A and
Yi ∈ T and Y1, . . . , Yn form a partition of T . Notice that P is an algebra and
generates U . Using saturation, the following lemma is an obvious consequence
of the Lyapunov theorem.

Lemma 2.2. Given B ∈ T . Then there exists an unlimited k ∈ ∗N having
the following property: for each n ∈ ∗N with n ≤ k, there exists an internal
partition C1, . . . , Cn ∈ T of B such that |ν(Ci)− ν̂(B)/n| < 1/k; in particu-
lar, ν(Ci) ≈ ν̂(B)/n and ν(Ci) ≈ 0 if n is unlimited.

Proof. We restrict our attention to the atomless measure space (B,Lν(T )∩
B, ν̂|B). Take any k ∈ N. Then for each n ≤ k, the Lyapunov theorem implies
that there is a partition C1, . . . , Cn of B such that ν̂(Ci) = ν̂(B)/n for each i.
By taking ν̂-approximations of these sets, we can assume that the sets Ci are
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internal. Thus, we have |ν(Ci)− ν̂(B)/n| < 1/k. By saturation, there exists
an unlimited k ∈ ∗N with the desired property. �

Recall that for any set C ⊆ Ω× T , the outer and inner measures of C are
defined by setting

(µ̂⊗ ν̂)inner(C) := sup {µ̂⊗ ν̂(D) | D ⊆ C and D ∈ U}
and

(µ̂⊗ ν̂)outer(C) := inf {µ̂⊗ ν̂(D) | C ⊆ D ∈ U} .
The following lemma shows that for an internal set C the condition D ∈ U

in the above definition can be replaced by D ∈ P.

Lemma 2.3. For any internal set C ⊆ Ω× T , we have:
(1) (µ̂⊗ ν̂)inner(C) := sup {µ̂⊗ ν̂(D) | D ⊆ C and D ∈ P}; in particular,

if C is product measurable in the usual sense with µ̂⊗ ν̂(C) > 0, then
there exist X ∈ A and Y ∈ T such that X×Y ⊆ C and 0 < µ̂(X)ν̂(Y ).

(2) (µ̂⊗ ν̂)outer(C) := inf {µ̂⊗ ν̂(D) | C ⊆ D ∈ P}.

Proof. Let us first prove (1). Fix any ε > 0. Since P forms an algebra
and generates U , Proposition 32 of Royden [12, p. 320] implies that there
is a decreasing sequence En ∈ P, n ∈ N such that

⋂
n∈NEn ⊆ C and µ̂ ⊗

ν̂(
⋂
n∈NEn) ≥ (µ̂⊗ ν̂)inner(C)− ε. Since the internal set C contains

⋂
n∈NEn,

the underflow principle implies that there exists an n ∈ N such that D :=
∩nk=1Ek ⊆ C. Obviously, (µ̂ ⊗ ν̂)inner(C) − ε < µ̂ ⊗ ν̂(D) and D ∈ P. The
result then follows from the arbitrary choice of ε.

(2) can be proven from (1) by using contraposition. �

We end this section with some definitions.
Let C be a set in the Loeb product algebra Lµ⊗ν(A ⊗ T ). The indicator

function of C is denoted by 1C . For each t ∈ T , C(·, t) denotes the section
{ω ∈ Ω : (ω, t) ∈ C}, and for each ω ∈ Ω, C(ω, ·) denotes the section {t ∈ T :
(ω, t) ∈ C}. We will write Ct instead of C(·, t). If for ν̂ ⊗ ν-almost all (s, t) ∈
T × T , the events Ct and Cs are independent, then we say the events Ct, t ∈
T , are ν̂-almost independent. Processes with almost independent random
variables are studied systematically in [13]–[16].

3. Explicit constructions

We consider general atomless Loeb probability spaces (Ω, Lµ(A), µ̂) and
(T,Lν(T ), ν̂). For any p in the open unit interval (0, 1), Theorem 6.2 and
Proposition 6.6 in [15] say that there exists a set C in Lµ⊗ν(A ⊗ T ) whose
events Ct are ν̂-almost independent with common probability p. Then the
incompatibility of independence and joint measurability stated in Proposition
1.1 in [14] (see also Proposition 6.5 in [15]) implies that C ∈ Lµ⊗ν(A⊗T )\U .
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In Example 3.1 below, a simple and concrete construction of such a non-
product measurable set C with 0 < µ̂⊗ ν(C) < 1 is given.

Example 3.1. Let p ∈ (0, 1) be arbitrarily given. By Lemma 2.2, we can
find some unlimited η ∈ ∗N and internal partitions {Bj : j = 1, . . . , η} ⊆ T of
T and {Aj1...jη : j1, . . . , jη = 1, . . . , η} ⊆ A of Ω such that |ν(Bj)−η−1| < η−2

and |µ(Aj1...jη ) − η−η| < η−2η, respectively. Let us fix such a hyperfinite
number η. For each k = 1, . . . , η, define

Dk =
η⋃

j1,...,ĵk,...,jη=1

[pη]⋃
jk=1

Aj1...jη ,

where [pη] stands for the integer part of pη and ĵk means that jk is omitted
in the index. Note that

η∑
j1,...,ĵk,...,jη=1

[pη]∑
jk=1

η−η = η−1[pη] and p− η−1 < η−1[pη] ≤ p,

which implies that

|µ(Dk)− p| ≤
η∑

j1,...,ĵk,...,jη=1

[pη]∑
jk=1

|µ(Aj1...jη )− η−η|+ η−1 ≤ η−η + η−1.

Let C = ∪ηk=1Dk × Bk. Then it is clear that C is in the internal algebra
A⊗ T . By the previous estimation on µ(Dk), we obtain

|µ⊗ ν(C)− p| =

∣∣∣∣∣
η∑
k=1

((µ(Dk)− p) · ν(Bk))

∣∣∣∣∣ ≤ (η−η + η−1).

Therefore, µ̂⊗ ν(C) = p.
Now we will show that (µ̂ ⊗ ν̂)inner(C) = 0. Suppose otherwise. Then it

follows from Lemma 2.3 (1) that there exist internal sets X ∈ A and Y ∈ T
such that X × Y ⊆ C with µ̂(X)ν̂(Y ) > 0.

Let K = {1 ≤ k ≤ η : Y ∩ Bk 6= ∅} and G = ∩k∈KDk. For each k ∈ K,
there is a t ∈ Y ∩Bk. Since X ×{t} ⊆ ∪ηj=1Dj ×Bj and t /∈ Bj for j 6= k, we
must have X ⊆ Dk. Hence Y ⊆

⋃
k∈K Bk and X ⊆ G.

Let h1, h2, . . . , h|K| and i1, i2, . . . , iη−|K| be the respective lists of the el-
ements in K and {1, 2, . . . , η} − K in an increasing order. Then it is clear
that

G =
η⋃

ji1 ,ji2 ...,jiη−|K|=1

[pη]⋃
jh1 ,jh2 ,...,jh|K|=1

Aj1,...,jη .

Thus µ(G) ≤ (η−η + η−2η)ηη−|K|[pη]|K|. Therefore,

µ(X)ν(Y ) ≤ (η−1 + η−2)|K|(1 + η−η)p|K|,
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which is an infinitesimal no matter whether K is finite or infinite. This con-
tradicts µ̂(X)ν̂(Y ) > 0. Therefore, (µ̂ ⊗ ν̂)inner(C) = 0. It follows that
C ∈ Lµ⊗ν(A⊗ T ) \ U . Note that the events Ct, t ∈ T , are ν̂-almost indepen-
dent with equal probability p. By Theorem 4.2 in Section 4 below, it follows
that (µ̂⊗ ν̂)outer(C) = 1.

In the next example, we construct a class of sets {Rs ∈ A⊗T \U : s ∈ [0, 1]}
such that for each s ∈ [0, 1], µ̂⊗ ν(Rs) = 0 and (µ̂⊗ ν̂)outer(Rs) = 1, and for
all s1, s2 ∈ [0, 1] with s1 < s2, Rs1 ⊂ Rs2 and (µ̂ ⊗ ν̂)outer(Rs2 \ Rs1) = 1.
Thus we move beyond the previous results to show that there is a continuum
of increasing Loeb product null sets with large gaps. Here a continuum of
null rectangles are put together to produce a Loeb product null set. As a
by-product, we also obtain a class of sets {Cs ∈ A ⊗ T : s ∈ [0, 1]} such
that for each s ∈ [0, 1], µ̂⊗ ν(Cs) = s and (µ̂ ⊗ ν̂)inner(Cs) = 0 and (µ̂ ⊗
ν̂)outer(Cs) = 1, and for all s1, s2 ∈ [0, 1] with s1 < s2, Cs1 ⊂ Cs2 and
(µ̂⊗ ν̂)outer(Cs2 \ Cs1) = 1.

Example 3.2. For any positive integers k, n ∈ N, consider the space
{1, 2, . . . , n} with the counting probability measure τ and its k-fold product
probability space {1, 2, . . . , n}k with probability measure τk. By the univer-
sality result in Lemma 2.1, there is a random variable Φn,k from the atomless
Loeb space (Ω, Lµ(A), µ̂) to {1, 2, . . . , n}k with distribution τk. Since the tar-
get space is discrete, we can assume without loss of generality that Φn,k is
internal. Let the i-th component of Φn,k be φn,ki for i = 1, 2, . . . , k. Then the
random variables in the collection {φn,ki : i = 1, 2, . . . , k} are iid with common
distribution τ .

Next, for any fixed 1 ≤ p ≤ l < n, let Ap,l,n,ki = (φn,ki )−1({p + 1, p + 2,
. . . , l}). Then the internal events in the collection {Ap,l,n,ki : i = 1, 2, . . . , k}
are iid with common probability (l − p+ 1)/n.

By saturation, there exists an unlimited number Q ∈ ∗N such that for each
unlimited k ∈ ∗N with k ≤ Q, and for each p, l, n ∈ ∗N with 1 ≤ p ≤ l < n ≤ k,
there exist sets Ap,l,n,k1 , . . . , Ap,l,n,kk ∈ A having the following properties:

(1) µ̂(Ap,l,n,ki ) ≈ (l − p+ 1)/n for each i = 1, . . . , k.
(2) Ap,l,n,ki ⊆ Ap,l+1,n,k

i for p < l + 1 < n and for each i = 1, . . . , k.
(3) For each 1 ≤ m ≤ k and for each strictly increasing m-tuple i1 <
· · · < im in {1, . . . , k},

µ
(
Ap,l,n,ki1

∪ · · · ∪Ap,l,n,kim

)
≈
(

1−
(
n+ p− l − 1

n

)m)
and

µ
(
Ap,l,n,ki1

∩ · · · ∩Ap,l,n,kim

)
≈ (l − p+ 1)m

nm
.
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(4) Ap+1,l,n,k
i = A1,l,n,k

i \ A1,p,n,k
i for 1 ≤ p ≤ l < n and for each i = 1,

. . . , k.
Now fix unlimited n, k ∈ ∗N such that k ≤ Q and n2/k ≈ 0. By Lemma

2.2, there exists an internal partition B1, . . . , Bk ⊆ T of T with µ(Bi) < 2/k.
Set

Dp,l :=
(
Ap,l,n,k1 ×B1

)
∪ · · · ∪

(
Ap,l,n,kk ×Bk

)
.

Then Dp,l ∈ A× T with

(1) µ⊗ ν
(
Dp,l

)
≈ (l − p+ 1)

n
.

By Property (2), it is clear that Dp,l ⊆ Dp,q for p ≤ l ≤ q < n. By Property
(4), we know that for 1 ≤ p ≤ l < n,

(2) Dp+1,l = D1,l \D1,p.

We shall now show that the inner measure (µ̂⊗ ν̂)inner(Dp,l) is 0. Since we
work with fixed p, l, n, k, we can omit the upper indices p, l, n, k at Ap,l,n,ki .
Suppose that (µ̂⊗ ν̂)inner(Dp,l) > 0. It follows from Lemma 2.3 (1) that there
exist X ∈ A and Y ∈ T with 0 < µ̂(X), ν̂(Y ) such that X × Y ⊆ Dp,l.
There must be more than n2 many elements i1, . . . , im ∈ {1, . . . , k} with
Y ∩Bi1 6= ∅, . . . , Y ∩Bim 6= ∅. (If this is not true, then Y ⊆ Bi1 ∪· · ·∪Bim for
m ≤ n2, which implies µ(Bi1 ∪ · · · ∪Bim) ≤ 2n2/k ≈ 0; this is a contradiction
to µ̂(Y ) > 0.) It follows that X ⊆ Ai1 ∩ · · · ∩Aim . By Property (3) above, we
obtain

µ(X) ≤ µ(Ai1 ∩ · · · ∩Aim) ≈ (l − p+ 1)m

nm
≤
(

1− 1
n

)n2

≈ 0,

since limn→∞ (1− 1/n)n
2

= 0. This is a contradiction to µ̂(X) 6= 0. There-
fore, (µ̂⊗ ν̂)inner(Dp,l) = 0.

To show that (µ̂⊗ ν̂)outer(Dp,l) = 1, fix Z = (X1×Y1)∪· · ·∪(Xh×Yh) ∈ P
with Dp,l ⊆ Z. By Lemma 2.3 (2) it suffices to show that µ̂⊗ ν̂(Z) = 1. Recall
that we can require Y1, . . . , Yh to form a partition of T . Fix j ∈ {1, . . . , h} with
ν̂(Yj) > 0. Then again there exist more than n2 many elements i1, . . . , im in
{1, . . . , k} with Yj∩Bi1 6= ∅, . . . , Yj∩Bim 6= ∅. Therefore, Ai1∪· · ·∪Aim ⊆ Xj .
By Property (3) above,

µ(Xj) ≥ µ(Ai1 ∪ · · · ∪Aim) ≈ 1−
(
n+ p− l − 1

n

)m
≥ 1−

(
1− 1

n

)n2

≈ 1.

Hence µ̂(Xj) = 1 and µ̂(Xj)ν̂(Yj) = ν̂(Yj). When ν̂(Yj) = 0, we still have
µ̂(Xj)ν̂(Yj) = ν̂(Yj). Therefore,

µ̂⊗ ν̂(Z) = (µ̂(Y1) + · · ·+ µ̂(Yh)) = 1.

It follows that (µ̂⊗ ν̂)outer(Dp,l) = 1.
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Take an unlimited l0 ∈ ∗N such that l0/n ≈ 0. Fix any s ∈ [0, 1]. Choose
q with 1 ≤ q < n such that q/n ≈ s, and let Cs = D1,q. Choose p with
1 ≤ p ≤ l0 such that p/l0 ≈ s, and let Rs = D1,p.

By Equation (1) and the above results on µ̂⊗ ν̂ outer and inner measures,
it is clear that µ̂⊗ ν(Cs) = s, (µ̂⊗ ν̂)inner(Cs) = 0, (µ̂⊗ ν̂)outer(Cs) = 1, and
µ̂⊗ ν(Rs) = 0, (µ̂⊗ ν̂)inner(Rs) = 0, (µ̂⊗ ν̂)outer(Rs) = 1.

For all s1, s2 ∈ [0, 1] with s1 < s2 we have Cs1 ⊂ Cs2 , (µ̂ ⊗ ν̂)outer(Cs2 \
Cs1) = 1, Rs1 ⊂ Rs2 , (µ̂⊗ ν̂)outer(Rs2 \Rs1) = 1. Here Equation (2) and the
fact that (µ̂⊗ ν̂)outer(Dp,l) = 1 are used.

4. Outer and inner product Loeb measures

The non-product-measurable sets in Example 3.2 depend on the notion
of ν̂-almost independence. These particular non-product-measurable sets are
also shown to have µ̂⊗ ν̂ outer measure one and inner measure zero. In this
section, we consider some general results.

Let C be a set in Lµ⊗ν(A ⊗ T ) whose events Ct, t ∈ T , are ν̂-almost
independent, i.e., for ν̂ ⊗ ν-almost all (s, t) ∈ T × T , the events Ct and Cs
are independent. By Theorems 1 and 2 in [13] (also see Theorem 4.6 in
[15]), the conditional expectation E(1C |U) of the indicator function 1C of C
in Ω × T is simply the mean function t 7→ µ̂(Ct) of 1C . Take any set D in
the usual product algebra U . Then E(1D1C |U) = 1DE(1C |U) = 1Dµ̂(Ct).
Hence, by integrating the functions on Ω×T , we obtain that µ̂⊗ ν(D∩C) =∫

Ω×T 1Dµ̂(Ct)dµ̂⊗ ν, which equals to
∫
T
µ̂(Dt)µ̂(Ct)dν̂ by Keisler’s Fubini

theorem. For easy reference, let us state the following lemma.

Lemma 4.1. Let C be a set in Lµ⊗ν(A ⊗ T ) whose events Ct, t ∈ T, are
ν̂-almost independent, and D ∈ U . Then

(3) µ̂⊗ ν(D ∩ C) =
∫
T

µ̂(Dt)µ̂(Ct)dν̂.

Theorem 4.2. Let C be a set in Lµ⊗ν(A ⊗ T ) whose events Ct, t ∈ T ,
are ν̂-almost independent. If 0 < µ̂(Ct) < 1 for ν̂-almost all t ∈ T , then
(µ̂⊗ ν̂)outer(C) = 1 and (µ̂⊗ ν̂)inner(C) = 0.

Proof. Take any D ∈ U . If D ⊆ C, then Equality (3) in Lemma 4.1 implies
that

µ̂⊗ ν(D) =
∫
T

µ̂(Dt)dν̂ = µ̂⊗ ν(D ∩ C) =
∫
T

µ̂(Dt)µ̂(Ct)dν̂,

which further implies that
∫
T
µ̂(Dt)(1− µ̂(Ct))dν̂ = 0. By the nonnegativity

of the integrand, we obtain µ̂(Dt)(1 − µ̂(Ct)) = 0 for ν̂-almost all t. Since
(1 − µ̂(Ct)) > 0 for ν̂-almost all t, we obtain µ̂(Dt) = 0 for ν̂-almost all t.
Hence µ̂⊗ ν̂(D) = 0. Thus (µ̂⊗ ν̂)inner(C) = 0.
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If C ⊆ D, then Equality (3) in Lemma 4.1 implies that

µ̂⊗ ν(C) =
∫
T

µ̂(Ct)dν̂ =
∫
T

µ̂(Dt)µ̂(Ct)dν̂.

Hence
∫
T

(1−µ̂(Dt))µ̂(Ct)dν̂ = 0. As above, the nonnegativity of the integrand
implies that (1 − µ̂(Dt))µ̂(Ct) = 0 for ν̂-almost all t. Since µ̂(Ct) > 0 for ν̂-
almost all t, we obtain µ̂(Dt) = 1 for ν̂-almost all t, and hence µ̂⊗ ν̂(D) = 1.
Therefore, (µ̂⊗ ν̂)outer(C) = 1. �

Note that the above theorem cannot be applied to compute the µ̂⊗ ν̂ outer
and inner measures for the sets Dp,l in Example 3.2 since the sections of these
sets may be null.

The following lemma and corollary are obvious.

Lemma 4.3. Let C ∈ Lµ⊗ν(A ⊗ T ) with (µ̂ ⊗ ν̂)outer(C) = 1. Then, for
any F ∈ U , (µ̂⊗ ν̂)outer(F ∩ C) = (µ̂⊗ ν̂)(F ).

Corollary 4.4. Let C be a set in Lµ⊗ν(A⊗ T ) whose events Ct, t ∈ T ,
are ν̂-almost independent, and F a set in U . If 0 < µ̂(Ct) < 1 for ν̂-almost
all t ∈ T , then (µ̂⊗ ν̂)outer(F ∩C) = (µ̂⊗ ν̂)(F ) and (µ̂⊗ ν̂)inner(F ∩C) = 0.

The following lemma is a version of Lemma 7 in [16].

Lemma 4.5. For any positive numbers a1, . . . , an with sum 1, there is a
Loeb product measurable partition {C1, . . . , Cn} of Ω× T such that for each i
the events (Ci)t, t ∈ T , are ν̂-almost independent with equal probability ai.

The following theorem shows that every product Loeb measurable set of
positive measure β can be decomposed as any finite union of Loeb product
measurable sets with µ̂⊗ ν̂ outer measure β and inner measure 0.

Theorem 4.6. Let F be any set in U with µ̂ ⊗ ν̂(F ) = β. Then for
any positive numbers a1, . . . , an with sum 1, there is a Loeb product mea-
surable partition {A1, . . . , An} of F such that for all i, µ̂⊗ ν(Ai) = aiβ,
(µ̂⊗ ν̂)outer(Ai) = β and (µ̂⊗ ν̂)inner(Ai) = 0.

Proof. Take a Loeb product measurable partition {C1, . . . , Cn} of Ω ×
T as in Lemma 4.5. Take Ai = F ∩ Ci. Then Lemma 4.1 implies that
µ̂⊗ ν(Ai) =

∫
T
µ̂(Ft)µ̂(Cit)dν̂ = aiβ. The rest follows from Theorem 4.2 and

Lemma 4.3. �

5. Consequences of the examples

The following theorem shows that for a set in the Loeb product algebra
Lµ⊗ν(A ⊗ T ), its µ̂⊗ ν measure s and its µ̂ ⊗ ν̂ outer measure t and inner
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measure r can be completely arbitrary subject to the obvious condition 0 ≤
r ≤ s ≤ t ≤ 1.

Theorem 5.1. For any 0 ≤ r ≤ s ≤ t ≤ 1 there is a set E ∈ Lµ⊗ν(A⊗T )
such that µ̂⊗ ν(E) = s, µ̂⊗ ν̂outer(E) = t, and µ̂⊗ ν̂inner(E) = r.

Proof. When r = t, the result is clear by the Lyapunov theorem. Fix any
r, t ∈ [0, 1] with r < t. By Example 3.2, there is a class of sets {Cs′ ∈ A⊗T :
s′ ∈ [0, 1]} such that for each s′ ∈ [0, 1], µ̂⊗ ν(Cs

′
) = s′, (µ̂⊗ ν̂)inner(Cs

′
) = 0,

and (µ̂⊗ ν̂)outer(Cs
′
) = 1, and for all s1, s2 ∈ [0, 1] with s1 < s2, Cs1 ⊂ Cs2 .

By the Lyapunov theorem, we can find disjoint internal sets U and W in
A such that µ̂(U) = r and µ̂(W ) = t − r. Since r ≤ s ≤ t, we can define
s′ = (s− r)/(t− r) and Ds = (U × T ) ∪ (Cs

′ ∩ (W × T )). Since the events
Cs
′

t , t ∈ T , are ν̂-almost independent, Lemma 4.1 implies that

µ̂⊗ ν((W × T ) ∩ Cs
′
) =

∫
T

µ̂(W )µ̂(Cs
′

t )dν̂ = (t− r)µ̂⊗ ν(Cs
′
) = s− r.

Hence µ̂⊗ ν(Ds) = s. By Lemma 4.3, (µ̂ ⊗ ν̂)outer((W × T ) ∩ Cs′) =
(µ̂ ⊗ ν̂)(W × T ) = t − r. Since U and W are disjoint, it follows from the
Caratheodory identity for outer measures (see [12]) that µ̂ ⊗ ν̂outer(Ds) = t.
Using similar ideas as in Lemma 4.3 and here, we derive that µ̂⊗ ν̂inner(Ds) =
r. We can simply take E = Ds. Note that when s is regarded as a parameter,
the sets in the class {Ds : s ∈ [r, t]} are increasing in s. �

Remark 5.2. Take a µ̂⊗ ν-null set Rs as in Example 3.2. Then for any
D ∈ U , D ∪ Rs /∈ U if µ̂ ⊗ ν̂(D) < 1, and D − Rs /∈ U if µ̂ ⊗ ν̂(D) > 0. On
the other hand, let N be the collection of all µ̂⊗ ν-null sets, and U ∨ N the
σ-algebra generated by the sets in U ∪N . Then for any s ∈ (0, 1), the set Cs

in Example 3.2 is not in U ∨N . We note that Theorems 1 and 2 in [13] (and
also Theorem 4.6 in [15]) say that the conditional expectation E(1Cs | U) is
essentially the constant function s. It follows that E(1Cs | U ∨ N )(ω, t) = s

for µ̂⊗ ν-almost all (ω, t). Thus, if Cs ∈ U ∨ N , then 1Cs(ω, t) = s for
µ̂⊗ ν-almost all (ω, t). This is a contradiction with the condition s ∈ (0, 1).

In the next theorem, we shall show that every set E in Lµ⊗ν(A ⊗ T ) has
a subset A ∈ Lµ⊗ν(A ⊗ T ) with µ̂ ⊗ ν̂-inner measure 0 that has the same
µ̂⊗ ν̂-outer measure and µ̂⊗ ν-measure as E. In order to prove this general
result, we first consider the special case E ∈ U .

Lemma 5.3. For any F ∈ U with µ̂ ⊗ ν̂(F ) = β, there are Loeb product
measurable subsets B0 and B1 of F such that µ̂⊗ ν(B0) = 0, µ̂⊗ ν(B1) = β,
and for i = 0, 1, (µ̂⊗ ν̂)outer(Bi) = β and (µ̂⊗ ν̂)inner(Bi) = 0.
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Proof. Take C0 and C1 as in Example 3.2. Let Bi = Ci ∩ F . Then
µ̂⊗ ν(B0) = 0 and µ̂⊗ ν(B1) = µ̂⊗ ν(F ) = µ̂⊗ ν̂(F ) = β. It is obvious that
(µ̂ ⊗ ν̂)inner(Bi) ≤ (µ̂ ⊗ ν̂)inner(Ci) = 0. Since (µ̂ ⊗ ν̂)outer(Ci) = 1, Lemma
4.3 implies that (µ̂⊗ ν̂)outer(Bi) = β. �

Theorem 5.4. For any set E ∈ Lµ⊗ν(A⊗ T ) with µ̂⊗ ν(E) = α (where
E need not be in U) there is a Loeb product measurable subset A of E such
that µ̂⊗ ν(A) = α, (µ̂⊗ ν̂)outer(A) = (µ̂⊗ ν̂)outer(E), and (µ̂⊗ ν̂)inner(A) = 0.

Proof. Set β = (µ̂ ⊗ ν̂)inner(E). Note that there exists an F ∈ U with
F ⊆ E and (µ̂⊗ ν̂)(F ) = β. It follows that (µ̂⊗ ν̂)inner(E \ F ) = 0.

By Lemma 5.3, there is a Loeb product measurable subset B of F such
that µ̂⊗ ν(B) = β = (µ̂⊗ ν̂)outer(B) and (µ̂⊗ ν̂)inner(B) = 0.

Let A = B ∪ D with D = E \ F . The verification that A satisfies the
requirements is straightforward and thus left to the reader. �

Remark 5.5. We end this section with a question about the following
generalization of Theorem 5.4: Can the µ̂⊗ ν measure, and the µ̂ ⊗ ν̂ outer
and inner measures of subsets of a general set E ∈ Lµ⊗ν(A⊗T ) be arbitrary
subject to some obvious conditions? That is, for any set E ∈ Lµ⊗ν(A ⊗ T )
with µ̂ ⊗ ν̂inner(E) = r, µ̂⊗ ν(E) = s and µ̂ ⊗ ν̂outer(E) = t, and for any
0 ≤ a ≤ b ≤ c with a ≤ r, b ≤ s, and c ≤ t, does there exist a subset A of E
such that µ̂⊗ ν̂inner(A) = a, µ̂⊗ ν(A) = b, and µ̂⊗ ν̂outer(A) = c ?
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