Illinois Journal of Mathematics Volume 46, Number 1, Spring 2002, Pages 199–205 S 0019-2082

WEIGHTED POINCARÉ INEQUALITIES FOR SOLUTIONS TO A-HARMONIC EQUATIONS

SHUSEN DING AND CRAIG A. NOLDER

ABSTRACT. We first prove a local A_r -weighted Poincaré inequality for solutions to A-harmonic equations of the form $d^*A(x, d\omega) = B(x, d\omega)$. Then, as an application of this local result, we prove a global A_r -weighted Poincaré inequality for functions that are solutions to such equations in John domains.

1. Introduction

Poincaré inequalities are now ubiquitous in analysis. We mention only [9], [2], and especially [3] for geometric applications of these inequalities.

In contrast, we show here that, for certain A-harmonic tensors, a weak local Poincaré inequality holds in \mathbb{R}^n for all positive exponents. This borrows results from [4], [5], [7] and [8].

Using this result we obtain a global weighted Poincaré inequality for Aharmonic functions in John domains for all positive exponents.

Throughout this paper we assume Ω is a connected open subset of \mathbb{R}^n . Let e_1, e_2, \ldots, e_n denote the standard unit basis of \mathbb{R}^n . For $l = 0, 1, \ldots, n$, the linear space of *l*-vectors, spanned by the exterior products $e_I = e_{i_1} \wedge e_{i_2} \wedge \cdots \wedge e_{i_l}$, corresponding to all ordered *l*-tuples $I = (i_1, i_2, \ldots, i_l), 1 \leq i_1 < i_2 < \cdots < i_l \leq n$, is denoted by $\wedge^l = \wedge^l(\mathbb{R}^n)$. The Grassman algebra $\wedge = \oplus \wedge^l$ is a graded algebra with respect to the exterior products. For $\alpha = \sum \alpha^I e_I \in \wedge$ and $\beta = \sum \beta^I e_I \in \wedge$, the inner product in \wedge is given by $\langle \alpha, \beta \rangle = \sum \alpha^I \beta^I$, where the summation is over all *l*-tuples $I = (i_1, i_2, \ldots, i_l)$ and all integers $l = 0, 1, \ldots, n$. We define the Hodge star operator $\star : \wedge \to \wedge$ by the rule $\star 1 = e_1 \wedge e_2 \wedge \cdots \wedge e_n$ and $\alpha \wedge \star \beta = \beta \wedge \star \alpha = \langle \alpha, \beta \rangle (\star 1)$ for all $\alpha, \beta \in \wedge$. Hence the norm of $\alpha \in \wedge$ is given by the formula $|\alpha|^2 = \langle \alpha, \alpha \rangle = \star (\alpha \wedge \star \alpha) \in \wedge^0 = \mathbb{R}$. The Hodge star is an isometric isomorphism on \wedge with $\star : \wedge^l \to \wedge^{n-l}$ and $\star \star (-1)^{l(n-l)} : \wedge^l \to \wedge^l$.

©2002 University of Illinois

Received March 12, 2001; received in final form March 1, 2002.

²⁰⁰⁰ Mathematics Subject Classification. Primary 35J60. Secondary 31B05, 58A10, 46E35.

Let $0 . We denote the weighted <math>L^p$ -norm of a measurable function f over E by

$$||f||_{p,E,w} = \left(\int_E |f(x)|^p w(x) dx\right)^{1/p}.$$

A differential *l*-form ω on Ω is a Schwartz distribution on Ω with values in $\wedge^{l}(\mathbb{R}^{n})$. We denote the space of differential *l*-forms by $D'(\Omega, \wedge^{l})$. We write $L^{p}(\Omega, \wedge^{l})$ for the *l*-forms $\omega(x) = \sum_{I} \omega_{I}(x) dx_{I} = \sum_{i} \omega_{i_{1}i_{2}...i_{l}}(x) dx_{i_{1}} \wedge dx_{i_{2}} \wedge \cdots \wedge dx_{i_{l}}$ with $\omega_{I} \in L^{p}(\Omega, \mathbb{R})$ for all ordered *l*-tuples *I*. Thus $L^{p}(\Omega, \wedge^{l})$ is a Banach space with norm

$$\|\omega\|_{p,E} = \left(\int_{E} |\omega(x)|^{p} dx\right)^{1/p} = \left(\int_{E} \left(\sum_{I} |\omega_{I}(x)|^{2}\right)^{p/2} dx\right)^{1/p}.$$

Similarly, $W_p^1(\Omega, \wedge^l)$ is the space of those differential *l*-forms on Ω whose coefficients are in $W_p^1(\Omega, \mathbb{R})$. The notations $W_{p,\text{loc}}^1(\Omega, \mathbb{R})$ and $W_{p,\text{loc}}^1(\Omega, \wedge^l)$ are self-explanatory. We denote by $d: D'(\Omega, \wedge^l) \to D'(\Omega, \wedge^{l+1})$ the exterior derivative for $l = 0, 1, \ldots, n$. Its formal adjoint operator $d^*: D'(\Omega, \wedge^{l+1}) \to D'(\Omega, \wedge^l)$ is given by $d^* = (-1)^{nl+1} \star d \star$ on $D'(\Omega, \wedge^{l+1}), l = 0, 1, \ldots, n$.

We consider here solutions to the equation

(1.1)
$$d^*A(x,d\omega) = B(x,d\omega),$$

where $A: \Omega \times \wedge^{l}(\mathbb{R}^{n}) \to \wedge^{l}(\mathbb{R}^{n})$ satisfies the conditions

(1.2)
$$|A(x,\xi)| \le a|\xi|^{p-1}, \ \langle A(x,\xi),\xi \rangle \ge |\xi|^p \text{ and } |B(x,\xi)| \le b|\xi|^{p-1}$$

for almost every $x \in \Omega$ and all $\xi \in \wedge^{l}(\mathbb{R}^{n})$. Here a > 0 is a constant and 1 is a fixed exponent associated with (1.1). Henceforth, <math>p will denote this exponent. A solution to (1.1) is an element of the Sobolev space $W_{p,\text{loc}}^{1}(\Omega, \wedge^{l-1})$ such that

$$\int_{\Omega} \langle A(x,d\omega),d\varphi\rangle + \langle B(x,d\omega),\varphi\rangle = 0$$

for all $\varphi \in W^1_{p,\text{sloc}}(\Omega, \wedge^{l-1})$ with compact support.

DEFINITION 1.3. We call u an A-harmonic tensor in Ω if u satisfies the A-harmonic equation (1.1) in Ω .

EXAMPLE 1.4. We call $u \neq p$ -harmonic function if u satisfies the p-harmonic equation

$$\operatorname{div}(\nabla u | \nabla u |^{p-2}) = 0$$

with p > 1.

200

2. The local weighted Poincaré inequality

For a measurable set $E \subset \mathbb{R}^n$ we write |E| for the *n* dimensional Lebesgue measure of *E*. Throughout $Q \subset \mathbb{R}^n$ is a cube and σQ , $\sigma > 0$, denotes the cube with the same center as *Q* and volume $|\sigma Q| = \sigma^n |Q|$.

DEFINITION 2.1. Let r > 1. We say that the weight $w(x) \in L^1_{loc}(\mathbb{R}^n)$ satisfies the A_r condition, and write $w \in A_r$, if w(x) > 0 a.e. and

$$\sup_{Q} \left(\frac{1}{|Q|} \int_{Q} w dx\right) \left(\frac{1}{|Q|} \int_{Q} \left(\frac{1}{w}\right)^{1/(r-1)} dx\right)^{(r-1)} < \infty$$

for all $Q \subset \mathbb{R}^n$.

See [1] and [2] for the basic properties of A_r -weights.

We also need the following lemma, which is a reverse Hölder inequality [1].

LEMMA 2.2. If $w \in A_r$, then there exist constants $\beta > 1$ and C, independent of w, such that

$$||w||_{\beta,Q} \le C|Q|^{(1-\beta)/\beta} ||w||_{1,Q}$$

for all $Q \subset \mathbb{R}^n$.

The following Lemma 2.3 appears in [8].

LEMMA 2.3. Let u be an A-harmonic tensor in Ω , $\sigma > 1$, and $0 < s, t < \infty$. Then there exists a constant C, independent of u, such that

$$||u||_{s,Q} \le C|Q|^{(t-s)/st} ||u||_{t,\sigma Q}$$

for all Q with $\sigma Q \subset \Omega$.

Lemma 2.4 contains the classical Poincaré inequality as well as a generalization to differential forms given in [4]. When ω is a function, we denote its average value over Q by

$$\omega_Q = |Q|^{-1} \int_Q \omega(y) \, dy.$$

Otherwise ω_Q is the exterior derivative of a suitable transform of ω and plays the role of average value in the Poincaré inequality; see [4].

LEMMA 2.4. Let $u \in D'(Q, \wedge^l)$ and $du \in L^q(Q, \wedge^{l+1})$. Then $u - u_Q$ is in $W^1_q(Q, \wedge^l)$ with $1 < q < \infty$ and

$$||u - u_Q||_{q,Q} \le C(n,q)|Q|^{1/n} ||du||_{q,Q}$$

for Q in \mathbb{R}^n , l = 0, 1, ..., n.

We next state a Caccioppoli-type inequality. For this result see [8] and [7].

LEMMA 2.5. Let u be a solution to (1.1) in Ω and let $\sigma > 1$. There exists a constant C, depending only on a, b, p and n, such that

(2.6)
$$\|du\|_{p,Q} \le C|Q|^{-1/n} \|u\|_{p,\sigma Q}$$

for all Q with $\sigma Q \subset \Omega$.

We also need the following result from [5].

LEMMA 2.7. Suppose that $|v| \in L^s_{loc}(\Omega)$, $\sigma > 1$, and 0 < t < s. If there exists a constant A such that

(2.8)
$$||v||_{s,Q} \le A|Q|^{(t-s)/st} ||v||_{t,2Q}$$

for all cubes Q with $2Q \subset \Omega$, then for all r > 0 there exists a constant B, depending only on σ , n, s, t, r and A, such that

$$\|v\|_{s,Q} \le B|Q|^{(r-s)/sr} \|v\|_{r,\sigma Q}$$

for all Q with $\sigma Q \subset \Omega$.

LEMMA 2.9. Suppose that u is a solution to (1.1), $\sigma > 1$, and q > 0. There exists a constant C, depending only on σ , n, p, a, b and q, such that

(2.10)
$$\|du\|_{p,Q} \le C|Q|^{(q-p)/pq} \|du\|_{q,\sigma Q}$$

for all Q with $\sigma Q \subset \Omega$.

Proof. By Lemmas 2.5, 2.3 and 2.4 with
$$p' = (p+1)/2$$
,

$$\begin{aligned} \|du\|_{p,Q} &\leq C_1 |Q|^{1/n} \|u - u_{\sigma Q}\|_{p,\sqrt{\sigma}Q} \\ &\leq C_2 |Q|^{(p'-p)/pp'} \|u - u_{\sigma Q}\|_{p',\sigma Q} \\ &\leq C_3 |Q|^{(p'-p)/pp'} \|du\|_{p',\sigma Q}. \end{aligned}$$

Thus du satisfies the reverse Hölder inequality (2.8), and (2.10) follows from Lemma 2.7.

We also require a result from [7].

LEMMA 2.11. There exists a constant C, depending only on n and q, such that

$$||v - v_Q||_{q,Q} \le C ||v - c||_{q,Q}$$

for all $v \in L^q(Q, \Lambda)$ and all $c \in \mathcal{D}'(Q, \Lambda)$ with dc = 0. Here $1 < q < \infty$ and v_Q is the average value of v over Q or the exterior derivative of a suitable transform of v.

We now have the following local weighted Poincaré inequality for A-harmonic tensors.

202

THEOREM 2.12. Let $u \in D'(\Omega, \wedge^l)$ be an A-harmonic tensor in a domain $\Omega \subset \mathbb{R}^n$, and $du \in L^s(\Omega, \wedge^{l+1})$, $l = 0, 1, \ldots, n$. Assume that $\sigma > 1$, $0 < s < \infty$, and $w \in A_r$ for some r > 1. Then

(2.13)
$$\|u - u_Q\|_{s,Q,w} \le C|Q|^{1/n} \|du\|_{s,\sigma Q,w}$$

for all cubes Q with $\sigma Q \subset \Omega$. Here C is a constant independent of u.

Proof. Choose $t = s\beta/(\beta - 1)$, where β is the exponent in Lemma 2.2. Then 0 < s < t and $\beta = t/(t - s)$. By Lemma 2.2 and Hölder's inequality,

(2.14)
$$\|u - u_Q\|_{s,Q,w} = \left(\int_Q \left(|u - u_Q|w^{1/s}\right)^s\right)^{1/s} \\ \leq \|u - u_Q\|_{t,Q} \|w\|_{\beta,Q}^{1/s} \\ \leq C|Q|^{(1-\beta)/\beta s} \|w\|_{1,Q}^{1/s} \|u - u_Q\|_{t,Q}.$$

Next choose $\alpha = s/r$ so that $\alpha < s < t$. If $\alpha > 1$ and t > 1, then using Lemmas 2.11, 2.3 and 2.4, we have

(2.15)
$$\|u - u_Q\|_{t,Q} \leq C \|u - u_{\sigma Q}\|_{t,Q}$$
$$\leq C |Q|^{(\alpha - t)/\alpha t} \|u - u_{\sigma Q}\|_{\alpha,\sigma Q}$$
$$\leq C |Q|^{(\alpha t + n\alpha - nt)/n\alpha t} \|du\|_{\alpha,\sigma Q}.$$

If $t \leq 1$, then first

$$\begin{aligned} \|u - u_Q\|_{t,Q} &\leq C |Q|^{(2-t)/2t} \|u - u_Q\|_{2,Q} \\ &\leq C |Q|^{(2-t)/2t} \|u - u_{\sigma Q}\|_{2,\sqrt{\sigma}Q} \\ &\leq C |Q|^{(\alpha-t)/\alpha t} \|u - u_Q\|_{\alpha,\sigma Q}, \end{aligned}$$

and again (2.15) follows.

If $\alpha \leq 1$, then using Lemmas 2.3, 2.11 and 2.4, we have

(2.16)
$$\|u - u_Q\|_{t,Q} \leq C |Q|^{(p-t)/pt} \|u - u_Q\|_{p,\sqrt{\sigma}Q}$$
$$\leq C |Q|^{(p-t)/pt} \|u - u_{\sqrt{\sigma}Q}\|_{p,\sqrt{\sigma}Q}$$
$$\leq C |Q|^{(p-t)/pt} |Q|^{1/n} \|du\|_{p,\sqrt{\sigma}Q}.$$

Applying (2.10), (2.16) becomes

(2.17)
$$\|u - u_Q\|_{t,Q} \le C|Q|^{(\alpha t + n\alpha - nt)/n\alpha t} \|du\|_{\alpha,\sigma Q}.$$

Next, we have

(2.18)
$$||du||_{\alpha,\sigma Q} \le ||du||_{s,\sigma Q,w} ||1/w||_{\alpha/(s-\alpha),\sigma Q}^{1/s}.$$

Combining (2.14), (2.15), (2.17) and (2.18), we obtain

$$(2.19) \quad \|u - u_Q\|_{s,Q,w}$$

$$\leq C |Q|^{(\alpha-n)/n\alpha} \left(\|w\|_{1,Q} \|1/w\|_{\alpha/(s-\alpha),\sigma Q} \right)^{1/s} \|du\|_{s,\sigma Q,w}.$$

Finally, Definition 2.1 gives the desired result

$$||u - u_Q||_{s,Q,w} \le C|Q|^{1/n} ||du||_{s,\sigma Q,w}.$$

3. A global result in John domains

We now consider solutions u to div $A(x, \nabla u) = B(x, \nabla u)$ in $\Omega \subset \mathbb{R}^n$, which we call A-harmonic functions. We write $d\mu = w \, dx$ and denote the μ -average of the function u over the cube Q by

$$u_{Q,\mu} = \frac{1}{\mu(Q)} \int_Q u \, d\mu.$$

We assume that $0 < \mu(Q) < \infty$ for all Q.

DEFINITION 3.1. A δ -John domain is a bounded domain $\Omega \subset \mathbb{R}^n$ with John center x_0 if every point $x \in \Omega$ can be joined to x_0 by a continuous curve $\gamma \subset \Omega$ for which $d(\xi, \partial \Omega) \geq \delta |\xi - x|$ for all $\xi \in \gamma$.

We define the sharp norm of a real-valued function f over E by

$$\|f\|_{p,E,w}^{\sharp} = \operatorname{Inf}_{a \in \mathbf{R}} \left(\int_{E} |f-a|^{p} d\mu \right)^{1/p}.$$

To obtain a global result we need the following result from [6]:

THEOREM 3.2. Suppose that f and g are measurable in a δ -John domain Ω with distinguished cube $Q_0 \subset \Omega$ and $0 < q < \infty$. If, for some constant A,

$$\|f\|_{q,Q,w}^{\sharp} \le A \|g\|_{q,\sigma Q,w}$$

for all cubes Q with $\sigma Q \subset \Omega$, then there exists a constant B, depending only on n, q, σ and δ , such that

$$\|f\|_{q,\Omega,w}^{\sharp} \le AB \|g\|_{q,\Omega,w}.$$

(See also [5].)

Together with the local result, this gives a Poincaré inequality over John domains.

THEOREM 3.3. Suppose that u is an A-harmonic function in a δ -John domain Ω , $0 < q < \infty$, and $w \in A_r(\Omega)$. There exists a constant C, depending only q, δ , n, p and r, such that

$$\|u\|_{q,\Omega,w}^{\sharp} \le C |\Omega|^{1/n} \|\nabla u\|_{q,\Omega,w}.$$

204

We remark that in the case $q \ge 1$ and $0 < \mu(E) < \infty$, we have

$$\|f\|_{q,E,\mu}^{\sharp} \le \|f - f_{E,\mu}\|_{q,E,\mu}^{\sharp}$$
$$\le 2\|f\|_{q,E,\mu}^{\sharp}.$$

(See [6].) Thus we have the following corollary.

COROLLARY 3.4. In addition to the hypotheses of Theorem 3.3, assume that $q \geq 1$ and $u_{\Omega,\mu} < \infty$. Then

$$\|u - u_{\Omega,\mu}\|_{q,\Omega,w} \le 2C |\Omega|^{1/n} \|\nabla u\|_{q,\Omega,w}.$$

References

- [1] J. B. Garnett, Bounded analytic functions, Academic Press, New York, 1970.
- [2] J. Heinonen, Lectures on analysis on metric spaces, Universitext, Springer-Verlag, New York, 2001.
- [3] J. Heinonen, T. Kilpelainen, and O. Martio, Nonlinear potential theory of degenerate elliptic equations, Oxford University Press, Oxford, 1993.
- [4] T. Iwaniec and A. Lutoborski, Integral estimates for null Lagrangians, Arch. Ration. Mech. Anal. 125 (1993), 25–79.
- [5] T. Iwaniec and C. Nolder, Hardy-Littlewood inequality for quasiregular mappings in certain domains in Rⁿ, Ann. Acad. Sci. Fenn. 10 (1985), 267–282.
- [6] C. A. Nolder, A Privaloff and a Hardy-Littlewood theorem for harmonic functions and quasiregular mappings, Ph.D. Dissertation, University of Michigan, 1985.
- [7] _____, Hardy-Littlewood theorems for A-harmonic tensors, Illinois J. Math. 43 (1999), 613–631.
- [8] _____, Global integrability theorems for A-harmonic tensors, J. Math. Anal. Appl. 247 (2000), 236–245.
- [9] S. G. Staples, L^p-averaging domains and the Poincaré inequality, Ann. Acad. Sci. Fenn. Ser. A I Math. 14 (1989), 103–127.

SHUSEN DING, DEPARTMENT OF MATHEMATICS, SEATTLE UNIVERSITY, SEATTLE, WA 98122, USA

E-mail address: sding@seattleu.edu

CRAIG A. NOLDER, DEPARTMENT OF MATHEMATICS, FLORIDA STATE UNIVERSITY, TAL-LAHASSEE, FL 32306, USA

E-mail address: nolder@math.fsu.edu