WEIGHTED POINCARÉ INEQUALITIES FOR SOLUTIONS TO A-HARMONIC EQUATIONS

SHUSEN DING AND CRAIG A. NOLDER

Abstract

We first prove a local A_{r}-weighted Poincaré inequality for solutions to A-harmonic equations of the form $d^{\star} A(x, d \omega)=B(x, d \omega)$. Then, as an application of this local result, we prove a global $A_{r^{-}}$ weighted Poincaré inequality for functions that are solutions to such equations in John domains.

1. Introduction

Poincaré inequalities are now ubiquitous in analysis. We mention only [9], [2], and especially [3] for geometric applications of these inequalities.

In contrast, we show here that, for certain A-harmonic tensors, a weak local Poincaré inequality holds in \mathbb{R}^{n} for all positive exponents. This borrows results from [4], [5], [7] and [8].

Using this result we obtain a global weighted Poincaré inequality for A harmonic functions in John domains for all positive exponents.

Throughout this paper we assume Ω is a connected open subset of \mathbb{R}^{n}. Let $e_{1}, e_{2}, \ldots, e_{n}$ denote the standard unit basis of \mathbb{R}^{n}. For $l=0,1, \ldots, n$, the linear space of l-vectors, spanned by the exterior products $e_{I}=e_{i_{1}} \wedge e_{i_{2}} \wedge$ $\cdots \wedge e_{i_{l}}$, corresponding to all ordered l-tuples $I=\left(i_{1}, i_{2}, \ldots, i_{l}\right), 1 \leq i_{1}<i_{2}<$ $\cdots<i_{l} \leq n$, is denoted by $\wedge^{l}=\wedge^{l}\left(\mathbb{R}^{n}\right)$. The Grassman algebra $\wedge=\oplus \wedge^{l}$ is a graded algebra with respect to the exterior products. For $\alpha=\sum \alpha^{I} e_{I} \in \wedge$ and $\beta=\sum \beta^{I} e_{I} \in \wedge$, the inner product in \wedge is given by $\langle\alpha, \beta\rangle=\sum \alpha^{I} \beta^{I}$, where the summation is over all l-tuples $I=\left(i_{1}, i_{2}, \ldots, i_{l}\right)$ and all integers $l=0,1, \ldots, n$. We define the Hodge star operator $\star: \wedge \rightarrow \wedge$ by the rule $\star 1=e_{1} \wedge e_{2} \wedge \cdots \wedge e_{n}$ and $\alpha \wedge \star \beta=\beta \wedge \star \alpha=\langle\alpha, \beta\rangle(\star 1)$ for all $\alpha, \beta \in \wedge$. Hence the norm of $\alpha \in \wedge$ is given by the formula $|\alpha|^{2}=\langle\alpha, \alpha\rangle=\star(\alpha \wedge \star \alpha) \in \wedge^{0}=\mathbb{R}$. The Hodge star is an isometric isomorphism on \wedge with $\star: \wedge^{l} \rightarrow \wedge^{n-l}$ and $\star \star(-1)^{l(n-l)}: \wedge^{l} \rightarrow \wedge^{l}$.

[^0]Let $0<p<\infty$. We denote the weighted L^{p}-norm of a measurable function f over E by

$$
\|f\|_{p, E, w}=\left(\int_{E}|f(x)|^{p} w(x) d x\right)^{1 / p}
$$

A differential l-form ω on Ω is a Schwartz distribution on Ω with values in $\wedge^{l}\left(\mathbb{R}^{n}\right)$. We denote the space of differential l-forms by $D^{\prime}\left(\Omega, \wedge^{l}\right)$. We write $L^{p}\left(\Omega, \wedge^{l}\right)$ for the l-forms $\omega(x)=\sum_{I} \omega_{I}(x) d x_{I}=\sum \omega_{i_{1} i_{2} \ldots i_{l}}(x) d x_{i_{1}} \wedge d x_{i_{2}} \wedge$ $\cdots \wedge d x_{i_{l}}$ with $\omega_{I} \in L^{p}(\Omega, \mathbb{R})$ for all ordered l-tuples I. Thus $L^{p}\left(\Omega, \wedge^{l}\right)$ is a Banach space with norm

$$
\|\omega\|_{p, E}=\left(\int_{E}|\omega(x)|^{p} d x\right)^{1 / p}=\left(\int_{E}\left(\sum_{I}\left|\omega_{I}(x)\right|^{2}\right)^{p / 2} d x\right)^{1 / p}
$$

Similarly, $W_{p}^{1}\left(\Omega, \wedge^{l}\right)$ is the space of those differential l-forms on Ω whose coefficients are in $W_{p}^{1}(\Omega, \mathbb{R})$. The notations $W_{p, \text { loc }}^{1}(\Omega, \mathbb{R})$ and $W_{p, \text { loc }}^{1}\left(\Omega, \wedge^{l}\right)$ are self-explanatory. We denote by $d: D^{\prime}\left(\Omega, \wedge^{l}\right) \rightarrow D^{\prime}\left(\Omega, \wedge^{l+1}\right)$ the exterior derivative for $l=0,1, \ldots, n$. Its formal adjoint operator $d^{\star}: D^{\prime}\left(\Omega, \wedge^{l+1}\right) \rightarrow$ $D^{\prime}\left(\Omega, \wedge^{l}\right)$ is given by $d^{\star}=(-1)^{n l+1} \star d \star$ on $D^{\prime}\left(\Omega, \wedge^{l+1}\right), l=0,1, \ldots, n$.

We consider here solutions to the equation

$$
\begin{equation*}
d^{\star} A(x, d \omega)=B(x, d \omega) \tag{1.1}
\end{equation*}
$$

where $A: \Omega \times \wedge^{l}\left(\mathbb{R}^{n}\right) \rightarrow \wedge^{l}\left(\mathbb{R}^{n}\right)$ satisfies the conditions

$$
\begin{equation*}
|A(x, \xi)| \leq a|\xi|^{p-1},\langle A(x, \xi), \xi\rangle \geq|\xi|^{p} \text { and }|B(x, \xi)| \leq b|\xi|^{p-1} \tag{1.2}
\end{equation*}
$$

for almost every $x \in \Omega$ and all $\xi \in \Lambda^{l}\left(\mathbb{R}^{n}\right)$. Here $a>0$ is a constant and $1<p<\infty$ is a fixed exponent associated with (1.1). Henceforth, p will denote this exponent. A solution to (1.1) is an element of the Sobolev space $W_{p, \text { loc }}^{1}\left(\Omega, \wedge^{l-1}\right)$ such that

$$
\int_{\Omega}\langle A(x, d \omega), d \varphi\rangle+\langle B(x, d \omega), \varphi\rangle=0
$$

for all $\varphi \in W_{p, \text { sloc }}^{1}\left(\Omega, \wedge^{l-1}\right)$ with compact support.
Definition 1.3. We call u an A-harmonic tensor in Ω if u satisfies the A-harmonic equation (1.1) in Ω.

EXAMPLE 1.4. We call u a p-harmonic function if u satisfies the p-harmonic equation

$$
\operatorname{div}\left(\nabla u|\nabla u|^{p-2}\right)=0
$$

with $p>1$.

2. The local weighted Poincaré inequality

For a measurable set $E \subset \mathbb{R}^{n}$ we write $|E|$ for the n dimensional Lebesgue measure of E. Throughout $Q \subset \mathbb{R}^{n}$ is a cube and $\sigma Q, \sigma>0$, denotes the cube with the same center as Q and volume $|\sigma Q|=\sigma^{n}|Q|$.

Definition 2.1. Let $r>1$. We say that the weight $w(x) \in L_{\text {loc }}^{1}\left(\mathbb{R}^{n}\right)$ satisfies the A_{r} condition, and write $w \in A_{r}$, if $w(x)>0$ a.e. and

$$
\sup _{Q}\left(\frac{1}{|Q|} \int_{Q} w d x\right)\left(\frac{1}{|Q|} \int_{Q}\left(\frac{1}{w}\right)^{1 /(r-1)} d x\right)^{(r-1)}<\infty
$$

for all $Q \subset \mathbb{R}^{n}$.
See [1] and [2] for the basic properties of A_{r}-weights.
We also need the following lemma, which is a reverse Hölder inequality [1].
Lemma 2.2. If $w \in A_{r}$, then there exist constants $\beta>1$ and C, independent of w, such that

$$
\|w\|_{\beta, Q} \leq C|Q|^{(1-\beta) / \beta}\|w\|_{1, Q}
$$

for all $Q \subset \mathbb{R}^{n}$.
The following Lemma 2.3 appears in [8].
Lemma 2.3. Let u be an A-harmonic tensor in $\Omega, \sigma>1$, and $0<s, t<$ ∞. Then there exists a constant C, independent of u, such that

$$
\|u\|_{s, Q} \leq C|Q|^{(t-s) / s t}\|u\|_{t, \sigma Q}
$$

for all Q with $\sigma Q \subset \Omega$.
Lemma 2.4 contains the classical Poincaré inequality as well as a generalization to differential forms given in [4]. When ω is a function, we denote its average value over Q by

$$
\omega_{Q}=|Q|^{-1} \int_{Q} \omega(y) d y
$$

Otherwise ω_{Q} is the exterior derivative of a suitable transform of ω and plays the role of average value in the Poincaré inequality; see [4].

Lemma 2.4. Let $u \in D^{\prime}\left(Q, \wedge^{l}\right)$ and $d u \in L^{q}\left(Q, \wedge^{l+1}\right)$. Then $u-u_{Q}$ is in $W_{q}^{1}\left(Q, \wedge^{l}\right)$ with $1<q<\infty$ and

$$
\left\|u-u_{Q}\right\|_{q, Q} \leq C(n, q)|Q|^{1 / n}\|d u\|_{q, Q}
$$

for Q in $\mathbb{R}^{n}, l=0,1, \ldots, n$.
We next state a Caccioppoli-type inequality. For this result see [8] and [7].

Lemma 2.5. Let u be a solution to (1.1) in Ω and let $\sigma>1$. There exists a constant C, depending only on a, b, p and n, such that

$$
\begin{equation*}
\|d u\|_{p, Q} \leq C|Q|^{-1 / n}\|u\|_{p, \sigma Q} \tag{2.6}
\end{equation*}
$$

for all Q with $\sigma Q \subset \Omega$.
We also need the following result from [5].
Lemma 2.7. Suppose that $|v| \in L_{\mathrm{loc}}^{s}(\Omega), \sigma>1$, and $0<t<s$. If there exists a constant A such that

$$
\begin{equation*}
\|v\|_{s, Q} \leq A|Q|^{(t-s) / s t}\|v\|_{t, 2 Q} \tag{2.8}
\end{equation*}
$$

for all cubes Q with $2 Q \subset \Omega$, then for all $r>0$ there exists a constant B, depending only on σ, n, s, t, r and A, such that

$$
\|v\|_{s, Q} \leq B|Q|^{(r-s) / s r}\|v\|_{r, \sigma Q}
$$

for all Q with $\sigma Q \subset \Omega$.
Lemma 2.9. Suppose that u is a solution to (1.1), $\sigma>1$, and $q>0$. There exists a constant C, depending only on σ, n, p, a, b and q, such that

$$
\begin{equation*}
\|d u\|_{p, Q} \leq C|Q|^{(q-p) / p q}\|d u\|_{q, \sigma Q} \tag{2.10}
\end{equation*}
$$

for all Q with $\sigma Q \subset \Omega$.
Proof. By Lemmas 2.5, 2.3 and 2.4 with $p^{\prime}=(p+1) / 2$,

$$
\begin{aligned}
\|d u\|_{p, Q} & \leq C_{1}|Q|^{1 / n}\left\|u-u_{\sigma Q}\right\|_{p, \sqrt{\sigma} Q} \\
& \leq C_{2}|Q|^{\left(p^{\prime}-p\right) / p p^{\prime}}\left\|u-u_{\sigma Q}\right\|_{p^{\prime}, \sigma Q} \\
& \leq C_{3}|Q|^{\left(p^{\prime}-p\right) / p p^{\prime}}\|d u\|_{p^{\prime}, \sigma Q}
\end{aligned}
$$

Thus $d u$ satisfies the reverse Hölder inequality (2.8), and (2.10) follows from Lemma 2.7.

We also require a result from [7].
Lemma 2.11. There exists a constant C, depending only on n and q, such that

$$
\left\|v-v_{Q}\right\|_{q, Q} \leq C\|v-c\|_{q, Q}
$$

for all $v \in L^{q}(Q, \Lambda)$ and all $c \in \mathcal{D}^{\prime}(Q, \Lambda)$ with $d c=0$. Here $1<q<\infty$ and v_{Q} is the average value of v over Q or the exterior derivative of a suitable transform of v.

We now have the following local weighted Poincaré inequality for A-harmonic tensors.

TheOrem 2.12. Let $u \in D^{\prime}\left(\Omega, \wedge^{l}\right)$ be an A-harmonic tensor in a domain $\Omega \subset \mathbb{R}^{n}$, and $d u \in L^{s}\left(\Omega, \wedge^{l+1}\right), l=0,1, \ldots, n$. Assume that $\sigma>1,0<s<$ ∞, and $w \in A_{r}$ for some $r>1$. Then

$$
\begin{equation*}
\left\|u-u_{Q}\right\|_{s, Q, w} \leq C|Q|^{1 / n}\|d u\|_{s, \sigma Q, w} \tag{2.13}
\end{equation*}
$$

for all cubes Q with $\sigma Q \subset \Omega$. Here C is a constant independent of u.
Proof. Choose $t=s \beta /(\beta-1)$, where β is the exponent in Lemma 2.2. Then $0<s<t$ and $\beta=t /(t-s)$. By Lemma 2.2 and Hölder's inequality,

$$
\begin{align*}
\left\|u-u_{Q}\right\|_{s, Q, w} & =\left(\int_{Q}\left(\left|u-u_{Q}\right| w^{1 / s}\right)^{s}\right)^{1 / s} \tag{2.14}\\
& \leq\left\|u-u_{Q}\right\|_{t, Q}\|w\|_{\beta, Q}^{1 / s} \\
& \leq C|Q|^{(1-\beta) / \beta s}\|w\|_{1, Q}^{1 / s}\left\|u-u_{Q}\right\|_{t, Q}
\end{align*}
$$

Next choose $\alpha=s / r$ so that $\alpha<s<t$. If $\alpha>1$ and $t>1$, then using Lemmas 2.11, 2.3 and 2.4, we have

$$
\begin{align*}
\left\|u-u_{Q}\right\|_{t, Q} & \leq C\left\|u-u_{\sigma Q}\right\|_{t, Q} \tag{2.15}\\
& \leq C|Q|^{(\alpha-t) / \alpha t}\left\|u-u_{\sigma Q}\right\|_{\alpha, \sigma Q} \\
& \leq C|Q|^{(\alpha t+n \alpha-n t) / n \alpha t}\|d u\|_{\alpha, \sigma Q}
\end{align*}
$$

If $t \leq 1$, then first

$$
\begin{aligned}
\left\|u-u_{Q}\right\|_{t, Q} & \leq C|Q|^{(2-t) / 2 t}\left\|u-u_{Q}\right\|_{2, Q} \\
& \leq C|Q|^{(2-t) / 2 t}\left\|u-u_{\sigma Q}\right\|_{2, \sqrt{\sigma} Q} \\
& \leq C|Q|^{(\alpha-t) / \alpha t}\left\|u-u_{Q}\right\|_{\alpha, \sigma Q}
\end{aligned}
$$

and again (2.15) follows.
If $\alpha \leq 1$, then using Lemmas 2.3, 2.11 and 2.4, we have

$$
\begin{align*}
\left\|u-u_{Q}\right\|_{t, Q} & \leq C|Q|^{(p-t) / p t}\left\|u-u_{Q}\right\|_{p, \sqrt{\sigma} Q} \tag{2.16}\\
& \leq C|Q|^{(p-t) / p t}\left\|u-u_{\sqrt{\sigma} Q}\right\|_{p, \sqrt{\sigma} Q} \\
& \leq C|Q|^{(p-t) / p t}|Q|^{1 / n}\|d u\|_{p, \sqrt{\sigma} Q}
\end{align*}
$$

Applying (2.10), (2.16) becomes

$$
\begin{equation*}
\left\|u-u_{Q}\right\|_{t, Q} \leq C|Q|^{(\alpha t+n \alpha-n t) / n \alpha t}\|d u\|_{\alpha, \sigma Q} \tag{2.17}
\end{equation*}
$$

Next, we have

$$
\begin{equation*}
\|d u\|_{\alpha, \sigma Q} \leq\|d u\|_{s, \sigma Q, w}\|1 / w\|_{\alpha /(s-\alpha), \sigma Q}^{1 / s} \tag{2.18}
\end{equation*}
$$

Combining (2.14), (2.15), (2.17) and (2.18), we obtain

$$
\begin{align*}
& \left\|u-u_{Q}\right\|_{s, Q, w} \tag{2.19}\\
& \qquad \leq C|Q|^{(\alpha-n) / n \alpha}\left(\|w\|_{1, Q}\|1 / w\|_{\alpha /(s-\alpha), \sigma Q}\right)^{1 / s}\|d u\|_{s, \sigma Q, w}
\end{align*}
$$

Finally, Definition 2.1 gives the desired result

$$
\left\|u-u_{Q}\right\|_{s, Q, w} \leq C|Q|^{1 / n}\|d u\|_{s, \sigma Q, w} .
$$

3. A global result in John domains

We now consider solutions u to $\operatorname{div} A(x, \nabla u)=B(x, \nabla u)$ in $\Omega \subset \mathbb{R}^{n}$, which we call A-harmonic functions. We write $d \mu=w d x$ and denote the μ-average of the function u over the cube Q by

$$
u_{Q, \mu}=\frac{1}{\mu(Q)} \int_{Q} u d \mu
$$

We assume that $0<\mu(Q)<\infty$ for all Q.
Definition 3.1. A δ-John domain is a bounded domain $\Omega \subset \mathbb{R}^{n}$ with John center x_{0} if every point $x \in \Omega$ can be joined to x_{0} by a continuous curve $\gamma \subset \Omega$ for which $d(\xi, \partial \Omega) \geq \delta|\xi-x|$ for all $\xi \in \gamma$.

We define the sharp norm of a real-valued function f over E by

$$
\|f\|_{p, E, w}^{\sharp}=\operatorname{Inf}_{a \in \mathbf{R}}\left(\int_{E}|f-a|^{p} d \mu\right)^{1 / p}
$$

To obtain a global result we need the following result from [6]:
Theorem 3.2. Suppose that f and g are measurable in a δ-John domain Ω with distinguished cube $Q_{0} \subset \Omega$ and $0<q<\infty$. If, for some constant A,

$$
\|f\|_{q, Q, w}^{\sharp} \leq A\|g\|_{q, \sigma Q, w}
$$

for all cubes Q with $\sigma Q \subset \Omega$, then there exists a constant B, depending only on n, q, σ and δ, such that

$$
\|f\|_{q, \Omega, w}^{\sharp} \leq A B\|g\|_{q, \Omega, w} .
$$

(See also [5].)
Together with the local result, this gives a Poincaré inequality over John domains.

Theorem 3.3. Suppose that u is an A-harmonic function in a δ-John domain $\Omega, 0<q<\infty$, and $w \in A_{r}(\Omega)$. There exists a constant C, depending only q, δ, n, p and r, such that

$$
\|u\|_{q, \Omega, w}^{\sharp} \leq C|\Omega|^{1 / n}\|\nabla u\|_{q, \Omega, w} .
$$

We remark that in the case $q \geq 1$ and $0<\mu(E)<\infty$, we have

$$
\begin{aligned}
\|f\|_{q, E, \mu}^{\sharp} & \leq\left\|f-f_{E, \mu}\right\|_{q, E, \mu}^{\sharp} \\
& \leq 2\|f\|_{q, E, \mu}^{\sharp} .
\end{aligned}
$$

(See [6].) Thus we have the following corollary.
Corollary 3.4. In addition to the hypotheses of Theorem 3.3, assume that $q \geq 1$ and $u_{\Omega, \mu}<\infty$. Then

$$
\left\|u-u_{\Omega, \mu}\right\|_{q, \Omega, w} \leq 2 C|\Omega|^{1 / n}\|\nabla u\|_{q, \Omega, w}
$$

References

[1] J. B. Garnett, Bounded analytic functions, Academic Press, New York, 1970.
[2] J. Heinonen, Lectures on analysis on metric spaces, Universitext, Springer-Verlag, New York, 2001.
[3] J. Heinonen, T. Kilpelainen, and O. Martio, Nonlinear potential theory of degenerate elliptic equations, Oxford University Press, Oxford, 1993.
[4] T. Iwaniec and A. Lutoborski, Integral estimates for null Lagrangians, Arch. Ration. Mech. Anal. 125 (1993), 25-79.
[5] T. Iwaniec and C. Nolder, Hardy-Littlewood inequality for quasiregular mappings in certain domains in \mathbb{R}^{n}, Ann. Acad. Sci. Fenn. 10 (1985), 267-282.
[6] C. A. Nolder, A Privaloff and a Hardy-Littlewood theorem for harmonic functions and quasiregular mappings, Ph.D. Dissertation, University of Michigan, 1985.
[7] , Hardy-Littlewood theorems for A-harmonic tensors, Illinois J. Math. 43 (1999), 613-631.
[8] , Global integrability theorems for A-harmonic tensors, J. Math. Anal. Appl. 247 (2000), 236-245.
[9] S. G. Staples, L^{p}-averaging domains and the Poincaré inequality, Ann. Acad. Sci. Fenn. Ser. A I Math. 14 (1989), 103-127.

Shusen Ding, Department of Mathematics, Seattle University, Seattle, WA 98122, USA

E-mail address: sding@seattleu.edu
Craig A. Nolder, Department of Mathematics, Florida State University, Tallahassee, FL 32306, USA

E-mail address: nolder@math.fsu.edu

[^0]: Received March 12, 2001; received in final form March 1, 2002.
 2000 Mathematics Subject Classification. Primary 35J60. Secondary 31B05, 58A10, 46E35.

