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GORENSTEIN LIAISON AND SPECIAL LINEAR
CONFIGURATIONS

M. CASANELLAS AND R.M. MIRÓ-ROIG

Abstract. Liaison theory has been extensively studied during the past
decades. In codimension 2, the theory has reached a very satisfactory

state, but in higher codimensions there are still many open problems.

In this paper we prove that two unions V =
⋃k
i=1 Li and V ′ =

⋃k′
i=1 L

′
i

of independent linear varieties of dimension d ≥ 1 in Pn are in the same
G-liaison class if and only if k = k′ or, equivalently, if V and V ′ have
isomorphic deficiency modules M i(V ) ∼= M i(V ′), i = 1, . . . , d. We also
describe the G-liaison classes of arithmetically Buchsbaum divisors on
rational normal scrolls.

Introduction

Liaison theory has been extensively studied during the past decades; in
codimension 2, the theory has reached a very satisfactory state, but in higher
codimensions there are still many open questions and problems. Much of the
theory has been built around linking with complete intersections schemes,
which in codimension 2 coincide with Gorenstein schemes, and recent atten-
tion has been focused on Gorenstein liaison. The results given in [7], [3], and
[11], among other papers, suggest that Gorenstein liaison is a more natural
approach in codimension ≥ 3 and that much of the codimension 2 case can
be carried over naturally to higher codimensions.

This paper addresses a basic question about liaison of linear configurations,
namely, whether a set C of t independent linear spaces of dimension d ≥ 1
in P

n can be G-linked to any other set of t independent linear spaces of
dimension d. (Here “independent” means that the spaces span a linear space
of dimension dt + t − 1.) It is well known that any two skew lines in P3 are
in the same CI-liaison class; Migliore [9] conjectured that a pair of skew lines
in P4 can be CI-linked to another pair of skew lines if and only if they are
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contained in the same hyperplane H ⊂ P4. On the other hand, Lesperance
[8, Theorem 1.5] and Hartshorne [6, Proposition 3.1] recently proved that we
can G-link a pair of skew lines in P4 to any other pair of skew lines in P4. In
this paper we generalize this result and prove that two unions V =

⋃k
i=1 Li

and V ′ =
⋃k′
i=1 L

′
i of independent linear varieties of dimension d ≥ 1 in Pn

are in the same G-liaison class if and only if k = k′ or, equivalently, if V and
V ′ have isomorphic deficiency modules M i(V ) ∼= M i(V ′), i = 1, . . . , d, up to
shifts and dual (see Theorem 3.5).

As a consequence, we obtain that all reduced curves C ⊂ P2n with Rao
module Kn−1 concentrated in degree 0 belong to the same G-liaison class.
We point out that while much work has recently been devoted to G-liaison
of codimension c arithmetically Cohen-Macaulay schemes in Pn, the results
presented here are among the first for non-arithmetically Cohen-Macaulay
schemes of codimension c > 2 in Pn, n > 4.

To prove these results we first describe the G-liaison classes of arithmeti-
cally Buchsbaum divisors on rational normal scrolls (see Theorem 2.4 and
Remark 2.5). As main ingredient in the proof we use the fact that, roughly
speaking, Gorenstein liaison is being developped as a theory about general-
ized divisors on arithmetically Cohen-Macaulay schemes which collapses to
the setting of CI-liaison theory as a theory of generalized divisors on complete
intersections (for more details see [7] and [5]).

The structure of the paper is as follows. In Section 1, we review the basic
facts on Gorenstein liaison that we will need in the sequel. In Section 2, we
describe the G-liaison classes of arithmetically Buchsbaum divisors on rational
normal scrolls. Section 3 is the heart of the paper. In this section we study
the G-liaison classes of independent linear configurations; in particular, we
prove the result announced above.

1. Preliminaries

Throughout this paper, Pn will be the n-dimensional projective space over
an algebraically closed field K of characteristic zero, R = K[X0, . . . , Xn], and
m = (X0, . . . , Xn) its homogeneous maximal ideal. By a subscheme V ⊂ Pn
we mean an equidimensional closed subscheme. For a subscheme V of Pn we
denote by IV its ideal sheaf and by I(V ) its saturated homogeneous ideal;
note that I(V ) = H0

∗ (IV ) :=
⊕

t∈ZH
0(Pn, IV (t)).

If Z is any closed subscheme of Pn we denote by 〈Z〉 the span of Z, i.e.,
the smallest linear subspace of Pn containing Z as a subscheme.

Given a closed subscheme V ⊂ Pn of dimension d ≥ 1, we define its defi-
ciency modules as

M i(V ) := Hi
∗(IV ) = ⊕t∈ZHi(Pn, IV (t))
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for 1 ≤ i ≤ d. When V is a curve, its deficiency module M1(V ) is also called
Rao module (or Hartshorne-Rao module) and is denoted simply by M(V ).

A closed subscheme V ⊂ Pn is said to be arithmetically Cohen-Macaulay
(briefly ACM) if its homogeneous coordinate ring is a Cohen-Macaulay ring,
i.e., if dimR/I(V ) = depthR/I(V ). We recall that a subscheme V ⊂ Pn of
dimension d ≥ 1 is arithmetically Cohen-Macaulay (briefly ACM) if and only
if all its deficiency modules vanish.

A closed subscheme V ⊂ Pn of codimension c is arithmetically Gorenstein
(briefly AG) if its saturated homogeneous ideal I(V ) has a minimal free graded
R-resolution of the following type:

0→ R(−t)→ Fc−1 → . . .→ F1 → F0 → I(V )→ 0.

In other words, V ⊂ Pn is AG if and only if V is ACM and the last module in
the minimal free resolution of its saturated ideal has rank one. For instance,
any complete intersection scheme is arithmetically Gorenstein; the converse
is true only in codimension 2.

In the following definition we collect the main concepts about Gorenstein
liaison that we will need in this paper.

Definition 1.1 (see also [7, Definitions 2.3, 2.4 and 2.10]). We say that
two subschemes V1 and V2 of Pn are directly Gorenstein linked, or simply
directly G-linked, by an arithmetically Gorenstein scheme X ⊂ Pn if I(X) ⊂
I(V1) ∩ I(V2) and we have I(X) : I(V1) = I(V2) and I(X) : I(V2) = I(V1).
We denote this by V1

X∼ V2, and we say that V2 is the residual to V1 in X.
We say that two subschemes V1 and V2 are G-linked if there exists a sequence
of schemes A1, . . . , Ar such that Ai is directly G-linked to Ai+1, A1 = V1,
and Ar = V2. We call G-liaison the equivalence relation generated by G-
links. If X is a complete intersection, we say that V1 and V2 are complete
intersection linked, or simply CI-linked. We call CI-liaison the equivalence
relation generated by CI-links.

We say that V1 and V2 are CI-bilinked (resp. G-bilinked) if V1 is linked to V2

in two steps by complete intersection schemes (resp. arithmetically Gorenstein
schemes). We say that two schemes are evenly linked (in terms of CI-liaison
or G-liaison) if they can be linked by an even number of direct links.

The authors of [7] have developed the main tools we will need in this
paper. These tools concern G-links produced using divisors on ACM schemes
satisfying the property G1 (Gorenstein in codimension 1). A divisor D on a
scheme S of Pn will mean a pure codimension 1 subscheme D of S with no
embedded components. For more details on the theory of generalized divisors
on schemes satisfying the property G1 see [5].
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Proposition 1.2. Let X ⊂ Pn be an ACM subscheme satisfying property
G1 and let KX be a canonical divisor on X and H the hyperplane section.
Then any element of the linear system |dH−KX | is arithmetically Gorenstein.

Proof. See [7, Corollary 5.5]. �

Proposition 1.3. Let X ⊂ Pn be an ACM subscheme satisfying property
G1 and let C ⊂ X be an effective divisor. Take any divisor C1 in the linear
system |C + tH|, where H is a hyperplane section of X and t ∈ Z. Then
C and C1 are G-bilinked. (Notice that if t = 0 then C and C1 are linearly
equivalent.)

Proof. See [7, Corollary 5.13]. �

We end this section by recalling a close relationship between G-linked
schemes and their deficiency modules.

Theorem 1.4 (Hartshorne-Schenzel). Let V1, V2 ⊂ Pn be schemes of the
same dimension d such that V1

X∼ V2, where X is an AG scheme. Then there
is an integer p such that for all i = 1, . . . , d

Md−i+1(V2) ∼= M i(V1)∨(p),

where M i(V )∨ := HomK(M i(V ),K).

We are trying to gain some insight into a possible converse of this result.
In particular, we ask:

Question 1.5. Let V1, V2 be two curves in Pn having isomorphic Rao
modules (up to shifts and dual). Are V1 and V2 in the same G-liaison class?

In order to shed light on this problem, we will prove that two disjoint
unions C =

⋃k
i=1 Li (resp. C ′ =

⋃k′
i=1 L

′
i) of k (resp. k′) independent lines

in PN belong to the same G-liaison class if and only if M(C) ∼= M(C ′) (see
Theorem 3.5).

The above theorem of Hartshorne-Schenzel gives rise to the following defi-
nition:

Definition 1.6. Let L be an even G-liaison class. We denote by L0 the
set of schemes V ∈ L whose configuration of deficiency modules coincides
with the leftmost one (see [10, Section 5.4]), and we call the elements in L0

minimal elements.

For more information about Gorenstein liaison, see [10] and [7].
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2. G-liaison classes of arithmetically Buchsbaum divisors on
rational normal scrolls

In [3, Section 3] the authors studied the G-liaison classes of ACM divisors on
rational normal scrolls. In this section we are going to study G-liaison classes
of arithmetically Buchsbaum divisors on rational normal scrolls. While much
work has recently been devoted to G-liaison of codimension c schemes in Pn,
our results are among the first for non ACM schemes of codimension c > 2 in
P
n, n ≥ 3 (see [6] and [8] for some examples for non ACM curves in P4).

Let us recall the basic facts on rational normal scrolls; we refer to [4] for
more details. Let E = ⊕ki=0OP1(ai) be a rank k + 1 vector bundle on P1,
where 0 ≤ a0 ≤ · · · ≤ ak, and ak > 0. Let P(E) = Proj(Sym(E)) → P

1

be the projectivized vector bundle and let OP(E)(1) be its tautological line
bundle. Then OP(E)(1) is generated by global sections and defines a rational
map P(E) → P

∑
ai+k. We write S(E) or S(a0, . . . , ak) for the image of this

map, which is a variety of dimension k + 1 and degree c :=
∑
ai. A rational

normal scroll is one of the varieties S(E).
Rational normal scrolls S = S(a0, . . . , ak) ⊂ Pc+k are reduced and irre-

ducible varieties of minimal degree, i.e., degS = codimS + 1. They are ACM
and, in fact, are standard determinantal varieties defined by the 2× 2 minors
of a 2 × c matrix with suitable linear entries. Moreover, the singularities of
rational normal scrolls occur in codimension greater than or equal to 2, so
they satisfy property G1.

The divisor class group of a rational normal scroll S = S(a0, . . . , ak) ⊂
P
c+k, k ≥ 1, is generated by the hyperplane section H and a linear subspace
F ⊂ S of dimension k. The canonical class of S is KS ∼ −(k+1)H+(c−2)F .

We will study the G-liaison classes of arithmetically Buchsbaum schemes
on rational normal scrolls. To this end we first review the definition of arith-
metically Buchsbaum schemes.

Definition 2.1. A curve C in Pn is arithmetically Buchsbaum (or briefly
AB) if M(C) is annihilated by all linear forms of R (and hence by all ho-
mogeneous polynomials). A subscheme V ⊂ Pn of dimension d > 1 is arith-
metically Buchsbaum (or AB) if M i(V ) is annihilated by all linear forms for
all i = 1, . . . , d and if the general proper hyperplane section of V is again
arithmetically Buchsbaum.

We remark that if C is an arithmetically Buchsbaum curve, then M(C)t =
0 for t < 0, i.e., C does not have deficiency in negative degrees (see [10,
Remark 1.3.11(b)] or [1, Remark 1.4]).

To simplify the notation, we will assume that all AB schemes considered
here are not ACM.

The following result of Nagel gives a classification of arithmetically Buchs-
baum divisors on rational normal scrolls in terms of the linear equivalence
classes.
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Proposition 2.2. Let X ⊂ Pc+k be a reduced, effective divisor on a ratio-
nal normal scroll S = S(a0, . . . , ak), c =

∑k
i=0 ai. Assume that d := degX >

c and write d = t · c + b, where 1 − c ≤ b ≤ 0. Then X is arithmetically
Buchsbaum if and only if either

(i) X ∼ (t− 1)H + bF , 1 < b ≤ a0 + 1, or
(ii) X ∼ (t+ 1)H + bF , 1− c− a0 ≤ b ≤ −c.

Furthermore, in case (i) we have

Hi
∗(IX) ∼=

{
Kb−1(−t+ 1), i = 1,
0, 1 < i ≤ k.

Proof. See [12, Theorem 5.10]. �

Remark 2.3. From Proposition 2.2 it follows that a singular rational
normal scroll does not contain arithmetically Buchsbaum divisors which are
not ACM.

We are now ready to state the main result of this section.

Theorem 2.4. Let X, X ′ ⊂ Pc+k be two arithmetically Buchsbaum sche-
mes of dimension k lying on a rational normal scroll S = S(a0, . . . , ak), c =∑k
i=0 ai. Then X and X ′ have isomorphic deficiency modules, up to shifts

and dual, if and only if X and X ′ belong to the same G-liaison class.

Proof. If X and X ′ are G-linked, then their deficiency modules are isomor-
phic (up to shifts and dual) by the Hartshorne-Schenzel Theorem (Theorem
1.4). It remains therefore to prove the converse.

Since rational normal scrolls are ACM schemes and satisfy condition G1,
we can apply Propositions 1.2 and 1.3.

We first note that we may assume that X and X ′ are reduced and have
degree greater than c. Indeed, if necessary, we can add hyperplane sections
and take a general element Y , resp. Y ′, in the linear system |X + nH|, resp.
|X ′+n′H|. By Proposition 1.3, these new divisors Y , Y ′, will be in the same
G-liaison class as X, X ′.

If X (resp. X ′) is in case (ii), i.e., if X ∼ (t+1)H+bF with 1−c−a0 ≤ b ≤
−c (resp. X ′ ∼ (t′+1)H+b′F with 1−c−a0 ≤ b′ ≤ −c), then we can perform
a direct G-link using an AG divisor of type mH−KS ∼ (m+k+1)H−(c−2)F
containing X (resp. X ′) for m� 0, and the residual will be linearly equivalent
to (l− t− 1)H + (−b− c+ 2)F (resp. (l− t′ − 1)H + (−b′ − c+ 2)F ). Thus,
the residual is in case (i), and it therefore suffices to consider this case.

Now, assuming that X and X ′ are in case (i), i.e., that X ∼ (t− 1)H + bF
and X ′ ∼ (t′ − 1)H + b′F with 1 < b, b′ ≤ a0 + 1, the last assertion of
Proposition 2.2 implies that they have the same deficiency modules (up to
shifts) if and only if b = b′. But in this case Proposition 1.3 implies that X
and X ′ are in the same G-liaison class. �
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Remark 2.5. (i) In the proof of Theorem 2.4 we have seen that on a
rational normal scroll S(a0, . . . , ak) ⊂ Pc+k there are exactly a0 different G-
liaison classes containing arithmetically Buchsbaum divisors. We denote these
classes by Lt, 1 ≤ t ≤ a0. They correspond to the modules Kt, 1 ≤ t ≤ a0,
concentrated in only one degree of the first deficiency module. Moreover, t+1
fibers, (t+ 1)F , of a rational normal scroll S(a0, . . . , ak) are minimal schemes
(in the sense of Definition 1.6) in the corresponding even G-liaison class.

(ii) At present, we cannot say that two arithmetically Buchsbaum schemes
with isomorphic deficiency modules (up to shifts and dual) lying on two dif-
ferent rational normal scrolls are in the same G-liaison class. However, in the
next section we will show that this is indeed the case (see Proposition 3.9).

Remark 2.6. In the case of ACM divisors on rational normal scrolls,
the authors proved a similar result (see [3, Theorems 4.7 and 4.10] and [2,
Theorem 3.2.3]).

3. G-liaison of independent linear varieties

It is well known that any two skew lines in P3 are in the same CI-liaison
class. Recently it has been proved that any two skew lines in P4 are in the
same G-liaison class (see [8]). Thus, it is natural to ask:

Question 3.1. Let C = L1∪· · ·∪Ln and C ′ = L′1∪· · ·∪L′n be the union
of n skew independent lines in PN , with N ≥ 2n − 1. Are C and C ′ in the
same G-liaison class?

In this section, we answer this question in the affirmative. In fact, in
Theorem 3.5 we show that any two configurations of k independent linear
varieties of dimension d ≥ 1 lying in PN , where N ≥ dk+k− 1, belong to the
same G-liaison class.

Definition 3.2. We say that k linear varieties L1, . . . , Lk ⊂ PN of dimen-
sion dimLi = di are independent if their linear span has maximal dimension,
i.e., if 〈L1 ∪ · · · ∪ Lk〉 ∼= P

∑
di+k−1.

Notice that independent linear varieties are always disjoint, but not vice
versa. For example, three disjoint lines in P4 are not independent.

By a result of the first author (see [1, Theorem 2.3]), the union of k in-
dependent lines X = L1 ∪ · · · ∪ Lk ⊂ PN , N ≥ 2k − 1, is an arithmetically
Buchsbaum curve. In fact, proceeding as in [1] we can prove the following:

Lemma 3.3. Let X = L1 ∪ · · · ∪ Lk ⊂ PN be the union of k independent
linear varieties of dimension d ≥ 1, with N ≥ dk + k − 1. Then X is an
arithmetically Buchsbaum scheme and its deficiency modules are given by

M1(X)t =
{
Kk−1, t = 0,
0, t 6= 0,
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and M i(X) = 0 for 1 < i ≤ d. In particular, X is a minimal scheme in its
even G-liaison class.

The following proposition will be the key ingredient in the proof of Theorem
3.5.

Proposition 3.4. Let L1, . . . , Lk+1 ⊂ PN be a set of k+1 linear varieties
of dimension d ≥ 1 such that for any k-tuple 1 ≤ i1 < i2 · · · < ik ≤ k + 1,
Li1 , . . . , Lik are independent and 〈L1∪· · ·∪Lk+1〉 ∼= P

dk+k−1+ε with 0 ≤ ε ≤ d.
Then there is a rational normal scroll

Sε := S(k − 1, . . . , k − 1︸ ︷︷ ︸
d+1−ε

, k, . . . , k︸ ︷︷ ︸
ε

) ⊂ Pdk+k−1+ε

of dimension d+ 1 containing L1 ∪ · · · ∪ Lk+1.

Proof. Without loss of generality we may assume that we have fixed coordi-
nates X0, X1, . . . , XN in PN so that the linear span 〈L1∪· · ·∪Lk+1〉 is defined
by Xdk+k+ε = · · · = XN = 0, the linear variety H := 〈L1∪· · ·∪Lk〉 is defined
by Xdk+k = · · · = Xdk+k−1+ε = · · · = XN = 0 and for any i = 0, . . . , k − 1
the linear variety Li+1 is defined in H by

Li+1 : Xj = 0 for 0 ≤ j ≤ id+ i− 1 , (i+ 1)d+ i+ 1 ≤ j ≤ dk + k − 1.

We take d+1 points in Lk+1, Mi = (m0
i : m1

i : · · · : mdk+k−1
i : mdk+k

i : · · · :
mdk+k+ε−1
i : 0 · · · : 0) such that 〈M1 ∪ · · · ∪Md+1〉 = Lk+1 and 〈M1 ∪ · · · ∪

Md−ε+1〉 = Lk+1 ∩ H. For each i = 1, . . . , d − ε + 1 we consider the points
P 1
i = (m0

i : · · · : md
i : 0 : · · · : 0) ∈ L1, . . . , P ki = (0 : · · · : 0 : md(k−1)+k−1

i :
· · · : mdk+k−1

i : 0 : · · · : 0) ∈ Lk, and for i = d−ε+2, . . . , d+1 we take general
points P ji ∈ Lj such that 〈P j1 ∪ · · · ∪ P

j
d+1〉 = Lj for j = 1, . . . , k. Set

Πi := 〈P 1
i ∪ P 2

i ∪ · · · ∪ P ki ∪Mi〉 ⊂ Pdk+k−1+ε for i = 1, . . . , d+ 1.

Thus, the linear space Πi has dimension k−1 for i = 1, . . . , d−ε+1, and dimen-
sion k for i = d−ε+2, . . . , d+1. Since 〈

⋃
j=1,...,k
i=1,...,d+1

P ji 〉 = P
dk+k−1, the linear

spaces Π1, . . . ,Πd+1 are independent. Moreover, for all i = 1, . . . , d+1, we can
consider rational normal curves Di in Πi through the points P 1

i , . . . , P
k
i ,Mi.

(Note that Di has degree k− 1 if 1 ≤ i ≤ d− ε+ 1 and degree k if d− ε+ 2 ≤
i ≤ d+1.) In fact, since for i = 1, . . . , d−ε+1 the points P 1

i , . . . , P
k
i ,Mi form

a projective coordinate system of the projective space Πi, we can fix k + 1
points Q0, Q1, . . . , Qk in P1 so that we get morphisms φi : P1 → Πi defin-
ing the curves Di with φi(Q0) = Mi and φi(Qj) = P ji for all j = 1, . . . , k,
and i = 1, . . . , d − ε + 1. In addition, since for i = d − ε + 2, . . . , d + 1,
the points P 1

i , . . . , P
k
i ,Mi are part of a projective coordinate system of the

projective space Πi, we can also consider morphisms φi : P1 → Πi defining
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the curves Di with φi(Q0) = Mi and φi(Qj) = P ji for all j = 1, . . . , k and
i = d− ε+ 2, . . . , d+ 1.

According to [4, p. 46],

Sε :=
⋃
p∈P1

〈φ1(p) ∪ · · · ∪ φd+1(p)〉

is a rational normal scroll of type

S(k − 1, . . . , k − 1︸ ︷︷ ︸
d−ε+1

, k, . . . , k︸ ︷︷ ︸
ε

) ⊂ Pdk+k−1+ε,

and by construction it contains the linear subspaces

〈φ1(Q1) ∪ · · · ∪ φd+1(Q1)〉 = 〈P11 ∪ · · · ∪ P1d+1〉 = L1,

...

〈φ1(Qk) ∪ · · · ∪ φd+1(Qk)〉 = 〈Pk1 ∪ · · · ∪ Pkd+1〉 = Lk,

〈φ1(Q0) ∪ · · · ∪ φd+1(Q0)〉 = 〈M1 ∪ · · · ∪Md+1〉 = Lk+1.

This completes the proof. �

Theorem 3.5. Let V =
⋃k
i=1 Li and V ′ =

⋃k′
i=1 L

′
i with k, k′ ≥ 2 be two

unions of k (resp. k′) independent linear varieties of dimension d ≥ 1 in PN .
Then V and V ′ belong to the same G-liaison class if and only if k = k′.

Remark 3.6. Notice that if k = 1 then V is a complete intersection.
For d = 0, we have a slightly different result. Indeed, for any n, a set of n
independent points in PN , N ≥ n − 1, is glicci, i.e., belongs to the G-liaison
class of a complete intersection.

Proof of Theorem 3.5. Because of the independence of the linear varieties
Li (resp. L′i), the linear varieties Li (resp. L′i) are disjoint and N ≥ max(dk+
k − 1, dk′ + k′ − 1).

Assume that V and V ′ are in the same G-liaison class. The G-liaison
invariance of the deficiency modules M i(V ) together with Lemma 3.3 yields
k = k′. To prove the converse we distinguish two cases, depending on whether
L1 ∪ · · · ∪Lk ∪L′1 ∪ · · · ∪L′k span a linear space of dimension ≤ dk+ k− 1 + d
(Case 1) or a linear space of dimension > dk + k − 1 + d (Case 2).

Case 1 : Let L1 ∪ · · · ∪ Lk ∪ L′1 ∪ · · · ∪ L′k span a linear space of dimension
dk + k − 1 + ε with 0 ≤ ε ≤ d.

We first note that we may assume that V and V ′ are disjoint and that for
any i = 1, . . . , k, L′j1 ∪ · · · ∪ L

′
ji−1
∪ Lsi ∪ · · · ∪ Lsk with 1 ≤ j1 · · · ≤ ji−1 ≤ k

and 1 ≤ si · · · ≤ sk ≤ k is a disjoint union of k independent linear varieties of
dimension d . Indeed, otherwise we consider a third union of k independent
linear varieties of dimension d, V ′′ = L′′1∪· · ·∪L′′k ⊂ Pdk+k−1+ε, which satisfies
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this condition with respect to V and V ′. Thus, if we can show that V and
V ′′ are G-linked, and that V ′′ is G-linked to V ′, then it follows that V and
V ′ belong to the same G-liaison class.

According to Proposition 3.4, there exists a smooth rational normal scroll

Sε := S(k − 1, . . . , k − 1︸ ︷︷ ︸
d+1−ε

, k, . . . , k︸ ︷︷ ︸
ε

) ⊂ Pdk+k−1+ε

containing L1 ∪ · · · ∪ Lk ∪ L′1. By the assumptions we have made at the
beginning of the proof and by Lemma 3.3, V1 := L′1 ∪ L2 ∪ · · · ∪ Lk is an AB
scheme. Moreover, V1 = L′1∪L2∪· · ·∪Lk and V = L1∪· · ·∪Lk belong to the
same linear system |kF | of the rational normal scroll Sε. Therefore, applying
Theorem 2.4, we conclude that V and V1 are in the same G-liaison class.

Iterating this process, we obtain configurations of k independent linear
varieties of dimension d, Vi = L′1∪· · ·∪L′i∪Li+1∪· · ·∪Lk, i = 1, . . . , k−1, which
are all arithmetically Buchsbaum and in the G-liaison class of V . Repeating
the process above one more time, we see that Vk−1 belongs to the same G-
liaison class as V ′. This yields the result in the first case.

Case 2 : Let L1 ∪ . . . Lk ∪ L′1 ∪ · · · ∪ L′k span a linear space of dimension
n > dk + k − 1 + d.

We can assume that V and V ′ are disjoint, because we can always consider
a third union of k independent linear varieties of dimension d, say V ′′, that
are disjoint to V and V ′.

Let L′′1 ⊂ PN be a linear variety of dimension d which intersects the linear
spaces 〈L1∪· · ·∪Lk〉 and 〈L′1∪· · ·∪L′k〉 in points and does not intersect either
〈L2∪· · ·∪Lk〉 or 〈L′2∪· · ·∪L′k〉. Thus, the linear space 〈L′′1 ∪L1∪· · ·∪Lk〉 has
dimension dk+k−1+d, and by the first case it follows that V = L1∪· · ·∪Lk is
in the same G-liaison class as L′′1 ∪L2∪· · ·∪Lk. Similarly, V ′ = L′1∪· · ·∪L′k is
in the same G-liaison class as L′′1∪L′2∪· · ·∪L′k. Repeating this process k times
with suitable linear varieties L′′2 , . . . , L

′′
k of dimension d, we obtain that V and

V ′ belong to the same G-liaison class as the AB scheme C ′′ = L′′1 ∪ · · · ∪ L′′k .
This completes the proof. �

Remark 3.7. Without the hypothesis that the varieties be independent,
the above result is not true. For instance, if in P5, R = K[X0, X1, X2, X3, X4,
X5], and we consider the union V = L1 ∪ L2 ∪ L3 ⊂ P5 with L1 : X0 = X1 =
X2 = X3 = 0, L2 : X0 = X1 = X4 = X5 = 0, L3 : X2 = X3 = X4 = X5 = 0,
then V is the union of three independent lines and V has Rao module K2

concentrated in degree 0. On the other hand, if we consider V ′ = L′1∪L′2∪L′3 ⊂
P

5 with L′1 = L1, L′2 = L2 and L′3 defined by X0 = X2 = X4 = X3 +X5 = 0,
then V ′ is the disjoint union of three lines which are not independent (since
L′1∪L′2∪L′3 generate the hyperplane defined by X0 = 0) and the Rao module
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of V ′ is

M(V ′)t =

 K2, t = 0,
K, t = 1,
0, t 6= 0, 1.

Thus, by the Hartshorne-Schenzel Theorem, V and V ′ cannot be in the same
G-liaison class.

Corollary 3.8. Let C = C1 ∪ C2 ⊂ P
N be the disjoint union of two

rational normal curves C1 and C2 of degrees d1 and d2, respectively, with
N ≥ d1 + d2 + 1. Assume that 〈C1〉 ∩ 〈C2〉 = ∅. Then C is an arithmetically
Buchsbaum curve and in the G-liaison class of any two skew lines in PN .

Proof. The fact that C is AB is given in [1, Theorem 2.3]. Moreover, C
has Hartshorne-Rao module K concentrated in degree 0.

Let Hi := 〈Ci〉 ∼= P
di for i = 1, 2; then H1 ∩ H2 = ∅ by hypothesis. We

consider a scroll S := S(d1, d2) ⊂ PN of dimension 2 containing C1 and C2

(see the geometric construction of rational normal scrolls in [4, p. 46]). Then,
since by Theorem 2.4 any two curves with the same Rao module in this scroll
lie in the same G-liaison class, C is in the G-liaison class of two fibers of this
scroll. As a consequence, by Theorem 3.5, C is in the G-liaison class of any
two skew lines. �

In Remark 2.5 we have pointed out that there are exactly a0 different G-
liaison classes Lt, 1 ≤ t ≤ a0, containing arithmetically Buchsbaum schemes
of codimension c lying on a rational normal scroll S = S(a0, . . . , ak) ⊂ Pc+k.
It is natural to ask if these classes coincide with the a0 different G-liaison
classes containing AB schemes of codimension c lying on another rational
normal scroll S′ = S(a0, . . . , ak) ⊂ Pc+k. The answer is yes; more precisely,
we have the following result:

Proposition 3.9. Let X, X ′ ⊂ P
N be two arithmetically Buchsbaum

schemes of dimension k. Assume that X (resp. X ′) lies on a rational normal
scroll S = S(a0, . . . , ak) ⊂ PN (resp. S′ = S(a′0, . . . , a

′
k) ⊂ PN ). Then X and

X ′ have isomorphic deficiency modules, up to shifts and dual, if and only if
X and X ′ belong to the same G-liaison class.

Proof. If X and X ′ belong to the same G-liaison class, then their deficiency
modules are isomorphic (up to shifts and dual) by Theorem 1.4.

Now assume that X and X ′ have isomorphic deficiency modules (up to
shifts and dual). Since X ⊂ S is AB, by Proposition 2.2 it follows that X is
linearly equivalent to aHS + bFS on S for some a ≥ 0 and either

(i) 1 < b ≤ a0 + 1, or
(ii) 1− c− a0 ≤ b ≤ −c.
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Moreover, in case (i) we have

Hi
∗(IX) ∼=

{
Kb−1(l), i = 1,
0, 1 < i ≤ k.

for some l ∈ Z. It can also be checked that in case (ii)

Hi
∗(IX) ∼=

{
K−b−c+2(m), i = k,
0, 1 ≤ i < k,

for some m ∈ Z. In case (ii), we can perform a G-link as in the proof of
Theorem 2.4, and X is in the same G-liaison class as a divisor X̃ ∼ ãHS +
(−b− c+ 2)FS which is in case (i).

We do the same with X ′: we write X ′ ∼ a′HS′ + b′FS′ with a′ ≥ 0 and
either

(a) 1 < b′ ≤ a′0 + 1, or
(b) 1− c′ − a′0 ≤ b′ ≤ −c′, where c′ =

∑
a′i.

If X is in case (i) and X ′ is in case (a), then X (resp. X ′) is in the G-liaison
class of any b different fibers of S (resp. b′ different fibers of S′) by Theorem
2.4. Let Y (resp. Y ′) denote b (resp. b′) different fibers of S (resp. S′). Then
Y (resp. Y ′) is also an AB subscheme of PN . Hence, by [1] (or rather [2]),
Y (resp. Y ′) is a configuration of b (resp. b′) independent linear varieties of
dimension k of PN . Moreover, since we are assuming that X and X ′ have
isomorphic deficiency modules (up to shifts and dual), Y and Y ′ have also
isomorphic deficiency modules (up to shifts and dual), so b = b′. By Theorem
3.5, Y is in the same G-liaison class as Y ′, and we are done.

If X is in case (i) and X ′ is in case (b), let Y be b different fibers of S and
let Y ′ be −c′ − b′ + 2 different fibers of S′. Then X is in the G-liaison class
of Y and X ′ is in the G-liaison class of Y ′. Notice that Y and Y ′ are AB and
are independent configurations of linear varieties (see [1] or [2]). Moreover,
since X and X ′ have isomorphic deficiency modules (up to shifts and dual),
we have b = −c′−b′+2 and Theorem 3.5 implies that Y and Y ′ belong to the
same G-liaison class. Hence X and X ′ are also in the same G-liaison class.

If X is in case (ii) and X ′ is in case (a), we interchange the roles of X and
X ′ in the argument above, and we are done.

If X is in case (ii) and X ′ is in case (b), then X (resp. X ′) is in the G-
liaison class of −c− b+ 2 (resp. −c′ − b′ + 2) different fibers of S (resp. S′).
Arguing as above, we conclude the proof of the Proposition. �

As another consequence of Theorem 3.5, and following the proof of [8,
Theorem 3.6], we obtain a partial generalization of a result of Hartshorne (see
[6, Proposition 3.1(c)]) and Lesperance ([8, Theorem 3.6]). To this end, we
need the following lemma:
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Lemma 3.10. Let C = L1 ∪ · · · ∪ Ln+1 ⊂ Pn be a non-degenerate (i.e.,
H0(IC(1)) = 0) closed polygonal curve. Then C is an arithmetically Goren-
stein curve.

Proof. Without loss of generality we can fix coordinates X0, . . . , Xn in Pn

so that the lines Li, i = 1, . . . , n+ 1, are defined by

Li : Xi−1 = Xi = · · · = Xn+i−2 = 0,

where Xn+j = Xj−1 for all j ≥ 1. The homogeneous ideal I(C) is generated
by the (n− 2)(n+ 1)/2 quadrics XiXj with |j − i| ≥ 2. Moreover, we have
deg(C) = n + 1, pa(C) = 1, and M(C) = H1

∗ (IC) = 0. Hence C is an ACM
curve.

In addition, the general hyperplane section of C is the union of n+ 1 gen-
eral points in Pn−1, and is known to be an AG scheme (see [10, Example
4.1.11(b)]). Therefore, by [10, Theorem 1.3.5] C is an arithmetically Goren-
stein curve. �

Corollary 3.11. Let C ⊂ P
2n, n ≥ 2, be a reduced curve with Rao

module Kn−1 concentrated in degree 0. Then C is in the G-liaison class of
any n independent lines.

Proof. Since C is reduced with Rao module M0
∼= Kn−1, C must have n

connected components. By [1, Corollary 2.6] and Remark 2.7 these compo-
nents must be of the form C = L1∪· · ·∪Ln−1∪C0, where L1, . . . , Ln−1 are in-
dependent lines, C0 is a curve living on a plane H0 and H0∩〈L1∪· · ·∪Ln−1〉 =
∅. Let e := degC0; we can assume e ≥ 2 because the case e = 1 follows from
Theorem 3.5.

Taking coordinates in P2n, we can also assume that 〈L1 ∪ · · · ∪ Ln−1〉 ∼=
P

2n−3 is defined by X0 = X1 = X2 = 0 and H0 is defined by X3 = · · · =
X2n = 0. Since the lines L1, . . . , Ln−1 are independent, H1(IL1∪···∪Ln−1(t)) =
0 for all t ≥ 1 (see Lemma 3.3). Moreover, H2(IL1∪···∪Ln−1(t)) = 0 for all
t ≥ −1. Thus IL1∪···∪Ln−1 is 2-regular and the homogeneous ideal of L1∪· · ·∪
Ln−1 ⊂ P2n−3 is generated by quadrics. Let Q ∈ (X3, . . . , X2n)2 be a quadric
in I(L1∪· · ·∪Ln−1). We can also suppose that I(C0) = (Xe

0 +G,X3, . . . , X2n),
where G is a form of degree e in the variables X1, X2.

We consider the point P = (1, 0, . . . , 0) ∈ H0, P /∈ C0, and the planes
Πi := 〈Li ∪P 〉 for i = 1, . . . , n− 1, and Πn := H0. We also consider n planes,
Γ1, . . . ,Γn, through the point P such that for i = 1, . . . , n−1, the intersections
Γi ∩Πi, Γi ∩Πi+1, Γn ∩Πn, and Γn ∩Π1 are lines, and any other intersection
among these planes is exactly the point P . (We can construct these planes
Γ1, . . . ,Γn by taking lines through P in the planes Πi.)

We define S to be the surface S = Π1 ∪ · · · ∪Πn ∪ Γ1 ∪ · · · ∪ Γn. Thus S is
a cone from P over a union of 2n lines in P2n−1 satisfying the hypothesis of
Lemma 3.10, and hence is an arithmetically Gorenstein surface.
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Let F := Xe
0 +G+G′Q ∈ I(C)e be a form of degree e cutting S properly

(where G′ ∈ Re−2 is a general form). Then S ∩F is an AG scheme that links
C to a scheme D ⊂ Π1 ∪ · · · ∪Πn−1 ∪ Γ1 ∪ · · · ∪ Γn.

Let X := Π1 ∪ · · · ∪ Πn−1 ∪ Γ1 ∪ · · · ∪ Γn. Then X is an ACM surface
(because it is the residual to the plane Πn in S) and satisfies property G1.
Let H be the general hyperplane section on X and let KX be a canonical
divisor on X. Take an integer m� 0 such that mH −KX is effective. Since
the divisor L1 + · · ·+ Ln−1 + D is linearly equivalent to eH, by Proposition
1.2 the divisor E := L1 + · · ·+ Ln−1 +D +mH −KX is AG and links D to
L1 + · · ·+ Ln−1 +mH −KX .

Now let G ∈ I(L1∪· · ·∪Ln−1)1 be a linear form cutting X properly. Then
HG +mH −KX is AG and contains L1 + · · ·+Ln−1 +mH −KX , so it links
this divisor to a union Y of n independent lines in the hyperplane defined
by G (i.e., Y = G∩ (Γ1∪ · · ·∪Γn)). Finally, applying Theorem 3.5, we obtain
the result. �

Remark 3.12. In PN , N ≥ 2n, any curve C of the form C = C0 ∪ L1 ∪
· · ·∪Ln as in the proof of Corollary 3.11, spans a space P2n, and hence is also
in the G-liaison class of any n independent lines.

Remark 3.13. We remark that all curves C in the Corollary above are
arithmetically Buchsbaum and have Rao module Kn−1 concentrated in de-
gree 0. Since an arithmetically Buchsbaum curve cannot have a Rao module
different from zero in negative degrees, any such curve is minimal in its even
liaison class. Moreover, C belongs to the G-liaison class of the union of n
independent lines, C0, and by [1, Remark 2.7], C0 has minimal degree among
the reduced minimal curves.

Finally, it is well known that if V ⊂ Pn is an integral arithmetically Buchs-
baum scheme of degree d and codimension c, then its Castelnuovo-Mumford
regularity, reg(V ), is bounded above by reg(V ) ≤ d(d− 1)/ce + 1 (see [12,
Theorem 1.2]), where dme is the smallest integer ≥ m for m ∈ Q. By a result
of Nagel (see [12, Theorem 1.3]) we obtain:

Corollary 3.14. Let V ⊂ Pn be an integral AB scheme of codimension
c < n and degree d > max(2c(c + 1), 14). Assume that V has maximum
Castelnuovo-Mumford regularity, i.e., that reg(V ) = d(d− 1)/ce + 1 . Then
V is in the G-liaison class of any configuration of independent linear varieties
of codimension c having deficiency modules isomorphic to those of V (up to
shifts and dual).

Proof. A result of Nagel (see [12, Theorem 1.3]) says that, under the hy-
pothesis of the Corollary, V is a divisor on a variety of minimal degree. A
variety of minimal degree is either a rational normal scroll, a cone over a
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quadric hypersurface, or a cone over the Veronese surface in P5 (see [4], for
instance). But any divisor on a cone over a quadric hypersurface or over the
Veronese surface is ACM (see [12, Proposition 2.9]), and we have assumed
that the AB schemes in this paper are not ACM. Thus V is a divisor on a
rational normal scroll, and the result follows from Remark 2.5 and Theorem
3.5. �
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