ON THE REPRESENTATION OF DERIVATIVE ALGEBRAS IN CHARACTERISTIC $p>0$

JIANGFENG ZHANG AND JIANGHUA ZHANG

Abstract

In this paper we show that neither the Weyl algebra $A_{n}(K)$ nor the derivative algebra $D A_{n}(K)$ has infinite irreducible representations in the case when the ground field K has characteristic $p>0$. We also give a complete classification of irreducible representations of the first derivative algebra $D A_{1}$ when K is algebraically closed. Finally, we present an algorithm that determines, in finitely many steps, whether $D A_{1} / L$ is a simple $D A_{1}$-module, where L is any left ideal of $D A_{1}$.

1. Introduction

Let K be a field with characteristic $\operatorname{ch}(K)=0$ and $K[X]:=K\left[x_{1}, \ldots, x_{n}\right]$ the polynomial ring in n variables. Then the Weyl algebra $A_{n}(K)$, the ring of differential operators $D(K[X])$, and the derivative algebra $\Delta(K[X])$ generated by $\left\{x_{i}, \partial_{i}: i=1, \ldots, n\right\}$ in $\operatorname{End}_{K} K[X]$ are all isomorphic (see [8]). Because of this relation, the derivative algebra has defining relations as Weyl algebra, and hence has many applications. For example, symbolic computation in $\Delta(K[X])$ makes symbolic computation over \mathcal{D}-modules and automatic proving of function identities possible. However, if $\operatorname{ch}(K)=p>0$, then $\Delta(K[X])$ is only a quotient of $A_{n}(K)$ (see [12]). Hence the study of $\Delta(K[X])$ and $D(K[X])$ becomes as difficult as any other problem in characteristic p, and only a few properties of $D(K[X])$ and $\Delta(K[X])$ are known in the case when $\operatorname{ch}(K)=p$ (see [9], [10], and [12]). Some elementary properties and the computing theory of $\Delta(K[X])$ were developed in the papers [12] and [11]. In this paper we consider the representation theory of $\Delta(K[X])$ in the case when $\operatorname{ch}(K)=p>0$.

It is well known that, when $\operatorname{ch}(K)=0$, the representation theory of the Weyl algebra $A_{n}(K)$ has important applications to several areas of mathematics and, in particular, to Lie algebras. Significant work has been done on the irreducible representations of the first Weyl algebra $A_{1}(K)$; see, e.g., [4], [5],

[^0][6], [1], [2]. The paper [13] gives a complete classification of finite dimensional simple A_{1}-modules when K is algebraically closed and $\operatorname{ch}(K)=p>0$.

In this paper we use a simple fact from polynomial identity rings to show that, when $\operatorname{ch}(K)=p>0$, both the Weyl algebra and the derivative algebra have only finite irreducible representations. Using this result, we give a complete classification of irreducible representations of the first derivative algebra $\Delta\left(K\left[x_{1}\right]\right)$ for the case when K is algebraically closed with $\operatorname{ch}(K)=p>0$. However, this classification does not provide the structure of simple modules. That is, given any left ideal L of $\Delta\left(K\left[x_{1}\right]\right)$, the classification does not allow one to determine whether $\Delta\left(K\left[x_{1}\right]\right) / L$ is a simple module. Using computational methods developed in recent years for commutative and noncommutative algebras (see, e.g., [7]), we will give an algorithm to determine, in finitely many steps, whether $\Delta\left(K\left[x_{1}\right]\right) / L$ is simple, for any given left ideal L.

Throughout this paper, we suppose that K is a field with characteristic $p>$ 0 , and we set $K[X]=K\left[x_{1}, \ldots, x_{n}\right]$. We denote by $Z_{\geq 0}$ the set of nonnegative integers. In order to stress the connection between A_{n} and $\Delta(K[X])$, we write $D A_{n}$ for $\Delta(K[X])$. To make this paper self-contained, we state preliminary results in Section 2.

Acknowledgment. The authors are grateful to Professor Huishi Li for his generous help.

2. Preliminaries

For convenience, we list some properties of the derivative algebra $D A_{n}$ and the ring of differential operators $D(K[X])$.
2.1 Definition ([12]). Let x_{1}, \ldots, x_{n} be the left multiplication operators on $K[X]$ (that is, $x_{i}(f)=x_{i} \cdot f$ for any $\left.f \in K[X]\right), \partial_{1}, \ldots, \partial_{n}$ the partial differential operators on $K[X]$ (that is, $\partial_{i}(f)=\partial f / \partial x_{i}$ for any $f \in K[X]$). We denote by $D A_{n}(K)$ (or $D A_{n}$) the K-subalgebra of the endomorphism ring $\operatorname{End}_{K}(K[X])$ generated by $x_{1}, \ldots, x_{n}, \partial_{1}, \ldots, \partial_{n}$, and we call $D A_{n}$ the derivative algebra of $K[X]$.

For n-tuples $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ and $\beta=\left(\beta_{1}, \ldots, \beta_{n}\right) \in Z_{\geq 0}^{n}$ set

$$
x^{\alpha}=x_{1}^{\alpha_{1}} \ldots x_{n}^{\alpha_{n}}, \quad \partial^{\beta}=\partial_{1}^{\beta_{1}} \ldots \partial_{n}^{\beta_{n}}, \quad|\alpha|=\sum_{i=1}^{n} \alpha_{i}
$$

2.2 Proposition ([12]). The set

$$
\begin{aligned}
& \left\{x^{\alpha} \partial^{\beta}: \alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right), \beta=\left(\beta_{1}, \ldots, \beta_{n}\right) \in Z_{\geq 0}^{n}\right. \\
& \left.\qquad \beta_{i} \leq p-1, \quad i=1, \ldots, n\right\}
\end{aligned}
$$

is a K-basis of $D A_{n}$.

From now on we assume that, for any element $f \in D A_{n}, f$ is expressed in terms of the above K-basis, and we call this representation the standard form of f.
2.3 Lemma ([12]). For any $\alpha, \beta \in Z_{\geq 0}^{n},|\alpha| \geq|\beta|$, we have

$$
\partial^{\alpha}\left(x^{\beta}\right)= \begin{cases}\alpha! & \text { if } \alpha=\beta, \alpha_{i} \leq p-1,1 \leq i \leq n \\ 0 & \text { otherwise }\end{cases}
$$

where $\alpha!=\alpha_{1}!\cdot \alpha_{2}!\ldots \alpha_{n}!, 0!=1$.
2.4 Lemma ([12]). We have

$$
\begin{aligned}
& \partial_{i} \cdot x_{j}=x_{j} \cdot \partial_{i} \quad(i \neq j), \quad \partial_{i} \cdot x_{i}=x_{i} \cdot \partial_{i}+1 \\
& \partial_{i}^{m} x_{i}^{s}=x_{i}^{s} \partial_{i}^{m}+s \cdot m \cdot x_{i}^{s-1} \partial_{i}^{m-1}+s(s-1) \cdot m(m-1) x_{i}^{s-2} \partial_{i}^{m-2} \\
&+s(s-1)(s-2) \cdot m(m-1)(m-2) \cdot x_{i}^{s-3} \partial_{i}^{m-3}+\ldots
\end{aligned}
$$

2.5 Theorem ([12]). Let A_{n} be the nth Weyl algebra over K, that is, the associative K-algebra generated by $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}$ and the relations $y_{i} x_{j}-x_{j} y_{i}=\delta_{i j}, x_{i} x_{j}-x_{j} x_{i}=y_{i} y_{j}-y_{j} y_{i}=0, i, j=1, \ldots, n$. Then there exists a K-algebra isomorphism $D A_{n} \cong A_{n} /\left\langle y_{1}^{p}, \ldots, y_{n}^{p}\right\rangle$. Furthermore, the center of $A_{n}\left(\right.$ resp. $\left.D A_{n}\right)$ is $K\left[x_{1}^{p}, \ldots, x_{n}^{p}, y_{1}^{p}, \ldots, y_{n}^{p}\right]$, (resp. $\left.K\left[x_{1}^{p}, \ldots, x_{n}^{p}\right]\right)$, and A_{n} (resp. $D A_{n}$) is a finitely generated free module over its center.

By Theorem 2.5, we have $D A_{n} \cong A_{n} /\left\langle y_{1}^{p}, \ldots, y_{n}^{p}\right\rangle$. Hence there is a one-to-one correspondence between the set of left ideals of $D A_{n}$ and the set of left ideals of A_{n} which contain $\left\langle y_{1}^{p}, \ldots, y_{n}^{p}\right\rangle$. This correspondence can be obtained as follows:

By Proposition 2.2, any element $f \in D A_{n}$, can be written in the standard form

$$
f=\sum_{\alpha, \beta} c_{\alpha \beta} x^{\alpha} \partial^{\beta}
$$

where $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right), \beta=\left(\beta_{1}, \ldots, \beta_{n}\right) \in Z_{\geq 0}^{n}, \beta_{i} \leq p-1, i=1, \ldots, n$, $c_{\alpha \beta} \in K$. Let $f^{\prime} \in A_{n}, f^{\prime}=\sum c_{\alpha \beta} x^{\alpha} y^{\beta}$, with the same tuples α and β as in the representation of f. Suppose $L=\left\langle f_{1}, \ldots, f_{s}\right\rangle$ is any left ideal of $D A_{n}$. Then it is easy to show that

$$
L^{\prime}=\left\langle f_{1}^{\prime}, \ldots, f_{s}^{\prime}, y_{1}^{p}, \ldots, y_{n}^{p}\right\rangle
$$

is the left ideal of A_{n} corresponding to L. Thus we have the following isomorphisms of K-vector spaces:

$$
\begin{align*}
D A_{n} / L & \cong\left(A_{n} /\left\langle y_{1}^{p}, \ldots, y_{n}^{p}\right\rangle\right) /\left(\left\langle f_{1}^{\prime}, \ldots, f_{s}^{\prime}, y_{1}^{p}, \ldots, y_{n}^{p}\right\rangle /\left\langle y_{1}^{p}, \ldots, y_{n}^{p}\right\rangle\right) \tag{2.1}\\
& \cong A_{n} / L^{\prime}
\end{align*}
$$

This isomorphism is especially important in the computing theory of $D A_{n}$, since $D A_{n}$ is not a domain and therefore does not have a Groebner basis. We
can use the above isomorphism and Groebner bases in A_{n} to perform efficient computations in $D A_{n}$; see [11].

3. Representation theory of $D A_{n}$

3.1 Theorem. If K is a field with characteristic $p>0$, then neither $D A_{n}(K)$ nor $A_{n}(K)$ has an infinite dimensional irreducible representation,

Proof. By Theorem 2.5, $A_{n}(K)$ and $D A_{n}(K)$ are finitely generated over their center, Hence, by [8, Corollary 13.1.13], they are polynomial identity rings. Moreover, it is obvious that both A_{n} and $D A_{n}$ are affine K-algebras.

By [8, Theorem 13.10.3], in a affine polynomial identity K-algebra R, any simple left R-module is a finite dimensional K-vector space. Thus every simple module over A_{n} or $D A_{n}$ is finite over K, so A_{n} and $D A_{n}$ do not have infinite irreducible representations. This completes the proof.

It is easy to derive the following corollaries.
3.2 Corollary. $K[X]$ is not a simple $D A_{n}$-module.

Notice that if $\operatorname{ch}(K)=0$, then $D A_{n} \cong A_{n}$, and $K[X]$ is a simple $D A_{n^{-}}$ module (see [3]). By the corollary this result does not hold in the case when $\operatorname{ch}(K)=p>0$.
3.3 Corollary. Let M be any left $D A_{n}$-module (or left A_{n}-module). If GK- $\operatorname{dim} M>0$, then M is not simple.

Proof. By the definition of the Gelfand-Kirillov dimension (see [8]), M is not finite dimensional over K when GK- $\operatorname{dim} M>0$. Thus M is not a simple module.

Since for general n the classification of simple $D A_{n}$-modules is quite complex, we consider here only the case $n=1$. We shall use the concept of Harish-Chandra modules to obtain a classification for finite irreducible representations of $D A_{1}$ when K is also algebraically closed. Since, by Theorem 3.1, $D A_{1}$ has only finite irreducible representations, this classification provides a complete classification of all simple $D A_{1}$-modules.
3.4 Definition. Let $h_{1}=\partial_{1} x_{1}$, and let V be any $D A_{1}$-module. If V satisfies
(i) $V=\bigoplus_{\lambda \in K} V_{\lambda}$, where $V_{\lambda}=\left\{v \in V: h_{1} v=\lambda v\right\}$,
(ii) $\operatorname{dim}_{K} V_{\lambda}<\infty$, for all $\lambda \in K$,
then V is called a Harish-Chandra module over $\left(D A_{1}, h_{1}\right)$.
We retain the notation V_{λ} through the rest of this paper.
3.5 Theorem. Let $\Lambda=\{0,1, \ldots, p-1\} \subseteq K, \lambda, \mu \in K$.
(1) If $\mu \neq 0$, let $V(\lambda, \mu)=\bigoplus_{i \in \Lambda} K v_{i}$, where $\left\{v_{i}: i \in \Lambda\right\}$ is an arbitrary set of p elements. Define the action of $D A_{1}$ on $V(\lambda, \mu)$ as follows:

$$
\begin{aligned}
x_{1} v_{i} & =v_{i+1}, \quad 0 \leq i<p-1, \\
x_{1} v_{p-1} & =\mu v_{0} \\
\partial_{1} v_{0} & =\frac{\lambda-1}{\mu} v_{p-1} \\
\partial_{1} v_{j} & =(\lambda+j-1) v_{j-1}, \quad 0<j \leq p-1,
\end{aligned}
$$

where $v_{-1}=v_{p-1}, v_{p}=v_{0}$. Then $V(\lambda, \mu)$ is a finite dimensional irreducible $D A_{1}$-module and also a Harish-Chandra module.
(2) Let $\bar{V}=\bigoplus_{i \in \Lambda} K v_{i}$, where $\left\{v_{i}: i \in \Lambda\right\}$ is an arbitrary set of p elements. Define the action of $D A_{1}$ on \bar{V} as follows:

$$
\begin{aligned}
x_{1} v_{i} & =-i v_{i-1}, \quad 0 \leq i \leq p-1, \\
\partial_{1} v_{i} & =v_{i+1}, \quad 0 \leq i<p-1, \\
\partial_{1} v_{p-1} & =0,
\end{aligned}
$$

where $v_{-1}=v_{p-1}, v_{p}=v_{0}$. Then \bar{V} is a finite dimensional irreducible $D A_{1}$-module and also a Harish-Chandra module.

Proof. (1) It is obvious from the definition that $V(\lambda, \mu)$ is a finite dimensional left $D A_{1}$-module, and that

$$
\begin{aligned}
h_{1} v_{i} & =\partial_{1} x_{1} v_{i}=\partial_{1} v_{i+1}=(\lambda+i) v_{i}, \quad 0 \leq i<p-1 \\
h_{1} v_{p-1} & =\partial_{1} x_{1} v_{p-1}=\mu \partial_{1} v_{0}=(\lambda-1) v_{p-1}=(\lambda+p-1) v_{p-1}
\end{aligned}
$$

Let $V_{\lambda+i}=K v_{i}$ for $0 \leq i \leq p-1$, and set $V_{\delta}=0$ for $\delta \in K$ and $\delta \neq \lambda+i$, $i=0,1, \ldots, p-1$. Clearly, $V(\lambda, \mu)=\bigoplus_{\delta \in K} V_{\delta}$ is a Harish-Chandra module. We now prove that $V(\lambda, \mu)$ is an irreducible $D A_{1}$-module.

Suppose this is not true. Then $V(\lambda, \mu)$ has some nonzero proper submodule N. If there exists an element $v_{i} \in N, i \in \Lambda$, then $\left\{v_{j} ; j \in \Lambda\right\} \subseteq N$ by definition. Hence $N=V(\lambda, \mu)$, contradicting our hypothesis. Therefore $v_{i} \notin$ N for all $i \in \Lambda$. Take any nonzero element f in N. Then f has the form

$$
f=a_{1} v_{i_{1}}+a_{2} v_{i_{2}}+\cdots+a_{s} v_{i_{s}}
$$

where $s>1, a_{j} \in K, a_{j} \neq 0, j=1, \ldots, s$, and $p-1 \geq i_{1}>i_{2}>\cdots>i_{s} \geq 0$. (We have $s>1$ since for any $i \in \Lambda, v_{i} \notin N$.)

Note that $h_{1} v_{i}=(\lambda+i) v_{i}$ for $i=0, \ldots, p-1$. Hence

$$
\begin{aligned}
& f=a_{1} v_{i_{1}}+a_{2} v_{i_{2}}+\cdots+a_{s} v_{i_{s}} \in N, \\
& h_{1} f=\left(\lambda+i_{1}\right) a_{1} v_{i_{1}}+\left(\lambda+i_{2}\right) a_{2} v_{i_{2}}+\cdots+\left(\lambda+i_{s}\right) a_{s} v_{i_{s}} \in N, \\
& h_{1}^{2} f=\left(\lambda+i_{1}\right)^{2} a_{1} v_{i_{1}}+\left(\lambda+i_{2}\right)^{2} a_{2} v_{i_{2}}+\cdots+\left(\lambda+i_{s}\right)^{2} a_{s} v_{i_{s}} \in N, \\
& \vdots \\
& \begin{aligned}
h_{1}^{s-1} f & =\left(\lambda+i_{1}\right)^{s-1} a_{1} v_{i_{1}}+\left(\lambda+i_{2}\right)^{s-1} a_{2} v_{i_{2}}+\ldots \\
& \quad+\left(\lambda+i_{s}\right)^{s-1} a_{s} v_{i_{s}} \in N .
\end{aligned}
\end{aligned}
$$

We put this system of equations in matrix form:

$$
\left(\begin{array}{l}
f \tag{3.1}\\
h_{1} f \\
\vdots \\
h_{1}^{s-1} f
\end{array}\right)=\left(\begin{array}{llll}
a_{1} & a_{2} & \ldots & a_{s} \\
\left(\lambda+i_{1}\right) a_{1} & \left(\lambda+i_{2}\right) a_{2} & \ldots & \left(\lambda+i_{s}\right) a_{s} \\
\vdots & \vdots & & \vdots \\
\left(\lambda+i_{1}\right)^{s-1} a_{1} & \left(\lambda+i_{2}\right)^{s-1} a_{2} & \ldots & \left(\lambda+i_{s}\right)^{s-1} a_{s}
\end{array}\right)\left(\begin{array}{l}
v_{i_{1}} \\
v_{i_{2}} \\
\vdots \\
v_{i_{s}}
\end{array}\right)
$$

The determinant of the above matrix equals

$$
a_{1} a_{2} \ldots a_{s}\left|\begin{array}{llll}
1 & 1 & \ldots & 1 \tag{3.2}\\
\left(\lambda+i_{1}\right) & \left(\lambda+i_{2}\right) & \ldots & \left(\lambda+i_{s}\right) \\
\vdots & \vdots & & \vdots \\
\left(\lambda+i_{1}\right)^{s-1} & \left(\lambda+i_{2}\right)^{s-1} & \ldots & \left(\lambda+i_{s}\right)^{s-1}
\end{array}\right| .
$$

Since $a_{1} a_{2} \ldots a_{s} \neq 0$ and the determinant in (3.2) is a Vandermonde determinant with pairwise distinct entries $\lambda+i_{j}, j=1, \ldots, s$, the determinant of the system (3.1) is non-zero. Hence this system has a unique solution. Thus $v_{i_{1}}, \ldots, v_{i_{s}}$ can be expressed as K-combinations of $f, h_{1} f, \ldots, h_{1}^{s-1} f$, and hence of $v_{i_{1}}, \ldots, v_{i_{s}} \in N$. This contradicts the fact that $v_{i} \notin N$ for all i. Hence $V(\lambda, \mu)$ is an irreducible left $D A_{1}$-module.
(2) It is obvious that \bar{V} is a finite dimensional $D A_{1}$-module, and that

$$
\begin{aligned}
h_{1} v_{i} & =\partial_{1} x_{1} v_{i}=-i \partial_{1} v_{i-1}=-i v_{i}, \quad i=1, \ldots, p-1, \\
h_{1} v_{0} & =\partial_{1} x_{1} v_{0}=0
\end{aligned}
$$

Let

$$
\begin{aligned}
V_{-i} & =K v_{i}, & & i=0,1, \ldots, p-1, \\
V_{\delta} & =0, & & \delta \in K, \quad \delta \neq-i, \quad i=0,1, \ldots, p-1 .
\end{aligned}
$$

Then $\bar{V}=\bigoplus_{\delta \in K} V_{\delta}$ is a Harish-Chandra module. We now show that \bar{V} is an irreducible $D A_{1}$-module.

Suppose this is not true. Then there exists a nonzero proper submodule N of \bar{V}. As in the proof of part (1) we see that if $v_{i} \in N$ then $N=\bar{V}$. Thus
$v_{i} \notin N$ for all $i \in \Lambda$. Take any nonzero element f in N. Then f has the form

$$
f=a_{1} v_{i_{1}}+a_{2} v_{i_{2}}+\cdots+a_{s} v_{i_{s}}
$$

where $s>1, a_{j} \in K, a_{j} \neq 0, j=1, \ldots, s, p-1 \geq i_{1}>i_{2}>\cdots>i_{s} \geq 0$. Since $h_{1} v_{i}=-i v_{i}$ for $i=0, \ldots, p-1$, we have

$$
\begin{aligned}
& \quad f=a_{1} v_{i_{1}}+a_{2} v_{i_{2}}+\cdots+a_{s} v_{i_{s}} \in N \\
& h_{1} f=\left(-i_{1}\right) a_{1} v_{i_{1}}+\left(-i_{2}\right) a_{2} v_{i_{2}}+\cdots+\left(-i_{s}\right) a_{s} v_{i_{s}} \in N \\
& \quad \vdots \\
& h_{1}^{s-1} f=\left(-i_{1}\right)^{s-1} a_{1} v_{i_{1}}+\left(-i_{2}\right)^{s-1} a_{2} v_{i_{2}}+\cdots+\left(-i_{s}\right)^{s-1} a_{s} v_{i_{s}} \in N .
\end{aligned}
$$

Thus

$$
\left(\begin{array}{l}
f \\
h_{1} f \\
\vdots \\
h_{1}^{s-1} f
\end{array}\right)=\left(\begin{array}{llll}
a_{1} & a_{2} & \ldots & a_{s} \\
\left(-i_{1}\right) a_{1} & \left(-i_{2}\right) a_{2} & \ldots & \left(-i_{s}\right) a_{s} \\
\vdots & \vdots & & \vdots \\
\left(-i_{1}\right)^{s-1} a_{1} & \left(-i_{2}\right)^{s-1} a_{2} & \ldots & \left(-i_{s}\right)^{s-1} a_{s}
\end{array}\right)\left(\begin{array}{l}
v_{i_{1}} \\
v_{i_{2}} \\
\vdots \\
v_{i_{s}}
\end{array}\right)
$$

As in the proof of (1), we see that the above matrix is invertible, and the above system equations therefore has a unique solution. Thus $v_{i_{1}}, \ldots, v_{i_{s}}$ can be expressed as K-combinations of $f, h_{1} f, \ldots, h_{1}^{s-1} f$. Hence $v_{i_{j}} \in N, j=$ $1, \ldots, s$, contradicting the fact that $v_{j} \notin N$ for all j. Hence \bar{V} is an irreducible $D A_{1}$-module. This completes the proof.

After these preliminaries, we can now state the classification announced in the Introduction.
3.6 THEOREM. Let K be an algebraically closed field with characteristic $p>0$, and let V be any irreducible left $D A_{1}(K)$-module. Then either V is isomorphic to \bar{V}, or there exist $\lambda, \mu \in K, \mu \neq 0$, such that V is isomorphic to $V(\lambda, \mu)$.

Proof. By Theorem 3.1, V must be a finite dimensional K-vector space. Since $h_{1} V \subseteq V$ and K is algebraically closed, by the eigenvalue theory of linear operators there exist $\lambda \in K$ and $0 \neq u_{1} \in V$ such that $h_{1} u_{1}=\lambda u_{1}$.

We now show that $\sum_{i \geq 0} K x_{1}^{i} u_{1}+\sum_{j \geq 0} K \partial_{1}^{j} u_{1}$ is a nonzero submodule of V. Indeed, for $i \geq 1$ we have, by Lemma 2.4 and the relation $h_{1} u_{1}=\lambda u_{1}$,

$$
\begin{aligned}
x_{1} \cdot \partial_{1}^{i} u_{1} & =\left(\partial_{1}^{i} x_{1}-i \partial_{1}^{i-1}\right) u_{1} \\
& =\partial_{1}^{i-1} h_{1} u_{1}-i \partial_{1}^{i-1} u_{1} \\
& =(\lambda-i) \partial_{1}^{i-1} u_{1} \in K \partial_{1}^{i-1} u_{1}
\end{aligned}
$$

If $j \geq 2$, then

$$
\begin{aligned}
\partial_{1} \cdot x_{1}^{j} u_{1} & =\left(\partial_{1} x_{1}^{j-1}\right) x_{1} u_{1} \\
& =x_{1}^{j-1} h_{1} u_{1}+(j-1) x_{1}^{j-1} u_{1} \\
& =(\lambda+j-1) x_{1}^{j-1} u_{1} \in K x_{1}^{j-1} u_{1}
\end{aligned}
$$

while for $j=1$ we have

$$
\partial_{1} \cdot x_{1} u_{1}=h_{1} u_{1}=\lambda u_{1} \in K u_{1}
$$

Thus $\sum_{i>0} K x_{1}^{i} u_{1}+\sum_{j \geq 0} K \partial_{1}^{j} u_{1}$ is a nonzero submodule of V, and since V is irreducible, we have

$$
V=\sum_{i \geq 0} K x_{1}^{i} u_{1}+\sum_{j \geq 0} K \partial_{1}^{j} u_{1}
$$

Let

$$
V_{\lambda+i}=\left\{v \in V: h_{1} v=(\lambda+i) v\right\}
$$

Then $V_{\lambda+i}$ is a K-subspace of V, and for $i \geq 1$ we have

$$
\begin{aligned}
h_{1} \cdot x_{1}^{i} u_{1} & =\partial_{1} x_{1} x_{1}^{i} u_{1} \\
& =x_{1}^{i} h_{1} u_{1}+i x_{1}^{i} u_{1} \\
& =(\lambda+i) x_{1}^{i} u_{1} \\
h_{1} \cdot \partial_{1}^{i} u_{1} & =\partial_{1}\left(x_{1} \partial_{1}^{i}\right) u_{1} \\
& =\partial_{1}^{i} h_{1} u_{1}-i \partial_{1}^{i} u_{1} \\
& =(\lambda-i) \partial_{1}^{i} u_{1}
\end{aligned}
$$

Thus $x_{1}^{i} u_{1} \in V_{\lambda+i}$ and $\partial_{1}^{i} u_{1} \in V_{\lambda-i}=V_{\lambda+p-i}$. Notice that $u_{1} \in V_{\lambda}$. Therefore $V \subseteq \sum_{i \in \Lambda} V_{\lambda+i}$, and $V=\sum_{i \in \Lambda} V_{\lambda+i}$. We now show that $\sum_{i \in \Lambda} V_{\lambda+i}$ is, in fact, a direct sum, i.e.,

$$
\begin{equation*}
\sum_{i \in \Lambda} V_{\lambda+i}=\bigoplus_{i \in \Lambda} V_{\lambda+i} \tag{3.3}
\end{equation*}
$$

To prove this, let $v_{i} \in V_{\lambda+i}, i=0,1, \ldots, p-1$, and suppose there exist $a_{i} \in K$, such that

$$
a_{0} v_{0}+a_{1} v_{1}+\cdots+a_{p-1} v_{p-1}=0
$$

By considering the action of $h_{1}^{0}(=1), h_{1}^{1}, \ldots, h_{1}^{p-1}$ on the above equation and using the relation $h_{1} v_{i}=(\lambda+i) v_{i}$, we obtain the system

$$
\left(\begin{array}{llll}
1 & 1 & \ldots & 1 \\
\lambda & (\lambda+1) & \ldots & (\lambda+p-1) \\
\vdots & \vdots & \vdots & \vdots \\
\lambda^{p-1} & (\lambda+1)^{p-1} & \ldots & (\lambda+p-1)^{p-1}
\end{array}\right)\left(\begin{array}{l}
a_{0} v_{0} \\
a_{1} v_{1} \\
\vdots \\
a_{p-1} v_{p-1}
\end{array}\right)=0
$$

Since the above matrix is a Vandermonde matrix and the numbers $\lambda, \lambda+1, \ldots$, $\lambda+p-1$ are pairwise distinct, this matrix is invertible. Hence the above homogeneous system has only the trivial solution, i.e., we have

$$
a_{0} v_{0}=a_{1} v_{1}=\cdots=a_{p-1} v_{p-1}=0
$$

It follows that for any i with $0 \leq i \leq p-1$ we have $a_{i}=0$ whenever $v_{i} \neq 0$. Hence $\sum_{i \in \Lambda} V_{\lambda+i}$ is a direct sum, proving (3.3).

We now distinguish between two cases, $\lambda \notin \Lambda$ and $\lambda \in \Lambda$.
Case 1. $\lambda \notin \Lambda$.
If there exists $i \in \Lambda$ and a nonzero element $v \in V_{\lambda+i}$ such that $x_{1} v=0$, then $h_{1} v=\partial_{1} x_{1} v=0$, and $\lambda+i=0, \lambda=-i=p-i$, contradicting the assumption $\lambda \notin \Lambda$. Thus, for any $i \in \Lambda$, there is no nonzero element $v \in V_{\lambda+i}$ such that $x_{1} v=0$. Therefore the action of x_{1} on $V_{\lambda+i}$ is faithful.

Given $v \in V_{\lambda}$, it is easy to see that $h_{1} x_{1}^{p} v=\lambda x_{1}^{p} v$. Thus $x_{1}^{p} v \in V_{\lambda}$, and x_{1}^{p} may be viewed as a K-linear endomorphism of V_{λ}. Therefore there exists an eigenvalue $\mu \in K$ and a nonzero eigenvector $v_{0} \in V_{\lambda}$, such that $x_{1}^{p} v_{0}=\mu v_{0}$. We now show that $\mu \neq 0$.

Suppose $\mu=0$. Then $x_{1}^{p} v_{0}=0$. Since the action of x_{1} on V_{λ} is faithful, there exists $i, 1 \leq i \leq p-1$, such that $x_{1}^{i} v_{0} \neq 0, x_{1}^{i+1} v_{0}=0$. But

$$
\begin{aligned}
h_{1} x_{1}^{i} v_{0} & =\partial_{1} x_{1}^{i} x_{1} v_{0} \\
& =x_{1}^{i} h_{1} v_{0}+i x_{1}^{i} v_{0} \\
& =(\lambda+i) x_{1}^{i} v_{0}
\end{aligned}
$$

so $x_{1}^{i} v_{0} \in V_{\lambda+i}$. Since $x_{1} \cdot x_{1}^{i} v_{0}=x_{1}^{i+1} v_{0}=0$, this contradicts the fact that x_{1} is faithful on $V_{\lambda+i}$. Hence we have $\mu \neq 0$.

Next, we show that $\sum_{i \in \Lambda} K x_{1}^{i} v_{0}$ is a submodule of V. Indeed, if $i=2$, $3, \ldots, p-1$, then

$$
\begin{align*}
\partial_{1} \cdot x_{1}^{i} v_{0} & =\partial_{1} x_{1}^{i-1} \cdot x_{1} v_{0} \tag{3.4}\\
& =x_{1}^{i-1} h_{1} v_{0}+(i-1) x_{1}^{i-1} v_{0} \\
& =(\lambda+i-1) x_{1}^{i-1} v_{0} \in K x_{1}^{i-1} v_{0}
\end{align*}
$$

If $i=0$, then

$$
\begin{align*}
\partial_{1} \cdot v_{0} & =\partial_{1}\left(\frac{1}{\mu} x_{1}^{p} v_{0}\right) \tag{3.5}\\
& =\frac{1}{\mu} \partial_{1} x_{1}^{p-1} x_{1} v_{0} \\
& =\frac{1}{\mu} x_{1}^{p-1} h_{1} v_{0}+\frac{p-1}{\mu} x_{1}^{p-1} v_{0} \\
& =\frac{\lambda+p-1}{\mu} x_{1}^{p-1} v_{0} \in K x_{1}^{p-1} v_{0}
\end{align*}
$$

and if $i=1$, then

$$
\begin{equation*}
\partial_{1} \cdot x_{1} v_{0}=h_{1} v_{0}=\lambda v_{0} \in K v_{0} \tag{3.6}
\end{equation*}
$$

Moreover, if $j=0,1, \ldots, p-2$, then

$$
x_{1} \cdot x_{1}^{j} v_{0}=x_{1}^{j+1} v_{0} \in K x_{1}^{j+1} v_{0}
$$

and for $j=p-1$ we have

$$
x_{1} \cdot x_{1}^{p-1} v_{0}=x_{1}^{p} v_{0}=\mu v_{0} \in K v_{0} .
$$

Thus $\sum_{i \in \Lambda} K x_{1}^{i} v_{0}$ is a nonzero submodule of V.
Similarly to (3.4), (3.5), and (3.6), we see that

$$
h_{1} x_{1}^{i} v_{0}=\partial_{1} x_{1}^{i+1} v_{0}=(\lambda+i) x_{1}^{i} v_{0}, \quad i=0,1, \ldots, p-1
$$

Hence $x_{1}^{i} v_{0} \in V_{\lambda+i}$. By (3.3), $\sum_{i \in \Lambda} K x_{1}^{i} v_{0}$ is a direct sum, i.e.,

$$
\sum_{i \in \Lambda} K x_{1}^{i} v_{0}=\bigoplus_{i \in \Lambda} K x_{1}^{i} v_{0}
$$

Since V is an irreducible left $D A_{1}$-module, we have $V=\bigoplus_{i \in \Lambda} K x_{1}^{i} v_{0}$. Let $v_{i}=x_{1}^{i} v_{0}, i=1, \ldots, p-1, v_{p}=v_{0}, v_{-1}=v_{p-1}$. Then

$$
\begin{aligned}
x_{1} v_{i} & =v_{i+1}, i=0,1, \ldots, p-2, \\
x_{1} v_{p-1} & =x_{1}^{p} v_{0}=\mu v_{0} \\
\partial_{1} v_{0} & =\frac{\lambda+p-1}{\mu} x_{1}^{p-1} v_{0}=\frac{\lambda-1}{\mu} v_{p-1} \quad(\text { by } \quad(3.5)), \\
\partial_{1} v_{j} & =(\lambda+j-1) v_{j-1}, \quad j=1, \ldots, p-1 \quad(\text { by } \quad(3.4) \text { and }(3.6)) .
\end{aligned}
$$

Thus we have $V \cong V(\lambda, \mu)$ when $\mu \neq 0$.
Case 2. $\lambda \in \Lambda$.
In this case it is easy to see that $V=\bigoplus_{i \in \Lambda} V_{i}$. We now distinguish two subcases.

Subcase 2.1. There exist $s \in \Lambda$ and nonzero element $u \in V_{s}$, such that $x_{1} u=0$.

In this case, we have

$$
s u=h_{1} u=\partial_{1} x_{1} u=\partial_{1} 0=0
$$

and thus $s=0$ and $u \in V_{0}$. Let $U=\sum_{i \in \Lambda} K \partial_{1}^{i} u$. Then for $1 \leq i \leq p-1$ we have

$$
x_{1} \cdot \partial_{1}^{i} u=\left(\partial_{1}^{i} x_{1}-i \partial_{1}^{i-1}\right) u=-i \partial_{1}^{i-1} u \in U
$$

Since $\partial_{1}^{p}=0$, we also have

$$
\begin{aligned}
& \partial_{1} \cdot \partial_{1}^{p-1} u=0 \in U \\
& \partial_{1} \cdot \partial_{1}^{j} u \quad=\partial_{1}^{j+1} u \in U, \quad j=0,1, \ldots, p-2 .
\end{aligned}
$$

Hence U is a nonzero submodule of V, and since V is irreducible, we have $U=V$.

For $1 \leq i \leq p-1$ we have $h_{1} \partial_{1}^{i} u=-i \partial^{i} u$, and $h_{1} u=0$. Thus $\partial_{1}^{j} u \in V_{-j}$ for $j=0,1, \ldots, p-1$, Combined with (3.3), this shows that $\sum_{i \in \Lambda} K \partial_{1}^{i} u$ is a direct sum, i.e.,

$$
\sum_{i \in \Lambda} K \partial_{1}^{i} u=\bigoplus_{i \in \Lambda} K \partial_{1}^{i} u
$$

Hence $V=\bigoplus_{i \in \Lambda} K \partial_{1}^{i} u$.
Let $v_{0}=u, v_{i}=\partial_{1}^{i} v_{0}, i=1, \ldots, p-1$. Then

$$
\begin{aligned}
x_{1} v_{0} & =0 \\
x_{1} v_{i} & =x_{1} \partial_{1}^{i} v_{0}\left(\partial_{1}^{i} x_{1}-i \partial_{1}^{i-1}\right) v_{0} \\
& =-i \partial_{1}^{i-1} v_{0}=-i v_{i-1}, i=1, \ldots, p-1 \\
\partial_{1} v_{j} & =v_{j+1}, j=0,1, \ldots, p-2 \\
\partial_{1} v_{p-1} & =\partial_{1}^{p} v_{0}=0
\end{aligned}
$$

Thus $V \cong \bar{V}$.
Subcase 2.2. For any $s \in \Lambda$, there is no nonzero element $u \in V_{s}$ such that $x_{1} u=0$.

In this case, for any $s \in \Lambda$, the action of x_{1} on V_{s} is faithful. It is easy to see that $h_{1} x_{1}^{p} v=x_{1}^{p} h_{1} v+p x_{1}^{p} v=0$ for any $v \in V_{0}$. Thus $x_{1}^{p} v \in V_{0}$, that is, x_{1}^{p} maps V_{0} to V_{0}. Therefore there exist nonzero elements $v_{0} \in V_{0}$ and $\mu \in K$ such that $x_{1}^{p} v_{0}=\mu v_{0}$. When $i=1, \ldots, p-1$, we have

$$
\begin{aligned}
& h_{1} v_{0}=0 \\
& h_{1} x_{1}^{i} v_{0}=i x_{1}^{i} v_{0}
\end{aligned}
$$

Thus $x_{1}^{j} v_{0} \in V_{j}$ for $j=0,1, \ldots, p-1$.
If $\mu=0$, then $x_{1}^{p} v_{0}=0$. By the faithfulness of x_{1} on V_{s}, there exists i, $1 \leq i \leq p-1$, such that $x_{1}^{i} v_{0} \neq 0, x_{1}^{i+1} v_{0}=0$, and thus $x_{1} \cdot\left(x_{1}^{i} v_{0}\right)=0$. Since $x_{1}^{i} v_{0} \in V_{i}$, this contradicts the fact that x_{1} is faithful on V_{i}. Hence $\mu \neq 0$.

Let $U=\sum_{i \in \Lambda} K x_{1}^{i} v_{0}$. Then for $i=0,1, \ldots, p-2$,

$$
x_{1} \cdot x_{1}^{i} v_{0}=x_{1}^{i+1} v_{0} \in U
$$

and for $i=p-1$,

$$
x_{1} \cdot x_{1}^{p-1} v_{0}=x_{1}^{p} v_{0}=\mu v_{0} \in U
$$

For $j=2, \ldots, p-1$,

$$
\begin{aligned}
\partial_{1} \cdot x_{1}^{j} v_{0} & =\partial_{1} x_{1}^{j-1} x_{1} v_{0} \\
& =x_{1}^{j-1} h_{1} v_{0}+(j-1) x_{1}^{j-1} v_{0} \\
& =(j-1) x_{1}^{j-1} v_{0} \in U
\end{aligned}
$$

and for $j=0,1$,

$$
\begin{aligned}
\partial_{1} \cdot x_{1} v_{0} & =h_{1} v_{0}=0 \in U \\
\partial_{1} \cdot v_{0} & =\partial_{1}\left(\frac{1}{\mu} \cdot x_{1}^{p} v_{0}\right) \\
& =\frac{1}{\mu} \cdot\left(x_{1}^{p-1} h_{1} v_{0}+(p-1) x_{1}^{p-1} v_{0}\right) \\
& =\frac{p-1}{\mu} x_{1}^{p-1} v_{0} \in U .
\end{aligned}
$$

Hence U is a nonzero submodule of V, and by the irreducibility of V it follows that $U=V$.

Since $x_{1}^{i} v_{0} \in V_{i}, i=0,1, \ldots, p-1$, it follows from (3.3) that $\sum_{i \in \Lambda} K x_{1}^{i} v_{0}$ is a direct sum, and

$$
V=\sum_{i \in \Lambda} K x_{1}^{i} v_{0}=\bigoplus_{i \in \Lambda} K x_{1}^{i} v_{0}
$$

Let $v_{i}=x_{1}^{i} v_{0}, i=1, \ldots, p-1$. Then it is easy to see that $V=\bigoplus_{i \in \Lambda} K v_{i}$, and

$$
\begin{aligned}
x_{1} v_{i} & =v_{i+1}, \quad i=0,1, \ldots, p-2 \\
x_{1} v_{p-1} & =\mu v_{0} \\
\partial_{1} v_{j} & =(j-1) v_{j-1}, \quad j=1, \ldots, p-1 \\
\partial_{1} v_{0} & =\frac{p-1}{\mu} v_{p-1}
\end{aligned}
$$

Hence $V \cong V(0, \mu)$. This completes the proof of the theorem.
By the structure of $V(\lambda, \mu)$ and \bar{V}, we have $\operatorname{dim}_{K} V(\lambda, \mu) \leq p$, and $\operatorname{dim}_{K} \bar{V}$ $\leq p$. Thus Theorem 3.6 has the following corollary.
3.7 Corollary. If V is any finite dimensional $D A_{1}$-module and $\operatorname{dim}_{K} V$ $>p$, then V is not a simple module.

Theorems 3.5 and 3.6 give a complete classification of irreducible $D A_{1-}$ modules in the case the field K is algebraically closed with characteristic $p>0$. In the next section, we give an algorithm to determine, in finitely many steps, whether $D A_{1} / L$ is a simple module. Corollary 3.7 above may reduce the complexity of the algorithm.

4. Algorithmic recognition of irreducible $D A_{1}$-modules

In this section we use the computing theory of $D A_{n}$ to give an algorithm which can determine, in finitely many steps, whether $D A_{1} / L$ is simple, where L is any left ideal of $D A_{1}$. In fact, the proof of Theorem 3.6 yields such an algorithm, and we have the following theorem.
4.1 THEOREM. Let K be an algebraically closed field with characteristic $p>0$. Then, given any left ideal $L=\left\langle f_{1}, \ldots, f_{s}\right\rangle$ of $D A_{1}(K)$, there exists an algorithm that determines in finitely many steps whether $D A_{1} / L$ is an irreducible $D A_{1}$-module. If $D A_{1} / L$ is simple, this algorithm also gives the structure of $D A_{1} / L$ as a Harish-Chandra module; i.e., the algorithm generates the parameters λ and μ, and the vector v_{0}, represented in terms of a basis of $D A_{1} / L$, in the representation of $D A_{1} / L$ as a Harish-Chandra module \bar{V} or $V(\lambda, \mu)$.

Proof. By Theorem 3.1 and Corollary 3.7, we only need to determine the modules for the case when $\operatorname{dim}_{K} D A_{1} / L \leq p$. By the last part of Section 2, $L^{\prime}=\left\langle f_{1}^{\prime}, \ldots, f_{s}^{\prime}, y_{1}^{p}\right\rangle$ is the left ideal of the Weyl algebra A_{1} corresponding to L, and we have $D A_{1} / L \cong A_{1} / L^{\prime}$. Thus $\operatorname{dim}_{K} D A_{1} / L=\operatorname{dim}_{K} A_{1} / L^{\prime}$ if $\operatorname{dim}_{K} D A_{1} / L<+\infty$.

Since the first Weyl algebra A_{1} is a solvable polynomial algebra (see [7]), L^{\prime} has a Groebner basis, say, $G=\left\{g_{1}, \ldots, g_{t}\right\}$. Let

$$
B=\left\{x_{1}^{i} y_{1}^{j} \in S M\left(A_{1}\right): x_{1}^{i} y_{1}^{j} \text { is not divisible by } \operatorname{LT}\left(g_{k}\right), k=1, \ldots, t\right\}
$$

where $\operatorname{LT}(g)$ denotes the leading term of g in the graded lexicographic order. Let $\left[x_{1}^{i} y_{1}^{j}\right]$ be the coset of $x_{1}^{i} y_{1}^{j}$ modulo L^{\prime}. Then

$$
B^{\prime}=\left\{\left[x_{1}^{i} y_{1}^{j}\right]: x_{1}^{i} y_{1}^{j} \in B\right\}
$$

is a K-basis of A_{1} / L^{\prime}, and A_{1} / L^{\prime} is finite dimensional if and only if there exist $g_{k_{1}}, g_{k_{2}} \in G$ such that $\operatorname{LT}\left(g_{k_{1}}\right)$ is a power of x_{1} and $\operatorname{LT}\left(g_{k_{2}}\right)$ is a power of y_{1} (see [7]). Since $D A_{1} / L \cong A_{1} / L^{\prime}$ and B^{\prime} is a K basis of A_{1} / L^{\prime}, the set

$$
B^{\prime \prime}=\left\{\left[x_{1}^{i} \partial_{1}^{j}\right]: i, j \text { satisfies }\left[x_{1}^{i} y_{1}^{j}\right] \in B^{\prime}\right\}
$$

is a K-basis of $D A_{1} / L$. If the sets B^{\prime} and $B^{\prime \prime}$ are finite, denote by $\left|B^{\prime}\right|$ and $\left|B^{\prime \prime}\right|$ their respective cardinalities. Then $\left|B^{\prime}\right|=\left|B^{\prime \prime}\right|$.

From the above analysis and the proof of Theorem 3.6, we have the following algorithm:

Define a boolean variable T so that $\mathrm{T}=$ true if $D A_{1} / L$ is a simple module, and $\mathrm{T}=\mathrm{f}$ alse if $D A_{1} / L$ is not simple.
(1) Compute the Groebner basis $G=\left\{g_{1}, \ldots, g_{t}\right\}$ of $L^{\prime}=\left\{f_{1}^{\prime}, \ldots, f_{s}^{\prime}, y_{1}^{p}\right\}$, and construct B, B^{\prime}, and $B^{\prime \prime}$ as above. If no element in the set $\mathrm{LT}(G)=$ $\left\{\operatorname{LT}\left(g_{1}\right), \ldots, \operatorname{LT}\left(g_{t}\right)\right\}$ is a power of x_{1} or a power of y_{1}, or if $\left|B^{\prime}\right|>p$, let $\mathrm{T}=\mathrm{false}$, and stop the algorithm. Otherwise go to Step (2).
(2) Let $\left|B^{\prime \prime}\right|=m$. Then $\operatorname{dim}_{K} D A_{1} / L=\left|B^{\prime \prime}\right|=m$. Using the multiplication in $D A_{1}$, compute the action of the operator h_{1} on the elements of $B^{\prime \prime}$, and represent this operator by an $m \times m$ matrix H using the basis $B^{\prime \prime}$. Clearly, $H \in M_{m}(K)$, where $M_{m}(K)$ is the matrix ring over K. Determine
an eigenvalue λ of matrix H, and compute a basis of the eigenvector space V_{λ} corresponding to λ. Here the basis of V_{λ} is represented by vectors in K^{m}.
(3) If $\lambda \in \Lambda=\{0,1, \ldots, p-1\}$, then compute a basis of Ker $H=\{a \in$ $\left.K^{m}: H a=0\right\}$ using the matrix H. It is obvious that Ker H is just $V_{0}=\{v \in$ $\left.D A_{1} / L: h_{1} v=0\right\}$. Using the multiplication in $D A_{1}$, compute the action of the operators x_{1} and ∂_{1} on the basis $B^{\prime \prime}$, and represent x_{1} and ∂_{1} by two $m \times m$ matrices X and P. If $x_{1} u=0$ has nonzero solutions in V_{0}, i.e., if the linear system $X a=0$ has nonzero solutions in Ker H, then take any such nonzero solution v_{0}. If the set of vectors $\left\{v_{0}, P v_{0}, P^{2} v_{0}, \ldots, P^{p-1} v_{0}\right\}$ has rank m, then set T=true, output $B^{\prime \prime}, v_{0}, V \cong \bar{V}$, and stop the algorithm. Otherwise (i.e., if the above rank is not m), set $\mathrm{T}=\mathrm{false}$, and stop the algorithm.
(4) If $\lambda \notin \Lambda=\{0,1, \ldots, p-1\}$, or if $\lambda \in \Lambda$ and the equation $X a=0$ has no nonzero solution in $\operatorname{Ker} H$, then compute the action of the operator x_{1}^{p} on the elements of the basis $B^{\prime \prime}$ using the multiplication of $D A_{1}$, and represent x_{1}^{p} by an $m \times m$ matrix W. Compute a nonzero eigenvalue μ of W and a corresponding eigenvector $v_{0} \neq 0$, such that μ and v_{0} satisfy the following conditions:

- If $\lambda \notin \Lambda$, then $v_{0} \in V_{\lambda}$.
- If $\lambda \in \Lambda$, then $v_{0} \in V_{0}=\operatorname{Ker} H$.

By the proof of Theorem 3.6, such nonzero values of μ and v_{0} do exist. If the set of vectors $\left\{v_{0}, X v_{0}, X^{2} v_{0}, \ldots, X^{p-1} v_{0}\right\}$ has rank m, then $V \cong V(\lambda, \mu)$. In this case set T=true, output $B^{\prime \prime}, \lambda, \mu, v_{0}, V \cong V(\lambda, \mu)$, and stop the algorithm. Otherwise set $\mathrm{T}=\mathrm{fal}$ se, and stop the algorithm.

From the proof of Theorem 3.6 and the above analysis it is easy to see that this algorithm satisfies the requirement of the theorem. This completes the proof.

We conclude this paper with two examples which illustrate the above algorithm. In these examples, K is an algebraically closed field.
4.2 Example. Let $p=\operatorname{ch}(K)=5, f_{1}=x_{1} \partial_{1}^{2}$, and let $L=\left\langle f_{1}\right\rangle$ be a left ideal of $D A_{1}(K)$. We now determine whether $D A_{1} / L$ is a simple module.

It is obvious that

$$
L^{\prime}=\left\langle f_{1}^{\prime}, y_{1}^{5}\right\rangle=\left\langle x_{1} y_{1}^{2}, y_{1}^{5}\right\rangle
$$

and the Groebner basis of L^{\prime} is $G=\left\{y_{1}^{2}\right\}$ (see [7]). Now there is no term in $\mathrm{LT}(G)$ which is a power of x_{1}. Hence, by Step (1) of the above algorithm, $D A_{1} / L$ is not simple.
4.3 Example. Let $p=\operatorname{ch}(K)=3, f_{1}=x_{1}$, and let $L=\left\langle f_{1}\right\rangle$ be a left ideal of $D A_{1}$. We now determine whether $D A_{1} / L$ is simple.

It is obvious that $L^{\prime}=\left\langle x_{1}, y_{1}^{3}\right\rangle$ is the left ideal of A_{1} corresponding to L, and its Groebner basis is $G=\left\{x_{1}, y_{1}^{3}\right\}$. By the above algorithm, A_{1} / L^{\prime} is
finite dimensional, and its basis is

$$
B^{\prime}=\left\{[1],\left[y_{1}\right],\left[y_{1}^{2}\right]\right\} .
$$

Thus $D A_{1} / L$ is also finite dimensional, and its basis is

$$
B^{\prime \prime}=\left\{u_{1}, u_{2}, u_{3}\right\}
$$

where $u_{1}=[1], u_{2}=\left[\partial_{1}\right], u_{3}=\left[\partial_{1}^{2}\right]$. Since $\operatorname{dim}_{K} D A_{1} / L=\left|B^{\prime \prime}\right|=3=p$, we move on to Step (2) of the algorithm.

It is obvious that the action of $h_{1}=\partial_{1} x_{1}$ on the basis $\left\{u_{1}, u_{2}, u_{3}\right\}$ is given by

$$
\begin{aligned}
& h_{1} u_{1}=\left[\partial_{1} x_{1}\right]=0 \\
& h_{1} u_{2}=\left[\partial_{1} x_{1} \partial_{1}\right]=-u_{2}, \\
& h_{1} u_{3}=\left[\partial_{1} x_{1} \partial_{1}^{2}\right]=\left[\partial_{1}^{3} x_{1}\right]-\left[2 \partial_{1}^{2}\right]=u_{3} .
\end{aligned}
$$

Hence h_{1} can be represented by the following matrix with respect to the basis $\left\{u_{1}, u_{2}, u_{3}\right\}$:

$$
H=\left(\begin{array}{rrr}
0 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

The matrix H has eigenvalues $0,1,-1$. Take the eigenvalue $\lambda=0$. The eigenvector space V_{0} corresponding to $\lambda=0$ is

$$
V_{0}=\operatorname{Ker} H=\left\{k\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right): k \in K\right\}
$$

The action of the operator x_{1} on $\left\{u_{1}, u_{2}, u_{3}\right\}$ is given by

$$
\begin{aligned}
& x_{1} u_{1}=\left[x_{1}\right]=0 \\
& x_{1} u_{2}=\left[x_{1} \partial_{1}\right]=\left[\partial_{1} x_{1}-1\right]=[-1]=-u_{1} \\
& x_{1} u_{3}=\left[x_{1} \partial_{1}^{2}\right]=\left[\partial_{1}^{2} x_{1}-2 \partial_{1}\right]=\left[-2 \partial_{1}\right]=-2 u_{2}=u_{2} .
\end{aligned}
$$

Thus x_{1} can be represented by the following matrix with respect to the basis $\left\{u_{1}, u_{2}, u_{3}\right\}$:

$$
X=\left(\begin{array}{rrr}
0 & -1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

Let $v_{0}=(1,0,0)^{T}$. Then $v_{0} \in V_{0}$, and $X v_{0}=0$, so x_{1} is not faithful on V_{0}.
The action of ∂_{1} on $\left\{u_{1}, u_{2}, u_{3}\right\}$ is given by

$$
\begin{aligned}
\partial_{1} u_{1} & =\left[\partial_{1}\right]=u_{2} \\
\partial_{1} u_{2} & =\left[\partial_{1}^{2}\right]=u_{3} \\
\partial_{1} u_{3} & =\left[\partial_{1}^{3}\right]=0
\end{aligned}
$$

Hence ∂_{1} can be represented by the following matrix with respect to the basis $\left\{u_{1}, u_{2}, u_{3}\right\}$:

$$
P=\left(\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)
$$

Since

$$
P v_{0}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right), \quad P^{2} v_{0}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

the set of vectors $\left\{v_{0}, P v_{0}, P^{2} v_{0}\right\}$ has rank 3 . Since $\operatorname{dim} D A_{1} / L=3$, it follows that $D A_{1} / L$ is a simple module, and $D A_{1} / L \cong \bar{V}$, where

$$
\bar{V}=\bigoplus_{i \in\{0,1,2\}} K v_{i}, \quad v_{1}=\partial_{1} v_{0}, \quad v_{2}=\partial_{1}^{2} v_{0}
$$

References

[1] R. E. Block, The irreducible representations of the Weyl algebra A_{1}, Séminaire d'algèbre Paul Dubreil (Paris, 1977-1978), Lecture Notes in Math., vol. 740, SpringerVerlag, Berlin, 1979, pp. 69-79.
[2] _, The irreducible representations of the Lie algebra $S L(2)$ and of the Weyl algebra, Adv. in Math. 39 (1981), 69-110.
[3] S. C. Coutinho, A primer of algebraic D-modules, Cambridge University Press, Cambridge, 1995.
[4] J. Dixmier, Représentations irréductibles des algèbres de Lie nilpotentes, An. Acad. Brasil. Ci. 35 (1963), 491-519.
[5] _, Sur les algébres de Weyl, Bull. Soc. Math. France 96 (1968), 209-242.
[6] _ , Sur les algébres de Weyl II, Bull. Sci. Math. France 94 (1970), 289-301.
[7] A. Kandry-Rody and V. Weispfenning, Noncommutative Groebner bases in algebras of solvable type, J. Symbolic Comput. 9 (1990), 1-26.
[8] J. C. McConnell and J. C. Robson, Noncommutative Noetherian rings, John Wiley and Sons, New York, 1987.
[9] S. P. Smith, Differential operators on the affine and projective lines in characteristic $p>0$, Sèminaire d'algèbre Dubreil-Malliavin (Paris, 1985), Lecture Notes in Mathematics, vol. 1220, Springer-Verlag, Berlin, 1986, pp. 157-177.
[10] _, The global homological dimension of the ring of differential operators on a polynomial ring over a field of characteristic $p>0$, J. Algebra 107 (1987), 98-105.
[11] J. Zhang, Computing theory in the derivative algebra $D A_{n}$, Information 2 (1999), 459-464.
[12] J. Zhang and C. Xu, Derivative algebra on the field of nonzero characteristic (Chinese), Journal of Xidian Univ. 26 (1999), 471-474.
[13] K. Zhao and H. Zhang, Representations of Weyl algebras, J. Math. Res. Exposition 16 (1996), 159-166.

Jiangfeng Zhang, Department of Applied Mathematics, Shanghai Jiaotong University, Min Hang, Shanghai, 200240, P.R. China

E-mail address: jfzhangjf@mail.china.com
Jianghua Zhang, Xi'an Electronic Engineering Institute, 22 Sub-box, P.O.B. 132, Xi'an, 710100, P.R. China

E-mail address: zhangjh@xeeri.com.cn

[^0]: Received November 10, 2000; received in final form January 16, 2001.
 2000 Mathematics Subject Classification. Primary 16S99, 16G99.

