ARITHMETIC PROBLEMS CONCERNING CAUCHY'S FUNCTIONAL EQUATION II ${ }^{1}$

BY
Ch. Pisot and I. J. Schoenberg

I. Introduction

1. Statement of problem and main result. In a previous paper [4] of the same title the authors have studied the real-valued monotone solutions $f(x)$ of the functional equation

$$
\begin{equation*}
f\left(\sum_{1}^{m} u_{i} \alpha_{i}\right)=\sum_{1}^{m} f\left(u_{i} \alpha_{i}\right) \quad\left(u_{i} \text { arbitrary non-negative integers }\right) \tag{1.1}
\end{equation*}
$$

under various assumptions on m and the real constants α_{i}. In the present sequel to [4], which does not assume a knowledge of [4], we propose to study the uniformly continuous solutions of (1.1). Although some of the features of [4] will again appear in the present situation, the methods now required are different and they also permit a setting of the problem in higher dimensions.

Let $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{m}$ be elements of the real n-dimensional space $R^{n}(n<m)$ satisfying the following conditions:

1. Every set of n among the α_{i} are linearly independent over the real field.
2. The elements $\alpha_{1}, \cdots, \alpha_{m}$ are rationally independent, i.e., linearly independent over the rational field.
Let $f(x)$ denote a solution of (1.1) having values in the Banach space B. Such a solution needs to be defined only on the set

$$
\begin{equation*}
S=\left\{x=\sum_{1}^{m} u_{i} \alpha_{i} \mid u_{i} \text { integers } \geqq 0\right\} \tag{1.2}
\end{equation*}
$$

Without further conditions on $f(x)$ the problem is of little interest for we clearly obtain the most general solution of (1.1) by assigning at will the values of $f\left(u_{i} \alpha_{i}\right)$ for $u_{i}=1,2, \cdots$ and $i=1, \cdots, m$. We propose, however, to determine those solutions $f(x)$ of (1.1) which are uniformly continuous (abbreviated below to UC), i.e. are such that to every ε there corresponds a δ such that

$$
\|f(x)-f(y)\|<\varepsilon \quad \text { if } \quad|x-y|<\delta \quad(x, y \in S)
$$

Here we denote by $|\cdots|$ and $\|\cdots\|$ the norms of the spaces R^{n} and B, respectively.

If $\lambda(x)$ is a linear function from R^{n} into B then it is clear that $f(x)=\lambda(x)$ is a UC solution of (1.1). Other such solutions are obtained as follows: For every $i=1, \cdots, m$ we consider the set

[^0]\[

$$
\begin{equation*}
S_{i}=\left\{x=u_{i} \alpha_{i}+\sum_{j \neq i} k_{j} \alpha_{j} \mid u_{i} \text { integer } \geqq 0, k_{j} \text { integers }\right\} \tag{1.3}
\end{equation*}
$$

\]

Observe that S_{i} has the periods $\alpha_{j}(j \neq i)$ since $x \in S_{i}$ implies that $x+\alpha_{j} \in S_{i}$. Let the function $\phi_{i}(x)$ be defined in S_{i}, with values in B, such that

$$
\begin{array}{ll}
1^{\circ} . & \phi_{i}(0)=0, \\
2^{\circ} . & \phi_{i}\left(x+\alpha_{j}\right)=\phi_{i}(x)\left(j \neq i ; x \in S_{i}\right), \\
3^{\circ} . & \phi_{i}(x) \text { is UC on } S_{i} .
\end{array}
$$

We claim that $\phi_{i}(x)$ is a solution of (1.1). Indeed, observe that $S \subset S_{i}$ and that by 1° and 2° we may write

$$
\phi_{i}\left(\sum_{1}^{m} u_{j} \alpha_{j}\right)=\phi_{i}\left(u_{i} \alpha_{i}\right)=\phi_{i}\left(u_{i} \alpha_{i}\right)+\sum_{j \neq i} \phi_{i}\left(u_{j} \alpha_{j}\right)=\sum_{j=1}^{m} \phi_{i}\left(u_{j} \alpha_{j}\right) .
$$

Adding together all solutions so far obtained we see that

$$
\begin{equation*}
f(x)=\lambda(x)+\sum_{1}^{m} \phi_{i}(x) \quad(x \in S) \tag{1.4}
\end{equation*}
$$

represents a UC solution of (1.1). Indeed, observe that $S \subset \bigcap_{i} S_{i}$ and that (1.1) is a linear relation.

Our aim is to establish the converse
Theorem 1. If $f(x)$ is a solution of (1.1) which is UC on S then $f(x)$ admits a unique representation of the form (1.4) in which $\lambda(x)$ is a linear function from R^{n} into B, while the $\phi_{i}(x)$ satisfy the conditions $1^{\circ}, 2^{\circ}$ and 3° stated above.
2. Consequences of Theorem 1. Given n, the value of m is crucial in this problem. First of all we required that $m>n$ and for a good reason. Indeed, if $m \leqq n$ and we still assume the $\alpha_{1}, \cdots, \alpha_{m}$ to be linearly independent, then the distances between two distinct points of S have a positive lower bound. But then our requirement of uniform continuity becomes meaningless.

Let us now assume that $m=n+2$. Now $\phi_{i}(x)$ is to have $n+1$ periods $\alpha_{1}, \cdots, \alpha_{i-1}, \alpha_{i+1}, \cdots, \alpha_{n+2}$ which are rationally independent. From $\phi_{i}(0)=0$ we conclude that

$$
\begin{equation*}
\phi_{i}\left(\sum_{j \neq i} k_{j} \alpha_{j}\right)=0 \tag{2.1}
\end{equation*}
$$

However, the arguments of ϕ_{i} appearing here are dense in R^{n}; as first observed by Jacobi, the relations (2.1) in conjunction with the uniform continuity of ϕ_{i} imply that $\phi_{i}(x)=0$ if $x \in S_{i}$ and thus (1.4) reduces to $f(x)=\lambda(x)$. This reasoning is valid a fortiori if $m>n+2$. This proves

Theorem 2. If $m \geqq n+2$ and if $f(x)$ is a solution of (1.1) which is UC on S, then $f(x)$ is the restriction to S of a linear function $\lambda(x)$ from R^{n} to B.

We now deal with the only remaining case when $m=n+1$. The main result for this case will readily appear as soon as we settle the following question: Let $f(x)$ be a solution of (1.1) UC on S. Is it possible to extend $f(x)$ to a UC solution $F(x)$ of the unrestricted functional equation

$$
\begin{equation*}
F\left(\sum_{1}^{n+1} k_{i} \alpha_{i}\right)=\sum_{1}^{n+1} F\left(k_{i} \alpha_{i}\right) \quad\left(k_{i} \text { arbitrary integers }\right) ? \tag{2.2}
\end{equation*}
$$

The answer is affirmative and very simply settled as follows: Let (1.4) be the representation of our solution according to Theorem 1. The function $\phi_{i}(x)$ is UC on S_{i} having the n periods $\alpha_{j}(j \neq i)$. Since S_{i} is dense in R^{n} we may extend $\phi_{i}(x)$ uniquely to a function $\Phi_{i}(x)$ defined throughout R^{n} by means of

$$
\Phi_{i}(x)=\lim _{y \rightarrow x, y \epsilon s_{i}} \phi_{i}(y)
$$

The function $\Phi_{i}(x)$ is likewise UC in R^{n} and has the same periods as $\phi_{i}(x)$. But then the relation

$$
\begin{equation*}
F(x)=\lambda(x)+\sum_{i=1}^{n+1} \Phi_{i}(x) \tag{2.3}
\end{equation*}
$$

defines a function $F(x)$ which is UC on R^{n} and evidently satisfies the unrestricted equation (2.2). Moreover $F(x)=f(x)$ if $x \epsilon S$. This extension and representation (2.3) is unique because (1.4) was unique. This establishes

Theorem 3. Let $m=n+1$. We obtain the most general uniformly continuous solution $f(x)$ of (1.1) as the restriction to the set S, defined by (1.2), of a function $F(x)$, defined by (2.3), where $\lambda(x)$ is a linear function from R^{n} to B, while $\Phi_{i}(x)(i=1, \cdots, n+1)$ is a continuous function from R^{n} to B having the n periods $\alpha_{1}, \cdots, \alpha_{i-1}, \alpha_{i+1}, \cdots, \alpha_{n+1}$, while $\Phi_{i}(0)=0$. This construction is unique in the sense that two distinct sets $\left\{\lambda(x), \Phi_{i}(x)\right\}$ as above, furnish distinct solutions of (1.1).

In particular, every $U C$ solution $f(x)$ of (1.1) has a unique extension $F(x) U C$ on all of R^{n} which is a solution of the unrestricted functional equation (2.2).

In Part II we establish Theorem 1. In the brief Part III we give some examples and also mention a theorem of Erdös which suggested the present investigation.

II. Proof of Theorem 1

3. A fundamental inequality. Let $f(x)$ be a UC solution of (1.1), and let $x=\sum u_{\nu} \alpha_{\nu}, y=\sum v_{\nu} \alpha_{\nu}$ be two elements of S. Finally, ε being given let δ be such that

$$
\begin{equation*}
\|f(x)-f(y)\|<\varepsilon \quad \text { if } \quad|x-y|<\delta \tag{3.1}
\end{equation*}
$$

We set $q_{\nu}=u_{\nu}-v_{\nu}$ and divide the numbers $1, \cdots, m$ into two disjoint classes $I=\{i\}$ and $J=\{j\}$. For each $j \epsilon J$ let w_{j} be a given non-negative integer. We now define for $k=1,2, \cdots$

$$
\begin{array}{lll}
u_{j}^{(k)}=w_{j}+k q_{j}, & v_{j}^{(k)}=w_{j}+(k-1) q_{j} & \text { if } \quad q_{j} \geqq 0 \\
u_{j}^{(k)}=w_{j}+(k-1)\left|q_{j}\right|, & v_{j}^{(k)}=w_{j}+k\left|q_{j}\right| & \text { if } \quad q_{j}<0
\end{array}
$$

Observe that in either case $u_{j}^{(k)}-v_{j}^{(k)}=q_{j}$. For each k we have $\sum_{i \epsilon I} u_{i} \alpha_{i}+\sum_{j \epsilon J} u_{j}^{(k)} \alpha_{j}-\sum_{i \epsilon I} v_{i} \alpha_{i}-\sum_{j \epsilon J} v_{j}^{(k)} \alpha_{j}=\sum_{1}^{m} q_{\nu} \alpha_{\nu}=x-y$
so that if $|x-y|<\delta$ then (3.1) and (1.1) imply that

$$
\left\|\sum_{i \epsilon I}\left(f\left(u_{i} \alpha_{i}\right)-f\left(v_{i} \alpha_{i}\right)\right)+\sum_{j \epsilon J}\left(f\left(u_{j}^{(k)} \alpha_{j}\right)-f\left(v_{j}^{(k)} \alpha_{j}\right)\right)\right\|<\varepsilon
$$

Letting $k=1, \cdots, M$ and forming the arithmetic mean of the M quantities within the norm bars we obtain the inequality

$$
\begin{align*}
& \| \sum_{i \in I}\left(f\left(u_{i} \alpha_{i}\right)-f\left(v_{i} \alpha_{i}\right)\right) \tag{3.2}\\
&+\frac{1}{M} \sum_{j \in J} \eta_{j}\left\{f\left(\left(w_{j}+M\left|q_{j}\right|\right) \alpha_{j}\right)-f\left(w_{j} \alpha_{j}\right)\right\} \|<\varepsilon
\end{align*}
$$

where $\eta_{j}=+1$ if $q_{j} \geqq 0$ and $\eta_{j}=-1$ if $q_{j}<0$. The inequality (3.2) will be applied below on two occasions.
4. The asymptotic behavior of solutions. As a first application of the inequality (3.2) let us show that the limits

$$
\begin{equation*}
\lim _{N \rightarrow+\infty} f\left(N \alpha_{j}\right) / N=\lambda_{j} \quad(j=1, \cdots, m) \tag{4.1}
\end{equation*}
$$

exist. To see this let us choose integers q_{ν} so that $\left|\sum q_{\nu} \alpha_{\nu}\right|<\delta$ with $q_{j}>0$, and set $u_{\nu}=\max \left(q_{\nu}, 0\right), v_{\nu}=\max \left(-q_{\nu}, 0\right)$. Defining $x=\sum u_{\nu} \alpha_{\nu}$, $y=\sum v_{\nu} \alpha_{\nu}$, we have $|x-y|=\left|\sum q_{\nu} \alpha_{\nu}\right|<\delta$. To these points x and y we now apply the inequality (3.2), where J consists of the single subscript j, I denoting the set of $\nu \neq j$, and obtain

$$
\begin{equation*}
\left\|\sum_{i \neq j}\left(f\left(u_{i} \alpha_{i}\right)-f\left(v_{i} \alpha_{i}\right)\right)+\frac{1}{M} f\left(\left(w_{j}+M q_{j}\right) \alpha_{j}\right)-\frac{1}{M} f\left(w_{j} \alpha_{j}\right)\right\|<\varepsilon . \tag{4.2}
\end{equation*}
$$

Let now N be an arbitrary natural number. Dividing N by q_{j} let $N=w_{j}+q_{j} M$, where $0 \leqq w_{j}<q_{j}$. The numbers M and w_{j} so determined (as functions of N) we select for M and w_{j} appearing in (4.2). If $N \rightarrow \infty$ then also $M \rightarrow \infty$ while w_{j} remains bounded. Thus in (4.2) the term $(1 / M) f\left(w_{j} \alpha_{j}\right) \rightarrow 0$. Let E denote the sum appearing in (4.2). If λ denotes one of the limits of the sequence $\Sigma_{j}=\left\{f\left(N \alpha_{j}\right) / N\right\}$ and if we observe that $N / M \rightarrow q_{j}$ we see that on letting $N \rightarrow \infty$ through appropriate values the inequality (4.2) becomes

$$
\left\|E+q_{j} \lambda\right\| \leqq \varepsilon
$$

Thus if λ^{\prime} and $\lambda^{\prime \prime}$ are any two of the limits of the sequence Σ_{j}, then

$$
\left\|q_{j} \lambda^{\prime}-q_{j} \lambda^{\prime \prime}\right\| \leqq 2 \varepsilon
$$

hence $\left\|\lambda^{\prime}-\lambda^{\prime \prime}\right\| \leqq 2 \varepsilon q_{j}^{-1} \leqq 2 \varepsilon$. Since ε is arbitrary we conclude that $\lambda^{\prime}=\lambda^{\prime \prime}$ and (4.1) is established.
5. The linear component $\lambda(x)$. We shall now use the relations (4.1) to isolate the linear component of a solution $f(x)$ of (1.1). We define $\lambda(x)$ as a linear mapping of R^{n} into B as follows:

$$
\begin{equation*}
\text { If } x=\sum_{1}^{m} x_{i} \alpha_{i}\left(x_{i} \text { real }\right) \text { then } \lambda(x)=\sum x_{i} \lambda_{i} . \tag{5.1}
\end{equation*}
$$

The linearity of $\lambda(x)$ is apparent from this definition, but its being a function from R^{n} into B is still in doubt. To establish this we have to show that a
relation

$$
\begin{equation*}
\sum_{1}^{m} x_{i} \alpha_{i}=0 \quad\left(x_{i} \text { real, } x_{l} \neq 0 \text { for some } l\right) \tag{5.2}
\end{equation*}
$$

implies the relation

$$
\begin{equation*}
\sum_{1}^{m} x_{i} \lambda_{i}=0 \tag{5.3}
\end{equation*}
$$

This may be shown as follows: In the space R^{m} of the m-tuples (x_{1}, \cdots, x_{m}) the vector relation (5.2) defines an ($m-n$)-dimensional subspace V_{m-n}. As the α_{i} are rationally independent, we conclude that V_{m-n} contains none of the points of the lattice L of points of R^{m} having integral coordinates with the exception of the origin. However, the sequence of points

$$
\left\{\left(t x_{1}, t x_{2}, \cdots, t x_{m}\right)\right\} \quad(t=1,2, \cdots)
$$

comes arbitrarily close to such lattice points. Indeed, by a theorem of Dirichlet (see [3, page 170]) we know that for each natural number ν we can find integers $t^{(\nu)}, k_{1}^{(\nu)}, \cdots, k_{m}^{(\nu)}\left(t^{(\nu)}>0\right)$ such that

$$
\begin{equation*}
\left|t^{(\nu)} x_{i}-k_{i}^{(\nu)}\right|<1 / \nu \quad(i=1, \cdots, m) \tag{5.4}
\end{equation*}
$$

in fact $k_{i}^{(\nu)}=0$ for all ν if $x_{i}=0$. But then, in view of (5.2) and (5.4)

$$
\begin{aligned}
\left|\sum_{i} k_{i}^{(\nu)} \alpha_{i}\right| & =\left|\sum_{i} k_{i}^{(\nu)} \alpha_{i}-\sum_{i} t^{(\nu)} x_{i} \alpha_{i}\right| \\
& =\left|\sum_{i}\left(k_{i}^{(\nu)}-t^{(\nu)} x_{i}\right) \alpha_{i}\right|<(1 / \nu) \sum_{i}\left|\alpha_{i}\right|
\end{aligned}
$$

and hence

$$
\begin{equation*}
\lim _{p \rightarrow \infty}\left|\sum_{i} k_{i}^{(\nu)} \alpha_{i}\right|=0 \tag{5.5}
\end{equation*}
$$

On the other hand (5.4) implies the following: If $x_{l} \neq 0$ then

$$
\begin{equation*}
\lim _{\nu \rightarrow \infty} k_{i}^{(\nu)} / k_{l}^{(\nu)}=x_{i} / x_{l} \tag{5.6}
\end{equation*}
$$

Let $U=\left\{i \mid x_{i}>0\right\}, V=\left\{i \mid x_{i}<0\right\}, W=\left\{i \mid x_{i}=0\right\}$. Moreover, it is clear that $\operatorname{sgn} k_{i}^{(\nu)}=\operatorname{sgn} x_{i}(i=1, \cdots, m)$ provided that ν is sufficiently large. But then we can rewrite (5.5) as

$$
\lim _{\nu \rightarrow \infty}\left|\sum_{i \epsilon U} k_{i}^{(\nu)} \alpha_{i}-\sum_{i \epsilon \mathcal{L}}\right| k_{i}^{(\nu)}\left|\alpha_{i}\right|=0
$$

and now the uniform continuity of $f(x)$ and (1.1) imply that

$$
\lim _{\nu \rightarrow \infty}\left\|\sum_{i \epsilon U} f\left(k_{i}^{(\nu)} \alpha_{i}\right)-\sum_{i \epsilon V} f\left(\left|k_{i}^{(\nu)}\right| \alpha_{i}\right)\right\|=0
$$

Choosing a fixed $l \in U$ and dividing the last relation by $k_{l}^{(\nu)}$ we obtain a fortiori (because $\lim k_{l}^{(\nu)}=+\infty$ as $\nu \rightarrow \infty$)

$$
\lim _{\nu \rightarrow \infty}\left\|\sum_{i \in U} \frac{k_{i}^{(\nu)}}{k_{l}^{(\nu)}} \frac{f\left(k_{i}^{(\nu)} \alpha_{i}\right)}{k_{i}^{(\nu)}}-\sum_{i \in V} \frac{\left|k_{i}^{(\nu)}\right| f\left(\left|k_{i}^{(\nu)}\right| \alpha_{i}\right)}{k_{l}^{(\nu)}}\right\|=0 .
$$

If we now perform the passage to the limit within the norm bars we obtain by (4.1) and (5.6) the relation

$$
\left\|\sum_{U} \frac{x_{i}}{x_{l}} \lambda_{i}+\sum_{V} \frac{x_{i}}{x_{l}} \lambda_{i}\right\|=0
$$

which is equivalent to the relation (5.3) to be established.
6. The periodic components. The linear function $\lambda(x)$ constructed in $\S 5$ is now used as follows: We define a new function $\omega(x)$ by

$$
\begin{equation*}
\omega(x)=f(x)-\lambda(x) \tag{6.1}
\end{equation*}
$$

Evidently also $\omega(x)$ is a solution of (1.1) UC on S. Moreover

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \omega\left(N \alpha_{i}\right) / N=0 \quad(i=1, \cdots, m) \tag{6.2}
\end{equation*}
$$

because of (4.1), (6.1) and the relation $\lambda\left(N \alpha_{i}\right) / N=\lambda_{i}$ implied by (5.1).
For each $i=1, \cdots, m$ we now define a function $\phi_{i}(x)$ throughout the set S_{i}, described by (1.3), by the following requirements:

1. $\phi_{i}(0)=0$,
2. $\phi_{i}\left(x+\alpha_{j}\right)=\phi_{i}(x)\left(j \neq i ; x \in S_{i}\right)$,
3. $\phi_{i}\left(u_{i} \alpha_{i}\right)=\omega\left(u_{i} \alpha_{i}\right)\left(u_{i} \geqq 0\right)$.

Evidently $x=\sum u_{i} \alpha_{i}$ implies

$$
\begin{aligned}
f(x) & =\lambda(x)+\omega(x)=\lambda(x)+\sum_{i} \omega\left(u_{i} \alpha_{i}\right) \\
& =\lambda(x)+\sum_{i} \phi_{i}\left(u_{i} \alpha_{i}\right)=\lambda(x)+\sum_{i} \phi_{i}(x)
\end{aligned}
$$

and the desired representation (1.4) is seen to hold.
We are still to show that $\phi_{i}(x)$ is UC on S_{i}. Given ε, let δ_{1} be such that

$$
x \in S, y \in S \quad \text { and } \quad|x-y|<\delta_{1} \quad \text { imply } \quad\|\omega(x)-\omega(y)\|<\varepsilon
$$

Let

$$
\xi=u_{i} \alpha_{i}+\sum_{j \neq i} k_{j} \alpha_{j}, \quad \eta=v_{i} \alpha_{i}+\sum_{j \neq i} l_{j} \alpha_{j}
$$

be two points of S_{i} such that $|\xi-\eta|<\delta_{1}$ and let us show that

$$
\begin{equation*}
\left|\phi_{i}(\xi)-\phi_{i}(\eta)\right| \leqq \varepsilon \tag{6.3}
\end{equation*}
$$

For this purpose we write $k_{j}-l_{j}=q_{j}$ and select non-negative u_{j} and v_{j} such that $q_{j}=u_{j}-v_{j}(j \neq i)$. Finally let

$$
\begin{equation*}
x=u_{i} \alpha_{i}+\sum_{j \neq i} u_{j} \alpha_{j}, \quad y=v_{i} \alpha_{i}+\sum_{j \neq i} v_{j} \alpha_{j} \tag{6.4}
\end{equation*}
$$

observing that x and y are elements of S. Moreover

$$
\begin{aligned}
x-y & =u_{i} \alpha_{i}-v_{i} \alpha_{i}+\sum_{j \neq i} q_{j} \alpha_{j} \\
& =u_{i} \alpha_{i}-v_{i} \alpha_{i}+\sum_{j \neq i}\left(k_{j}-l_{j}\right) \alpha_{j}=\xi-\eta
\end{aligned}
$$

so that $|x-y|=|\xi-\eta|<\delta_{1}$. We may therefore apply the fundamental inequality of $\S 3$ to the solution $\omega(x)$, rather than $f(x)$, and the points (6.4) with $I=\{i\}, J=\{j \mid j \neq i\}, q_{j}=u_{j}-v_{j}$, and $w_{j}=0$, obtaining

$$
\left\|\omega\left(u_{i} \alpha_{i}\right)-\omega\left(v_{i} \alpha_{i}\right)+\frac{1}{M} \sum_{j \neq i} \eta_{j} \omega\left(M\left|q_{j}\right| \alpha_{j}\right)\right\|<\varepsilon .
$$

Letting $M \rightarrow \infty$ we know by (6.2) that the terms of the sum converge to zero, so that we obtain in the limit

$$
\left\|\omega\left(u_{i} \alpha_{i}\right)-\omega\left(v_{i} \alpha_{i}\right)\right\| \leqq \varepsilon
$$

On the other hand, from the periodicities of ϕ_{i} and its defining property 3 , we know that

$$
\phi_{i}(\xi)=\phi_{i}\left(u_{i} \alpha_{i}\right)=\omega\left(u_{i} \alpha_{i}\right), \quad \phi_{i}(\eta)=\phi_{i}\left(v_{i} \alpha_{i}\right)=\omega\left(v_{i} \alpha_{i}\right)
$$

so that our last inequality furnishes the desired inequality (6.3). This completes a proof of Theorem 1.

III. Concluding remarks

7. Examples and applications. We discuss some applications of Theorems 2 and 3 for the simplest case when $n=1$ and $B=R^{1}$.
a. Let $n=1, m=n+2=3$, hence $\alpha_{1}, \alpha_{2}, \alpha_{3}$ real, all $\neq 0$ and all three rationally independent. By Theorem 2 we conclude that the UC solutions of

$$
\begin{equation*}
f\left(u_{1} \alpha_{1}+u_{2} \alpha_{2}+u_{3} \alpha_{3}\right)=f\left(u_{1} \alpha_{1}\right)+f\left(u_{2} \alpha_{2}\right)+f\left(u_{3} \alpha_{3}\right) \quad\left(u_{\nu} \geqq 0\right) \tag{7.1}
\end{equation*}
$$

are of the form $f(x)=C x$ (C real constant).
All conditions are met if $\alpha_{i}=\log p_{i}$, where p_{1}, p_{2}, p_{3} are three distinct rational primes. Setting $f(\log y)=F(y)$, we see that $F(y)$ is defined on the set of integers

$$
\begin{equation*}
A=\left\{p_{1}^{u_{1}} p_{2}^{u_{2}} p_{3}^{u_{3}} \mid u_{\nu} \geqq 0\right\} \tag{7.2}
\end{equation*}
$$

on which it is additive in the sense that

$$
\begin{equation*}
F\left(p_{1}^{u_{1}} p_{2}^{u_{2}} p_{3}^{u_{3}}\right)=F\left(p_{1}^{u_{1}}\right)+F\left(p_{2}^{u_{2}}\right)+F\left(p_{3}^{u_{3}}\right) \tag{7.3}
\end{equation*}
$$

We now observe that the uniform continuity of $f(x)$ on the set

$$
S=\left\{x=u_{1} \alpha_{1}+u_{2} \alpha_{2}+u_{3} \alpha_{3} \mid u_{\nu} \geqq 0\right\}
$$

amounts to the condition that

$$
x_{\nu} \in S, y_{\nu} \in S, x_{\nu} \neq y_{\nu} \text { and } x_{\nu}-y_{\nu} \rightarrow 0 \quad \text { imply } \quad f\left(x_{\nu}\right)-f\left(y_{\nu}\right) \rightarrow 0
$$

Thus by the change of variable $x=\log y$, Theorem 1 furnishes the
Corollary 1. If the real-valued $F(y)$ is additive on the set (7.2) in the sense that (7.3) holds and if

$$
r_{\nu} \in A, s_{\nu} \in A, r_{\nu} \neq s_{\nu} \text { and } r_{\nu} / s_{\nu} \rightarrow 1 \text { imply } F\left(r_{\nu}\right)-F\left(s_{\nu}\right) \rightarrow 0
$$

then $F(y)=C \log y$.
This corollary (and the paper [4]) suggested the present investigation. The Corollary 1 in turn owes its origin to the following theorem of Erdös: Let $F(y)(y=1,2, \cdots)$ be an arithmetic function which is additive in the sense that $F(r s)=F(r)+F(s)$ whenever $(r, s)=1$. If we also assume that $F(r+1)-F(r) \rightarrow 0$ as $r \rightarrow \infty$, then $F(y)=C \log y$ (see [2, Theorem XIII on p. 18] and [5], [1] for more recent and elementary proofs).

Corollary 1 and Erdös' theorem now suggest the following open problem: Let $\alpha_{i}=\log p_{i}(i=1,2,3)$, where p_{i} are three distinct primes. Let

$$
S=\left\{\log \left(p_{1}^{u_{1}} p_{2}^{u_{2}} p_{3}^{u_{3}}\right)\right\}=\left\{\xi_{1}, \xi_{2}, \xi_{3}, \cdots\right\}
$$

be our familiar set with its elements arranged in increasing order $\left(\xi_{1}<\xi_{2}<\cdots\right)$. If $f(x)$ is a solution of (7.1) such that

$$
f\left(\xi_{\nu+1}\right)-f\left(\xi_{\nu}\right) \rightarrow 0 \quad \text { as } \quad \nu \rightarrow \infty
$$

is it still true that $f(x)=C x$ on S ?
An affirmative answer to this problem would certainly contain Corollary 1 (since $\xi_{\nu+1}-\xi_{\nu} \rightarrow 0$), but would say much more.
b. We return to the assumptions of Corollary 1 with the difference that we now have only two primes, hence the relation

$$
\begin{equation*}
F\left(p_{1}^{u_{1}} p_{2}^{u_{2}}\right)=F\left(p_{1}^{u_{1}}\right)+F\left(p_{2}^{u_{2}}\right) \tag{7.4}
\end{equation*}
$$

with solutions $F(y)$ defined on the set $A^{\prime}=\left\{p_{1}^{u_{1}} p_{2}^{u_{2}}\right\}$. Here we may apply Theorem 3 with $n=1, m=n+1=2$ and obtain the following curious

Corollary 2. The most general solution $F(y)$ of the functional equation (7.4) having the property that

$$
\begin{equation*}
r_{\nu} \in A^{\prime}, s_{\nu} \in A^{\prime}, r_{\nu} \neq s_{\nu} \text { and } r_{\nu} / s_{\nu} \rightarrow 1 \text { imply } F\left(r_{\nu}\right)-F\left(s_{\nu}\right) \rightarrow 0 \tag{7.5}
\end{equation*}
$$ is given by the formula

$$
\begin{equation*}
F(y)=C \log y+\phi_{1}(\log y)+\phi_{2}(\log y) \tag{7.6}
\end{equation*}
$$

where $\phi_{1}(x)$ and $\phi_{2}(x)$ are everywhere continuous functions having the periods $\log p_{2}$ and $\log p_{1}$, respectively, while $\phi_{1}(0)=\phi_{2}(0)=0$. The representation (7.6) is unique.

References

1. A. S. Besicovitch, On additive functions of a positive integer, Studies in Mathematical Analysis and Related Topics, Stanford University Press, 1962, pp. 38-41.
2. P. Erdös, On the distribution function of additive functions, Ann. of Math. (2), vol. 47 (1946), pp. 1-20.
3. G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, Oxford, 1954.
4. Ch. Pisot and I. J. Schoenberg, Arithmetic problems concerning Cauchy's functional equation, Illinois J. Math., vol. 8 (1964), pp. 40-56.
5. A. Renyi, On a theorem of P. Erdös and its application in information theory, Mathematica (Cluj), Vol. 1 (24) (1959), pp. 341-344.

The University of Paris
Paris, France
The University of Pennsylvania
Philadelphia, Pennsylvania

[^0]: Received October 15, 1963.
 ${ }^{1}$ This paper was written at the Institute of Number Theory sponsored during the year 1961-1962 by the National Science Foundation at the University of Pennslyvania.

