ARITHMETIC PROBLEMS CONCERNING CAUCHY'S FUNCTIONAL EQUATION II¹

BY

CH. PISOT AND I. J. SCHOENBERG

I. Introduction

1. Statement of problem and main result. In a previous paper [4] of the same title the authors have studied the real-valued monotone solutions f(x) of the functional equation

(1.1) $f(\sum_{1}^{m} u_i \alpha_i) = \sum_{1}^{m} f(u_i \alpha_i)$ (*u_i* arbitrary non-negative integers),

under various assumptions on m and the real constants α_i . In the present sequel to [4], which does not assume a knowledge of [4], we propose to study the *uniformly continuous* solutions of (1.1). Although some of the features of [4] will again appear in the present situation, the methods now required are different and they also permit a setting of the problem in higher dimensions.

Let $\alpha_1, \alpha_2, \cdots, \alpha_m$ be elements of the real *n*-dimensional space \mathbb{R}^n (n < m) satisfying the following conditions:

1. Every set of n among the α_i are linearly independent over the real field. 2. The elements $\alpha_1, \dots, \alpha_m$ are rationally independent, i.e., linearly independent over the rational field.

Let f(x) denote a solution of (1.1) having values in the Banach space B. Such a solution needs to be defined only on the set

(1.2)
$$S = \{x = \sum_{i=1}^{m} u_i \alpha_i \mid u_i \text{ integers } \geq 0\}.$$

Without further conditions on f(x) the problem is of little interest for we clearly obtain the most general solution of (1.1) by assigning at will the values of $f(u_i \alpha_i)$ for $u_i = 1, 2, \cdots$ and $i = 1, \cdots, m$. We propose, however, to determine those solutions f(x) of (1.1) which are uniformly continuous (abbreviated below to UC), i.e. are such that to every ε there corresponds a δ such that

$$||f(x) - f(y)|| < \varepsilon \quad \text{if} \quad |x - y| < \delta \qquad (x, y \in S).$$

Here we denote by $| \cdots |$ and $|| \cdots ||$ the norms of the spaces \mathbb{R}^n and \mathbb{B} , respectively.

If $\lambda(x)$ is a linear function from \mathbb{R}^n into B then it is clear that $f(x) = \lambda(x)$ is a UC solution of (1.1). Other such solutions are obtained as follows: For every $i = 1, \dots, m$ we consider the set

Received October 15, 1963.

¹ This paper was written at the Institute of Number Theory sponsored during the year 1961–1962 by the National Science Foundation at the University of Pennslyvania.

(1.3) $S_i = \{x = u_i \alpha_i + \sum_{j \neq i} k_j \alpha_j \mid u_i \text{ integer } \geq 0, k_j \text{ integers} \}.$

Observe that S_i has the periods α_j $(j \neq i)$ since $x \in S_i$ implies that $x + \alpha_j \in S_i$. Let the function $\phi_i(x)$ be defined in S_i , with values in B, such that

1°.
$$\phi_i(0) = 0,$$

2°. $\phi_i(x + \alpha_j) = \phi_i(x) \ (j \neq i; x \in S_i),$
3°. $\phi_i(x)$ is UC on S_i .

We claim that $\phi_i(x)$ is a solution of (1.1). Indeed, observe that $S \subset S_i$ and that by 1° and 2° we may write

$$\phi_i\left(\sum_{1}^m u_j \alpha_j\right) = \phi_i(u_i \alpha_i) = \phi_i(u_i \alpha_i) + \sum_{j \neq i} \phi_i(u_j \alpha_j) = \sum_{j=1}^m \phi_i(u_j \alpha_j).$$

Adding together all solutions so far obtained we see that

(1.4)
$$f(x) = \lambda(x) + \sum_{i=1}^{m} \phi_i(x) \qquad (x \in S),$$

represents a UC solution of (1.1). Indeed, observe that $S \subset \bigcap_i S_i$ and that (1.1) is a linear relation.

Our aim is to establish the converse

THEOREM 1. If f(x) is a solution of (1.1) which is UC on S then f(x) admits a unique representation of the form (1.4) in which $\lambda(x)$ is a linear function from R^n into B, while the $\phi_i(x)$ satisfy the conditions 1°, 2° and 3° stated above.

2. Consequences of Theorem 1. Given n, the value of m is crucial in this problem. First of all we required that m > n and for a good reason. Indeed, if $m \leq n$ and we still assume the $\alpha_1, \dots, \alpha_m$ to be linearly independent, then the distances between two distinct points of S have a positive lower bound. But then our requirement of uniform continuity becomes meaningless.

Let us now assume that m = n + 2. Now $\phi_i(x)$ is to have n + 1 periods $\alpha_1, \dots, \alpha_{i-1}, \alpha_{i+1}, \dots, \alpha_{n+2}$ which are rationally independent. From $\phi_i(0) = 0$ we conclude that

(2.1)
$$\phi_i(\sum_{j\neq i} k_j \alpha_j) = 0.$$

However, the arguments of ϕ_i appearing here are dense in \mathbb{R}^n ; as first observed by Jacobi, the relations (2.1) in conjunction with the uniform continuity of ϕ_i imply that $\phi_i(x) = 0$ if $x \in S_i$ and thus (1.4) reduces to $f(x) = \lambda(x)$. This reasoning is valid a fortiori if m > n + 2. This proves

THEOREM 2. If $m \ge n + 2$ and if f(x) is a solution of (1.1) which is UC on S, then f(x) is the restriction to S of a linear function $\lambda(x)$ from \mathbb{R}^n to B.

We now deal with the only remaining case when m = n + 1. The main result for this case will readily appear as soon as we settle the following question: Let f(x) be a solution of (1.1) UC on S. Is it possible to extend f(x)to a UC solution F(x) of the unrestricted functional equation

130

(2.2)
$$F\left(\sum_{1}^{n+1} k_i \alpha_i\right) = \sum_{1}^{n+1} F(k_i \alpha_i) \qquad (k_i \text{ arbitrary integers})?$$

The answer is affirmative and very simply settled as follows: Let (1.4) be the representation of our solution according to Theorem 1. The function $\phi_i(x)$ is UC on S_i having the *n* periods α_j $(j \neq i)$. Since S_i is dense in \mathbb{R}^n we may extend $\phi_i(x)$ uniquely to a function $\Phi_i(x)$ defined throughout \mathbb{R}^n by means of

$$\Phi_i(x) = \lim_{y \to x, y \in S_i} \phi_i(y).$$

The function $\Phi_i(x)$ is likewise UC in \mathbb{R}^n and has the same periods as $\phi_i(x)$. But then the relation

(2.3)
$$F(x) = \lambda(x) + \sum_{i=1}^{n+1} \Phi_i(x) \qquad (x \in \mathbb{R}^n)$$

defines a function F(x) which is UC on \mathbb{R}^n and evidently satisfies the unrestricted equation (2.2). Moreover F(x) = f(x) if $x \in S$. This extension and representation (2.3) is unique because (1.4) was unique. This establishes

THEOREM 3. Let m = n + 1. We obtain the most general uniformly continuous solution f(x) of (1.1) as the restriction to the set S, defined by (1.2), of a function F(x), defined by (2.3), where $\lambda(x)$ is a linear function from \mathbb{R}^n to B, while $\Phi_i(x)$ $(i = 1, \dots, n + 1)$ is a continuous function from \mathbb{R}^n to B having the n periods $\alpha_1, \dots, \alpha_{i-1}, \alpha_{i+1}, \dots, \alpha_{n+1}$, while $\Phi_i(0) = 0$. This construction is unique in the sense that two distinct sets $\{\lambda(x), \Phi_i(x)\}$ as above, furnish distinct solutions of (1.1).

In particular, every UC solution f(x) of (1.1) has a unique extension F(x) UC on all of \mathbb{R}^n which is a solution of the unrestricted functional equation (2.2).

In Part II we establish Theorem 1. In the brief Part III we give some examples and also mention a theorem of Erdös which suggested the present investigation.

II. Proof of Theorem 1

3. A fundamental inequality. Let f(x) be a UC solution of (1.1), and let $x = \sum u_{\nu} \alpha_{\nu}$, $y = \sum v_{\nu} \alpha_{\nu}$ be two elements of S. Finally, ε being given let δ be such that

(3.1)
$$||f(x) - f(y)|| < \varepsilon \quad \text{if} \quad |x - y| < \delta.$$

We set $q_{\nu} = u_{\nu} - v_{\nu}$ and divide the numbers 1, \cdots , *m* into two disjoint classes $I = \{i\}$ and $J = \{j\}$. For each $j \in J$ let w_j be a given non-negative integer. We now define for $k = 1, 2, \cdots$

$$u_{j}^{(k)} = w_{j} + kq_{j}, \qquad v_{j}^{(k)} = w_{j} + (k-1)q_{j} \quad \text{if} \quad q_{j} \ge 0,$$

$$u_{j}^{(k)} = w_{j} + (k-1)|q_{j}|, \quad v_{j}^{(k)} = w_{j} + k|q_{j}| \qquad \text{if} \quad q_{j} < 0.$$

Observe that in either case $u_j^{(k)} - v_j^{(k)} = q_j$. For each k we have $\sum_{i \in I} u_i \alpha_i + \sum_{j \in J} u_j^{(k)} \alpha_j - \sum_{i \in I} v_i \alpha_i - \sum_{j \in J} v_j^{(k)} \alpha_j = \sum_{i=1}^m q_{\nu} \alpha_{\nu} = x - y$ so that if $|x - y| < \delta$ then (3.1) and (1.1) imply that

$$\Big|\sum_{i\in I}\left(f(u_i\,\alpha_i)\,-\,f(v_i\,\alpha_i)\right)\,+\,\sum_{j\in J}\left(f(u_j^{(k)}\alpha_j)\,-\,f(v_j^{(k)}\alpha_j)\right)\,\Big\|\,<\,\varepsilon.$$

Letting $k = 1, \dots, M$ and forming the arithmetic mean of the M quantities within the norm bars we obtain the inequality

(3.2)
$$\left\| \sum_{i \in I} \left(f(u_i \, \alpha_i) - f(v_i \, \alpha_i) \right) + \frac{1}{M} \sum_{j \in J} \eta_j \{ f((w_j + M \mid q_j \mid) \alpha_j) - f(w_j \, \alpha_j) \} \right\| < \varepsilon,$$

where $\eta_j = +1$ if $q_j \ge 0$ and $\eta_j = -1$ if $q_j < 0$. The inequality (3.2) will be applied below on two occasions.

4. The asymptotic behavior of solutions. As a first application of the inequality (3.2) let us show that the limits

(4.1)
$$\lim_{N \to +\infty} f(N\alpha_j)/N = \lambda_j \qquad (j = 1, \dots, m)$$

exist. To see this let us choose integers q_{ν} so that $|\sum q_{\nu} \alpha_{\nu}| < \delta$ with $q_j > 0$, and set $u_{\nu} = \max (q_{\nu}, 0), v_{\nu} = \max (-q_{\nu}, 0)$. Defining $x = \sum u_{\nu} \alpha_{\nu}, y = \sum v_{\nu} \alpha_{\nu}$, we have $|x - y| = |\sum q_{\nu} \alpha_{\nu}| < \delta$. To these points x and y we now apply the inequality (3.2), where J consists of the single subscript j, I denoting the set of $\nu \neq j$, and obtain

(4.2)
$$\left\|\sum_{i\neq j} \left(f(u_i\,\alpha_i) - f(v_i\,\alpha_i)\right) + \frac{1}{M}f((w_j + Mq_j)\alpha_j) - \frac{1}{M}f(w_j\,\alpha_j)\right\| < \varepsilon.$$

Let now N be an arbitrary natural number. Dividing N by q_i let $N = w_j + q_j M$, where $0 \leq w_j < q_j$. The numbers M and w_j so determined (as functions of N) we select for M and w_j appearing in (4.2). If $N \to \infty$ then also $M \to \infty$ while w_j remains bounded. Thus in (4.2) the term $(1/M)f(w_j \alpha_j) \to 0$. Let E denote the sum appearing in (4.2). If λ denotes one of the limits of the sequence $\Sigma_j = \{f(N\alpha_j)/N\}$ and if we observe that $N/M \to q_j$ we see that on letting $N \to \infty$ through appropriate values the inequality (4.2) becomes

$$\|E+q_j\lambda\|\leq \varepsilon.$$

Thus if λ' and λ'' are any two of the limits of the sequence Σ_j , then

$$\| q_j \lambda' - q_j \lambda'' \| \leq 2\varepsilon$$

hence $\|\lambda' - \lambda''\| \leq 2\varepsilon q_j^{-1} \leq 2\varepsilon$. Since ε is arbitrary we conclude that $\lambda' = \lambda''$ and (4.1) is established.

5. The linear component $\lambda(x)$. We shall now use the relations (4.1) to isolate the linear component of a solution f(x) of (1.1). We define $\lambda(x)$ as a linear mapping of \mathbb{R}^n into B as follows:

(5.1) If
$$x = \sum_{i=1}^{m} x_i \alpha_i(x_i \text{ real})$$
 then $\lambda(x) = \sum x_i \lambda_i$.

The linearity of $\lambda(x)$ is apparent from this definition, but its being a *function* from R^n into B is still in doubt. To establish this we have to show that a

relation

(5.2)
$$\sum_{i=1}^{m} x_i \alpha_i = 0 \quad (x_i \text{ real}, x_i \neq 0 \text{ for some } l)$$
 implies the relation

(5.3) $\sum_{1}^{m} x_i \lambda_i = 0.$

This may be shown as follows: In the space \mathbb{R}^m of the *m*-tuples (x_1, \dots, x_m) the vector relation (5.2) defines an (m - n)-dimensional subspace V_{m-n} . As the α_i are rationally independent, we conclude that V_{m-n} contains none of the points of the lattice L of points of \mathbb{R}^m having integral coordinates with the exception of the origin. However, the sequence of points

$$\{(tx_1, tx_2, \cdots, tx_m)\} \qquad (t = 1, 2, \cdots)$$

comes arbitrarily close to such lattice points. Indeed, by a theorem of Dirichlet (see [3, page 170]) we know that for each natural number ν we can find integers $t^{(\nu)}, k_1^{(\nu)}, \dots, k_m^{(\nu)}$ ($t^{(\nu)} > 0$) such that

(5.4)
$$|t^{(\nu)}x_i - k_i^{(\nu)}| < 1/\nu$$
 $(i = 1, \dots, m);$

in fact $k_i^{(\nu)} = 0$ for all ν if $x_i = 0$. But then, in view of (5.2) and (5.4)

$$\left|\sum_{i} k_{i}^{(\nu)} \alpha_{i}\right| = \left|\sum_{i} k_{i}^{(\nu)} \alpha_{i} - \sum_{i} t^{(\nu)} x_{i} \alpha_{i}\right|$$
$$= \left|\sum_{i} (k_{i}^{(\nu)} - t^{(\nu)} x_{i}) \alpha_{i}\right| < (1/\nu) \sum_{i} |\alpha_{i}|$$

and hence

(5.5)
$$\lim_{\nu \to \infty} \left| \sum_{i} k_{i}^{(\nu)} \alpha_{i} \right| = 0$$

On the other hand (5.4) implies the following: If $x_l \neq 0$ then

(5.6) $\lim_{\nu \to \infty} k_i^{(\nu)} / k_l^{(\nu)} = x_i / x_l \,.$

Let $U = \{i \mid x_i > 0\}$, $V = \{i \mid x_i < 0\}$, $W = \{i \mid x_i = 0\}$. Moreover, it is clear that sgn $k_i^{(\nu)} = \text{sgn } x_i \ (i = 1, \dots, m)$ provided that ν is sufficiently large. But then we can rewrite (5.5) as

$$\lim_{\nu \to \infty} \left| \sum_{i \in U} k_i^{(\nu)} \alpha_i - \sum_{i \in V} \left| k_i^{(\nu)} \left| \alpha_i \right| \right| = 0 \right|$$

and now the uniform continuity of f(x) and (1.1) imply that

$$\lim_{\nu\to\infty} \left\| \sum_{i\in U} f(k_i^{(\nu)}\alpha_i) - \sum_{i\in V} f(|k_i^{(\nu)}|\alpha_i) \right\| = 0.$$

Choosing a fixed $l \in U$ and dividing the last relation by $k_l^{(\nu)}$ we obtain a fortiori (because $\lim k_l^{(\nu)} = +\infty$ as $\nu \to \infty$)

$$\lim_{v\to\infty} \left\|\sum_{i\in U} \frac{k_i^{(v)}}{k_i^{(v)}} \frac{f(k_i^{(v)}\alpha_i)}{k_i^{(v)}} - \sum_{i\in V} \frac{|k_i^{(v)}|}{k_i^{(v)}} \frac{f(|k_i^{(v)}||\alpha_i)}{|k_i^{(v)}|}\right\| = 0.$$

If we now perform the passage to the limit within the norm bars we obtain by (4.1) and (5.6) the relation

$$\left\|\sum_{U}\frac{x_{i}}{x_{l}}\lambda_{i}+\sum_{V}\frac{x_{i}}{x_{l}}\lambda_{i}\right\|=0$$

which is equivalent to the relation (5.3) to be established.

6. The periodic components. The linear function $\lambda(x)$ constructed in §5 is now used as follows: We define a new function $\omega(x)$ by

(6.1)
$$\omega(x) = f(x) - \lambda(x).$$

Evidently also $\omega(x)$ is a solution of (1.1) UC on S. Moreover

(6.2)
$$\lim_{N \to \infty} \omega(N\alpha_i)/N = 0 \qquad (i = 1, \dots, m)$$

because of (4.1), (6.1) and the relation $\lambda(N\alpha_i)/N = \lambda_i$ implied by (5.1). For each $i = 1, \dots, m$ we now define a function $\phi_i(x)$ throughout the set S_i , described by (1.3), by the following requirements:

- 1. $\phi_i(0) = 0$,
- 2. $\phi_i(x + \alpha_j) = \phi_i(x) \ (j \neq i; x \in S_i),$
- 3. $\phi_i(u_i \alpha_i) = \omega(u_i \alpha_i) \ (u_i \ge 0).$

Evidently $x = \sum u_i \alpha_i$ implies

$$f(x) = \lambda(x) + \omega(x) = \lambda(x) + \sum_{i} \omega(u_i \alpha_i)$$

= $\lambda(x) + \sum_{i} \phi_i(u_i \alpha_i) = \lambda(x) + \sum_{i} \phi_i(x)$

and the desired representation (1.4) is seen to hold.

We are still to show that $\phi_i(x)$ is UC on S_i . Given ε , let δ_1 be such that

 $x \in S, y \in S$ and $|x - y| < \delta_1$ imply $|| \omega(x) - \omega(y) || < \varepsilon$. Let

$$\xi = u_i \alpha_i + \sum_{j \neq i} k_j \alpha_j, \qquad \eta = v_i \alpha_i + \sum_{j \neq i} l_j \alpha_j$$

be two points of S_i such that $|\xi - \eta| < \delta_1$ and let us show that

(6.3) $|\phi_i(\xi) - \phi_i(\eta)| \leq \varepsilon.$

For this purpose we write $k_j - l_j = q_j$ and select non-negative u_j and v_j such that $q_j = u_j - v_j$ $(j \neq i)$. Finally let

(6.4)
$$x = u_i \alpha_i + \sum_{j \neq i} u_j \alpha_j, \quad y = v_i \alpha_i + \sum_{j \neq i} v_j \alpha_j$$

observing that x and y are elements of S. Moreover

$$\begin{aligned} x - y &= u_i \, \alpha_i - v_i \, \alpha_i + \sum_{j \neq i} q_j \, \alpha_j \\ &= u_i \, \alpha_i - v_i \, \alpha_i + \sum_{j \neq i} (k_j - l_j) \alpha_j = \xi - \eta \end{aligned}$$

so that $|x - y| = |\xi - \eta| < \delta_1$. We may therefore apply the fundamental inequality of §3 to the solution $\omega(x)$, rather than f(x), and the points (6.4) with $I = \{i\}, J = \{j \mid j \neq i\}, q_j = u_j - v_j$, and $w_j = 0$, obtaining

$$\left\| \omega(u_i \alpha_i) - \omega(v_i \alpha_i) + \frac{1}{M} \sum_{j \neq i} \eta_j \, \omega(M \mid q_j \mid \alpha_j) \right\| < \varepsilon.$$

Letting $M \to \infty$ we know by (6.2) that the terms of the sum converge to zero, so that we obtain in the limit

$$\| \omega(u_i \alpha_i) - \omega(v_i \alpha_i) \| \leq \varepsilon.$$

On the other hand, from the periodicities of ϕ_i and its defining property 3, we know that

$$\phi_i(\xi) = \phi_i(u_i \alpha_i) = \omega(u_i \alpha_i), \qquad \phi_i(\eta) = \phi_i(v_i \alpha_i) = \omega(v_i \alpha_i)$$

so that our last inequality furnishes the desired inequality (6.3). This completes a proof of Theorem 1.

III. Concluding remarks

7. Examples and applications. We discuss some applications of Theorems 2 and 3 for the simplest case when n = 1 and $B = R^1$.

a. Let n = 1, m = n + 2 = 3, hence α_1 , α_2 , α_3 real, all $\neq 0$ and all three rationally independent. By Theorem 2 we conclude that the UC solutions of

(7.1) $f(u_1 \alpha_1 + u_2 \alpha_2 + u_3 \alpha_3) = f(u_1 \alpha_1) + f(u_2 \alpha_2) + f(u_3 \alpha_3)$ $(u_r \ge 0)$, are of the form f(x) = Cx (C real constant).

All conditions are met if $\alpha_i = \log p_i$, where p_1 , p_2 , p_3 are three distinct rational primes. Setting $f(\log y) = F(y)$, we see that F(y) is defined on the set of integers

(7.2)
$$A = \{ p_1^{u_1} p_2^{u_2} p_3^{u_3} \mid u_{\nu} \ge 0 \}$$

on which it is *additive* in the sense that

(7.3)
$$F(p_1^{u_1}p_2^{u_2}p_3^{u_3}) = F(p_1^{u_1}) + F(p_2^{u_2}) + F(p_3^{u_3}).$$

We now observe that the uniform continuity of f(x) on the set

$$S = \{x = u_1 \alpha_1 + u_2 \alpha_2 + u_3 \alpha_3 \mid u_{\nu} \ge 0\}$$

amounts to the condition that

$$x_{\nu} \in S, y_{\nu} \in S, x_{\nu} \neq y_{\nu} \text{ and } x_{\nu} - y_{\nu} \rightarrow 0 \text{ imply } f(x_{\nu}) - f(y_{\nu}) \rightarrow 0.$$

Thus by the change of variable $x = \log y$, Theorem 1 furnishes the

COROLLARY 1. If the real-valued F(y) is additive on the set (7.2) in the sense that (7.3) holds and if

 $r_{\nu} \epsilon A, s_{\nu} \epsilon A, r_{\nu} \neq s_{\nu} \text{ and } r_{\nu}/s_{\nu} \rightarrow 1 \text{ imply } F(r_{\nu}) - F(s_{\nu}) \rightarrow 0$ then $F(y) = C \log y.$

This corollary (and the paper [4]) suggested the present investigation. The Corollary 1 in turn owes its origin to the following theorem of Erdös:

Let F(y) $(y = 1, 2, \dots)$ be an arithmetic function which is additive in the sense that F(rs) = F(r) + F(s) whenever (r, s) = 1. If we also assume that $F(r+1) - F(r) \rightarrow 0$ as $r \rightarrow \infty$, then $F(y) = C \log y$ (see [2, Theorem XIII on p. 18] and [5], [1] for more recent and elementary proofs). Corollary 1 and Erdös' theorem now suggest the following open problem: Let $\alpha_i = \log p_i$ (i = 1, 2, 3), where p_i are three distinct primes. Let

$$S = \{ \log \ (p_1^{u_1} p_2^{u_2} p_3^{u_3}) \} = \{ \xi_1 \,, \, \xi_2 \,, \, \xi_3 \,, \, \cdots \}$$

be our familiar set with its elements arranged in increasing order $(\xi_1 < \xi_2 < \cdots)$. If f(x) is a solution of (7.1) such that

$$f(\xi_{\nu+1}) - f(\xi_{\nu}) \to 0 \quad as \quad \nu \to \infty,$$

is it still true that f(x) = Cx on S?

An affirmative answer to this problem would certainly contain Corollary 1 (since $\xi_{\nu+1} - \xi_{\nu} \rightarrow 0$), but would say much more.

b. We return to the assumptions of Corollary 1 with the difference that we now have only *two* primes, hence the relation

(7.4)
$$F(p_1^{u_1}p_2^{u_2}) = F(p_1^{u_1}) + F(p_2^{u_2})$$

with solutions F(y) defined on the set $A' = \{p_1^{u_1} p_2^{u_2}\}$. Here we may apply Theorem 3 with n = 1, m = n + 1 = 2 and obtain the following curious

COROLLARY 2. The most general solution F(y) of the functional equation (7.4) having the property that

(7.5) $r_{\nu} \epsilon A', s_{\nu} \epsilon A', r_{\nu} \neq s_{\nu} \text{ and } r_{\nu}/s_{\nu} \rightarrow 1 \text{ imply } F(r_{\nu}) - F(s_{\nu}) \rightarrow 0$

is given by the formula

(7.6)
$$F(y) = C \log y + \phi_1(\log y) + \phi_2(\log y),$$

where $\phi_1(x)$ and $\phi_2(x)$ are everywhere continuous functions having the periods $\log p_2$ and $\log p_1$, respectively, while $\phi_1(0) = \phi_2(0) = 0$. The representation (7.6) is unique.

References

- 1. A. S. BESICOVITCH, On additive functions of a positive integer, Studies in Mathematical Analysis and Related Topics, Stanford University Press, 1962, pp. 38-41.
- 2. P. ERDÖS, On the distribution function of additive functions, Ann. of Math. (2), vol. 47 (1946), pp. 1-20.
- 3. G. H. HARDY AND E. M. WRIGHT, An introduction to the theory of numbers, Oxford, 1954.
- CH. PISOT AND I. J. SCHOENBERG, Arithmetic problems concerning Cauchy's functional equation, Illinois J. Math., vol. 8 (1964), pp. 40-56.
- A. RÉNYI, On a theorem of P. Erdös and its application in information theory, Mathematica (Cluj), Vol. 1 (24) (1959), pp. 341-344.

THE UNIVERSITY OF PARIS PARIS, FRANCE THE UNIVERSITY OF PENNSYLVANIA

Philadelphia, Pennsylvania

136