THE MAXIMAL FINITE GROUPS OF 4×4 INTEGRAL MATRICES

BY
E. C. Dade

There are nine of them, to within equivalence. The list will be found in Theorem 4.27 below. The rest of the paper is a proof of that theorem.

This is not exactly the list of integral groups which people really need. However, the techniques used here can probably be extended to handle more interesting problems.

A person interested in space groups needs a list of all finite groups of integral matrices, not just the maximal ones. It might be possible to satisfy him by listing all subgroups of the nine groups below, and then checking for equivalences (which would be the hard part). But the number of groups to be handled should be in the hundreds. This seems to be a job for computers.

A person interested in quadratic forms needs a list of all possible groups of automorphs of positive definite forms. This is a more reasonable request. The methods of this paper could easily be modified to obtain such a list. It would only be necessary to reconsider the eight cases thrown out by Lemma 3.10, and to avoid condition (1.4b) by using successive minima.

Could our techniques be extended to degrees larger than 4? Possibly they can. The inequalities to be satisfied by Hermite-reduced forms have been worked out in detail for degrees 5 and 6 (see [1] and [2]). From these it should be possible to obtain axiomatic descriptions of the sets $S(\phi, L)$ similar to those in Theorem 1.14. Then these subsets might be classified. Of course, no simple description by means of graphs (as used here) would suffice. But this is merely a notational convenience. Our subsets could have been described directly in terms of basis elements, as in (2.16). The computational problems would increase greatly with the degree, but the method might be worth considering.

The purpose of Sections 1, 2 and 3 is to obtain a short list of groups which contains every maximal group at least once. Instead of trying to list groups directly, we classify those sets S of non-zero integral points which have minimum "distance" from the origin with respect to some positive definite quadratic form. In Section 1, we show that the sets S are adequate for a description of our groups (Lemma 1.2) and find an axiomatic description for almost all of them (Theorem 1.14). Almost all the sets satisfying these axioms can be described by means of certain graphs (Theorem 2.21). Section 2 explains how this is done. Finally, we list the relevant graphs in Section 3 (see Figure 3.4) and remove some which obviously do not lead to maximal groups (Lemma 3.10).

Received October 4, 1963.

The result of the first three sections is a list of eight graphs and two "exceptional" sets S. In Section 4, we examine in turn each of these ten cases, showing that nine of them lead to inequivalent maximal groups, while the tenth doesn't.

Throughout the paper V is a fixed real vector space of dimension 4 and L is a fixed lattice (of integral points) in V. All the groups mentioned in Sections 1,2 , and 3 are finite groups of linear transformations of V carrying L into itself (integral transformations). In Section 4 it is necessary to relax this definition somewhat to include finite groups of linear transformations of arbitrary real vector spaces. It should be clear from the context what vector spaces are operated on by what groups.

I wish to thank Professor H. Zassenhaus both for suggesting this problem and for many enlightening remarks in the course of the work.

1. The use of quadratic forms

The orbit of any element of L under the action of one of our groups G must be finite. By taking, e.g., the union of the orbits of some basis elements of L, we see that G must leave invariant at least one finite subset S of L which spans V. On the other hand, if S is any such subset, then the group $G(S, L)$ of all linear transformations of V which map both S and L onto themselves is finite. (The permutation representation of $G(S, L)$ on S is faithful since S spans V.) We conclude immediately that
(1.1) the group G is maximal if and only if $G=G(S, L)$ for all finite subsets S of L which span V and are invariant under G.

Our problem is to pick out from the infinite family of subsets of L satisfying the conditions of (1.1) some distinguished representatives which we can classify. To do so, we recall that G must leave invariant a positive definite (real) quadratic form ϕ on V. There is a certain positive minimum $r(\phi, L)$ among the (squared) "lengths" $\phi(l)$, where $l \in L, l \neq 0$. And only a finite set $S(\phi, L)$ of elements $l \in L$ attain this minimum. The set $S(\phi, L)$ is certainly invariant under G. Our first important observation is that ϕ can be chosen so that $S(\phi, L)$ spans V.

Lemma 1.2. For any group G, there is at least one positive definite quadratic form ϕ on V which is invariant under G and for which $S(\phi, L)$ spans V.

Proof. If the lemma is false for some group G, choose a positive definite quadratic form ϕ on V such that the subspace V_{1} spanned by $S(\phi, L)$ has the largest possible dimension. Then V is the direct sum $V_{1}+V_{2}$ of V_{1} and the subspace $V_{2} \neq 0$ perpendicular to V_{1} under ϕ. Of course, V_{2} is also invariant under G.

We denote by π_{i} the projection of V onto V_{i}, for $i=1,2$. Each of the quadratic forms $\phi_{t}, t>0$, defined by

$$
\phi_{t}(v)=\phi\left(\pi_{1}(v)\right)+t \phi\left(\pi_{2}(v)\right) \text { for } v \in V
$$

is positive definite and invariant under G. We shall show that, for a suitable $t>0, S\left(\phi_{t}, L\right)$ spans a subspace properly containing V_{1}.

Let $r=r(\phi, L)$. Then, for any $t>0$, the hyperellipsoid $H_{t}: \phi_{t}(v) \leq r$, must contain $S(\phi, L)$. If $l \neq 0$ is any other point of $H_{t} \cap L$, then $l \notin V_{1}$, so that $r \geq \phi_{t}(l)>\phi\left(\pi_{1}(l)\right)$. Conversely, if $l \epsilon L-\{0\}$ and $\phi\left(\pi_{1}(l)\right)<r$, then $l \notin V_{1}$, and $l \epsilon H_{t}$ if and only if $t \leqq\left[r-\phi\left(\pi_{1}(l)\right)\right] / \phi\left(\pi_{2}(l)\right)$.

If $V_{2} \cap L \neq 0$, then any $l \epsilon V_{2} \cap L-\{0\}$ satisfies $\phi\left(\pi_{1}(l)\right)=0<r$. On the other hand, if $V_{2} \cap L=0$, then π_{1} is an isomorphism of L into V_{1}. So $\pi_{1}(L)$ is not a discrete subgroup of V_{1}. Therefore some element $l \epsilon L$ must satisfy $0<\phi\left(\pi_{1}(l)\right)<r$. In either case we conclude from the paragraph above that
(1.3) for sufficiently small $t>0, H_{t}$ contains some points of L which are not in V_{1}.

Let $t>0$ satisfy (1.3), and let $T \geq t$ be the maximum of the real numbers $\left[r-\phi\left(\pi_{1}(l)\right)\right] / \phi\left(\pi_{2}(l)\right)$, where l runs over the finite set $H_{t} \cap L-V_{1}$. Since $\phi_{t}(v)$ increases monotonically with t (for fixed $v \in V$), the set $H_{T} \cap L-\{0\}$ consists precisely of $S(\phi, L)$ and of those $l \epsilon H_{t} \cap L-V_{1}$ for which $\left[r-\phi\left(\pi_{1}(l)\right)\right] / \phi\left(\pi_{2}(l)\right)=T$. Furthermore, each of the latter elements l satisfies $\phi_{T}(l)=r$. It follows that $r\left(\phi_{T}, L\right)=r$, and that $S\left(\phi_{T}, L\right)=$ $H_{T} \cap L-\{0\}$ spans a space properly containing V_{1}. This, of course, contradicts the maximality of V_{1}, and proves the lemma.

We now restrict our attention to those finite subsets S of L satisfying
(1.4a) $S=S(\phi, L)$, for some positive definite quadratic form ϕ on V, (1.4b) $\quad S$ spans V.

By the preceding discussion, we know that every maximal group must be of the form $G(S, L)$ for some S satisfying (1.4). We shall classify these sets S, and, hence, the maximal groups G.

To find the combinatorial properties of the above sets which enable us to classify them, we turn to a paper by Minkowski [3]. A basis l_{1}, \cdots, l_{4} of L is reduced (with respect to ϕ) if the vector ($\phi\left(l_{1}\right), \cdots, \phi\left(l_{4}\right)$) is minimal in the lexicographical ordering of all such vectors attached to all possible bases of L. In our case an alternative definition is given by

Lemma 1.5. If $S(\phi, L)$ satisfies (1.4), then a basis l_{1}, \cdots, l_{4} of L is reduced if and only if each l_{i} lies in $S(\phi, L)$.

Proof. If $l_{1}, \cdots, l_{4} \in S(\phi, L)$, then

$$
\left(\phi\left(l_{1}\right), \cdots, \phi\left(l_{4}\right)\right)=(r(\phi, L), \cdots, r(\phi, L))
$$

is obviously minimal. So l_{1}, \cdots, l_{4} is reduced.

Conversely, let l_{1}, \cdots, l_{4} be a reduced basis of L. Let $\phi\left(l_{j}\right)>r(\phi, L)$ for some $j=1, \cdots, 4$. Since $S(\phi, L)$ spans L, some element

$$
l=m_{1} l_{1}+\cdots+m_{4} l_{4}
$$

of $S(\phi, L)$ must satisfy $m_{j}>0$. By inequality (m) of [3], this implies that

$$
r(\phi, L)=\phi(l) \geq \phi\left(l_{j}\right)>r(\phi, L)
$$

a contradiction. So $l_{1}, \cdots, l_{4} \in S(\phi, L)$.
Corollary 1.6. If S satisfies (1.4), it must contain at least one basis of L.
The following lemma is our main application of Minkowski's theory:
Lemma 1.7. Let ϕ satisfy (1.4) with $r(\phi, L)=1$. Let l_{1}, \cdots, l_{4} be a reduced basis for L. If any element $l=m_{1} l_{1}+\cdots+m_{4} l_{4}$ of $S(\phi, L)$ satisfies $\left|m_{i}\right|>1$, for some $i=1, \cdots, 4$, then, with respect to a suitable choice of l_{1}, \cdots, l_{4}, the form ϕ is given by

$$
\begin{equation*}
\phi\left(X_{1} l_{1}+\cdots+X_{4} l_{4}\right)=X_{1}^{2}+X_{2}^{2}+X_{3}^{2}+X_{4}^{2}-\left(X_{1}+X_{2}+X_{3}\right) X_{4} \tag{1.8}
\end{equation*}
$$

Proof. Assume the element $l \in S(\phi, L)$ is chosen to minimize $\sum_{i}\left|m_{i}\right|$ among all those for which some $\left|m_{j}\right|$ is >1. By changing the signs of the l_{i} and permuting them, we may assume that

$$
\begin{equation*}
0 \leq m_{1} \leq m_{2} \leq m_{3} \leq m_{4} \quad \text { and } \quad m_{4} \geq 2 \tag{1.9}
\end{equation*}
$$

Let $\alpha_{i j}$ be the real numbers such that $\alpha_{i j}=\alpha_{j i}$, for $i, j=1, \cdots, 4$, and $\phi\left(X_{1} l_{1}+\cdots+X_{4} l_{4}\right)=\sum_{i, j=1}^{4} \alpha_{i j} X_{i} X_{j} . \quad$ By Lemma 1.5, $\alpha_{11}=\cdots=$ $\alpha_{44}=1$.

Define $k=1, \cdots, 4$ by $m_{1}=\cdots=m_{k-1}=0<m_{k}$. We consider separately the possible values of k.
$k=4$. In this case $l=m_{4} l_{4} . \quad$ So $1=\phi(l)=m_{4}^{2} \alpha_{44}=m_{4}^{2}$, contradicting (1.9).

In all the other cases notice that

$$
\begin{aligned}
1=\phi(l)=\phi\left(l-m_{k}\left(l_{k+1}\right.\right. & \left.\left.+\cdots+l_{4}\right)\right)+m_{k}^{2}\left[\phi\left(l_{k}+\cdots+l_{4}\right)-1\right] \\
& +2 m_{k} \sum_{j=k+1}^{4}\left[\left(m_{j}-m_{k}\right)\left(\alpha_{j, k+1}+\cdots+\alpha_{j, 4}\right)\right] .
\end{aligned}
$$

As noted in [3], each term in brackets [..] is non-negative. Since $l-m_{k}\left(l_{k+1}+\cdots+l_{4}\right) \neq 0$, all these terms must be zero, and

$$
l-m_{k}\left(l_{k+1}+\cdots+l_{4}\right) \in S(\phi, L)
$$

Hence

$$
\begin{equation*}
\phi\left(l_{k}+\cdots+l_{4}\right)=1 \tag{1.10a}
\end{equation*}
$$

(1.10b) $\quad\left(m_{j}-m_{k}\right)\left(\alpha_{j, k+1}+\cdots+\alpha_{j, 4}\right)=0$ for $j=k+1, \cdots, 4$,
(1.10c) $\quad m_{k} l_{k}+\left(m_{k+1}-m_{k}\right) l_{k+1}+\cdots+\left(m_{4}-m_{k}\right) l_{4} \in S(\phi, L)$.

Since $k<4, m_{k}+\left(m_{k+1}-m_{k}\right)+\cdots+\left(m_{4}-m_{k}\right)<m_{k}+\cdots+m_{4}$.

By the minimality of the latter sum, we conclude that $m_{k}=1$ and $m_{j}-m_{k} \leq 1$, for $j=k+1, \cdots, 4$. Hence $m_{4}=2$.

We return to the separate cases of k.
$k=3$. By (1.10b) with $j=4, \alpha_{44}=0$, a contradiction.
$k=2$. By (1.10b) with $j=4, \alpha_{34}+\alpha_{44}=0$. The inequality (α) of [3] implies $\left|\alpha_{34}\right| \leq \frac{1}{2}$. But $\alpha_{44}=1$. This is a contradiction.
$k=1$. By (1.10b) with $j=4, \alpha_{24}+\alpha_{34}+\alpha_{44}=0$. Using inequality (α) of [3], we conclude that

$$
\begin{equation*}
\alpha_{24}=\alpha_{34}=-\frac{1}{2} \tag{1.11}
\end{equation*}
$$

Since $1 \leq m_{3} \leq 2$, there are only two possible values for m_{3} :
$m_{3}=2$. Interchange l_{3} and l_{4}. The equalities corresponding to (1.11) are $\alpha_{23}=\alpha_{43}=-\frac{1}{2}$. But this and (1.11) imply

$$
\phi\left(l_{2}+l_{3}+l_{4}\right)=3+2\left(\alpha_{23}+\alpha_{24}+\alpha_{34}\right)=0
$$

a contradiction.
$m_{3}=1$. Then, by (1.9), $m_{1}=m_{2}=m_{3}=1, m_{4}=2$. By permuting l_{1}, l_{2}, l_{3}, we conclude from (1.11) that $\alpha_{14}=\alpha_{24}=\alpha_{34}=-\frac{1}{2}$. Equation (1.10a) is now

$$
4+2\left(\alpha_{12}+\alpha_{13}+\alpha_{14}+\alpha_{23}+\alpha_{24}+\alpha_{34}\right)=1
$$

or

$$
\begin{equation*}
\alpha_{12}+\alpha_{13}+\alpha_{23}=0 \tag{1.12}
\end{equation*}
$$

Since $l_{1}+l_{2}+l_{4} \neq 0$, we must have

$$
1=r(\phi, L) \leq \phi\left(l_{1}+l_{2}+l_{4}\right)=3+2\left(\alpha_{12}+\alpha_{14}+\alpha_{24}\right)=1+2 \alpha_{12} .
$$

Hence

$$
\alpha_{12} \geq 0
$$

Similarly

$$
\alpha_{13}, \alpha_{23} \geq 0
$$

This, and (1.12), imply that

$$
\alpha_{12}=\alpha_{13}=\alpha_{23}=0
$$

Therefore ϕ is given by (1.8).
At last we reach the desired combinatorial property of the sets in (1.4):
Proposition 1.13. If the form ϕ of (1.4) is not equivalent to a multiple of the form (1.8), then any four independent elements of $S(\phi, L)$ form a basis for L.

Proof. Let l_{1}, \cdots, l_{4} be a reduced basis of L, and let u_{1}, \cdots, u_{4} be four independent elements of $S(\phi, L)$. Arrange the l 's and u 's so that, for each $i=1, \cdots, 4$, the elements $l_{1}, \cdots, l_{i-1}, u_{i}, \cdots, u_{4}$ are independent.

If $l_{1}, \cdots, l_{i-1}, u_{i}, \cdots, u_{4}$ is a basis for L, it is reduced by Lemma 1.5. Furthermore $u_{i-1}=\cdots+m_{i-1} l_{i-1}+m_{i} u_{i}+\cdots$, where $\left|m_{i-1}\right| \leq 1$, by the preceding lemma. If $m_{i-1}=0$, then $l_{1}, \cdots, l_{i-2}, u_{i-1}, u_{i}, \cdots, u_{4}$ are
dependent, a contradiction. Hence $m_{i-1}= \pm 1$, and $l_{1}, \cdots, l_{i-2}, u_{i-1}$, \cdots, u_{4} form a basis of L. By induction, u_{1}, \cdots, u_{4} are a basis of L.

We sum up the results of this section in
Theorem 1.14. Any maximal group is of the form $G(S, L)$, where S satisfies
(a) $S=S(\phi, L)$, where the form ϕ is given by (1.8) with respect to some basis of L,
or (b)

$$
\left\{\begin{array}{l}
S=-S \tag{1.15}\\
0 \notin S, \\
\text { any four independent elements of } S \text { form a basis for } L, \\
\text { and } S \text { spans } V .
\end{array}\right.
$$

2. Graphical subsets

We wish to classify the subsets S of L satisfying (1.15). We shall do this by constructing one such subset B and proving that every S is equivalent either to a subset of B or to one "exceptional" set.

In order to define B, we start from a lattice K of rank 5 with a fixed basis $k_{0}, k_{1}, k_{2}, k_{3}, k_{4}$. For L we choose the sublattice of rank 4 consisting of all $m_{0} k_{0}+\cdots+m_{4} k_{4}$ (with $m_{i} \in Z$) for which $m_{0}+\cdots+m_{4}=0$. Then B will be the subset of L consisting of the 20 elements $k_{i}-k_{j}$, where $i, j=0$, $\cdots, 4, i \neq j$.
It is clear that $-B=B, 0 \notin B$ and B spans V. In fact, B generates L. However, it is not immediately obvious that any four independent elements of B form a basis for L. In order to prove this, and to aid in the classification of subsets of B, we introduce a 2 -to-1 map β of B onto the complete graph Γ_{5} on five points P_{0}, \cdots, P_{4}. This is defined by $\beta: k_{i}-k_{j} \rightarrow \bar{P}_{i} P_{j}$. Note that β defines a one-to-one correspondence between all subsets S of B satisfying $-S=S$ and all subgraphs of Γ_{5}.

The following proposition expresses the basic property of the set B :
Proposition 2.1. Let b_{1}, \cdots, b_{4} be elements of B. The following statements are equivalent:
(a) b_{1}, \cdots, b_{4} are independent.
(b) $\Gamma=\left\{\beta\left(b_{1}\right), \cdots, \beta\left(b_{4}\right)\right\}$ is a maximal subtree of Γ_{5}.
(c) b_{1}, \cdots, b_{4} form a basis for L.

Proof. Suppose (a) holds. Then $b_{i} \neq \pm b_{j}$, for $i \neq j$. So Γ consists of four distinct line segments. Either Γ is a maximal subtree of Γ_{5} or it contains a closed loop $\overline{P_{i_{1}} P_{i_{2}}}, \overline{P_{i_{2}} P_{i_{3}}}, \cdots, \overline{P_{i_{n}} P_{i_{1}}}$, where $i_{1}, i_{2}, \cdots, i_{n}$ are distinct, and $n \geqq 3$. In the latter case, we may assume that

$$
\beta\left(b_{1}\right)=\overline{P_{i_{1}} P_{i_{2}}}, \quad \beta\left(b_{2}\right)=\overline{P_{i_{2}} P_{i_{3}}}, \quad \cdots, \quad \beta\left(b_{n}\right)=\overline{P_{i_{n}} P_{i_{1}}}
$$

From the definition of β, we see that, for some choice of signs,

$$
\pm b_{1}=k_{i_{1}}-k_{i_{2}}, \quad \pm b_{2}=k_{i_{2}}-k_{i_{3}}, \quad \cdots, \quad \pm b_{n}=k_{i_{n}}-k_{i_{1}}
$$

For the same choice of signs, $\left(\pm b_{1}\right)+\left(\pm b_{2}\right)+\cdots+\left(\pm b_{n}\right)=0$. This contradicts the independence of b_{1}, \cdots, b_{4}. So (a) implies (b).

Assume that (b) holds. By choosing P_{4} to be one "end" of the graph Γ and using induction, we may assume that the indices are so arranged that

$$
\beta\left(b_{1}\right)=\overline{P_{i_{1}} P_{1}}, \quad \cdots, \quad \beta\left(b_{4}\right)=\overline{P_{i_{4}} P_{4}}
$$

where $i_{1}<1, \cdots, i_{4}<4$. Replace b_{j} by $-b_{j}$, if necessary, to reach

$$
b_{1}=k_{1}-k_{i_{1}}, \quad \cdots, \quad b_{4}=k_{4}-k_{i_{4}}
$$

This is clearly a basis of L. So (b) implies (c).
Obviously (c) implies (a).
Corollary 2.2. A subset S of B satisfies (1.15) if and only if $S=\beta^{-1}(\Gamma)$, where Γ is a subgraph of Γ_{5} containing at least one maximal subtree of Γ_{5}. In particular, B satisfies (1.15).

Because of the close connection between subsets of B and subgraphs of Γ_{5}, we use the adjective graphical to denote those subsets S of L satisfying (1.15) which are equivalent to subsets of B.

For the rest of this section, S will be a fixed subset of L satisfying (1.15), and s_{1}, \cdots, s_{4} will be a basis for L lying in S.

The property that any four independent elements of S form a basis of L restricts the possible forms of elements of S. For example

$$
\begin{equation*}
\text { if } s=m_{1} s_{1}+\cdots+m_{4} s_{4} \in S\left(\text { with } m_{i} \in Z\right) \text { then }\left|m_{i}\right| \leq 1, \text { for all } i . \tag{2.3}
\end{equation*}
$$

Indeed, if $\left|m_{1}\right|>1$, then s, s_{2}, s_{3}, s_{4} would be four independent elements of S but would not form a basis of L, since the determinant of the transformation $s_{1}, \cdots, s_{4} \rightarrow s, s_{2}, s_{3}, s_{4}$ is $m_{1} \neq \pm 1$.

The following consequence of the same property is more difficult to state but very powerful. Divide the basis s_{1}, \cdots, s_{4} into two disjoint subsets $\left\{s_{i_{1}}, \cdots, s_{i_{n}}\right\}$ and $\left\{s_{j_{1}}, \cdots, s_{j_{m}}\right\}$, where $2 \leq n \leq 4$, and $m=4-n$. Let l_{1}, \cdots, l_{n} be any linear combinations of $s_{j_{1}}, \cdots, s_{j_{m}}$. Then we have

Proposition 2.4. If S contains

$$
s_{1}^{\prime}=s_{i_{1}}-s_{i_{2}}+l_{1}, \cdots, s_{n-1}^{\prime}=s_{i_{n-1}}-s_{i_{n}}+l_{n-1}
$$

then it cannot contain $s_{n}^{\prime}=s_{i_{n}}+s_{i_{1}}+l_{n}$.
Proof. Assume that $s_{n}^{\prime} \in S$. Consider the matrix A of the linear transformation sending the basis $s_{i_{1}}, \cdots, s_{i_{n}}, s_{j_{1}}, \cdots, s_{j_{m}}$ into $s_{1}^{\prime}, \cdots, s_{n}^{\prime}, s_{j_{1}}, \cdots, s_{j_{m}}$. It has the form

$$
A=\left[\begin{array}{rrrrr}
1-1 & & & \\
& \cdot & \cdot & & L \\
& & & 1-1 & \\
1 & & & 1 & \\
& & & & I
\end{array}\right]
$$

where L is some integral matrix, I is the $m \times m$ identity matrix and the blank spaces are filled with zeroes. The determinant of this matrix is clearly 2. So $s_{1}^{\prime}, \cdots, s_{n}^{\prime}, s_{j_{1}}, \cdots, s_{j_{m}}$ are four independent elements of S which do not form a basis for L. This contradicts (1.15).

To apply Proposition 2.4, it is convenient to introduce the following equivalence relation on s_{1}, \cdots, s_{4} :
$s_{i} \sim s_{j}$ if $i=j$ or there are distinct indices $i=h_{1}, h_{2}, \cdots, h_{n}=j$ such that $s_{h_{1}}-s_{h_{2}}, \cdots, s_{h_{n-1}}-s_{h_{n}}$ all lie in S.

Clearly $s_{i} \sim s_{j}$ implies that S contains no elements of the form $s_{i}+s_{j}+l$, where l is a linear combination of those s_{k} for which $k \neq h_{1}, \cdots, h_{n}$.

To make our equivalence relation as strong as possible we use
Lemma 2.5. After replacing s_{i} by $-s_{i}$, for various i, we may assume that S contains no elements of the form $s_{j}+s_{h}$.

Proof. Assume that our basis s_{1}, \cdots, s_{4} is already chosen from among the 2^{4} bases of the form $\pm s_{1}, \cdots, \pm s_{4}$ to maximize the number N of elements in S of the form $s_{i}-s_{j}$.

Suppose that $s_{j}+s_{h} \in S$. By Proposition 2.4, $s_{j} \nsim s_{h}$. Define a new basis $s_{1}^{\prime}, \cdots, s_{4}^{\prime}$ by

$$
s_{i}^{\prime}=s_{i} \quad \text { if } \quad s_{i} \nsim s_{h}, \quad s_{i}^{\prime}=-s_{i} \quad \text { if } \quad s_{i} \sim s_{h}
$$

If $s_{i}-s_{k} \in S$, then $s_{i} \sim s_{k}$. So $s_{i}^{\prime}-s_{k}^{\prime}= \pm\left(s_{i}-s_{k}\right) \in S$. Furthermore S contains $s_{j}^{\prime}-s_{h}^{\prime}$, while $s_{j}-s_{h} \epsilon S$. So S has at least $N+1$ elements of the form $s_{i}^{\prime}-s_{k}^{\prime}$. This contradicts the maximality of N and proves the lemma.

From now on we assume that the replacement in Lemma 2.5 has already been carried out. In view of (2.3), this means that
(2.6) any element in S of the form $m_{i} s_{i}+m_{j} s_{j}$, where $i \neq j$ and $m_{i}, m \neq 0$, must be either $s_{i}-s_{j}$ or $s_{j}-s_{i}$.

We can embed L into K by $T: s_{i} \rightarrow k_{i}-k_{0}$, for $i=1, \cdots, 4$. Then $T: s_{i}-s_{j} \rightarrow k_{i}-k_{j} \in B$. Hence
(2.7) if S consists only of elements of the forms $\pm s_{i}$ and $\pm s_{j} \pm s_{k}$, then it is graphical.

Now we consider the relationship between an element

$$
\begin{equation*}
s=m_{i} s_{i}+m_{j} s_{j}+m_{k} s_{k}= \pm s_{i} \pm s_{j} \pm s_{k} \quad(i, j, k \text { distinct }) \tag{2.8}
\end{equation*}
$$

of S and the equivalence relation \sim. The basic fact is this immediate consequence of Proposition 2.4:
(2.9) If S contains elements $s_{h_{1}}-s_{h_{2}}, \cdots, s_{h_{n-1}}-s_{h_{n}}(n \geq 2)$ such that $h_{1}=i, h_{n}=j$ and $h_{l} \neq k$, for $l=1, \cdots, n$, then $m_{i}=-m_{j}$.

In particular
(2.10) if $s_{i} \sim s_{j} \nsim s_{k}$, then $m_{i}=-m_{j}$.

When $s_{i} \sim s_{j} \sim s_{k}$, things are more complicated. Let $s_{h_{1}}-s_{h_{2}}, \cdots$, $s_{h_{n-1}}-s_{h_{n}} \in S$ satisfy $h_{1}=i, h_{n}=k$ and h_{1}, \cdots, h_{n} are all distinct. If $j=h_{r}$, for some $r=2, \cdots, n-1$, then the chain $s_{h_{1}}-s_{h_{2}}, \cdots, s_{h_{r-1}}-s_{h_{r}}$ satisfies (2.9). So $m_{i}=-m_{j}$. Similarly $m_{j}=-m_{k}$. In this case we say that s_{j} splits s_{i} and s_{k}.

If, on the other hand, $j \neq h_{r}$ for $r=2, \cdots, n-1$, then, by (2.9), $m_{i}=-m_{k}$. Since $m_{i}=-m_{j}, m_{j}=-m_{k}, m_{k}=-m_{i}$ is impossible, one of s_{i}, s_{j}, s_{k} must always split the other two. Hence
(2.11) if $s_{i} \sim s_{j} \sim s_{k}$, then precisely two of m_{i}, m_{j}, m_{k} are equal.

This is enough to prove
Lemma 2.12. Suppose that S consists of $\pm s$, where s is given by (2.8), some elements of the form $s_{k}-s_{l}$ and, of course $, \pm s_{1}, \cdots, \pm s_{4}$. Then S is graphical.

Proof. We consider the "worst" case first. Suppose that $s_{i} \sim s_{j} \sim s_{k}$, and that s_{j} splits s_{i} and s_{k}. Then $\pm s= \pm\left(s_{i}-s_{j}+s_{k}\right)$. By (2.9), S cannot contain $\pm\left(s_{i}-s_{k}\right)$, but it can contain $\pm\left(s_{i}-s_{j}\right)$ and $\pm\left(s_{j}-s_{k}\right)$.

Let s_{h} be the fourth basis element. By (2.9), S cannot contain both $\pm\left(s_{i}-s_{h}\right)$ and $\pm\left(s_{h}-s_{k}\right)$. Assume, by symmetry, that $\pm\left(s_{h}-s_{k}\right) \notin S$. Then S must be contained in the set

$$
\begin{aligned}
S_{0}=\left\{ \pm s_{i}, \pm s_{j}, \pm s_{k}, \pm s_{h}, \pm\left(s_{i}-s_{j}+s_{k}\right), \pm\left(s_{i}-s_{j}\right)\right. & , \pm\left(s_{j}-s_{k}\right) \\
& \left. \pm\left(s_{i}-s_{h}\right), \pm\left(s_{j}-s_{h}\right)\right\}
\end{aligned}
$$

Embed L in K by $T: s_{i} \rightarrow k_{i}-k_{0}, s_{j} \rightarrow k_{j}-k_{0}, s_{h} \rightarrow k_{h}-k_{0}, s_{k} \rightarrow k_{j}-k_{k}$. Clearly $T\left(S_{0}\right) \subseteq B$, so S_{0}, and therefore S, is graphical.

In any other case, one of s_{i}, s_{j}, s_{k}, say s_{i}, must be \nsim the other two. Atter a possible transformation of the form $s_{l} \rightarrow s_{l}$, if $s_{l} \nsim s_{i} ; s_{l} \rightarrow-s_{l}$, if $s_{l} \sim s_{i}$ (which does not change (2.6)), we may assume that precisely two of m_{i}, m_{j}, m_{k} are equal. A repetition of the argument above shows that S is graphical.

Not many elements of the form (2.8) can lie in S :
Lemma 2.13. At most four elements of the form (2.8) can appear in S. If precisely four appear, then, after reindexing the s_{i}, they have the form
(2.14) $\pm\left(m_{1} s_{1}+m_{2} s_{2}+m_{3} s_{3}\right), \pm\left(m_{1} s_{1}+m_{2} s_{2}+m_{4} s_{4}\right)$, where $\left|m_{i}\right|=1$ for all i.

Proof. If two pairs $\pm s$ of those elements appear, we may assume, after reindexing, that they are $\pm\left(m_{1} s_{1}+m_{2} s_{2}+m_{3} s_{3}\right)$, and $\pm\left(n_{1} s_{1}+n_{2} s_{2}+n_{k} s_{k}\right)$, where $\left|m_{i}\right|=\left|n_{j}\right|=1$, for all i, j, and $k=3$ or 4 . We may even assume that $n_{1}=m_{1}$.

If $n_{2}=-m_{2}$, then S contains elements of the form $s_{1}+s_{2}+\cdots$ and $s_{1}-s_{2}+\cdots$, contradicting Proposition 2.4. Hence $n_{2}=m_{2}$.

If $k=3$, then similarly $n_{3}=m_{3}$, contradicting the fact that

$$
n_{1} s_{1}+n_{2} s_{2}+n_{k} s_{k} \neq m_{1} s_{1}+m_{2} s_{2}+m_{3} s_{3}
$$

So $k=4$. Therefore (2.14) holds, with $m_{4}=n_{4}$.
If a fifth element of the form (2.8) appears in S, the above arguments show that, after reindexing, $m_{1} s_{1}+m_{3} s_{3}+m_{4} s_{4} \in S$. Then $s_{1}, m_{1} s_{1}+m_{2} s_{2}+m_{3} s_{3}, m_{1} s_{1}+m_{2} s_{2}+m_{4} s_{4}, m_{1} s_{1}+m_{3} s_{3}+m_{4} s_{4}$ are four independent elements of S which do not form a basis for L. This contradicts (1.15) and proves the lemma.

The most complicated of our lemmas is
Lemma 2.15. Suppose that S consists of the elements (2.14), some elements of the form $s_{i}-s_{j}$ and $\pm s_{i}, \cdots, \pm s_{4}$. Then either S is graphical or else, after reindexing, S is

$$
\begin{align*}
\left\{ \pm s_{1}, \pm s_{2}, \pm s_{3}, \pm s_{4}, \pm\left(s_{1}-s_{3}\right)\right. & , \pm\left(s_{3}-s_{4}\right), \pm\left(s_{2}-s_{4}\right) \tag{2.16}\\
& \left. \pm\left(s_{1}+s_{2}-s_{3}\right), \pm\left(s_{1}+s_{2}-s_{4}\right)\right\}
\end{align*}
$$

Proof. Assume, to begin with, that $m_{1}=-m_{2}$. There are two possibilities:
$m_{3}=m_{4}$. In this case, after reindexing, the elements (2.14) become

$$
\pm\left(s_{1}-s_{2}+s_{3}\right), \quad \pm\left(s_{1}-s_{2}+s_{4}\right)
$$

By (2.9), neither $\pm\left(s_{1}-s_{3}\right)$ nor $\pm\left(s_{1}-s_{4}\right)$ can lie in S. So S is contained in
$S_{1}=\left\{ \pm s_{1}, \pm s_{2}, \pm s_{3}, \pm s_{4}, \pm\left(s_{1}-s_{2}+s_{3}\right), \pm\left(s_{1}-s_{2}+s_{4}\right)\right.$,

$$
\left.\pm\left(s_{1}-s_{2}\right), \pm\left(s_{2}-s_{3}\right), \pm\left(s_{2}-s_{4}\right), \pm\left(s_{3}-s_{4}\right)\right\}
$$

Embed L in K by $T: s_{1} \rightarrow k_{2}-k_{1}, s_{2} \rightarrow k_{2}-k_{0}, s_{3} \rightarrow k_{3}-k_{0}$, $s_{4} \rightarrow k_{4}-k_{0}$. Then $T(S) \subseteq T\left(S_{1}\right) \subseteq B$. So S is graphical.
$m_{3}=-m_{4}$. After reindexing, the elements (2.14) become

$$
\pm\left(s_{1}-s_{2}+s_{3}\right), \quad \pm\left(s_{1}-s_{2}-s_{4}\right)
$$

By (2.9), neither $\pm\left(s_{1}-s_{3}\right)$ nor $\pm\left(s_{2}-s_{4}\right)$ can lie in S. Furthermore, if $\pm\left(s_{3}-s_{4}\right) \in S$, then $s_{2}-s_{3}-s_{1}, s_{3}-s_{4}, s_{4}+s_{2}-s_{1} \in S$ contradicts Proposition 2.4. Hence S is contained in

$$
\begin{aligned}
S_{2}=\left\{ \pm s_{1}, \pm s_{2}, \pm s_{3}, \pm s_{4}, \pm\left(s_{1}-\right.\right. & \left.s_{2}+s_{3}\right), \pm\left(s_{1}-s_{2}-s_{4}\right) \\
& \left. \pm\left(s_{1}-s_{2}\right), \pm\left(s_{2}-s_{3}\right), \pm\left(s_{1}-s_{4}\right)\right\}
\end{aligned}
$$

Embed L in K by $T: s_{1} \rightarrow k_{1}-k_{0}, s_{2} \rightarrow k_{2}-k_{0}, s_{3} \rightarrow k_{2}-k_{3}$, $s_{4} \rightarrow k_{1}-k_{4}$. Then $T(S) \subseteq T\left(S_{2}\right) \subseteq B$. So S is graphical.

Now assume that $m_{1}=m_{2}$. If $s_{1} \nsim s_{2}$, change bases by

$$
s_{i} \rightarrow-s_{i} \quad \text { if } \quad s_{i} \sim s_{1} ; \quad s_{i} \rightarrow s_{i} \quad \text { if } \quad s_{i} \nsim s_{1} .
$$

This reduces S to the case above. So we may suppose $s_{1} \sim s_{2}$. By (2.10), $s_{1} \sim s_{2} \sim s_{3} \sim s_{4}$. Furthermore, by (2.11), $m_{3}=m_{4}=-m_{1}$. So the elements (2.14) are

$$
\pm\left(s_{1}+s_{2}-s_{3}\right), \quad \pm\left(s_{1}+s_{2}-s_{4}\right)
$$

Using the first of these elements and (2.9), we see that S cannot contain both $s_{1}-s_{4}$ and $s_{2}-s_{4}$. Using the second, S cannot contain both $s_{1}-s_{3}$ and $s_{2}-s_{3}$. Furthermore, it cannot contain $s_{1}-s_{2}$.

By symmetry, we may assume that $s_{1}-s_{4} \notin S$. Some $s_{1}-s_{j}$ lies in S, since $s_{1} \sim s_{2}$. And $s_{1}-s_{2}, s_{1}-s_{4} \notin S$. So $s_{1}-s_{3} \in S$. As noted above, this forces $s_{2}-s_{3} \notin S$. Some $s_{2}-s_{j}$ lies in S. It must be $s_{2}-s_{4}$. If $s_{3}-s_{4} \notin S$, then $\pm\left(s_{1}-s_{3}\right), \pm\left(s_{2}-s_{4}\right)$ are the only elements in S of the form $s_{i}-s_{j}$. This contradicts $s_{1} \sim s_{2}$. Hence $s_{3}-s_{4} \in S$, and S is given by (2.16).

Rather than consider a large number of cases, we handle the elements of the form $\pm s_{1} \pm s_{2} \pm s_{3} \pm s_{4}$ in S by different arguments.

Lemma 2.17. Suppose that, for any basis s_{1}, \cdots, s_{4} of Llying in S, some element of the form $\pm s_{1} \pm s_{2} \pm s_{3} \pm s_{4}$ appears in S. Then, with respect to a suitable basis, S is

$$
\begin{equation*}
\left\{ \pm s_{1}, \pm s_{2}, \pm s_{3}, \pm s_{4}, \pm\left(s_{1}+s_{2}+s_{3}+s_{4}\right)\right\} \tag{2.18}
\end{equation*}
$$

Proof. We may change the signs of the elements of some basis s_{1}, \cdots, s_{4} to reach

$$
\pm\left(s_{1}+s_{2}+s_{3}+s_{4}\right) \in S
$$

By (2.4), S can contain no elements of the form $s_{i}-s_{j}+\cdots$, where $i \neq j$. As in Lemma 2.13, this implies that no other elements of the form $\pm s_{1} \pm s_{2} \pm s_{3} \pm s_{4}$ appear in S.

If some element of the form (2.8) appears in S, we may assume that it is $s_{1}+s_{2}+s_{3}$. Let $s_{1}^{\prime}, s_{2}^{\prime}, s_{3}^{\prime}, s_{4}^{\prime}$ be the new basis $s_{1}+s_{2}+s_{3}+s_{4}$, $s_{1}+s_{2}+s_{3}, s_{1}, s_{2}$. By hypothesis,

$$
\begin{aligned}
& m_{1} s_{1}^{\prime}+m_{2} s_{2}^{\prime}+m_{3} s_{3}^{\prime}+m_{4} s_{4}^{\prime} \\
& \quad=\left(m_{1}+m_{2}+m_{3}\right) s_{1}+\left(m_{1}+m_{2}+m_{4}\right) s_{2}+\left(m_{1}+m_{2}\right) s_{3}+m_{1} s_{4} \in S
\end{aligned}
$$

for some m_{i} with $\left|m_{i}\right|=1$, for $i=1, \cdots, 4$. Since $\left|m_{1}+m_{2}\right| \leq 1$, by (2.3), and $m_{1}+m_{2}$ is even, we see that $m_{1}=-m_{2}$. So S contains elements of the form $\pm s_{1} \pm s_{2} \pm s_{4}$. These must be $\pm\left(s_{1}+s_{2}+s_{4}\right)$. Similarly $\pm\left(s_{1}+s_{3}+s_{4}\right) \in S$. But $s_{1}, s_{1}+s_{2}+s_{3}, s_{1}+s_{2}+s_{4}, s_{1}+s_{3}+s_{4}$ do not form a basis for L, contradicting (1.15). Therefore
(2.19) no elements of the form (2.8) appear in S.

If some element of the form $\pm s_{i} \pm s_{j}(i \neq j)$ appears in S, we may assume that it is $s_{1}+s_{2}$. Let $s_{1}^{\prime \prime}, s_{2}^{\prime \prime}, s_{3}^{\prime \prime}, s_{4}^{\prime \prime}$ be the new basis $s_{1}+s_{2}, s_{2}, s_{3}, s_{4}$. By hypothesis,
$m_{1} s_{1}^{\prime \prime}+m_{2} s_{2}^{\prime \prime}+m_{3} s_{3}^{\prime \prime}+m_{4} s_{4}^{\prime \prime}=m_{1} s_{1}+\left(m_{1}+m_{2}\right) s_{2}+m_{3} s_{3}+m_{4} s_{4} \in S$, for some m_{i} with $\left|m_{i}\right|=1$, for $i=1, \cdots, 4$. Clearly $m_{1}=-m_{2}$. So S contains $m_{1} s_{1}+m_{3} s_{3}+m_{4} s_{4}$ of the form (2.8), contradicting (2.19).

We conclude that S is given by (2.18).
Corollary 2.20. S is graphical.
Proof. Embed L in K by $T: s_{1} \rightarrow k_{1}-k_{0}, s_{2} \rightarrow k_{2}-k_{1}, s_{3} \rightarrow k_{3}-k_{2}$, $s_{4} \rightarrow k_{4}-k_{3}$. Then T sends $s_{1}+s_{2}+s_{3}+s_{4}$ into $k_{4}-k_{0}$. So $T(S) \subseteq B$.

By (2.7), Lemmas 2.12, 2.13 and 2.15, and Corollary 2.20, we conclude with

Theorem 2.21. Let S satisfy (1.15). Then either S is graphical, or else it is given by (2.16), with respect to a suitable basis.

3. A list of graphs

We wish to list, to within equivalence, those graphical subsets of L which can lead to maximal groups (two subsets S, S^{\prime} being equivalent if there is an automorphism of L carrying S onto S^{\prime}). As we shall see, this by no means requires a list of all graphs on five points, or even those containing maximal trees.

A subgraph Γ (on any number of points) of Γ_{5} will be called reduced if each vertex $P_{i} \in \Gamma$ lies on at least two distinct segments $\overline{P_{i} P_{\jmath}}, \overline{P_{i} P_{k}} \subseteq \Gamma$, $i \neq j \neq k \neq i$.

Lemma 3.1. Any graphical subset of L is equivalent to a subset S of the form.

$$
\begin{equation*}
S=\beta^{-1}(\Gamma) \cup\left\{ \pm s_{1}, \cdots, \pm s_{n}\right\}, \quad n \geq 0 \tag{3.2}
\end{equation*}
$$

where Γ is a reduced subgraph of Γ_{5} on $5-n$ points, and s_{1}, \cdots, s_{n} form a basis for L modulo the sublattice L_{Γ} generated by $\beta^{-1}(\Gamma)$.

Proof. Let $S^{\prime}=\beta^{-1}\left(\Gamma^{\prime}\right)$, where Γ^{\prime} is a connected subgraph of Γ_{5}. If Γ^{\prime} is reduced, we are done. Otherwise some vertex of Γ^{\prime}, say P_{4}, must be on only one segment, say $\overline{P_{3} P_{4}}$. Let $\Gamma^{\prime \prime}=\Gamma^{\prime}-\left\{\overline{P_{3} P_{4}}\right\}$, a graph on P_{0}, \cdots, P_{3}. Then $S^{\prime}=\beta^{-1}\left(\Gamma^{\prime \prime}\right)$ u $\left\{ \pm\left(k_{3}-k_{4}\right)\right\}$. Clearly $\Gamma^{\prime \prime}$ is connected. So $k_{3}-k_{4}$ is a basis for L modulo $L_{\Gamma^{\prime \prime}}$.

An obvious induction completes the proof.
There are, to within isomorphism, just 16 reduced subgraphs of Γ_{5} :
Lemma 3.3. Any reduced subgraph of Γ_{5} is isomorphic to one of the graphs displayed in Figure 3.4.

Note. The circles appearing on certain lines in Figure 3.4 will be explained in Lemma 3.10 below.

Proof. Let Γ be a reduced subgraph of Γ_{5}. We first prove that
(3.5) Any segment of Γ must appear in some closed loop in Γ.

Figure 3.4
Suppose, e.g., $\overline{P_{i_{0}} P_{i_{1}}} \in \Gamma$ lies on no closed loop. Construct a chain

$$
\cdots, \overline{P_{i_{-1}} P_{i_{0}}}, \overline{P_{i_{0}} P_{i_{1}}}, \overline{P_{i_{1}} P_{i_{2}}}, \cdots
$$

of segments in Γ such that $i_{j-1} \neq i_{j+1}$, for all j. Let n be the first index such that $n \geq 1$, and $i_{n}=i_{j}$, for some $j<n$. Since $\overline{P_{i_{0}} P_{i_{1}}}$ appears in no closed loop, j must be ≥ 1. So $n>j+2 \geq 3$, and $P_{i_{0}}, P_{i_{1}}, P_{i_{2}}, P_{i_{3}}$ are all distinct.

Similarly $P_{i_{-2}}, P_{i_{-1}}, P_{i_{0}}, P_{i_{1}}$ are all distinct. Since $i_{-r}=i_{s}, r \geq 0, s \geq 1$, would force $\overline{P_{i_{0}} P_{i_{1}}}$ to lie on a loop, the six points $P_{i_{-2}}, \cdots, P_{i_{3}}$ are all distinct. But Γ is a graph on ≤ 5 points. This proves (3.5).

By (3.5), Γ is a union of triangles (3.4B), quadrilaterals (3.4L) and pentagons (3.4P). We consider all cases.

If Γ has no segments, it is (3.4 A).
Suppose Γ is a union of triangles:
If Γ contains one triangle, it is (3.4B).
If Γ contains two triangles, it is (3.4C) or (3.4D).
If Γ contains three or more triangles, then two of them must intersect in a line (count vertices!). So Γ has a subgraph isomorphic to (3.4D).

Suppose Γ has three or more triangles, and does not contain a tetrahedron $(3.4 \mathrm{H})$. Then it consists of (3.4D), together with two or more segments connecting this subgraph with a fifth point P_{0}.

If two segments contain P_{0}, then Γ is $(3.4 \mathrm{E})$ or $(3.4 \mathrm{~F})$ or $(3.4 \mathrm{O})$.
If three segments contain P_{0}, then Γ is (3.4G) or (3.4I) (which is excluded, since it contains a tetrahedron).

If four segments contain P_{0}, then Γ contains a tetrahedron.
Suppose Γ contains a tetrahedron (3.4 H). Any further segments must connect these vertices with the fifth vertex P_{0}.

If no segments contain P_{0}, Γ is $(3.4 \mathrm{H})$.
If two segments contain P_{0}, Γ is (3.4I).
If three segments contain P_{0}, Γ is (3.4J).
If four segments contain P_{0}, Γ is $(3.4 \mathrm{~K})$.

Suppose Γ is not a union of triangles:

If Γ is not a union of triangles and quadrilaterals, it must be a pentagon (3.4P).

Otherwise, Γ must contain a quadrilateral (3.4L) but no further segments on these four vertices. Let the fifth vertex be P_{0}.

If no segments contain P_{0}, Γ is (3.4L).
If two segments contain P_{0}, Γ is $(3.4 \mathrm{M})$ or (3.4 N).
If three segments contain P_{0}, Γ is (3.4O).
If four segments contain P_{0}, Γ is (3.4G) (which is excluded as a union of triangles).

We have considered all cases.
Half the graphs in Figure 3.4 are removed from consideration by the following argument:

We say that a subgraph Γ^{\prime} of graph Γ is a closed loop of length $n \geq 3$ if it has the form

$$
\Gamma^{\prime}=\left\{\overline{P_{i_{1}} P_{i_{2}}}, \overline{P_{i_{2}} P_{i_{3}}}, \cdots, \overline{P_{i_{n-1}} P_{i_{n}}}, \overline{P_{i_{n}} P_{i_{1}}}\right\}
$$

where $P_{i_{1}}, \cdots, P_{i_{n}}$ are distinct vertices. If ${\overline{P_{i} P}}_{j} \in \Gamma$, and $n \geq 3$, let $N_{n}\left(\overline{P_{i} P_{j}}, \Gamma\right)$ denote the number of closed loops of length n in Γ which contain $\overline{P_{i} P_{j}}$.

Lemma 3.6. Let Γ be a subgraph of Γ_{5}, and $S=\beta^{-1}(\Gamma)$. If $s \in S$ and $n \geq 3$, then $N_{n}(\beta(s), \Gamma)$ equals the number of subsets S_{1} of S satisfying
(a) S_{1} has $n-1$ elements,
(b) $\sum_{s_{1} \in S_{1}} s_{1}=s$,
(c) if S_{2} is a proper subset of S_{1}, then $\sum_{s_{2} \epsilon S_{2}} s_{2} \neq s$.

Proof. Let $\beta(s)=\overline{P_{i_{1}} P_{i_{2}}}$, and $s=k_{i_{1}}-k_{i_{2}}$.
Suppose $S_{1} \subseteq S$ satisfies (3.7). By (3.7b), some element of S_{1} must have the form $k_{i_{3}}-k_{i_{2}}$. Suppose, by induction, that S_{1} contains elements $k_{i_{3}}-k_{i_{2}}, k_{i_{4}}-k_{i_{3}}, \cdots, k_{i_{r}}-k_{i_{r-1}}$, where $r \geq 3$, and $i_{1}, i_{2}, \cdots, i_{r-1}$ are all distinct. If $i_{r}=i_{1}$, then the sum of these elements is s. So, by (3.7c), they are all the elements of S_{1}. If $i_{r}=i_{j}$, for some j with $2 \leq j \leq r-1$, then the sum of the elements $k_{i_{j+1}}-k_{i_{j}}, \cdots, k_{i_{r}}-k_{i_{r-1}}$ is zero. The sum of the rest of the elements of S_{1} must be s, contradicting (3.7c). If $i_{1}, \cdots i_{r}$ are distinct, the sum of the above elements is $k_{i_{r}}-k_{i_{2}}$. So S_{1} must contain an element of the form $k_{i_{r+1}}-k_{i_{r}}$, and the induction is complete.

We conclude that S_{1} has the form

$$
S_{1}=\left\{k_{i_{3}}-k_{i_{2}}, k_{i_{4}}-k_{i_{3}}, \cdots, k_{i_{n}}-k_{i_{n-1}}, k_{i_{1}}-k_{i_{n}}\right\}
$$

where i_{1}, \cdots, i_{n} are distinct. Obviously $\beta\left(S_{1}\right) \mathbf{u}\{\beta(s)\}$ is a closed loop of length n containing $\beta(s)$.

Suppose $\Gamma^{\prime}=\left\{\overline{\overline{P_{i_{1}} P_{i_{2}}}}, \overline{P_{i_{2}} P_{i_{3}}}, \cdots, \overline{P_{i_{n}} P_{i_{1}}}\right\}$ is a closed loop of length n in Γ containing $\overline{P_{i_{1}} P_{i_{2}}}$. Then $S_{1}=\left\{k_{i_{3}}-k_{i_{2}}, \cdots, k_{i_{n}}-k_{i_{n-1}}, k_{i_{1}}-k_{i_{n}}\right\}$ satisfies (3.7) and $\beta\left(S_{1}\right)$ u $\{\beta(s)\}=\Gamma^{\prime}$. Any other subset S_{1}^{\prime} of $\beta^{-1}\left(\Gamma^{\prime}\right)$ satisfying (3.7) must be of the form $\left\{\varepsilon_{2}\left(k_{i_{3}}-k_{i_{2}}\right), \cdots, \varepsilon_{n}\left(k_{i_{1}}-k_{i_{n}}\right)\right\}$, where $\varepsilon_{2}, \cdots, \varepsilon_{n}$ are all ± 1. Then (3.7b) becomes

$$
k_{i_{1}}-k_{i_{2}}=\varepsilon_{n} k_{i_{1}}-\varepsilon_{2} k_{i_{2}}+\left(\varepsilon_{2}-\varepsilon_{3}\right) k_{i_{3}}+\cdots+\left(\varepsilon_{n-1}-\varepsilon_{n}\right) k_{i_{n}}
$$

Since i_{1}, \cdots, i_{n} are all distinct, this implies $\varepsilon_{2}=\cdots=\varepsilon_{n}=1$, and $S_{1}=S_{1}^{\prime}$.
We have constructed a one to one correspondence between subsets S_{1} satisfying (3.7) and loops of length n containing $\beta(s)$. So the lemma is true.

Corollary 3.8. If $g \in G(S, L)$, then, for any $n \geq 3$,

$$
N_{n}(\beta(s), \Gamma)=N_{n}(\beta(g s), \Gamma)
$$

Proof. Obviously the number of subsets S_{1} satisfying (3.7) is invariant under $G(S, L)$.

If S is any finite subset spanning V and S^{\prime} is a proper subset of S satisfying
(3.9) S^{\prime} spans V and $G(S, L)$ sends S^{\prime} into itself,
then $G(S, L) \subseteq G\left(S^{\prime}, L\right)$. Since we are only interested in maximal finite groups, we need only consider the reduced subsets S of L, i.e., those for which no proper subset S^{\prime} of S satisfies (3.9).

Lemma 3.10. If S has the form (3.2), where $\mathrm{\Gamma}$ is $\mathrm{D}, \mathrm{E}, \mathrm{F}, \mathrm{G}, \mathrm{I}, \mathrm{J}, \mathrm{M}$ or O of Figure (3.4), then S is not reduced.

Proof. Let $S=\beta^{-1}\left(\Gamma^{\prime}\right)$, for some $\Gamma^{\prime} \subseteq \Gamma_{5}$. It is clear from Lemma 3.1 that $N_{n}\left(\beta(s), \Gamma^{\prime}\right)=0$, for all $n \geq 3$, if $\beta(s) \notin \Gamma$, while $N_{n}\left(\beta(s), \Gamma^{\prime}\right)=$ $N_{n}(\beta(s), \Gamma)$, if $\beta(s) \in \Gamma$. Furthermore, in the latter case $N_{n}(\beta(s), \Gamma) \neq 0$, for some $n \geq 3$. We conclude from Corollary 3.8 that subset $S_{0}=\beta^{-1}\left(\Gamma_{0}\right)$ is invariant under $G(S, L)$ provided Γ_{0} is the subgraph of all $\overline{P_{i} P_{j}}$ in Γ satisfying equations of the form $N_{n}\left(\overline{P_{i} P_{j}}, \Gamma\right)=a_{n}$, for some $n \geq 3$ and some a_{n}. If $S-S_{0}=S^{\prime}$ spans V, or, what is the same thing, if $\Gamma^{\prime}=\Gamma-\Gamma_{0}$ contains a maximal subtree, then (3.9) is satisfied and S is not reduced.

In each case below the subgraph Γ_{0} consists of those segments $\overline{P_{i} P_{j}} \in \Gamma$ for which $N_{n}=N_{n}\left(\overline{P_{i} P_{j}}, \Gamma\right)$ has the indicated value. In Figure 3.4, Γ_{0} is the subgraph consisting of all segments with circles on them. By inspection it satisfies the conditions above. So S is not reduced.

$$
\begin{array}{ll}
\mathrm{D}: & N_{3}=2 \\
\mathrm{E}: & N_{3}=3 \\
\mathrm{~F}: & N_{3}=2 \\
\mathrm{G}: & N_{3}=1 \\
\mathrm{I}: & N_{3}=3 \\
\mathrm{~J}: & N_{3}=3 \\
\mathrm{M}: & N_{3}=1 \text { and } N_{4}=1 \\
\mathrm{O}: & N_{3}=2
\end{array}
$$

We conclude from Lemma 3.10, and the arguments above:
Theorem 3.11. If S is a graphical subset of L, and $G(S, L)$ is maximal, then S has the form (3.2), where Γ is one of the graphs $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{H}, \mathrm{K}, \mathrm{L}, \mathrm{N}$ or P in Figure 3.4.

4. The maximal groups

After Theorems 1.14, 2.21 and 3.11, there are $1+1+8=10$ cases to be considered. In each case we must decide whether the group in question is maximal, and whether it is equivalent to any of the other groups.

We say that a group H is uniform if there is, up to constant multiples, precisely one positive definite quadratic form ϕ invariant under H for which $S(\phi, L)$ spans V. We call ϕ an associated form of H and the set $S(\phi, L)$, which is uniquely determined by H, the associated subset. It turns out that all our maximal groups are uniform. So both of our questions above are simplified by the following observations:

Observation 4.1. If a group H is uniform, with associated subset S, then $G(S, L)$ is maximal (and uniform with the same subset).

For any group K containing $G(S, L)$ must leave invariant some form ϕ. Since $G(S, L)$ contains H, the form ϕ must be associated to H. Therefore K
leaves $S=S(\phi, L)$ invariant, i.e., $K \subseteq G(S, L)$. The uniformity of $G(S, L)$ is obvious.

Observation 4.2. Let G_{1}, G_{2} be maximal and uniform groups, with associated sets S_{1}, S_{2}, resp. Then G_{1}, G_{2} are equivalent if and only if S_{1}, S_{2} are equivalent.

For any equivalence between G_{1} and G_{2} must be an equivalence between their associated forms ϕ_{1}, ϕ_{2} and hence, between S_{1} and S_{2}. Since, by (1.1), $G_{i}=G\left(S_{i}, L\right)$, the converse is also obvious.

We begin with the exceptional form in Theorem 1.14:
Case I. $\quad S=S(\phi, L)$, where ϕ is given by (1.8).
The ring I of integral quaterions (see [4]) has a lattice basis

$$
b_{1}=1, \quad b_{2}=i, \quad b_{3}=j, \quad b_{4}=-\frac{1}{2}(1+i+j+k)
$$

The norm of a general element of I is given by
$N\left(X_{1} b_{1}+\cdots+X_{4} b_{4}\right)=X_{1}^{2}+X_{2}^{2}+X_{3}^{2}+X_{4}^{2}-\left(X_{1}+X_{2}+X_{3}\right) X_{4}$.
So we may identify L with I by $l_{i} \leftrightarrow b_{i}, i=1, \cdots, 4$, sending ϕ into N.
The unit group U of I consists of the 24 elements of norm 1,

$$
\pm 1, \quad \pm i, \quad \pm j, \quad \pm k, \quad \frac{1}{2}(\pm 1 \pm i \pm j \pm k)
$$

Since the norm of any element of I is an integer, $U=S(N, I)$.
Let H be the group of all maps $r \rightarrow u \cdot r$ of I into I, where $u \in U$. Clearly H is transitive on U. So any form ϕ invariant under H must have a constant value $c=\phi(u)$, for all $u \in U$. This easily implies that $\phi=c \cdot N$. So H is uniform. From Observation 4.1, we conclude that
(4.3) the group $Q n=G(U, I)$ is maximal and uniform, with associated subset U.

Incidently, $Q n$ has $1152=3^{2} \cdot 2^{7}$ elements. To see this, note that it is transitive on U, since H is. The subgroup leaving 1 fixed must permute the elements $\pm i, \pm j, \pm k$, which are perpendicular to 1 , among themselves. It does this in $6 \cdot 4 \cdot 2=3 \cdot 2^{4}$ ways. Since the images of $1, i, j, k$ determine a transformation of I, this gives $24 \cdot 3 \cdot 2^{4}=3^{2} \cdot 2^{7}$ elements.

Suppose that S is given by (3.2). Let L^{\prime} be the sublattice of L having s_{1}, \cdots, s_{n} as basis. Then L is the direct sum $L_{\Gamma} \dot{+} L^{\prime}$. As in the proof of Lemma 3.10, the subsets $\beta^{-1}(\Gamma)$ and $\left\{ \pm s_{1}, \cdots, \pm s_{n}\right\}$ are invariant under $G(S, L)$. So the sublattices L_{Γ}, L^{\prime} which they generate are also invariant. We conclude that

$$
\begin{equation*}
G(S, L)=G\left(\beta^{-1}(\Gamma), L_{\Gamma}\right) \otimes G\left(\left\{ \pm s_{1}, \cdots, \pm s_{n}\right\}, L^{\prime}\right) \tag{4.4}
\end{equation*}
$$

Consider the second factor in (4.4). Evidently

$$
G\left(\left\{ \pm s_{1}, \cdots, \pm s_{n}\right\}, L^{\prime}\right)=C u_{n}
$$

is the "generalized permutation group" of order $n!\cdot 2^{n}$, consisting of all linear transformations of the form $s_{i} \rightarrow \varepsilon_{i} s_{\pi(i)}, i=1, \cdots, n$, where π is some permutation of $1, \cdots, n$, and $\varepsilon_{1}, \cdots, \varepsilon_{n}$ are arbitrarily chosen ± 1 's. The only form left invariant by $C u_{n}$ is the identity form $\phi\left(X_{1} s_{1}+\cdots+X_{n} s_{n}\right)=$ $X_{1}^{2}+\cdots+X_{n}^{2}$ (or a multiple thereof). Clearly $\left\{ \pm s_{1}, \cdots, \pm s_{n}\right\}=$ $S\left(\phi, L^{\prime}\right)$. So, from Observation 4.1,
(4.5) for any integer $n \geq 1$, the group $C u_{n}$ is uniform and maximal, with associated subset $\left\{ \pm s_{1}, \cdots, \pm s_{n}\right\}$.

Case II. $\quad S$ comes from the graph A of Figure 3.4 via (3.2).
In this case Γ is empty. So, by (4.4) and (4.5), $G(S, L)=C u_{4}$ is uniform and maximal. Its associated subset contains 8 points. By (4.3), the associated subset of $Q n$ contains 24 points. So, by Observation 4.2, $C u_{4}$ and $Q n$ are inequivalent. Hence
(4.6) the group $C u_{4}$ is uniform, maximal, and inequivalent to $Q n$. Its associated subset is the S of this case.

In applying (4.4), the following lemma is useful:
Lemma 4.7. Let H_{1}, H_{2} be uniform groups on lattices L_{1}, L_{2} respectively. Suppose that each H_{i} contains the transformation -1 on L_{i}. Then $H_{1} \otimes H_{2}$ is uniform on the lattice $L_{1} \oplus L_{2}$. If S_{1}, S_{2} are the associated subsets of H_{1}, H_{2}, resp., then $\left(S_{1} \oplus 0\right) \cup\left(0 \oplus S_{2}\right)=S$ is the associated subset of $H_{1} \otimes H_{2}$.

Proof. Since $H_{1} \otimes H_{2}$ contains a transformation which is -1 on L_{1} and +1 on L_{2}, any form invariant under it must be a perpendicular direct sum $\phi_{1} \oplus \phi_{2}$ of forms ϕ_{i} on L_{i} invariant under $H_{i}, i=1,2$. Clearly $S\left(\phi_{1} \oplus \phi_{2}, L_{1} \oplus L_{2}\right)$ is given by

$$
\begin{array}{ll}
S\left(\phi_{1}, L_{1}\right) \oplus 0, & \text { if } \min \phi_{1}<\min \phi_{2}, \\
0 \oplus S\left(\phi_{2}, L_{2}\right), & \text { if } \min \phi_{1}>\min \phi_{2} \\
\left(S\left(\phi_{1}, L_{1}\right) \oplus 0\right) \cup\left(0 \oplus S\left(\phi_{2}, L_{2}\right)\right), & \text { if } \min \phi_{1}=\min \phi_{2}
\end{array}
$$

So $S\left(\phi_{1} \oplus \phi_{2}, L_{1} \oplus L_{2}\right)$ spans the vector space if and only if both $S\left(\phi_{1}, L_{1}\right)$ and $S\left(\phi_{2}, L_{2}\right)$ span their respective spaces, and $\min \phi_{1}=\min \phi_{2}$. Since H_{1}, H_{2} are both uniform, only one ray of forms can satisfy this condition. Therefore $H_{1} \otimes H_{2}$ is uniform. The rest of the lemma follows from (4.8).

When the reduced graph Γ is the 1 -skeleton of a simplex, its group is maximal by the following argument:

For any integer $n \geq 1$, let K be a lattice of dimension $n+1$ with a fixed basis $k_{0}, k_{1}, \cdots, k_{n}$. The symmetric group S_{n+1} on $0, \cdots n$ operates on K by $\pi: k_{i} \rightarrow k_{\pi(i)}, i=0, \cdots, n$. The vector space V_{K} spanned by K is the direct sum $V_{K}=V_{1} \dot{+} V_{2}$ of two absolutely irreducible subspaces under S_{n+1}. The subspace V_{1} consists of all multiples of $k_{0}+\cdots+k_{n}$, while V_{2} consists of all $r_{0} k_{0}+\cdots+r_{n} k_{n}$ for which $r_{0}+\cdots+r_{n}=0$.

Let $L^{\prime}=K \cap V_{2}$. It is a lattice of rank n invariant under the group H of transformations of V_{2} induced by S_{n+1}. Since H is absolutely irreducible on V_{2}, there is only one invariant form ϕ (up to multiples). It must be the restriction to V_{2} of the form $\phi^{\prime}\left(X_{0} k_{0}+\cdots+X_{n} k_{n}\right)=X_{0}^{2}+\cdots+X_{n}^{2}$ on V_{K} which is invariant under S_{n+1}. Since any element $r_{0} k_{0}+\cdots+r_{n} k_{n} \neq 0$ of L^{\prime} must have at least two non-zero integral coefficients r_{i}, it is clear that

$$
\begin{equation*}
S\left(\phi, L^{\prime}\right)=\left\{k_{i}-k_{j} \mid i \neq j ; i, j=0, \cdots, n\right\} \tag{4.9}
\end{equation*}
$$

The uniformity of H and Observation 4.1 imply that the group $S x_{n}=G\left(S\left(\phi, L^{\prime}\right), L^{\prime}\right)$ satisfies
(4.10) $S x_{n}$ is uniform and maximal. Its associated subset is given by (4.9).

Incidently, it can be shown easily that $S x_{n}$ consists of all $\pm h$, where $h \in H$. So it has $2 \cdot n$! elements, if $n \geq 2$, and 2 elements if $n=1$.

Case III. S comes from the graph B of Figure 3.4 via (3.2).
By (4.9), it is clear that $G\left(\beta^{-1}(\Gamma), L_{\Gamma}\right)=S x_{2}$. Hence, by (4.4) and (4.5), $G(S, L)=S x_{2} \otimes C u_{2}$. This group is uniform with associated subset S (by Lemma 4.7). So it is maximal (by Observation 4.1). Since S has 10 elements, while the associated subsets of $Q n$ and $C u_{4}$ have 24 and 8 elements respectively, we conclude from Observation 4.2 that
(4.11) The group $S x_{2} \otimes C u_{2}$ is uniform, maximal, and inequivalent to $Q n$ or $C u_{4}$. Its associated subset is the S of this case.

Case IV. S comes from the graph H of Figure 3.4 via (3.2).
By an argument similar to that of Case III, $G(S, L)=S x_{3} \otimes C u_{1}$ is uniform and maximal, with associated subset S. Since S has 14 elements we conclude that
(4.12) the group $S x_{3} \otimes C u_{1}$ is uniform, maximal, and inequivalent to $Q n, C u_{4}$ or $S x_{2} \otimes C u_{2}$. Its associated subset is the S of this case.

Case V. S comes from the graph K of Figure 3.4 via (3.2).
By (4.10), $G(S, L)=S x_{4}$ is uniform and maximal, with S as its associated subset. Since S has 20 points, it is inequivalent to the preceding groups. Thus
(4.13) the group $S x_{4}$ is uniform, maximal and inequivalent to any of the groups in Cases I-IV. Its associated subset is the S of this case.

Case VI. \quad S comes from the graph C of Figure 3.4 via (3.2).
It is clear that L is the direct sum of two sublattices L_{1}, L_{2} of rank 2 , each of which is generated by β^{-1} of one of the triangles of Γ. So $S=S_{1} \cup S_{2}$, where $S_{i}=S \cap L_{i}$ is equivalent to the set in (4.9) with $n=2$. Hence $S x_{2} \otimes S x_{2}$ is contained in $G(S, L) . \quad$ By (4.10) and Lemma 4.7, the group $S x_{2} \otimes S x_{2}$ is uniform, with associated subset S. Therefore, by Observation 4.1, the group $G(S, L)$, which we denote by $S x_{2}^{(2)}$, is uniform and maximal.

Since S has 12 elements, while the five preceding S 's have, in order, 24, 8, 10, 14 and 20 elements, $S x_{2}^{(2)}$ is inequivalent to any of the above groups. Hence (4.14) the group $S x_{2}^{(2)}$ is uniform, maximal and inequivalent to any of the groups in Cases I-V. Its associated subset is the S of this case.

Incidentally, it is clear that $S x_{2}^{(2)}$ is the wreath product of the symmetric group S_{2} with $S x_{2}$ (See [5]). So its order is $(3!2)^{2} \cdot 2=3^{2} \cdot 2^{5}=288$.

We return to the lattice K with basis k_{0}, \cdots, k_{n}, and the subspaces V_{1}, V_{2} of V_{K} invariant under S_{n+1}. Now let $L^{\prime \prime}$ be the image of K under the projection of $V_{1} \dot{+} V_{2}$ onto V_{2}. This is the dual lattice to L^{\prime} (with respect to ϕ) and is also invariant under H. The image of k_{i} under this projection is

$$
l_{i}=k_{i}-\frac{k_{0}+\cdots+k_{n}}{n+1}
$$

So $L^{\prime \prime}$ consists of all elements of the form
(4.15) $l^{\prime \prime}=\frac{r_{0} k_{0}+\cdots+r_{n} k_{n}}{n+1}$, where r_{0}, \cdots, r_{n} are integers satisfying $r_{0}+\cdots+r_{n}=0$ and $r_{0} \equiv \cdots \equiv r_{n}(\bmod n+1)$.

The set $S\left(\phi, L^{\prime \prime}\right)$ is more difficult to compute than some of the other such sets. Suppose $l^{\prime \prime}$, given by (4.15), lies in $S\left(\phi, L^{\prime \prime}\right)$. Let $r_{i}=(n+1) t_{i}+r$, where $t_{i} \in Z, i=0, \cdots, n$, and $0 \leq r<n+1$. Since $\sum r_{i}=0$, we have $r=-\left(t_{0}+\cdots+t_{n}\right)$. Thus

$$
\phi\left(l^{\prime \prime}\right)=\frac{1}{(n+1)^{2}} \sum r_{i}^{2}=t_{0}^{2}+\cdots+t_{n}^{2}-\frac{r^{2}}{n+1} .
$$

If some integer t_{i}, say t_{0}, is different from 0 or ± 1, then the two elements corresponding to $t_{0} \pm 1, t_{1}, \cdots, t_{n}, r \mp 1$ will be non-zero. So the value of ϕ at these elements must be $\geq \phi\left(l^{\prime \prime}\right)$. This tells us that
$\phi\left(l^{\prime \prime} \pm\left(k_{0}-\frac{k_{0}+\cdots+k_{n}}{n+1}\right)\right)=\phi\left(l^{\prime \prime}\right) \pm 2 t_{0}+1 \pm \frac{2 r}{n+1}-\frac{1}{n+1} \geq \phi\left(l^{\prime \prime}\right)$
or

$$
\left|t_{0}+\frac{r}{n+1}\right| \leq \frac{1}{2}\left(1-\frac{1}{n+1}\right)<\frac{1}{2}
$$

But $|r /(n+1)|<1$, and $\left|t_{0}\right| \geq 2$. Hence $\left|t_{0}+r /(n+1)\right| \geq 1$, a contradiction. So

Each t_{i} is either 0 or ± 1.
Let T be the number of non-zero t_{i}, and T^{\prime} the number of t_{i} equal to +1 . Then $\phi\left(l^{\prime \prime}\right)=T-\left(2 T^{\prime}-T\right)^{2} /(n+1)$. For $0 \leq T^{\prime} \leq T$, and fixed T, the minima of this function clearly are taken on for $T^{\prime}=0$ and $T^{\prime}=T$, i.e.

All the non-zero t_{i} are equal.
Finally $\phi\left(l^{\prime \prime}\right)=T-T^{2} /(n+1)=T(n+1-T) /(n+1)$. Since $0<T<n+1$, the minima are given by $T=1$ and $T=n$. Therefore

$$
\begin{equation*}
S\left(\phi, L^{\prime \prime}\right) \text { consists of all } \tag{4.16}
\end{equation*}
$$

$$
\pm\left(k_{i}-\frac{k_{0}+\cdots+k_{n}}{n+1}\right)
$$

where $i=0, \cdots, n$.
In particular, for $n \geq 2, S\left(\phi, L^{\prime \prime}\right)$ has $2(n+1)$ elements.
The map

$$
k_{i}-\frac{k_{0}+\cdots+k_{n}}{n+1} \rightarrow k_{i}-k_{i-1}
$$

for $i=1, \cdots, n$ sends $L^{\prime \prime}$ onto L and $s\left(\phi, L^{\prime \prime}\right)$ onto

$$
\left\{ \pm\left(k_{1}-k_{0}\right), \pm\left(k_{2}-k_{1}\right), \cdots, \pm\left(k_{n}-k_{n-1}\right), \pm\left(k_{0}-k_{n}\right)\right\}
$$

So
(4.17) $S\left(\phi, L^{\prime \prime}\right)$ is graphical. Its graph is a regular $(n+1)$-gon.

As in the case of (4.10), the group $P y_{n}=G\left(S\left(\phi, L^{\prime \prime}\right), L^{\prime \prime}\right)$ satisfies
(4.18) $P y_{n}$ is uniform and maximal. Its associated subset is $S\left(\phi, L^{\prime \prime}\right)$.

Case VII. S comes from the graph L of Figure 3.4 via (3.2).
By (4.17), it is clear that $G\left(\beta^{-1}(\Gamma), L_{\Gamma}\right)=P y_{3} . \quad$ So $G(S, L)=P y_{3} \otimes C u_{1}$. This is uniform and maximal with associated subset S. Since S has 10 elements, this group can be equivalent only to $S x_{2} \otimes C u_{2}$ among our previous groups. But the two sets S cannot be equivalent since $N_{3}(\beta(s), \Gamma)=1$ for some elements s of the earlier set, while $N_{3}(\beta(s), \Gamma)=0$ for all elements s of the present set (consult Lemma 3.6). Hence
(4.19) the group $P y_{3} \otimes C u_{1}$ is uniform, maximal, and inequivalent to any of the groups in cases I-VI. Its associated subset is the S of this case.

Case VIII. S comes from the graph P of Figure 3.4 via (3.2).
Clearly $G(S, L)=P y_{4}$. Since S has 10 elements, this group can be equivalent only to $S x_{2} \otimes C u_{2}$ or $P y_{3} \otimes C u_{1}$ among our previous groups. But $N_{5}(\beta(s), \Gamma)=1$ for all elements s of the present S, while $N_{5}(\beta(s), \Gamma)=0$ for all elements s of the two earlier S 's. Hence
(4.20) the group Py_{4} is uniform, maximal and inequivalent to any of the groups in cases I-VII. Its associated subset is the S of this case.

Case IX. $\quad S$ is given by (2.16).
This, of course, is the exceptional case in Theorem 2.21.
Let K be a rank three lattice with basis k_{0}, k_{1}, k_{2}. Let the symmetric
group S_{3} act on K as in the study of $C u_{2}$. Then the direct product $S_{3} \otimes S_{3}$ acts naturally on the tensor product (over Z) $K \otimes K$. The sublattice L^{\prime} consisting of all $r_{0} k_{0}+r_{1} k_{1}+r_{2} k_{2} \epsilon K$ with $r_{0}+r_{1}+r_{2}=0$ is invariant under S_{3}. The subspace V_{2} spanned by L^{\prime} is absolutely irreducible under S_{3}. So the subspace W spanned by $L^{\prime} \otimes L^{\prime} \subseteq K \otimes K$ is absolutely irreducible under $S_{3} \otimes S_{3}$. In particular, the group H^{\prime} of automorphisms of $L^{\prime} \otimes L^{\prime}$ induced by $S_{3} \otimes S_{3}$ is uniform.

The form $\phi\left(\sum_{i j} X_{i j} k_{i} \otimes k_{j}\right)=\sum_{i j} X_{i j}^{2}$ on $K \otimes K$ is clearly invariant under $S_{3} \otimes S_{3}$. So its restriction to $L^{\prime} \otimes L^{\prime}$ is an associated form of H^{\prime}. The sublattice $L^{\prime} \otimes L^{\prime}$ consists of all $\sum_{i, j} r_{i j} k_{i} \otimes k_{j}$ such that all $r_{i j}$ lie in Z, and, for each $i, \sum_{j} r_{i j}=0$, while, for each $j, \sum_{i} r_{i j}=0$. Therefore, if some coefficient $r_{i j}$ is not zero, then at least one other coefficient $r_{i k}$ is not zero, and at least one other coefficient $r_{l j}$ is not zero. Clearly this forces at least four $r_{i j}$ to be non-zero. Hence $l \epsilon L^{\prime} \otimes L^{\prime}, l \neq 0 \operatorname{imply} \phi(l) \geq 4$. Equality occurs if and only if

$$
\begin{align*}
l & =k_{i} \otimes k_{j}-k_{i} \otimes k_{l}-k_{h} \otimes k_{j}+k_{h} \otimes k_{l} \\
& =\left(k_{i}-k_{h}\right) \otimes\left(k_{j}-k_{l}\right), \tag{4.21}
\end{align*} \quad i \neq h, j \neq l .
$$

So the associated subset S^{\prime} of H^{\prime} consists of the 18 elements (4.21).
$\operatorname{Map} L$ onto L^{\prime} by

$$
\begin{aligned}
& s_{1} \rightarrow\left(k_{0}-k_{1}\right) \otimes\left(k_{0}-k_{1}\right) \\
& s_{2} \rightarrow\left(k_{0}-k_{2}\right) \otimes\left(k_{1}-k_{2}\right) \\
& s_{3} \rightarrow\left(k_{0}-k_{1}\right) \otimes\left(k_{0}-k_{2}\right) \\
& s_{4} \rightarrow\left(k_{0}-k_{2}\right) \otimes\left(k_{0}-k_{2}\right) .
\end{aligned}
$$

Then the other elements of S are mapped as follows:

$$
\begin{aligned}
s_{1}-s_{3} & \rightarrow\left(k_{0}-k_{1}\right) \otimes\left(k_{2}-k_{1}\right) \\
s_{3}-s_{4} & \rightarrow\left(k_{2}-k_{1}\right) \otimes\left(k_{0}-k_{2}\right) \\
s_{2}-s_{4} & \rightarrow\left(k_{0}-k_{2}\right) \otimes\left(k_{1}-k_{0}\right) \\
s_{1}+s_{2}-s_{3} & \rightarrow\left(k_{2}-k_{1}\right) \otimes\left(k_{2}-k_{1}\right) \\
s_{1}+s_{2}-s_{4} & \rightarrow\left(k_{1}-k_{2}\right) \otimes\left(k_{1}-k_{0}\right) ;
\end{aligned}
$$

i.e., S is mapped onto S^{\prime}. So $G(S, L)$ is equivalent to the group $S x_{2}{ }^{\otimes 2}=$ $G\left(S^{\prime}, L^{\prime} \otimes L^{\prime}\right)$. Since H^{\prime} is uniform, $S x_{2}{ }^{\otimes 2}$ is uniform and maximal, by Observation 4.1. Since S^{\prime} has 18 elements, while the associated subsets of our eight previous groups have, in order, $24,8,10,14,20,12,10$ and 10 elements, Observation 4.2 implies that
(4.22) The group $S x_{2}{ }^{\otimes 2}$ is uniform, maximal, and inequivalent to any of the groups in Cases I-VIII. Its associated subset is the S of this case.

Case X. \quad S comes from the graph N of Figure 3.4 via (3.2).

This is the only subset which does not lead to a maximal group. S consists of the six elements

$$
s_{1}, \quad s_{2}, \quad s_{3}, \quad-\left(s_{1}+s_{2}+s_{3}\right), \quad s_{4}, \quad-\left(s_{1}+s_{2}+s_{4}\right)
$$

and their negatives, where s_{1}, \cdots, s_{4} are the basis for L. Rename these elements, in order,

$$
\begin{equation*}
u_{11}, u_{12}, u_{21}, u_{22}, u_{31}, u_{32} . \tag{4.23}
\end{equation*}
$$

Then the only relations of the form $X_{1}+X_{2}+X_{3}+X_{4}=0$, where $\pm X_{1}, \cdots, \pm X_{4}$ are eight distinct elements of S are the six relations

$$
\begin{equation*}
u_{i 1}+u_{i 2}-u_{j 1}-u_{j 2}=0, \quad i \neq j, i, j=1,2,3 \tag{4.24}
\end{equation*}
$$

Consider $G(S, L)$ as a permutation group on S. It must permute the six expressions on the left of (4.24) among themselves. This implies directly that any element of $G(S, L)$ either permutes the elements (4.23) among themselves, or carries this entire set into its negative. So $G(S, L)=G \otimes(\pm 1)$ where G is the subgroup sending (4.23) into itself.

It is also clear from (4.24) that the subsets $\left\{u_{11}, u_{12}\right\},\left\{u_{21}, u_{22}\right\},\left\{u_{31}, u_{32}\right\}$ form a system of imprimitivity for G. So G permutes among themselves the 12 elements

$$
\begin{align*}
& u_{i 1}-u_{j 1}=u_{j 2}-u_{i 2}, \quad u_{i 1}-u_{j 2}=u_{j 1}-u_{j 2} \tag{4.25}\\
& u_{i 2}- u_{j 1}=u_{j 2}-u_{i 1}, \quad i \neq j, i, j=1,2,3 .
\end{align*}
$$

Let S^{\prime} be the union of S and the elements (4.25). Since $S^{\prime}=-S^{\prime}$, we know that $G(S, L)=G \otimes\{ \pm 1\} \subseteq G\left(S^{\prime}, L\right)$.

Map L onto the ring I of integral quaternions by

$$
\begin{aligned}
& u_{11} \rightarrow(1+i+j+k) / 2 \\
& u_{21} \rightarrow(1-i+j+k) / 2 \\
& u_{31} \rightarrow 1 \\
& u_{32} \rightarrow k .
\end{aligned}
$$

The other elements of S are mapped into

$$
\begin{aligned}
& u_{12} \rightarrow(1-i-j+k) / 2 \\
& u_{22} \rightarrow(1+i-j+k) / 2
\end{aligned}
$$

The elements (4.25) are mapped as follows:

$$
\begin{aligned}
& u_{11}-u_{21} \rightarrow i \\
& u_{11}-u_{31} \rightarrow(-1+i+j+k) / 2 \\
& u_{21}-u_{31} \rightarrow(-1-i+j+k) / 2 \\
& u_{11}-u_{22} \rightarrow j \\
& u_{11}-u_{32} \rightarrow(1+i+j-k) / 2 \\
& u_{21}-u_{32} \rightarrow(1-i+j-k) / 2
\end{aligned}
$$

Hence S^{\prime} maps onto U. So $G\left(S^{\prime}, L\right)$ is equivalent to $G(U, I)=Q n$. Since $Q n$ is transitive on U, the group $G\left(S^{\prime}, L\right)$ is transitive on S^{\prime}. But $G(S, L)$ isn't. So $G(S, L) \subset G\left(S^{\prime}, L\right)$; i.e.
(4.26) in this case, $G(S, L)$ is not maximal.

Having considered all ten cases, we conclude from (4.3), (4.6), (4.11), (4.12), (4.13), (4.14), (4.19), (4.20), (4.22) and (4.26) the following result:

Theorem 4.27. There are precisely nine inequivalent maximal finite groups of 4×4 integral matrices. They are all uniform. In the notation of this section they are, with their invariant forms:

Qn

$$
\begin{array}{ll}
Q n & X_{1}^{2}+X_{2}^{2}+X_{3}^{2}+X_{4}^{2}+X_{1} X_{4}+X_{2} X_{4}+X_{3} X_{4} \\
C u_{4} & X_{1}^{2}+X_{2}^{2}+X_{3}^{2}+X_{4}^{2} \\
S x_{2} \otimes C u_{2} & X_{1}^{2}+X_{2}^{2}+X_{3}^{2}+X_{4}^{2}+X_{1} X_{2} \\
S x_{3} \otimes C u_{1} & X_{1}^{2}+X_{2}^{2}+X_{3}^{2}+X_{4}^{2}+X_{1} X_{2}+X_{1} X_{3}+X_{2} X_{3} \\
S x_{4} & X_{1}^{2}+X_{2}^{2}+X_{3}^{2}+X_{4}^{2}+X_{1} X_{2} \\
& \quad+X_{1} X_{3}+X_{1} X_{4}+X_{2} X_{3}+X_{2} X_{4}+X_{3} X_{4} \\
& \\
S x_{2}^{(2)} & X_{1}^{2}+X_{2}^{2}+X_{3}^{2}+X_{4}^{2}+X_{1} X_{2}+X_{3} X_{4} \\
P y_{3} \otimes C u_{1} & 3 X_{1}^{2}+3 X_{2}^{2}+3 X_{3}^{2}+X_{4}^{2}-2 X_{1} X_{2}-2 X_{1} X_{3}-2 X_{2} X_{3} \\
P y_{4} & 2 X_{1}^{2}+2 X_{2}^{2}+2 X_{3}^{2}+2 X_{4}^{2}-X_{1} X_{2}
\end{array}
$$

$C u_{4}$
$S x_{3} \otimes C u_{1}$
$S x_{4}$
$P y_{3} \otimes C u_{1}$
$P y_{4}$

$$
-X_{1} X_{3}-X_{1} X_{4}-X_{2} X_{3}-X_{2} X_{4}-X_{3} X_{4}
$$

$S x_{2}{ }^{\otimes 2}$
$2 X_{1}^{2}+2 X_{2}^{2}+2 X_{3}^{2}+2 X_{4}^{2}+2 X_{1} X_{2}$

$$
+2 X_{1} X_{3}+X_{1} X_{4}+X_{2} X_{3}+2 X_{2} X_{4}+2 X_{3} X_{4}
$$

References

1. H. Minkowski, Über positive quadratische Formen, Collected Works, B. G. Teubner, 1911, vol. I, pp. 149-156. (Originally J. Reine Angew. Math., vol. 99 (1886), pp. 1-9.)
2. -, Zur Theorie der positiven quadratischen Formen, Collected Works, B. G. Teubner, 1911, vol. I, pp. 212-218. (Originally J. Reine Angew. Math., vol. 101 (1887), pp. 196-202.)
3. --, Sur la reduction des formes quadratiques positives quaternaires, Collected Works, B. G. Teubner, 1911, vol. I, p. 195. (Originally, with misprints, Comptes Rendus, vol. 96 (1883), p. 1205.)
4. G. H. Hardy and E. M. Wright, The theory of numbers, 3rd edition, Oxford, 1954, p. 305.
5. E. Dade, Integral systems of imprimitivity, Math. Ann., vol. 154 (1964), pp. 383-386.

California Institute of Technology
Pasadena, California

