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1. Introduction
Let E be a domain in n-dimensional Euclidean space R, n >_ 2. For u a

function with support in E and a a number such that 0 < a < 2, we define

r2-n-a fo(1.1) S,u(P) /X(u , )(P) W
B
u(Q);,(P, dQ)

where denotes convolution, r the polar distance from the origin, A the
Laplacian in the sense of distributions on the open set E, and a positive
measure on the boundary OE of E for each P e E. The expression

(u r--")
is, except for a multiplicative constant, the fractional Riesz potential I-"u
of order -a. Operators of the form (1.1) arise also in the theory of stochastic
processes; we shall say more about this later.

A. Beurling has suggested that the theory of Dirichlet spaces, developed by
him and J. Deny in [1] and [2], provides a ha,rural framework in which to study
operators of the form (1.1). It turns out that this extremely elegant theory
makes possible a rapid and simple access to numerous results which would
otherwise require much arduous analysis.

In the present note, we restrict ourselves to the case 0. Thus from now
on we shall be concerned with the operator

(1.2) A,u / f. u(Q) PQ [o._,_, dQ.

In a subsequent paper, we shall treat the more general operator (1.1).
Our main interest here is to show how the theory of Dirichlet spaces can

be used to give a self-contained and systematic account of the basic properties
of (1.2). For this reason we include a number of known results which have
been proved by other methods. Many of the statements we prove appear,
either explicitly or implicitly, in the pioneer work of M. Riesz and O. Frost-
man, cf. [4], [5] and [11]; others will be found in works motivated by probability
theory, cf. Getoor [6].
We sketch briefly the connection between (1.2) and probability theory.
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To each a, 0 < a

_
2, there corresponds a symmetric stable process of order

a on R whose transition densities p, are determined by the Fourier transforms

The case a 2 corresponds to Brownian motion. Each of these processes
determines positive contraction semi-groups

Jf p,(t, x y)f(y) dy(1.4) Ttf(x)

either from Co(R’) to itself, from L(R’) to itself, or from L(R’) to itself.
In each case, when 0 < a < 2, the infinitesimal generator of the semi-group
agrees on a dense set with a constant multiple of the operator 1.2 for E R.
Suppose that E is a bounded domain in R. Corresponding to each stable

a-process on R, there is an "absorbing barrier" process on E which can be
described roughly as follows" a symmetric stable process {X(t); >_ 0} with
starting point X(0) e E continues until the path leaves E, at which moment
the process terminates. The associated transition probabilities again de-
termine positive contraction semi-groups on various spaces of functions on
E. The generators agree with a constant multiple of (1.2) on dense sets.
Although we restrict ourselves here to dimension n >_ 2, alterations can

easily be made at the appropriate points to cover the case n 1. We shall,
however, omit these details. For articles which deal with problems connected
with the one-dimensional case, cf. [3], [8], [9], [10] and [12].
The author is indebted to Professor A. Beurling for his many helpful sug-

gestions.

2. Preliminaries
Let E be a bounded domain in R. We shall assume that E is a Greenian

domain, i.e. one for which Green’s Theorem holds; for certain results later on
we shall impose other more restrictive conditions on the boundary of E.
As mentioned above, we wish to study semi-groups generated by the

operator A, of (1.2). According to the Hille-Yosida theorem this is equiva-
lent to studying the resolvent equation

Xu(P) A,u(P) ,u(P) A f u(Q) PQ -n-" dQ
(2.1)

f(P) (X > O)

where f is a given function in the space under consideration. We shall in fact
start with ), 0 and construct the "Green’s function" G, which gives a solu-
tion

(2.2) u(P) f G,(P, Q)f(Q) dQ
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to (2.1) with 0, unique under certain auxiliary conditions to be specified
later. This Green’s kernel was studied by Riesz and Frostman, and in [11]
Riesz gave an explicit formula for G in the case where E is a spherical ball.

In Section 3 we show how a Dirichlet space can be associated with the
operator A. In Section 4 we study the properties of the solutions of (2.1)
for X 0 and obtain the Green kernel (2.2). Finally, in Section 5 the semi-
groups associated with A in several Banach spaces are constructed.

3. The Dirichlet space associated with Aa
We first recall the following two basic definitions from [2, Section 1].

DEFINITION 3.1. A normalized contraction of the complex plane C is a trans-
formation T of C into itself such that

(i) T(O) 0 and
(ii) T(zl) T(z2)l - Izl z,,. for each pair zl z in C.

DEFINITION 3.2. Given a locally compact space X and a positive Radon meas-
ure everywhere dense on X (non-empty open sets have positive measure), a
Dirichlet space relative to X and is any Hilbert space D D(X, ) whose
elements are complex-valued functions, locally summable for , and satisfying the
following axioms:

I. For every compact K c X, there exists a finite number A (K such that

III. If denotes the complex-valued functions, continuous on X with compact
support, then n D is dense in and in D.

III. If T is a normalized contraction of the complex plane, then u e D implies
T(u) e D and
A real Dirichlet space is one whose elements u are real-valued functions satis-

fying I-III.

We shall now define the real Dirichlet space associated with the operator
A,. Suppose that u and v are infinitely differentiable with compact support
contained in the domain E. An application of Green’s formula yields

_f. v(P)A,u(P) dP (u, v)
(3.1)

Is vumW C"Is fs [v(P)- v(Q)][u(P)IpQ ]’+"
u(Q)]

dPdQ,

where0 < a < 2, C, a(n W a 2), and

We take the usual liberty of speaking of functions when actually equivalence classes
a re meant.
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(3.2) re(P) Ca fee PQ I-’-" dQ,

with CE denoting the complement of E.
The real-valued functions infinitely differentiable with compact support con-

tained in E form a pre-Hilbert space with scalar product (u, v) defined by
(3.1). We complete this pre-Hilbert space to a Hilbert space D, which, as
the next lemma shows, is a Dirichlet space.

LEMA 3.1. The Hilbert space D, formed by completing the pre-Hilbert
space of infinitely differentiable functions with compact support contained in E
and the scalar product (u, v of (3.1) is a Dirichlet space.

Proof. Since there exists a constant c such that m(P) > c > 0, for P e E,
it is clear that Axiom I is satisfied. Axiom II follows from the definition of
D,. To show that Axiom III is satisfied, we note that if u e D, and u.} is a
sequence of functions in the pre-Hilbert space such that u -- u in the norm,
then for any normalized contraction T, Tu,, converges to Tu in the norm of

DD,. Hence Tue and the norm condition T(u)[!

_
u II follows im-

mediately from the expression for (u, v) given in (3.1).
The norm in D, can also be expressed as follows" if

then

(3.3)

with

(3.4)

(x) fR. exp(--2i-x.y)u(y) dy,

da 4("+n/)F(1 a/2)/F([n - a 2]/2).
The space D, is a subspace of the special Dirichlet space described in the last
paragraph of [2].

4. Potentials in D.
Following [2, Section 2], we have

DEFINITION 4.1. An element u in a Dirichlet space D(E, ) is called a po-
tential if there exists a Radon measure on E such that

(4.1) (u., v) fE v d

whenever v e n D. If is a positive measure, then u, is called a pure potential.

In our case (4.1) implies that

(4.2) -A(u..r-a-E)
in the sense of distributions on the open set E, the denoting convolution.
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If f e L1/m(E), where m is the function in (3.2), then for every

(4.3) i.v.
Hence, there exists a potential us e D. for which (4.1) is valid for all v D,.
Note that LI/m(E) contains the bounded measurable functions on E, the
functions in L(E), and all functions of the form .m/ with e L(E).
The following lemma is proved in [2, Lemma 2]"

LEMMA 4.1. Pure potentials are positive.

If 0 < a < 1, then the function m of (3.2) is in L(E), and u 1 is the
pure potential associated with m. In this case, for every potential us associ-
ated with an f e L(E), we have

(4.4) fE ufm fB f.

This argument breaks down if a >__ 1 because in this case m L(E), and the
characteristic function of E is not in D,. We shall now show that (4.4) holds
even in the case that a > 1.

LEMMA 4.2. If 0 < a < 2, and if us is a potential in D, associated with a

function f L(E), then us m e L (E), with m the function in (3.2).

Proof. It suffices to prove the lemma for f >_ 0. By Theorem 1 of [2], for
each open set S such that c E, there corresponds an "equilibrium potential"
us satisfying

(4.5) us----- 1 a.e. on S

(4.6) 0_< us_< 1 a.e. on E.

The associated measure ms is positive and carried by .
We have, for P e S,

(4.7)

us(Q)
dQ-A

PQ

re(P) + C,, f_ 1 i-PQus(Q)l’+" dQ _> re(P),

where C, is given after (3.1). Thus

(4.8) fs usm <_ f us dms f fus fB f.

Since S is an arbitrary open set whose closure is contained in E, it follows that
us m L(E).

LEMMA 4.3. iff L(E) and fl <- m, and if there exists a potential us
associated with f, then usl <_ 1 a.e.
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Proof. (Necessary only for 1 <_ a < 2). We may suppose that f >_ 0,
since us _< ulsl For each g >_ 0, bounded and measurable on E,

<4.0,

by (4.8). Bug his implies W -< 1 .e.
An immediate corollary of Lemm 4.8 is

COROLLARY 4.1 IffeB E) the space of essentially bounded, measurablefunc-
tions on E, then there exists a corresponding potential W B E) f] D, and

(4.10) [I W II- < f II. [inf {re(p) P

LEMMX 4.4. If B E then there exists a b e B E such that

r2--a--n(4.11) --h(h @.m;

if 0 _< @ _< 1 a.e., then the same is true of b. Furthermore, if W DO, is a po-
tential corresponding to some f L E ), then

(4.12) u,m
(Here, as usual, A is to be interpreted as a distribution in the open set E.

Proof. Let us suppose 0 _< <_ 1 a.e. Let {n} be a sequence in B(E)
such that n T and n vanishes outside some compact K c E. There is a
potential bn e B(E) n D, corresponding to ,.m by Corollary 4.1, since,.m e B(E). By the same corollary, 0 _< b, _< 1 a.e. In addition {k,} is a
bounded, increasing sequence (or can be made so by alteration on a set of
measure zero), and so there exists a limit function b lira, kn in B(E).
Now suppose v is infinitely differentiable with compact support in E; then

(4.13) ,A,v=limq,,A,v=limv,.m=v.4,.m,
so --A. .m in the sense of distributions on E, thus proving (4.11).
Since (4.12) holds for , and k,, we obtain the relation for and b by a pas-
sage to the limit. This completes the proof.

Let denote the class of functions constructed in the last lemma, that is the
functions k satisfying (4.11) and (4.12) with and in B(E). Let )(E) be
the class of functions which are infinitely differentiable on some open set
containing E. We then have the following lemma"

LEMMA 4.5. If A(U * r-’-") O, and if u -t- v nt- g,, where 1 D
v (E), and , ,, then u 0 a.e. in E.

(4.14)

It suffices to note that if v e )(E) and f C(E), then
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It then follows from (4.14) and (4.12) that if f e B(E), and if u satisfies the
hypothesis of the lemma then

(4.15) f uf fE uf A,u O

and we thus have u 0 a.e. on E.
We obtain immediately from Lemmas 4.4 and 4.5 the following corollary:

COROLLARY 4.2. Iff B(E), then (4.4) holds in D, for 0 < a < 2.

Proof. Take 1 in Lemma 4.4, and let be the corresponding solution
constructed in that lemma. Then I u satisfies the conditions of Lemma
4.5, and therefore -= 1 a.e. on E. Putting this in (4.12), we obtain (4.4).

LEMMA 4.6. If f B(E), then

(4.16) u] J,(] r"-’),

where is the function in L(R’) defined by

](P) f(P),
(4.17)

-C. u](Q) ]PQ 1-’-" dQ,

and

(4.18)

Proof.
Then

J. (4)-’- sin (ar/2).r[(n -t-" a 2)/2].r[(n a)/2].

PeE

PeCE

Let v be infinitely differentiable with compact support in R".

(4.19) f,v.(u], r-’-") fE u](Av, r-’-").

Since v r--" is bounded and continuous on R, there is a potential u cor-
responding to its restriction on E. In fact, if is the solution constructed in
Lemma 4.4 corresponding to Cm Av r--", then we must have u v ,
using the uniqueness proved in Lemma 4.5. Thus the right integral ia (4.19)
can be replaced by

This proves that

(4.21) -A(u] r--") ]

in the sense of distributions on R. That ] e L(R) follows from the fact that
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us m L(E). The representation (4.16) follows from an application of the
Fourier transform to (4.21).
From this lemma we obtain

COaOLLAaY 4.3. Iff B(E), then us is continuous on E.

LEMMA 4.7. Suppose that E1 c E f > O, and f e B(E). If us(’; Ei) is
the potential in D, (Ei) corresponding to the restriction of f to Ei then

(4.22) us(P; El)

_
us(P; E.)

for almost all P in E.

Proof. If we extend us(P;E) to be0in CE1, then{us(. ;E) us(." ;E)}
is the potential in D,(E) of a positive integrable function, and is therefore
positive. This completes the proof.
We have shown in Corollary 4.3 that f e B(E) implies that us e C(E). We

shall next show that if the boundary of E consists of regular points, then
us e C0(/), the space of functions continuous on E vanishing at the boundary
of E, or more precisely, that us is equivalent to such a function.

Before presenting a proof of this result, we look at a couple of special cases.
It can be verified by Fourier transforms that if E is the ball r < b then the
potential ul corresponding to f -= 1 is given by

(4.23) ul ,,. (b r2)"/2
where

(4.24) , r(n/2)[2.vn/(n - a + 2). r(a/2 + 1 ). F(1 a/2)]-1.
This formula follows from the work of M. Riesz, and the calculations are
carried out in [6, Theorem 5.2]. Since for any E, f e B(E) implies

(4.25) us - const([I f II,’ul),
it follows from (4.23) that if E is any ball r < b, then

(4.26) limp-eo us(P) 0

for P0 on OE.
Next, we shall show that (4.26) also holds if E is a region between two

spheres given by a r b. It is certainly true for P0 on the outer sphere
r b, since the monotonicity property proved in Lemma 4.7 shows that the
potential ui(.; a, b) for the region a r b is smaller than the potential
u(. b) for the ball r < b. If we perform an inversion about the inner sphere
r a, that is, make a change of variable r’ ar- in (4.16), we find that

(4.27) ul(a2/r’; a, b)(r’) u(r’; a2/b, a)

When we say that u] is continuous on E we mean, of course, that there is a repre-
sentative of the equivalence class u] which belongs to C(E).
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where g(r’) a"(r’)--". But from our remarks above,

(4.28) limr,a ug (r’; a2/b, a) O,

and therefore from (4.27) we conclude that (4.26) holds also when P0 lies on
the inner sphere r a.

It is now easy to prove

LEMMA 4.8. If Po is a point on the boundary of E lying on a sphere whose
interior is contained in CE, then (4.26) holds whenever f e B(E ).

Proof. We may suppose the sphere at P0 to have the equation r a.
Since E is a bounded domain, it can be enclosed in a ball r < b. The result
then follows from the Lemma 4.7 and the fact that (4.26) holds for the region

COROLLARY 4.4. If each point Po on the boundary of E satisfies the condition
of Lemma 4.8, then f B(E) implies uf e Co().

Following [2, Section 4], we may represent our potentials uf by means of a
symmetric kernel G,(P, Q), that is,

(4.29)

and

u](P) f G.(P, Q) f(Q) dQ

(4.30) , 11 f f G.(P, Q)f(P)f(Q) dP dQ.

From (4.16) we obtain the relation

G.(P, Q)
(4.31)

for P and Q in E.
The solution of -A, .m constructed in Lemma 4.4 is given by

(4.32) (P) f G,(P, Q)(Q).m(Q) dQ

and in particular

(4.33) f G.(P, Q).m(Q) dQ 1 a. e,

5. Semi-groups cssocicCed wih A.
The basis for the results of this section is provided by the following two

lemmas from [2], appearing in that paper as Lemmas 3 and 4.
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5LEMMA 5.1. Given a Dirichlet space D(X) and a function f (X) or in D,
then for every O, there exists a unique element Sx f D which minimizes the
quadratic functional

u) X u llo q- fx u f d;5.1 F

u Sx f is the only element in D such that u f Lg(X) and

(5.2) h(u, v) - f:r (u- f)v d 0

for each v a D.

LEMMA 5.2. For each O, the operator Rx k-isi/ defined on D has the
following properties"

(i) Rx is linear, positive, hermitian, and bounded in D and in L(X) with
I] R < 1 in both spaces; f D and Rf z) f z) implies f O.

(ii) limx_. hRx I and limx0 hRx 0 strongly in D and in L2, where I
denotes the identity operator.

(iii) If T is a normalized contraction, then Tf f implies T{Rx f} hRx f.
in particular, if 0 _< f _< 1 a.e., then the same is true of Rx f.
These two lemmas are proved in [2, Section 3].
Note that (5.2) implies that the function u Rx f satisfies

(5.3) Xu A, u f
in the sense of distributions on E. Thus the preceding two lemmas combined
with the Hille-Yosida theorem show that A, is the infinitesimal generator of
a contraction semi-group on D, and on
Our aim is now to show that A, also generates semi-groups on L(E)and oa

Co(E), the space of functions continuous on E vanishing on the boundary of
E.

THEOREM 5.1. lf f e Co(E) with E satisfying the condition of Corollary 4.4,
and R denotes the restriction of the operator Rx of Lemma 5.2 to Co, then

(5.4)

with A, defined in 1.2 ).

(5.5)

and as k

(5.6)

strongly in Co(ft, ).

(5.7)

XRf A,Rf f
Furthermore, in the norm of Co( ff ),

Finally,

o<_f<_
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Thus {R} is the family of resolvents of a positive contraction semi-groupfrom Co to
itself with infinitesimal generator A,.

Proof. We have already noted in (5.3) that property (5.4) must hold.
Property (5.7) follows from Lemma 5.2(iii). Thus if re c0(/’), then Rxf is
the potential in DO, of the bounded functionf kRxf and is therefore in C0(/)
by Corollary 4.4. From (5.7) we conclude that (5.5) holds.

If we can show that the range of R is dense in C0(/), then the two proper-
ties (5.4) and (5.5) will imply (5.6). Let G, denote the integral transforma-
tion in (4.29). The range of R[ is identical with the range of G,, since

(5.s)

and the range of I kR is equal to C0(/). But the range of G, is dense in
C0(E), since every infinitely differentiable function with compact support in E
is in this range. This completes our proof.
In any Dirichlet space there is defined a "generalized Laplacian", cf.

[2, Sec. 4], as follows" if u is a potential in D generated by a function f, then we
define/u f and call f the Laplacian of u. In the classical case, this reduces
to a negative constant times the ordinary Laplacian. The operator -/ thus
defined is the infinitesimal generator of a positive contraction semi-group from
D to itself of which {Rx}, the family of operators constructed in Lemma 5.2,
is the resolvent family. In our case, of course, - A,.
The next result is a direct corollary of Lemma 5.2. We include it for the

sake of completeness"

COROLLARY 5.1. If D D(X, ) is a Dirichlet space with a totally finite
measure such that u D implies u L(X and

,x

for some constant A independent of u, then the operator Rx of Lemma 5.2 can be
extended to a bounded linear operator R from L(X) to itself so that {R} is the
family of resolvents of a positive contraction semi-group from L(X) to itself.
The infinitesimal generator of this semi-group is a closed extension of -4.

Proof. Let us suppose that f e e n D. Then since Rx is positive and her-
Lmitian as an operator on L (X) we have for > 0 and f e

(5.10)

Since L is dense in L we conclude that Rx can be extended to an operator
from L to L which satisfies

(5.11) R IlL -< 1.

The range of Rx, and hence of R is dense in L, since it is dense in L. Since
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R satisfies

(5.12) kRx f - /Rx f f,

we have the result.
Note that the hypotheses of Corollary 5.1 are satisfied in our case. The

infinitesimal generator of the semi-group from L to L agrees with (1.2) on a
dense subset of L(E), since for every infinitely differentiable function v with
compact support in E and f e L(E),

(5.13) f A, v.Rf f v(,Rf f).
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