a Generator for a set of functions

BY
\section*{J. W. Neuberger}

1. Introduction

Suppose that $H=[S,+,\|\cdot\|]$ is a normed complete abelian group and that D_{0} is a subset of S. Suppose furthermore that for each x in D_{0}, T_{x} is a function from $[0,1)$ to S. The main problem considered is that of finding a Stieltjes-Volterra integral equation

$$
\begin{equation*}
T_{x}(t)=T_{x}(s)+\int_{s}^{t} d F \cdot T_{x}, \quad 0 \leq s \leq t<1 \tag{*}
\end{equation*}
$$

which is satisfied for all x in D_{0}. The integral used is similar to one used in [6].

Some ways in which such function collections arise are now described.
(i) If H is a linear space and for each $t \geq 0, M(t)$ is a bounded linear transformation on H such that $M(s) M(t)=M(s+t)$ if $s, t \geq 0$, then one has a semi-group of bounded linear transformations of the kind considered so extensively in [1]. Here one may define $T_{x}(s)=M(s) x$ for $0 \leq s<1$. In some cases an examination of the function F in (*) yields a generator for M (see Section 3 of this paper). Results of this paper seem to apply only to the "uniform" case of [1].
(ii) If f is a continuous function from $S \times R$ (R is the real line) to S so that (I) $f(p, 0)=p$ for all p in S and (II) $f\left(f\left(p, t_{1}\right), t_{2}\right)=f\left(p, t_{1}+t_{2}\right)$ for all p in S and t_{1}, t_{2} in R, then f is a dynamical system (see for example [5]). One may define $T_{x}(t)=f(x, t)$ for all x in S (or perhaps some subset D_{0} of S) and $0 \leq t<1$. In some cases in which f is generated by a system of differential equations, (*) is equivalent to this system (see Example 3, Section 5 of [6]).
(iii) Suppose M is a continuous harmonic operator (see [7] or [3] for a discussion and references), that is, M is a function from $R \times R$ to the set of all bounded linear transformations on S such that M is continuous and of bounded variation with respect to its first place, continuous with respect to its second place and for each number triple $r, s, t, M(r, s) M(s, t)=M(r, t)$ and $M(r, r)=I$. Then, one may define $T_{x}(s)=M(s, 0) x$ for $0 \leq s<1$. Then F in (*) generates the restriction of M to $[0,1) \times[0,1)$. Results of this paper applied to the harmonic operator case duplicate some results of [7] and [2]. ${ }^{1}$

[^0]In [6], the problem of obtaining families of functions like the set of T_{x}, x in D_{0}, was considered. The main process used there can be described as an exponential process. In this paper, the opposite, i.e., logarithmic, process is considered.

2. The main result

Definition. If Q is a number set, then the statement that V is a variation function for Q means that V is a function from $Q \times Q$ to a non-negative number set such that if each of s, p and t is in Q and p is in $[s, t]$, then

$$
V(s, p)=V(p, s) \quad \text { and } \quad V(s, p)+V(p, t)=V(s, t)
$$

A definition for integral and a sufficient condition for existence are given.
Definition. Suppose that $[a, b]$ is a number interval, X is a function from $[a, b]$ to S and F is a function on $[a, b]$ such that if t is in $[a, b], F(t)$ is a transformation from a subset of S to a subset of S. The statement that X is F-integrable from a to b means that there is a point w in S such that if $\varepsilon>0$, there there is a $\delta>0$ such that if t_{0}, \cdots, t_{n+1} is a chain from a to b with mesh $<\delta$ and s_{0}, \cdots, s_{n} is an interpolation sequence for t_{0}, \cdots, t_{n+1}, then

$$
\left\|w-\sum_{i=0}^{n}\left[F\left(t_{i+1}\right)-F\left(t_{i}\right)\right] X\left(s_{i}\right)\right\|<\varepsilon
$$

Such a point w is of course unique and is denoted by $\int_{a}^{b} d F \cdot X$.
Lemma 0. Suppose that $[a, b]$ is a number interval, U is a variation function for $[a, b]$ and each of X and F is a function as in the first sentence of the above definition. Suppose in addition that (1) X is continuous and (2) there is a $\delta>0$ such that if each of s and t is in $[a, b]$, each of u and v is in $[s, t]$ and $|s-t|<\delta$, then each of $X(u)$ and $X(v)$ is in the domain of $F(t)-F(s)$ and $\|[F(t)-F(s)] X(u)-[F(t)-F(s)] X(v)\| \leq U(t, s)\|X(u)-X(v)\|$.

Then X is F-integrable from a to b.
A proof which follows closely an existence proof for ordinary integrals is omitted. This lemma is similar to Theorem E of [6].

With $H=[S,+,\|\cdot\|]$ a normed complete abelian group and D_{0} a subset of S, suppose that if x is in D_{0}, then T_{x} is a function from $[0,1)$ to S such that $T_{x}(0)=x$. If t is in $[0,1)$, denote by D_{t} the set of all $T_{x}(t)$ for all x in D_{0}. Denote by G the set of all $\left(t, T_{y}(t)\right)$ for all y in D_{0} and all t in $[0,1)$. Denote by I the identity transformation on S.

[^1]Theorem. Suppose that each of U and V is a continuous variation function for $[0,1)$ so that
(1) $\left\|T_{x}(t)-T_{x}(s)\right\| \leq V(t, s)$ if x is in D_{0} and $0 \leq s \leq t<1$,
(2) $\left\|\left[T_{x}(t)-T_{x}(s)\right]-\left[T_{y}(t)-T_{y}(s)\right]\right\| \leq U(t, s)\left\|T_{x}(s)-T_{y}(s)\right\|$ if each of x and y is in D_{0} and $0 \leq s \leq t<1$, and
(3) the set G is open with respect to $[0,1) \times S$.

There is a function F on $[0,1)$ such that
(1) if t is in $[0,1)$ then $F(t)$ is a transformation from D_{t} to S and.
(2) the following hold:
(A) $T_{y}(t)=T_{y}(s)+\int_{s}^{t} d F \cdot T_{y}$ if $0 \leq s \leq t<1$ and
(B) if $\varepsilon>0$, and $0 \leq s \leq t<1$ there is a $\delta>0$ such that if t_{0}, \cdots, t_{n+1} is a chain from sto t of mesh $<\delta$, then

$$
\left\|T_{y}(t)-\left\{\prod_{i=0}^{n}\left[I+F\left(t_{i+1}\right)-F\left(t_{i}\right)\right]\right\} T_{y}(s)\right\|<\varepsilon
$$

A proof is developed by means of a sequence of lemmas, all of which are under the hypothesis of the theorem.

Lemma. 1. If each of x and y is in D_{0}, s is in $[0,1)$ and $T_{x}(s)=T_{y}(s)$, then $T_{x}(t)=T_{y}(t)$ if $s<t<1$.

Proof of Lemma 1.

$$
\begin{aligned}
&\left\|T_{x}(t)-T_{y}(t)\right\|=\|\left[T_{x}(t)-T_{x}(s)\right]- {\left[T_{y}(t)-T_{y}(s)\right] \| } \\
& \leq U(s, t)\left\|T_{x}(s)-T_{y}(s)\right\|=0
\end{aligned}
$$

so that $T_{x}(t)=T_{y}(t)$.
Notation. If s is in $[0,1)$ and w is in D_{s}, then $I(w, s)$ denotes the set of all numbers t such that if u is in [s, t], then w is in D_{u}. Note that such a set $I(w, s)$ is open with respect to $[0,1)$. If $0 \leq s \leq t<1$, then $M(t, s)$ denotes the function from D_{s} to D_{t} such that if w is in $D_{s}, M(t, s) w=T_{x}(t)$ where x is such that $w=T_{x}(s)$.

Note that (2) in the hypothesis of the theorem is equivalent to the following: $\|[M(t, s)-I] w-[M(t, s)-I] z\| \leq U(t, s)\|w-z\|$ if $0 \leq s \leq t<1$ and each of w and z is in D_{s}. Also note that (1) in the hypothesis of the theorem is equivalent to $\|[M(t, s)-I] w\| \leq V(t, s)$ under the same conditions.

Lemma 2. Suppose that $0 \leq s<1, w$ is in D_{s} and t is in $I(w, s)$. If $s \leq a \leq b \leq t$ and t_{0}, \cdots, t_{n+1} is a chain from a to b, then

$$
\left\|[M(b, a)-I] w-\left\{\sum_{i=0}^{n}\left[M\left(t_{i+1}, t_{i}\right)-I\right]\right\} w\right\| \leq U(b, a) V(b, a)
$$

Proof of Lemma 2.

$$
\begin{aligned}
& \left\|[M(b, a)-I] w-\left\{\sum_{i=0}^{n}\left[M\left(t_{i+1}, t_{i}\right)-I\right]\right\} w\right\| \\
& \quad=\left\|\sum_{i=0}^{n}\left\{\left[M\left(t_{i+1}, a\right)-M\left(t_{i}, a\right)\right] w-\left[M\left(t_{i+1}, t_{i}\right)-I\right] w\right\}\right\|
\end{aligned}
$$

$$
\begin{aligned}
& \leq \sum_{i=0}^{n}\left\|\left[M\left(t_{i+1}, t_{i}\right)-I\right] M\left(t_{i}, a\right) w-\left[M\left(t_{i+1}, t_{i}\right)-I\right] w\right\| \\
& \leq \sum_{i=0}^{n} U\left(t_{i+1}, t_{i}\right)\left\|M\left(t_{i}, a\right) w-w\right\| \\
& \leq \sum_{i=0}^{n} U\left(t_{i+1}, t_{i}\right) V\left(t_{i}, a\right) \leq U(b, a) V(b, a)
\end{aligned}
$$

Lemma 3. Suppose that $0 \leq s<1, w$ is in D_{s}, t is in $I(w, s), a<b$, each of a and b is in $[s, t]$ and $r=r_{0}, \cdots, r_{n+1}$ is a chain from a to b. If q_{0}, \cdots, q_{m+1} is a refinement of r, then

$$
\begin{aligned}
\|\left\{\sum_{i=0}^{n}\left[M\left(r_{i+1}, r_{i}\right)-I\right]\right\} w-\left\{\sum_{i=0}^{m}\right. & {\left.\left[M\left(q_{i+1}, q_{i}\right)-I\right]\right\} w \| } \\
\leq & \sum_{i=0}^{n} V\left(r_{i+1}, r_{i}\right) U\left(r_{i+1}, r_{i}\right)
\end{aligned}
$$

This follows easily from Lemma 2 and a proof is omitted.
Lemma 4. Suppose that $0 \leq s \leq t<1, w$ is in D_{s} and t is in $I(w, s)$. If $\varepsilon>0$, there is a number $\delta>0$ such that if each of $r=r_{0}, \cdots, r_{n+1}$ and $q=q_{0}, \cdots, q_{m+1}$ is a chain from s to t of mesh $<\delta$, then

$$
\left\|\left\{\sum_{i=0}^{n}\left[M\left(r_{i+1}, r_{i}\right)-I\right]\right\} w-\left\{\sum_{i=0}^{m}\left[M\left(q_{i+1}, q_{i}\right)-I\right]\right\} w\right\|<\varepsilon
$$

Proof of Lemma 4. Suppose $\varepsilon>0$. Denote by δ a positive number so that if each of a and b is in $[s, t]$ and $|a-b|<\delta$, then

$$
V(b, a)<\varepsilon /[2+2 U(b, a)]
$$

Denote by each of $r=r_{0}, \cdots, r_{n+1}$ and $q=q_{0}, \cdots, q_{m+1}$ a chain from s to t of mesh $<\delta$ and by $v=v_{0}, \cdots, v_{u+1}$ a common refinement of r and q. By Lemma 3,

$$
\begin{aligned}
& \left\|\left\{\sum_{i=0}^{n}\left[M\left(r_{i+1}, r_{i}\right)-I\right]\right\} w-\left\{\sum_{i=0}^{m}\left[M\left(q_{i+1}, q_{i}\right)-I\right]\right\} w\right\| \\
& \quad \leq\left\|\left\{\sum_{i=0}^{n}\left[M\left(r_{i+1}, r_{i}\right)-I\right]\right\} w-\left\{\sum_{i=0}^{u}\left[M\left(v_{i+1}, v_{i}\right)-I\right]\right\} w\right\| \\
& \quad+\left\|\left\{\sum_{i=0}^{u}\left[M\left(v_{i+1}, v_{i}\right)-I\right]\right\} w-\left\{\sum_{i=0}^{m}\left[M\left(q_{i+1}, q_{i}\right)-I\right]\right\} w\right\| \\
& \leq
\end{aligned}
$$

since $\left|r_{i+1}-r_{i}\right|<\delta, i=0, \cdots, n$ and $\left|q_{i+1}-q_{i}\right|<\delta, i=0, \cdots, m$.
Lemma 5. Suppose that $0 \leq s \leq t<1, w$ is in D_{s} and t is in $I(w, s)$. There is a unique point y of S with the following property: If $\varepsilon>0$, there is $a \delta>0$ so that if t_{0}, \cdots, t_{n+1} is a chain from s to t with mesh $<\delta$, then

$$
\left\|y-\left\{\sum_{i=0}^{n}\left[M\left(t_{i+1}, t_{i}\right)-I\right]\right\} w\right\|<\varepsilon
$$

Indication of proof of Lemma 5. Lemma 4 yields the fact that

$$
\left\{\left\{\sum_{i=0}^{n}[M(s+(i / n)(t-s), s+[(i-1) / n](t-s)]-I\} w\right\}_{n=1}^{\infty}\right.
$$

is a Cauchy sequence. Denote its limit by y. A simple argument (which is omitted) gives that y satisfies the conclusion of Lemma 5.

It is remarked that it follows from Lemma 3 that if t_{0}, \cdots, t_{n+1} is a chain
from s to t, then

$$
\left\|y-\left\{\sum_{i=0}^{n}\left[M\left(t_{i+1}, t_{i}\right)-I\right]\right\} w\right\| \leq \sum_{i=0}^{n} V\left(t_{i+1}, t_{i}\right) U\left(t_{i+1}, t_{i}\right)
$$

and in particular, $\|y-[M(t, s)-I] w\| \leq V(t, s) U(t, s)$.
A point y satisfying the conclusion to Lemma 5 is denoted by $\Delta(t, s) w$. Note that if $0 \leq s \leq t<1, w$ is in D_{s} and t is in $I(w, s)$, then $\Delta(t, s) w$ is defined.

Lemma 6. If $0 \leq s \leq p \leq t<1, w$ is in D_{s} and each of p and t is in $I(w, s)$, then $\Delta(t, p) w+\Delta(p, s) w=\Delta(t, s) w$.

A simple argument is omitted.
Lemma 7. If y is in D_{0} and $0 \leq s \leq t<1$, there is a $\delta>0$ such that if $s \leq u \leq t,\left\|T_{y}(u)-x\right\|<\delta$ and $u \leq v \leq u+\delta$, then x is in D_{v}.

Proof of Lemma 7. Suppose the lemma is false. Denote by y an element of D_{0}, by each of s and t a number in $[0,1)$, by each of $\left\{u_{i}\right\}_{i=1}^{\infty}$ and $\left\{v_{i}\right\}_{i=1}^{\infty}$ a number sequence and by $\left\{x_{i}\right\}_{i=1}^{\infty}$ a point sequence in S so that

$$
s \leq u_{i} \leq t, u_{i} \leq v_{i} \leq u_{i}+1 / i,\left\|T_{y}\left(u_{i}\right)-x_{i}\right\|<1 / i
$$

and x_{i} is not in $D_{v_{i}}, i=1,2, \cdots$.
Denote by $\left\{n_{i}\right\}_{i=1}^{\infty}$ an increasing sequence of positive integers so that $\left\{u_{n_{i}}\right\}_{i=1}^{\infty}$ converges and denote by u the limit of this sequence. Then, u is also the limit of $\left\{v_{n_{i}}\right\}_{i=1}^{\infty}$. Since u is in $[0,1)$ and G is open in $[0,1) \times S$, there is a $\delta>0$ so that if x is in $S,\left\|T_{y}(u)-x\right\|<\delta$ and q is in both $[0,1)$ and [$u-\delta, u+\delta$], then (q, x) is in G. Denote by δ_{1} a positive number $\leq \delta$ so that if $|v-u| \leq \delta_{1}$ then $\left\|T_{y}(u)-T_{y}(v)\right\|<\delta / 2$. Denote by i an integer so that $1 / i<\delta_{1} / 2$ and $\left|u_{n_{i}}-u\right|<\delta_{1} / 2$. Then,

$$
\left\|T_{y}\left(u_{n_{i}}\right)-T_{y}(u)\right\|<\delta / 2, \quad\left\|T_{y}\left(u_{n_{i}}\right)-x_{n_{i}}\right\|<1 / n_{i}<\delta / 2
$$

and hence $\left\|T_{y}(u)-x_{n_{i}}\right\|<\delta$. But $\left|u-v_{n_{i}}\right|<\delta$ so that $\left(v_{n_{i}}, x_{n_{i}}\right)$ is in G, a contradiction.

It is remarked that since T_{y} is uniformly continuous on closed subsets of $[0,1)$, it follows from Lemma 7 that if $0 \leq s \leq t<1$ and y is in D_{0}, then there is a $\delta>0$ so that if each of a and b is in $[s, t], 0 \leq b-a<\delta$ and u is in $[a, b]$, then $T_{y}(u)$ is in the domain of $\Delta(k, a)$.

Lemma 8. If $0 \leq s \leq t<1$, each of w and x is in D_{s} and t is in $I(w, s)$ and $I(x, s)$, then

$$
\|\Delta(t, s) w\| \leq V(t, s) \quad \text { and } \quad\|\Delta(t, s) w-\Delta(t, s) x\| \leq U(t, s)\|w-x\|
$$

Proof of Lemma 8. Suppose that $\varepsilon>0$. Denote by t_{0}, \cdots, t_{n+1} a chain from s to t so that

$$
\left\|\Delta(t, s) w-\left\{\sum_{i=0}^{n}\left[M\left(t_{i+1}, t_{i}\right)-I\right]\right\} w\right\|<\varepsilon
$$

and

$$
\left\|\Delta(t, s) x-\left\{\sum_{i=0}^{n}\left[M\left(t_{i+1}, t_{i}\right)-I\right]\right\} x\right\|<\varepsilon
$$

Since

$$
\begin{aligned}
\left\|\left\{\sum_{i=0}^{n}\left[M\left(t_{i+1}, t_{i}\right)-I\right]\right\} x\right\| & \leq \sum_{i=0}^{n}\left\|\left[M\left(t_{i+1}, t_{i}\right)-I\right] x\right\| \\
& \leq \sum_{i=0}^{n} V\left(t_{i+1}, t_{i}\right) \leq V(t, s)
\end{aligned}
$$

and

$$
\begin{aligned}
\|\left\{\sum _ { i = 0 } ^ { n } \left[M\left(t_{i+1}, t_{i}\right)-\right.\right. & I]\} w-\left\{\sum_{i=0}^{n}\left[M\left(t_{i+1}, t_{i}\right)-I\right]\right\} x \| \\
& \leq \sum_{i=0}^{n}\left\|\left[M\left(t_{i+1}, t_{i}\right)-I\right] w-\left[M\left(t_{i+1}, t_{i}\right)-I\right] x\right\| \\
& \leq \sum_{i=0}^{n} U\left(t_{i+1}, t_{i}\right)\|w-x\| \leq U(t, s)\|w-x\|
\end{aligned}
$$

it follows that

$$
\|\Delta(t, s) w\|<\varepsilon+V(t, s)
$$

and

$$
\|\Delta(t, s) w-\Delta(t, s) x\| \leq 2 \varepsilon+U(t, s)\|w-x\|
$$

from which the lemma follows.
Notation. Denote by F the function from $[0,1)$ such that if t is in $[0,1)$, then $F(t)$ is the transformation K from D_{t} to S with the following property: If w is in D_{t} and q is the mid-point of $I(w, t)$, then

$$
K w=\Delta(t, q) w \quad \text { if } \quad t \geq q \quad \text { and } \quad K w=-\Delta(q, t) w \quad \text { if } \quad t<q
$$

Note that if $0 \leq s \leq t<1, w$ is in D_{s} and t is in $I(w, s)$, then $I(w, t)=$ $I(w, s), \Delta(t, s) w$ is defined and $[F(t)-F(s)] w=\Delta(t, s) w$.

It is remarked that it follows from the second part of the conclusion to Lemma 8 that if $0 \leq s<1$ and w is in D_{s}, then there is a $\delta>0$ such that if $s \leq t \leq s+\delta$, then $F(t)-F(s)$ is continuous at w.

Lemma 9. If $0 \leq s \leq t<1$ and y is in D_{0}, then $\int_{s}^{t} d F \cdot T_{y}$ exists.
Proof of Lemma 9. It follows from the remark following Lemma 7 that there is a number $\delta>0$ so that if each of a and b is in $[s, t]$ and $|b-a|<\delta$, then $T_{y}(u)$ is in the domain of $F(b)-F(a)$ for all u in $[a, b]$. Hence by Lemma 8, if each of b and a is in $[s, t],|b-a|<\delta$ and each of u and v is in $[a, b]$, then

$$
\begin{aligned}
\|[F(b)-F(a)] T_{y}(u)-[F(b)- & F(a)] T_{y}(v) \| \\
& \leq U(b, a)\left\|T_{y}(u)-T_{y}(v)\right\|
\end{aligned}
$$

Since T_{y} is continuous, this lemma follows from Lemma 0 .
Proof of part (A) of the theorem. Suppose $\varepsilon>0$. Denote by δ_{1} a positive number so that if t_{0}, \cdots, t_{n+1} is a chain from s to t with mesh $<\delta_{1}$ and s_{0}, \cdots, s_{n} is an interpolation sequence for t_{0}, \cdots, t_{n+1} then

$$
\left\|\int_{s}^{t} d F \cdot T_{y}-\sum_{i=0}^{n}\left[F\left(t_{i+1}\right)-F\left(t_{i}\right)\right] T_{y}\left(s_{i}\right)\right\|<\varepsilon / 2
$$

Denote by δ_{2} a positive number so that if each of u and v is in $[s, t]$ and $|u-v|<\delta_{2}$, then

$$
V(u, v)<\varepsilon /[2+2 U(t, s)] .
$$

Denote $\min \left(\delta_{1}, \delta_{2}\right)$ by δ. Denote by t_{0}, \cdots, t_{n+1} a chain from s to t with mesh $<\delta$. Then,

$$
\left\|\int_{s}^{t} d F \cdot T_{y}-\sum_{i=0}^{n}\left[F\left(t_{i+1}\right)-F\left(t_{i}\right)\right] T_{y}\left(t_{i}\right)\right\|<\varepsilon / 2
$$

and

$$
\begin{aligned}
& \left\|\left[T_{y}(t)-T_{y}(s)\right]-\sum_{i=0}^{n}\left[F\left(t_{i+1}\right)-F\left(t_{i}\right)\right] T_{y}\left(t_{i}\right)\right\| \\
& \quad=\left\|\sum_{i=0}^{n}\left\{\left[T_{y}\left(t_{i+1}\right)-T_{y}\left(t_{i}\right)\right]-\left[F\left(t_{i+1}\right)-F\left(t_{i}\right)\right] T_{y}\left(t_{i}\right)\right\}\right\| \\
& \quad \leq \sum_{i=0}^{n}\left\|T_{y}\left(t_{i+1}\right)-T_{y}\left(t_{i}\right)-\left[F\left(t_{i+1}\right)-F\left(t_{i}\right)\right] T_{y}\left(t_{i}\right)\right\| \\
& \quad=\sum_{i=0}^{n}\left\|\left[M\left(t_{i+1}, t_{i}\right)-I\right] T_{y}\left(t_{i}\right)-\Delta\left(t_{i+1}, t_{i}\right) T_{y}\left(t_{i}\right)\right\| \\
& \quad \leq \sum_{i=0}^{n} V\left(t_{i+1}, t_{i}\right) U\left(t_{i+1}, t_{i}\right) \\
& \quad \leq \max _{i=0, \cdots, n} V\left(t_{i+1}, t_{i}\right) U(t, s)<\varepsilon / 2
\end{aligned}
$$

Hence, $\left\|\left[T_{y}(t)-T_{y}(s)\right]-\int_{s}^{t} d F \cdot T_{y}\right\|<\varepsilon$ for every $\varepsilon>0$, that is,

$$
T_{y}(t)=T_{y}(s)+\int_{s}^{t} d F \cdot T_{y}
$$

This completes a proof to part (A) of the theorem.
Proof of part (B) of the theorem. Suppose that y is in $D_{0}, 0 \leq s \leq$ $t<1$ and $\varepsilon>0$. Denote by δ_{1} a positive number such that if $s \leq u \leq t$, $\left\|T_{y}(u)-x\right\|<\delta_{1}$ and $u \leq v \leq u+\delta_{1}$, then x is in D_{v}. Denote by δ a positive number $<\delta_{1}$ so that if each of a and b is in $[s, t]$ and $|b-a|<\delta$, then $V(b, a)<\min \left(\varepsilon, \delta_{1}\right) \exp (-U(t, s))$.

Suppose that t_{0}, \cdots, t_{n+1} is a chain from s to t with mesh $<\delta$. Denote $I+F\left(t_{i}\right)-F\left(t_{i-1}\right)$ by $J_{i}, i=1, \cdots, n+1$. Denote

$$
\min \left(\varepsilon, \delta_{1}\right) \exp (-U(t, s))
$$

by R. It will now be shown that

$$
\begin{gathered}
\left\|T_{y}\left(t_{i}\right)-J_{i} \cdots J_{1} T_{y}(s)\right\| \leq R\left[\exp U\left(t_{i}, s\right)-1\right], \quad i=1, \cdots, n+1 \\
\left\|T_{y}\left(t_{1}\right)-J_{1} T_{y}(s)\right\|
\end{gathered} \begin{gathered}
\left\|\left[T_{y}\left(t_{1}\right)-T_{y}(s)\right]-\left[F\left(t_{1}\right)-F\left(t_{0}\right)\right] T_{y}(s)\right\| \\
\leq V\left(t_{1}, t_{0}\right) U\left(t_{1}, t_{0}\right) \leq R\left[\exp U\left(t_{1}, s\right)-1\right]
\end{gathered}
$$

Suppose that i is a positive integer $<n+1$ and that

$$
\left\|T_{y}\left(t_{i}\right)-J_{i} \cdots J_{1} T_{y}(s)\right\|<R\left[\exp U\left(t_{i}, s\right)-1\right]
$$

Since

$$
R\left[\exp U\left(t_{i}, s\right)-1\right] \leq \min \left(\varepsilon, \delta_{1}\right) \exp (-U(t, s)) \exp U\left(t_{i}, s\right) \leq \delta_{1}
$$

it follows that $J_{i+1} T_{y}\left(t_{i}\right)$ and $J_{i+1} J_{i} \cdots J_{1} T_{y}(s)$ are defined and that

$$
\begin{aligned}
&\left\|T_{y}\left(t_{i+1}\right)-J_{i+1} J_{i} \cdots J_{1} T_{y}(s)\right\| \\
& \leq \leq\left\|M\left(t_{i+1}, t_{i}\right) T_{y}\left(t_{i}\right)-J_{i+1} T_{y}\left(t_{i}\right)\right\|+\left\|J_{i+1} T_{y}\left(t_{i}\right)-J_{i+1} \cdots J_{1} T_{y}(s)\right\| \\
& \leq\left\|\left[M\left(t_{i+1}, t_{i}\right)-I\right] T_{y}\left(t_{i}\right)-\left[F\left(t_{i+1}\right)-F\left(t_{i}\right)\right] T_{y}\left(t_{i}\right)\right\| \\
&+\left\|T_{y}\left(t_{i}\right)-J_{i} \cdots J_{1} T_{y}(s)\right\| \\
&+\left\|\left[F\left(t_{i+1}\right)-F\left(t_{i}\right)\right] T_{y}\left(t_{i}\right)-\left[F\left(t_{i+1}\right)-F\left(t_{i}\right)\right] J_{i} \cdots J_{1} T_{y}(s)\right\| \\
& \leq V\left(t_{i+1}, t_{i}\right) U\left(t_{i+1}, t_{i}\right) \\
&+R\left[\exp U\left(t_{i}, s\right)-1\right]+U\left(t_{i+1}, t_{i}\right) R\left[\exp U\left(t_{i}, s\right)-1\right] \\
& \leq R\left\{U\left(t_{i+1}, t_{i}\right)+\left[\exp U\left(t_{i}, s\right)-1\right]\left[1+U\left(t_{i+1}, t_{i}\right)\right]\right\} \\
&=R\left\{\left[1+U\left(t_{i+1}, t_{i}\right)\right] \exp U\left(t_{i}, s\right)-1\right\} \leq R\left[\exp U\left(t_{i+1}, s\right)-1\right] .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\| T_{y}(t)- & \left\{\prod_{i=0}^{n}\left[I+F\left(t_{i+1}\right)-F\left(t_{i}\right)\right]\right\} T_{y}(s) \| \\
& =\left\|T_{y}\left(t_{n+1}\right)-J_{n+1} \cdots J_{1} T_{y}(s)\right\| \leq R\left[\exp U\left(t_{n+1}, s\right)-1\right]<\epsilon
\end{aligned}
$$

This completes a proof to part (B) of the theorem.

3. An application to semi-groups

In this section a connection with semi-groups of transformations is established.

Corollary. If in addition to the hypothesis of the theorem it is true that H is a linear space and $M(t, s)=M(t-s, 0)$ for $0 \leq s \leq t<1$, then there is a continuous function A from D_{0} to S such that if $F(t)=t A$ for $0 \leq t<1$, then A and B of the theorem hold.

Proof of the corollary. If $0 \leq \delta<1$, denote $M(\delta, 0)$ by $Q(\delta)$. Note that $D_{s}=D_{0}$ and hence $I(w, s)=[0,1)$ for all s in $[0,1)$ and w in D_{0}. Also note that $Q(s) Q(t)=Q(s+t)$ provided that each of s, t and $s+t$ is in $[0,1)$. As in the proof of Lemma 5 , if w is in D_{0},

$$
\left\{\left\{\sum_{i=1}^{n}[Q(1 / 2 n)-I]\right\} w\right\}_{n=1}^{\infty}=\{n[Q(1 / 2 n)-I] w\}_{n=1}^{\infty}
$$

converges. Denote by A a transformation from D_{0} to S such that the limit of this sequence is $\frac{1}{2} A w$. If $0 \leq s<1$ and n is a positive integer, denote by s_{n} the largest integer p so that $p / 2 n \leq s$. Again as in the proof of Lemma 5,

$$
\left\{\left[Q\left(s-s_{n} / 2 n\right)-I\right] w+\left\{\sum_{i=1}^{s_{n}}[Q(1 / 2 n)-I]\right\} w\right\}_{n=1}^{\infty}
$$

converges for each point w of D_{0}. Since $\left\|\left[Q\left(s-s_{n} / 2 n\right)-I\right] w\right\| \rightarrow 0$ as $n \rightarrow \infty$, it follows that

$$
\left\{\sum_{i=0}^{s_{n}^{n}}[Q(1 / 2 n)-I]\right\} w=s_{n} / n\left\{\sum_{i=1}^{n}[Q(1 / 2 n)-I]\right\} w \rightarrow s A w \quad \text { as } \quad n \rightarrow \infty .
$$

Denote $s A$ by $F_{1}(s)$ and $\left(s-\frac{1}{2}\right) A$ by $F(s)$ for $0 \leq s<1$. Then F is as
defined above since $\frac{1}{2}$ is the mid-point of $I(w, s)$ for all w in D_{s}. Hence (A) and (B) follow. They also are true for F replaced by F_{1} since $F_{1}(t)-F_{1}(s)=$ $F(t)-F(s)$ for $0 \leq s \leq t<1$. That A is continuous follows from the remark preceding the statement of Lemma 9 . This completes the argument for the corollary.

Since $D_{s}=D_{0}$ for $0 \leq s<1$, the definition of Q may be extended to the nonnegative real axis in the following way: if $t \geq 1$ denote by n a positive integer so that $t / n<1$. Define $Q(t)$ to be $[Q(t / n)]^{n}$. Then, Q forms a semi-group of transformations. The transformation A defined above may be said to generate Q.

References

1. E. Hille and R. S. Phillips, Functional analysis and semi-groups, rev. ed, Amer. Math. Soc. Colloquium Publications, vol. XXXI, 1957.
2. J. S. Mac Nerney, Continuous products in linear spaces, J. Elisha Mitchell Sci. Soc., vol. 71 (1955), pp. 185-200.
3. --, A linear initial-value problem, Bull. Amer. Math. Soc., vol. 69 (1963), pp. 314329.
4. -_, A nonlinear integral operation, Illinois J. Math., vol. 8 (1964), pp. 621-638.
5. V. V. Nemytskii and V. V. Stepanov, Qualitative theory of differential equations, Princeton, 1960 (translation).
6. J. W. Neuberger, Continuous products and nonlinear integral equations, Pacific J. Math., vol. 8 (1959), pp. 529-549.
7. H. S. Wall, Concerning harmonic matrices, Arch. Math., vol. 5 (1954), pp. 160-167.

Emory University
Atlanta, Georgia

[^0]: Received September 3, 1963.
 ${ }^{1}$ Some recent results of Mac Nerney [4] extend the linear theory of [3] to nonlinear problems. Some overlap can be seen in both the results and the methods of the present

[^1]: study and [4] if the underlying linear system of the latter is assumed to be a linear continuum. In making comparisons it should be noted that the functions Δ and M in this paper correspond to V and W respectively in [4]. In the notation of [4], the point y in Lemma 5 is denoted by ${ }_{t} \sum^{s}[M-I] w$ and the point $T_{y}(t)$ in part (B) of the theorem is denoted by $t \Pi^{s}[1+\Delta] w$.

