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1. Introduction

A. K. Bousfield has recently shown how to construct a canonical integral
homology localization Xz for any space X. The aim of this paper is to show that
in a natural range of dimensions the homotopy groups of Xz are related in a
stable way to the homotopy groups of X itself. In one case this relationship is
direct enough to give a novel form of the Whitehead theorem.
Our technique is to construct a first quadrant spectral sequence which con-

verges to n.(Xz). We assume that the homotopy groups rcX are nilpotent
rclX-modules [1, 4.2] for 2 < < n (n > 1), and then show that in dimensions
less than 2n the E2-term of this spectral sequence depends only on nix and on
the action of nX upon the individual higher homotopy groups of X. More-
over, the influence of a given nX-module on the tractable part of E2 is both
additive in nature and independent of the particular dimension in which the
module appears as a higher homotopy group. This is what stability means.
Sometimes the spectral sequence allows some homotopy groups of Xz to be

computed explicitly. For instance"

1.1 THEOREM. Let X be a connected space with finite skeleta. Suppose that
rcX is a nilpotent group and that rcX acts nilpotently on nX for 2 < <_ n
(n > 1). Then there are natural isomorphisms

r(Xz) ztX,i < n and zt(Xz) (rcX) ^,n < <_ 2n 1.

Here (ztiX) denotes the lower central series completion (4.3) of rcX with
respect to the action of ztlX. The space X has finite skeleta if it has a finite
number of simplices or cells in each dimension.

Since the integral homology localization functor converts homology equiv-
alences into homotopy equivalences, we immediately obtain"

1.2 COROLLARY. Suppose that X and Y are spaces as in 1.1, and that
f: X --, Y is a map which induces an isomorphism on integral homology. Thenf
induces isomorphisms

niX’ ziY, <_ n and (rciX) (ztiY) ^,n < < 2n 1.

Organization of the paper. In Section 2 we prove a technical lemma which
is at the foundation of everything that follows, in Sections 3 and 4 we define and
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partially calculate some key algebraic functors, and in Section 5 we introduce
our spectral sequence and present the main result.

Notation and terminology. The notation Xz is used for what in [1] is called
the H.(-; Z)-localization of the space X. In addition, H.(-; Z)-local spaces,
that is, spaces such that Xz is homotopy equivalent to X, are called Bousfield
spaces. Similarly, HZ-local groups and n-modules [1, Section 5-] are called
Bousfield groups and Bousfield -modules.
The word space can be taken as a synonym for pointed Kan complex [8] or

pointed CW-complex, depending on the preference of the reader. Unless other-
wise specified, all homology groups are taken with untwisted coefficients in the
integers Z.

2. The double fiber lemma

Suppose that the diagram
W----’ X

is a fiber square of connected spaces, and let W’ be the homotopy pullback of
the localized square

W’Xz

Yz Bz
There is a natural map Wz --’ W’.

Let F be the homotopy fiber offi (i 1, 2). The purpose of this section is
to prove:

2.1 DOUBLE FIBER LEMMA. Suppose that F1 and F2 are one-connected, and
that zB acts nilpotently on H(F) for <_ m and on H(F2) for < n. Then
the map =(Wz) (W’) is an isomorphism for < m + n and an epimorphism
fori=m+n+ 1.

Less symmetric but more useful is the following straightforward corollary:

2.2 COROLLARY. Under the assumptions of 2.1 the relative homotopy map
7ri(Yz, Wz) rc(Bz, Xz) is an isomorphism for < m + n + and an epi-
morphism for m + n + 2.

The proof of 2.1 rests on three preliminary results.

2.3 FIBER LEMMA (Bousfield). Let F - E - B be a fiber sequence in which
B is connected. F is one-connected, and zlB acts nilpotently on the homology
groups Hi(F) (i >_ 0). Let F’ be the homotopy fiber of the localized map Ez --.
Bz. Then the natural map Fz --+ F’ is a homotopy equivalence.
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The proof is a routine induction, using [1, 5.5, 8.9] and the standard spectral
sequence comparison theorem [2, p. 92]. Note that the space Fz is homotopy
equivalent to F [1, 4.3].

2.4 LEMMA. Let f: X--. Y be a map of connected BousfieM spaces, and
suppose that the induced map Hi(X) Hi(Y) is an isomorphismfor < n and an
epimorphism for n + 1 (n > 1). Then the induced map 7tX rcY is also
an isomorphism for < n and an epimorphism for n + 1.

This is a straightforward consequence of [7-1 or of [1, 5.5] and the techniques
of [5].

2.5 LEMMA. Suppose that the diagram

W----X

Y----’B

is afiber square. Let F be the homotopyfiber offi (i 1, 2) and suppose that F
and Fa are, respectively, m-connected and n-connected (m,n > 0). Then there
is a natural exact homology sequence

Hm+n+ 2(l/F) -+ Bin+n+ 2(X) ( Hm+n+ 2(Y) --* Hm+n+2(B)

.- Hm+n+ i(W) ---’"- Ho(X) Ho(Y) Ho(B) --. O.

This can be proved by a standard application of the relative Serre spectral
sequence.

Proof of 2.1. Let Xm be the mth stage in the Moore-Postnikov factorization
of the map XB [8, p. 34]. There is a fibration Xm’-*B with the mth
Postnikov stage PmF1 as the fiber, and a map X Xm which commutes with
projection onto B and on fibers induces the usual map FI --. PmF. A spectral
sequence argument analogous to [2, p. 64-1 shows that n(B) acts nilpotently in
all dimensions on the homology of PmF.

Similarly, if Yn is the nth stage in the Moore-Postnikov factorization of
Y --* B, the group nl(B) acts nilpotently in all dimensions on the homology of
the fiber P,F2 of the natural map Yn B.

Construct a diagram

WXX

Y -- B --, Xm

YYn B

by defining the spaces B, ., and to be the homotopy inverse limits of the
appropriate small squares. The upper left-hand square in this diagram is then
automatically a homotopy fiber square.
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It follows immediately from 2.3 that in the partially localized diagram

w’ (X)z Xz

(r), -o (),, --,

Yz -o (L)z
all of the small squares are also homotopy fiber squares.
There is an obvious map between the above two diagrams, which induces a

homomorphism between the exact homology sequences that result from an
application of 2.5 to the upper left-hand squares. A five lemma argument now
shows that the map W W’ induces an isomorphism H(W) H(W’) for

_< n + rn + 1. It follows that the map Wz - W’ has this same homological
property. Since W’ is a Bousfield space [ 1, 12.9], an application of 2.4 completes
the proof.

3. Functors for the E2-term

Let a be a fixed group, and let a’ be the HZ-localization of a [l, 5.1]. In
this section we introduce an interesting sequence (Sk) of additive functors from
the category of a-modules to the category of a’-modules. If the space X has
fundamental group a, these functors can be applied to the higher homotopy
groups of X to give part of the E2-term of a spectral sequence converging to
,(Xz).

Construction and additivity. Let K be the space K(, 1). For any a-module
M and integer n >_ 2, let L(M, n) be the split fibration over K, with fiber
K(M, n), which is determined by the action of a on M. There is a natural
projection L(M, n) - K and a natural section K L(M, n).
We define S,(M) to be the relative homotopy group Zn++ x(Kz, L(M, n)z).

Since the fiber of the map L(M, n) K is (n 1)-connected, so is the fiber of
L(M, n)z - Kz (2.4); thus these groups vanish if k < 0.

3.1 PoPosn’oy. There are natural suspension maps S,(M)--. S,+a(M)
(n > 2) which are isomorphisms ifk <_ 2n 2 and epirnorphisms ilk < 2n 1.

This is proved below.
The stable groups S(M) (k < 2n 2) will be denoted S(a; M) or simply

S(M). They depend only on the group a and the a-module M.
The fundamental group (L(M, n)z) is naturally isomorphic to ’ [1, 7.3],

so that the groups S,(M) come equipped by construction with an action of a’.
This action is compatible with suspension and induces a a’-action on the stable
groups S(M). It is not hard to prove from [1, 5.5, 8.6, and 8.7] that the groups
S(M) are Bousfield ’-modules.

3.2 PROPOSITIOn. The family (S) forms an exact connected sequence of
additive functors from the category of a-modules to the category of Bousfield
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a’-modules. In particular, a short exact sequence 0 M’ M M" 0 of
a-modules gives rise to a natural long exact sequence

S(M’) S(M) - Sk(M") S_ (M’) ... So(M") 0

of a’-modules.

Determination of the functor So. There are obvious maps

M TC.+k+x(K, L(M, n)) S(M) (n > 2),

which are compatible with suspension and induce a stable a-map M So(M).
Since the induction functor Z[a’] (R)zt," is left adjoint to the restriction functor
from the category of a’-modules to the category of a-modules, this a-map can
be extended to a unique a’-map Z[a’] (R)zt, M So(M).

Let E denote the HZ-localization functor on the category of a’-modules
[1, 5.3].

3.3 PROPOSITION. For any M the above map Z[a’] (R)zt,M So(M)
extends to a natural isomorphism E(Z[a’] (R)zt, M) So(M).

3.4 Remark. The functors Sk (k > 0) are not always the left derived func-
tors of So. This is the case if and only if Sk(F) vanishes whenever k > 0 and F
is a free Z[a]-module (see 4.1).

An alternative theory. A theory parallel to ours can be constructed by using
the relative integral homology localization L(M, n) of L(M, n) over K. By
definition, L(M, n) is a space which sits in a commutative diagram

L(M, n) --, L(M, n)z

in which the horizontal map is an integral homology equivalence and the map
L(M, n) K is an H.(-; Z)-fibration [1, 10.1]. The a-modules S(r; M)
rC,+k+ x(K, L(M, n)) (k < 2n- 2) partially determine the homotopical con-
sequences of applying the relative integral homology localization functor to an
arbitrary map X K. This relative theory overlaps and is identical with ours
if a itself is a Bousfield group.

Proofof3.1. Note that S(M) is naturally isomorphic to z,+k(L(M, n)z, Kz),
where the map Kz - L(M, n)z used in the definition of this relative homotopy
group is the H,(-; Z)-localization of the section K L(M, n).
Up to homotopy there is a fiber square

L(M, n) K

K L(M,n + 1)
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where the maps L(M, n) - K are the natural projections and the maps K -L(M, n + 1) are the natural sections. Localization gives the suspension map

7In+k+ l(Kz, L(M, n)z) - rCn++ (L(M, n + 1)z, Kz).

The rest of the proposition follows from 2.2, since the homotopy fiber K(M, n)
of the section K L(M, n + 1) is (n 1)-connected.

Proof of 3.2. Let 0 M’ M M" 0 be a short exact sequence of
a-modules. For any integer n > 2, the space L(M, n) fibers naturally over
L(M", n) with fiber K(M’, n). This fibration is in general nonorientable and is
classified by a map L(M", n) L(M’, n + 1). Since the universal fibration
over L(M’, n + 1) with fiber K(M’, n) is given up to homotopy by the natural
section K L(M’, n + 1), up to homotopy there are fiber squares

L(M, n) K

L(M", n) L(M’, n).

The desired long exact sequence is essentially obtained by applying 2.1 and then
taking the limit of the Meyer-Vietoris homotopy sequences I-2, p. 286] of the
corresponding localized fiber squares as n tends to infinity over even integers.
However, it is necessary to modify these Mayer-Vietoris sequences slightly so
that they contain the relative homotopy groups zr.(L(M, n)z, Kz),... rather
than the absolute groups zr.(L(M, n)z), This can be done without disturb-
ing exactness because after HZ-localization the space Kz is a natural retract of
all the spaces in the square. The reason for using even integers in the limit is
that an odd iterate of the suspension map may anticommute with the boundary
homomorphisms in the Meyer-Vietoris sequences.

Proofof3.3. Let n >_ 2 be an integer. Consider the commutative square

L(M, n) L(M, n)z

K Kz
Both horizontal maps are integral homology equivalences. Moreover, the
respective fibers F1 and F2 of the vertical maps are both (n 1)-connected.
The standard spectral sequence comparison theorem I-2, p. 92] applies to the
Serre spectral sequences of the two vertical fibrations and gives an isomorphism

and an epimorphism
Ho(a; M) Ho(a’; So(M))

Hl(a; M) - Hl(a’; So(M)).

(Here Hn(F1) and Hn(F2) have been identified with M and So(M), respectively.)
Let M’ be the a’-module Z[a’] (R)zt, M. By I-4, II, 5.1] the natural a-map
M --. M’ induces an isomorphism Ho(a; M) Ho(a’; M’). Consequently the
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it’-map M’ So(M) which extends the a-map M So(M) must be an HZ-
map [-1, 5.3]. Since So(M) is a Bousfield tr’-module, this implies that So(M)
is isomorphic to E(M’).

4. Further calculations

The purpose of this section is to calculate the functors (Sk) completely in a
nontrivial case. This is accomplished by determining when the higher Sk’S
vanish, and then giving an explicit formula for So in one of the cases in which
this vanishing occurs. The notation is the same as that of Section 3.

Vanishing of the higher Sk’S. Let M be a a-module. Note that the group
homomorphism tr tr’ and the module map M So(M) combine to give a
natural twisted homology map H,(K; M) H,(Kz; So(M)).

4.1 PROPOSITION. The modules Sk(M) vanish for all k > 0 if and only if the
map H,(K; M) H,(Kz; So(M)) is an isomorphism.
A a-module is said to befinitely generated if it is finitely generated in the usual

sense as a module over the group ring

4.2 PROPOSXTION. The equivalent conditions of 4.1 hoM under any of the
following assumptions.

(a) tr is an arbitrary group, and M is a nilpotent a-module.
(b) tr is a BousfieMyroup, and M is a BousfieM a-module.
(c) tr is a finitely generated nilpotent group, and M is a finitely generated it-

module.

In cases (a) and (b) of 4.2 the module So(M) is actually isomorphic to M
itself. In dealing with case (c), it is possible, to give So(M) algebraically.

Lower central series completion. Let I Z[tr] be the augmentation ideal.
The lower central series completion M of the a-module M is defined to be
inv lim M/Is. M. As the inverse limit of nilpotent a-modules, the module M
itself is a Bousfield a-module [1, 8.5].

4.3 PROPOSITION. If tr is a finitely generated nilpotent group and M is a
finitely generated a-module, there is a natural isomorphism So(M) " M ^.

4.4 Remark. It is not hard to show using I-6, 3.10] and the techniques in
I-6, Proof of 3.1] that the map F F induces an isomorphism H,(a; F)
H,(r; F ^) whenever tr is a finitely generated nilpotent group and F is a free
a-module. It follows from [-1, 7.5-1, 4.1 and 3.4 that for such a group tr the func-
tor Sk (k > 0) is naturally equivalent to the kth left derivedfunctor I-4, V, 5-1 of
the lower central series completion functor on the category of a-modules.

Proofof 4.1. Ctioose n > 2, and let E(n) be the split fibration over Kz with
fiber K(So(M), n) which is determined by the action of zrl(Kz) tr’ on So(M).
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The space E(n) is Bousfield; this can be seen by expressing it as the pullback
over a map Kz - K(a’, 1) of a split fibration over K(a’, 1), and using [-1, 5.5
12.9]. There is a map of split fiber sequences

K(M, n) L(M, )

K(So(M), n) --, E() --,’Kz
which on bases is the H,(-; Z)-localization map and on fibers is the map in-
duced by the natural homomorphisms M So(M). It is easy to see that the
modules Sk(M) vanish for 0 < k < n if and only if the induced homotopy
map zri(L(M, n)z) - ni(E(n)) is an isomorphism for < 2n 2 and an epi-
morphism for 2n 1. By 2.4 and a simple suspension argument, this is
equivalent to requiring that the map hi(L(M, n)) - hi(E(n)) be an isomorphism
for < 2n 2 and an epimorphism for 2n 1, where h, denotes the
reduced stable homotopy homology theory. Using the Serre spectral sequence
and the fact that stable homotopy agrees with homotopy in the usual stable
range, it is easy to carry out the calculations

hi(L(M, n)) , hi(K) O) H_,(K; M), hi(E(n)) hi(Kz) ) H-n(Kz; So(M))

(i <_ 2n- 1)
This completes the proof.

Proof of 4.3. It follows from [1, 7.5] and 3.3 that if tr is nilpotent the func-
tor So is naturally equivalent to the HZ-localization functor on the category of
a-modules. Thus 4.3 is just a special case of [3, Theorem 4-1.

Proof of 4.2. Part (a) follows easily from 2.3, and part (b) from [1, 5.5-1,
Proposition 4.3 and 1,3, Theorem 3] show that if tr is a finitely generated nilpotent
group and M is a finitely generated a-module, the natural map M So(M)
induces an isomorphism H.(a; M) --. H.(tr; So(M)). In view of [1, 7.5], this
proves (c).

5. The spectral sequence

Let X be any connected space, and let P,X (n > 0) be the nth Postnikov stage
of X. The Postnikov tower

PnX"-} Pn-X--}’" PtX Pox(= *)

gives rise to a localized tower

"-} (PnX)z (P.-1X)z ’" (PtX)z (PoX)z

Just as the homotopy inverse limit of the first tower is homotopy equivalent to
X, the homotopy inverse limit of the second tower is homotopy equivalent to

Xz. In fact, it follows from 2.4 that the homotopy fiber of the map Xz -
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(PX)z is (n- 1)-connected. Similarly, the homotopy fiber of the map
(PX)z --* (P- X)z is (n 1)-connected.

Let P_X be a single point. With some reindexing, the usual construction
of the homotopy spectral sequence of a tower [2, p. 258] gives:

5.1 PROPOSIWION. For any connected space X there exists a functorial first
quadrant spectral sequence

E?,, j(X) 7r, i+j+ I((Pj_IX)z, (PjX)z) =:, i+jXz.
This spectral sequence is naturally augmented by the trivial Postnikov tower
spectral sequence of X.

The last statement of the proposition means that there are maps 7zX
g2

o, (X) (j > 0) which pass to E and correspond there to the usual maps

X --, jXz.
This spectral sequence is useful only to the extent that its E2-term can be

computed: Our main result is"

5.2 PROPOSITION. Suppose that X is a connected space and that zcX acts
nilpotently on nXfor 1 < j < n (n > 1). Then:

(a) For > O, E2. o(X) vanishes.
(b) For > O, E 2., (X) is naturally isomorphic to zq+ (K(X, 1)z).
(c) If j >_ 2, then for j <_ n or < n E2., (X) is naturally isomorphic to

Si(nlX; 7r,jX).

5.3 Remark. This proposition determines EZ(X) outside of an infinite rec-
tangular block whose lower left-hand corner lies at the lattice point (n, n 4- 1).

Note that according to 4.2(a) the group S(nX; nX) vanishes whenever
> 0 if nX is a nilpotent zX-module. Thus the E2-term described by 5.2 has

a horizontal band of vanishing groups which is (n 1) units high. If nX is a
Bousfield group, the height of this band is increased by another unit, since

E,I(X) r,+l(K(rrX, 1)z) 7r,+(K(rIX, 1)) 0 for/ > 0 !-1, 5.2].
When 4.2(c) applies, there is enough additional vanishing to give:

5.4 COROLLARY. Suppose that X is a connected space and that ntX is a nil-
potent group which acts nilpotently on ziX for 1 < j <_ n (n > 1). Suppose
furthermore that rcX is finitely generated and that TciX is finitely generated over

niXfor n < j < 2n. Then there are natural isomorphisms (Xz) ntX, < n,
and n(Xz) (rcX) ^, n < <_ 2n 1, as well as a natural epimorphism (n2,X) --.
2.(Xz).

5.5 Remark. In order to extract 1.1 from 5.4, it is only necessary to show that
the finiteness conditions of 5.4 are automatically satisfied if X has finite skeleta.
This is a routine consequence of the fact that the integral group ring of a finitely
generated nilpotent group is (left and right) noetherian [3].
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A slight refinement. By applying a fiberwise suspension functor to the fibra-
tion Xz (P,X)z and using the Freudanthal theorem, one can improve the
epimorphism in dimension 2n of 5.4 to an isomorphism. This gives an extra
dimension in 1.1 and 1.2. The situation in dimension 2n + is more compli-
cated. However, it is possible to show that if c2,+ 1X is a finitely generated
naX-module and the Whitehead product map rc,+lX (R) n,+ tX 2n+ x is
trivial, then (r2,+ X) is a direct summand of n2,+ a(Xz).

Proof of 5.2. Parts (a) and (b) follow directly from the definition of the
spectral sequence.

Let a be the group rcX and let K be K(a, 1). For any j > 2 there is a hom-
otopy fiber square

PX - K

P_ X - L(rcX, j + 1)

where L(rX, j + 1) is the two-stage Postnikov system of Section 3, and the
map K L(rcX, j + 1) is the natural section. Localization gives a homo-
morphism

E2 (X) rc++ x(L(rcX, j + 1)z, Kz) - S(ntX; nX)i, y

where the second arrow is an iterated suspension map. The fact that this map
is an isomorphism in the stated ranges follows from 2.3 ifj < n and from 3.1
and 2.2 ifj > n. In fact, this argument additionally shows that the above map
is an epimorphism ifj >_ 2 and n.
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