FINITE GROUPS HAVING AN INVOLUTION
CENTRALIZER WITH A 2-COMPONENT OF
DIHEDRAL TYPE, I

BY
MORTON E. HARRIS AND RONALD SOLOMON

1. Introduction and statement of results

All groups considered in this paper are finite.

In current standard terminology, a group L such that L = L and L/O(L) is
quasisimple is said to be 2-quasisimple. Also any subnormal 2-quasisimple
subgroup of a group G is called a 2-component of G.

Recently, a great deal of progress has been made on the fundamental problem
of classifying all finite groups G such that O(G) = 1 and such that G contains
an involution ¢ such that H = Cg(t) has a 2-component L (cf., [2, Theorem 1],
[3], [4], and [18]). These results suggest the importance of investigating such
groups G in which Cy(L/O(L)) has 2-rank 1. Of particular interest is the case
where L is of dihedral type.

We shall now state the first main result of this paper.

THEOREM 1. Let G be a finite group with O(G) = 1. Suppose the involution
te G — Z(G) is such that H = Cg(t) contains a 2-component L such that a
Sylow 2-subgroup of L is dihedral, m,(Cy(L/O(L))) = 1 and such that Ny(L)/
(LCy(LJO(L))) is cyclic. Let S € Syl,(Ng(L)) be such that t € S and let D =
S N L. Then the following conditions hold:

(i) L/O(L) is isomorphic to &, or to PSL(2, q) for some odd prime power q
with q > 3, Ng(L) = O(Ng(L)H and S € Syl,(H).

(ii) 0,(G) = F(G) = C4(E(G)) = 1 and F*(G) = E(G).

(iii) If F*(G) is not simple, then F*(G) = R x R' where R is simple and
L =<rr'|reR) = R.

(iv) If F*(G) is simple and r,(F*(G)) < 4, then the possibilities for F*(G) and
G can be obtained from [1, Main Theorem].

) If F¥(G) is simple and r,(F*(G)) > 4, then

<t € Syl (Co(L/O(L))

and H = Cg(t) contains a normal subgroup K such that H = {t) x K, K® =
H®™ = L, Cx(L/O(L)) = O(H) = O(K), K|O(K) is isomorphic to a subgroup
of Aut (L/O(L)) containing Inn (L/O(L)) properly with (LO(K))/O(K) corre-
sponding to Inn (L/O(L)) and such that K|(LO(K)) is cyclic. Also if LIO(L) = o4,
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then K|O(K) = X, and if L|O(L) = PSL(2, q) for some odd prime power q with
q > 3, then q is a square and K|]O(K) contains an involution that acts as a ‘‘field
automorphism” of order 2 on (LO(K))/O(K).

The second main result of this paper treats the open case of Theorem 1(v) in
which |D| is minimal.

THEOREM 2. Let G, t, H, L, S, and D be as in Theorem 1. Assume that F*(G)
is simple, ry(F*(G)) > 4 and |D| = 23. Then |F*(G)|, < 2'° and exactly one
of the following two conclusions holds:

(i) LJO(L) = o, and G is isomorphic to Aut (Ke);
(i) L/O(L) = ¢ =~ PSL(2,9) and G is isomorphic to Aut (Sp(4, 4)),
Aut (SL(5, 2)), or Aut (PSU(5, 2)).

Before presenting a corollary of our results and its proof, we give some
definitions.

A subgroup K of G is tightly embedded in G if |K| is even and K intersects its
distinct conjugates in a subgroup of odd order. A standard subgroup of G is a
quasisimple subgroup 4 of G such that K = Cg(A4) is tightly embedded in G,
Ng(A) = Ng(K) and 4 commutes with none of its conjugates. (The importance
of these concepts for the classification of simple groups is described in [2,
Section 1].)

COROLLARY. Let G be a finite group with O(G) = 1 and assume that A is a
standard subgroup of G such that |Z(A)| is odd and A]Z(A) = o/,. Set X =
{A%Y. Then exactly one of the following holds:

(1) X=Aand Z(A) = 1;

Q) XA yand Z(A) = 1;

QB) X, x A,and Z(A) = 1;

(4 GxZo, X =G andZ(4) = 1;

(5) G = Aut (Fe), X = G’ and |Z(4)| = 3.

Proof. Assume that (1) does not hold and set K = Cg(4). If my(K) = 2,
then [4, Theorem] yields (2). Suppose that m,(K) = 1 and let ¢ € I(K). Then
H = C4(t) < Ng(K) = Ng(A) and hence 4 <« H. Thus H # G, t¢ Z(G),
and m,(Cy(4/0(4))) = 1. Applying Theorem 1, we conclude that F*(G) =
E(G) and 0,(G) = 1. Also if F*(G) is not simple, then clearly (3) holds. Sup-
pose that F*(G) is simple. If r,(G) < 4, then [7, Main Theorem] implies that
(4) holds. Finally suppose that r,(G) > 4. Then Theorem 2 yields (5). This
completes the proof of the corollary.

Actually the same argument can be applied to any finite group G with O(G) =
1 and such that G contains a standard subgroup 4 of type Dg such that
Ng(A4)]AC4(A) is cyclic.
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The outline of the paper is as follows. Section 2 contains a collection of 2-
group lemmas which are utilized at various points in the later sections. In
Section 3, we prove Theorem 1. In the remainder of the paper (Sections 4-12),
we prove Theorem 2.

The analyses of Sections 8-12 are primarily due to the first author.

Our notation is fairly standard and tends to follow the notation of [6] and
[7]- In particular, if # is a positive integer, then &, and X, respectively denote
the alternating and symmetric groups of degree n. Moreover, for any finite
group J and any 2-power n, &,(J) denotes the set of elementary abelian sub-
groups of J of order n and E, denotes an elementary abelian subgroup of order n.
Also for any finite group J, m,(J) denotes the 2-rank of J, r,(J) denotes the
sectional 2-rank of J and I(J) denotes the set of involutions of J.

2. Preliminary results

In this section, we present several results on 2-groups that are required at
various points in our proofs of Theorems 1 and 2.
By surveying all groups of order 2*, the following result is easily verified:

LeMMA 2.1. If X is a group of order 2* with |Aut (X)|, # 1, then X is iso-
morphic to E g, Z, X Z4, Z, X Qg, 0r Z, * Q.

LEMMA 22. Let 2 =<y, x|y* = x*""" = t and ¥’ = x~ 1) be a general-
ized quaternion group of order 2" withn > 2. Assume that 2 is a maximal sub-
group of the 2-group S and that Z(S) = Z(2) = {t). Then exactly one of the
Sfollowing conditions holds :

(i) S is generalized quaternion.
(ii) S is semidihedral.
(iii) » > 2 and there is an element ve 2 — {x) (of order 4) and an involution
te€S — 2 such that x* = xt, v° = v, and X = (2, ©). Also t, ©, and xvt are
representatives for the 3 conjugacy classes of involutions of X.

Proof. Clearly Cg(2) = (¢t) = Z(2) and we may assume that {(x) < S.
If S contains a cyclic maximal subgroup, then [6, Theorems 5.4.3 and 5.4.4]
imply that (i) or (ii) holds. Thus we may assume that no maximal subgroup of
S is cyclic. Suppose that (x) < Cyx({(x>). Then Cyg({x)) = {x) x {z) for
some involution T € S — 2 and ¥ = ¢ since [7, 2] # 1. Then

n=2 n-—2
=) =y

and hence x° e Cs(2) — 2 which is impossible. Thus Cg({x)) = <{x),
n > 2 and there is an involution t € S — 2 such that x* = xtand M = {x, 1)
is a modular maximal subgroup of S. If ¥ = 1, set v = y. If ©¥ = 7¢, then
(xy)°* = xtyt = xy and v = xp does the job. In this last case, S’ = {(x*) =
®(S) and hence S/®(S) = Eg, so that exactly one of conditions (i)-(iii) hold.
The proof is complete.
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A proof similar to that just above yields:

LemMMA 2.3. Let 2 = {y,x|y* = x¥" =1 and x¥* = x~ ') be a dihedral
group of order 2"+ withn > 2 and let x*"~' = t. Assume that 9 is a maximal
subgroup of the 2-group S and that Z(S) = Z(2) = {t). Then exactly one of
the following conditions holds :

(1) S is dihedral.
(ii) S is semidihedral.
(iii) n > 2 and there is an involution ve @ — {t) and an involution t €
S — 9, such that x* = xt,v" = v,and S = {9, 1). Also t, v, vx, 1, and vt are
representatives for the S conjugacy classes of involutions of S.

LEMMA 2.4. Let & =<y, x|y* =x*" =1 and x* = x~'t where t =
x*"""> be a semidihedral group of order 2" with n > 3. Assume that & is a
maximal subgroup of the 2-group S and that Z(S) = Z(¥) = {t). Then there
is an involution 1 € S — & such that S = {%, t) and x* = xt and exactly one
of the following conditions holds:

G Y=yandI(S) = I(P) v {t,1, 1} U {xiyt |je Z}.
(i) y* = ytand I(S) = I(¥) v {t, 7, tr}.

Proof. As above, we may assume that S contains no cyclic maximal sub-
group, Cs({x>) = (x> <0 S and that S contains an involution 7 € § — & such
that x* = xtand [y, 7] € {t). If [y, 7] = 1, then it is easy to see that (i) holds.
If [y, ©] = ¢, itis easy to see that (ii) holds and the proof is complete.

LEMMA 2.5. Let B~ Z, x Z, X Z,, G = Aut (B), and let t € G be such
that B* = B! for all B € B. Then t is not a square in G.

Proof. Let X = Q,(B) and H = CgxX). Then t € H, H is an elementary
abelian 2-group, H = 0,(G) and G/H < Aut (B/X) =~ GL(3, 2) since H =
Cy(B/X). Assume that t € G is such that 72 = 7. Thent* € H = C4(B/X) and
t ¢ H since H is an elementary abelian 2-group. Let X < B, < B be such that
Cy/x(t) = Bo/X. Then |By| = 2° and Q,(B,) = X.

Let b € B, — X. Then b* = bx for some x € X and hence b' = b~ = bxx".
Thus b? € [X, 7] and E, = U*(B,) < [X, t]. On the other hand, * € H =
Cs(X). This implies that |[X, 7]| = 2. This contradiction proves the lemma.

LEMMA 2.6. Let T be a 2-group and let {t)> x {p) be a subgroup of Aut (T)
such that |t| = 2, |p| = 3, and |Cr(t)| = 4. Then |Cr(p)| = 1 and precisely one
of the following holds:

(i) T & Zyu x Z,n for some integer n > 1 and t inverts G*(T).
(i) T = E.
(iii) T is isomorphic to a Sylow 2-subgroup of Ly(4), Cy(t) = ®(T) = T' =
Z(T) and the inverse image in T of Cr,er(t) is isomorphic to Z, x Z, and is
inverted by t.
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(iv) T is isomorphic to a Sylow 2-subgroup of Us(4), C(t) = ®(T) = T' =
Z(T) and the inverse image in T of Crecr) is isomorphic to Z, x Z, and is
inverted by t.

Proof. By [6, Theorem 5.3.4], p acts nontrivially on C1(z). Hence Cr(t) =
E, and the result follows from [15, Theorem B].

LeMMA 2.7. Let T be a 2-group with an involution t such that |C1(t)| = 8 and
such that C(t) is not quaternion. Assume that T has an automorphism p of order
3 such that t € Cr(p). Let Ty = [T, p]. Then Cr(p) = {t> £ Ty, T = Ty {t)
and precisely one of the following holds:

() T, E,and T = Eg;
(i) T, = Z,» X Z,n for some integer n > 2 and Ty char T,
(iii) T, & E,¢and T, char T
(iv) T, is isomorphic to a Sylow 2-subgroup of L3(4) and T, char T
(v) T, is isomorphic to a Sylow 2-subgroup of U3(4) and T, char T.

Proof. Clearly {t) x {p) acts on T. Then [6, Theorem 5.3.4] implies that
p is nontrivial on Cy(¢). Thus Cy(t) = {t)> x [Cr(t), p] where [Cy(2), p] =
E,. Hence C(p) = (.

Let T be a minimal counterexample to the lemma. Then ¢¢ Z(T) and
Z(T) = [Cr(2), p] = E;. Let X = Cy(t). Then X < T and p acts on
Nr(X) > X. If ue Ny(X) — X, then ¢* = tr for some 7 € Z(T)* and hence
Z(T) = [Ny(X), t] = [Nr(X), X]. Letting T = T/Z(T), we have

Cr(f) = Ny(X), |Cp(®)| =8, and Cr(f, p) = {I).

Since ¢ is not a square in T, neither is any element of tZ(T). Thus Cy(?) is not
quaternion. Since |T| < |T|, we conclude that T = [T, p]Cr(p) where
Cr(p) = (i) £ [T, p] and hence T = T\{t) where Cr(p) = (t) £ Ty =
[T, p]< T. Clearly |Cy,(¢)] = 4. Then Lemma 2.6 implies that T; has the
required isomorphism type. In all cases, T, is abelian and Cr,(t) = E,. Thus,
if T, is not isomorphic to E,, we have T; = Jo(T) char T and hence T, char T.
If T, ~ E,, then again T; = Jo(T) char T and we are done.

LeMMA 2.8. Let T be a 2-group that is isomorphic to a Sylow 2-subgroup of
U;(4). Then Aut (T) does not contain a subgroup isomorphic to X.

Proof. Let {p,x||p| =3, |x| =2, and p* = p~!) < Aut (T). Since
Z(T) ~ E,, it follows from [7, VI, Lemma 2.5(vii)-(viii)] that [x, Z(T)] = 1.
Thus [p, Z(T)] = 1 which is false by [7, VI, Lemma 2.5(ii)] and we are done.

LEMMA 2.9. Let T be a nonabelian 2-group of order 2° such that {p, x | |p| = 3,
[x] =2, p* = p~'> < Aut (T) with C(p) = 1. Then T is isomorphic to a
Sylow 2-subgroup of L3(4) and Cr(x) is isomorphic to Dg or Qg.
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Proof. By Lemma 2.8 and [7, VI, Lemma 2.18], it follows that T is isomor-
phic to a Sylow 2-subgroup of L;(4). Hence Z(T) = T' = &(T) >~ E,,
T|T' = Ey4, Crjr(x) = E,, and |Cypy(x)] = 2. Let T = T/T’. Then Cx(x)
is not p-invariant. Also T has exactly five p-invariant subgroups isomorphic to
E, say T;for1 < i < 5,suchthat T* = |J] T where the union is disjoint.
Thus we may assume that x fixes T;, T,, and T; and x: T, <> Ts. Let T; denote
the inverse image in T of T, for 1 < i < 5. Three of the T; are isomorphic to
Z, x Z, and two of the T; are isomorphic to E,;4;. Thus we may assume that
T, @ Z, x Z,. Thus Cr,(x) = {y;> = Z, where y} = z generates Czry(%).
Thus z € Cr(x) < Cr(x) and |Cr(x)| = 4 for i = 1, 2, 3. Hence

|Cr,()Cr, ()] =8, <z} = Z(T) N (Cr,(x)Cr,(x)), and Cr (X)Cr,(x) = Cy(x).

Clearly Cr,(x) < Cr (x)Cr,(x) and hence Cy(x) = Cr,(x)Cr,(x). As Cy(yy) =
T;, the lemma follows.

LemMMA 2.10. Let T be a group of order 2° with
2, = <p,x|lpl =3,|x| =2 and p* = p~') < Aut (T).

Assume also that Z(T) = Eg and |C(p)| = 2. Then exactly one of the following
two conditions holds:

(i) There is a {p, x) invariant subgroup Q of T with Q = Qg, O<p, x> =
GL(2,3), Q' = Cy(p) and with T = [Z(T), p] x Q.

(i) T’ = Cilp) < Z(T) = ®(T) = BXT) = Cy(p) x [Z(T), p], (T =
Z(T), exp (T) = 4 and for any o € T — Z(T), one has |«| = 4, a* ¢ Cr(p),
a® ¢ [Z(T), p], and Cr(x) = {a, Z(T))>. Also

TIT' & Z, x Zsy TI[Z(T),p] % Qs, and T<{p,x)[[Z(T), p] = GL(2,3).

Proof. Clearly T/Z(T) ~ E, and hence |T'| =2 and T' < ®(T) <
Z(T). Since Cy(p) < Z(T), it follows that T' = Cp(p) = {u) for some in-
volution u € T. Thus Cy/7(p) =1 and T/T' = E,4 or Z, x Z,. Setting
F = [Z(T), p], we have E, @ F<1 T{p, x) and Z(T) = {ud x F. Note
that |Cp(x)| = 2.

Suppose that T/T' =~ E,¢s. Since Z(T)/T' =~ F over T<{p, x> and
|CqyrAx)| = 4, it follows that x fixes some p-irreducible subspace Q/T’ with
Q# Z(T), T' < Q< T<p, x),and Q/T' = E,. Clearly (i) holds in this case.

Suppose that T/T' =~ Z, x Z,. Then T' =<u) < ¥(T) = Z(T) =
OYT), Q,(T) = Z(T), and exp (T) = 4. Also T/F = Qg and T{p, x)/F =
GL(2,3). Letting ae T — Z(T), we have |a| =4, Cp(a) = {a, Z(T)),
T = {a, o*), and u = [a, ’]. If &® = u, then («*)*> = 4 and OY(T/T’) = 1
which is false. Thusa®? ¢ T' = Cy(p). Since T/F = Qg and Q,(T/F) = {(uF,
it follows that «® ¢ F and we are done.
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LemMMA 2.11. Let T and {p, x) < Aut (T) be as in Lemma 2.10 and assume
that T satisfies conclusion (i) of Lemma 2.10. Let t be an involution in
Caut (1yKp, x7). Then the following conditions hold:

i [Z2(T), 7] =1;
(ii) t either inverts or acts trivially on T|T';
(i) my(Caue (P, X)) = L.

Proof. Since |Cyry(t)] = 4 and Cyry(7) is p-invariant, (i) holds. Let T’ =
(), F = [Z(T), p], Ce(x) = {z), and F = {y, z) for some involution y €
F —(z). Let W = (ve T | v* e<uz)). Then W is a maximal subgroup of
T, W is abelian, W = Z, x E,, and W is {1, x)-invariant. Also O'(W) =
{uz) and hence there is a unique maximal subgroup Y of W such that uze Y
and Y/{uz) = Cyeypy(x). Then W =Y x (3D, Y = Z, X Z,, Q(Y) =
{u, 2%, 0Y) = (uz),and Y is t-invariant. Hence Y = {(q) x {z) for some
element ge Y — (u, z) such that g> = uz and q° e q{u, z). Since T =
qZ(T) U q*Z(T) U q**Z(T), it follows that q°¢ {g,q ' = quz}. Thus
q° € {qu, gz = q " 'u} and (ii) holds. Suppose that E, = {1, 1,) < Caut(n)
({p, x»). Then we may assume that ¢° = qu and ¢** = g~ 'u. Hence ¢™* =
g ! and 11, inverts T which is impossible and we are done.

Our final result of this section is:

LemMa 2.12. Let T be a 2-group such that T = R % Q, * Q, where Q,, O,
are quaternion of order 8, |R| = 2* and R is dihedral or generalized quaternion.
Let © € I(T). Then |Cy(z)| = 2°.

Proof. Clearly we may assume that = ¢ Z(T') and let Z(T) = {u) where u
is an involution and Q' = Q) = Q,(R") = {w).

Suppose that |R| = 23. Then T' = <u) and t7 = {1, tu}. Hence |C,(7)| =
26 since |T| = 27. Suppose that |R| = 2* > 2% Let {y) denote the cyclic
maximal subgroup of R, let (w) = Q,({y>) and let U = {w) * Q, * Q,.
Then U< T, Cr(w) = Cp(y) = {y) * Q; * Q, and U = Q,(C(w)). Suppose
that 7e Cp(w). Then, since |Cp(w)| = 2”7 and Cpw) = {u), we have
|Cer@(®| = 2°. Suppose that 7 ¢ Cr(w); then t ¢ U and T, = <U, t) has
order2”. But T, = (T, n R) * Q; * Q, where |T, n R| = 2%, (@) < T, n R
and {w) £ Z(T,). Thus T, n Ris dihedral or quaternion and since 7t € Ty, we
have |Cr,(v)] = 2°. This completes the proof of the lemma.

3. The proof of Theorem 1
In this section, we present our proof of Theorem 1.
PrOPOSITION 3.1. Let G be a finite group with O(G) = 1. Assume that

G — Z(G) contains an involution t such that H = Cg(t) contains a 2-component

L such that m,(L) > 1 and m,(Cyx(L/O(L))) = 1. Then the following conditions
hold:
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() my(Ce(L/O(L))) = 1, L < H, No(L) = O(Ng(L))H, and Ce(L|O(L)) is
tightly embedded in G ;
(i) 0,(G) = F(G) = C4(E(G)) = 1 and F*(G) = E(G);
(i) either F*(G) is simple of F*(G) = R x R' where R is simple and
L={r'|reR) =R

Proof. Set N = Ng(L), M = C4(LJO(L)), and N = N/O(N). Note that if
Kisa2-component of Hand K # L, then K < Cy(L/O(L)) and hence m,(K) =
1. Thus L=s H < N. Also te C4(L) < M = N. Choose S € Syl,(N) such
thatte Sandlet T = S n M € Syl,(M). Then ¢t € T and hence ¢t € Z(T') and
() = Q(T). Thus N = MH by the Frattini argument and m,(M) = 1.
Thus T is cyclic or generalized quaternion, M = O(M)C,(t) and Ng(L) =
O(Ng(L))H. Next suppose that g € G — Ng(M) is such that |M n M| is even.
Then there are elements m,, m, € M such that t™ = ™%, Hence m,gm;' €
H < N < Ng(M) which implies that g € Ng(M), a contradiction. Thus (i)
holds.

Suppose that O = 0,(G) # 1. Then 1 # Cy(t) = Cyx(L/O(L)) and hence
te Q. Then te Z(Q) and Q,(Q) = {t) < Z(G), which is false. Thus (ii)
holds.

Assume that E(G) = R; x R, x -+ x R, where r > 2 and R, is simple for
all 1 < i < r. Note that L,.(H) = L,.(Cg(?)) by [9, Corollary 3.2]. Sup-
pose that ¢ normalizes R; with 1 < i < r. Then, [9, Lemma 2.18] implies that
Ly (H) = Ly(Cggy(t)) = L, (Cg,(2)) x -+ x L,(Cg(t)) and hence we may
assume that L is a 2-component of Cg (¢). But |Cg(¢)|, = 2 for all j # 1.
Thus r = 2, te R,, Ry < H, and L = R, since m,(R,) = 2. Choose Ue
Syl,(R,) with t € U. Then Cy(t) < Cyx(L) and hence Q,(U) = (¢>. Then R,
is not simple, a contradiction, consequently we may assume that R = R,.
Then

D = (ryri|ry € Ri) = Cpxp(t) = 2H

and D = R, = R,. Since D is simple, m,(D) > 2and D = L. Thus ¢t normal-
izes R; for allj > 3. If r > 3, we proceed as above to obtain a contradiction.
Thus (iii) holds and the proof of the proposition is complete.

Thus, under the hypotheses of this lemma, if F*(G) = E(G) is not simple
and the structure of L/O(L) is given, then the possibilities for G are determined
by the structure of Aut (L/O(L)). Also when a Sylow 2-subgroup of M is not
cyclic and F*(G) = E(G) is simple, the possibilities for G are completely de-
termined by [3].

Combining [8, Theorem] and [7, Main Theorem], it follows that conditions
(i)-(iv) of Theorem 1 hold. Next we complete the proof of Theorem 1 by
proving the following result.

PROPOSITION 3.2. Let G be a finite group with O(G) = 1, F*(G) simple and
with r,(G) > 4. Suppose that G contains an involution t such that H = Cg(t)
contains a 2-component L with L|O(L) = A, or PSL(2, q) for some odd prime
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power q, my(Cx(L/O(L))) = 1 and with Ng(L)/(LCyx(L/O(L))) cyclic. Let
S € Syl,(Ng(L)) be such that te S and let D = S n L e Syl,(L). Then the
Jfollowing conditions hold:

@) <> = S n Co(L/O(L)) € Syl,(Ce(L/O(L))).

(i) SeSyl,(H)and L = H™.

(iii) H contains a normal subgroup K such that H = {t)> x K where K‘® =
H®™ = L, Cx«(L/O(L)) = O(H) = O(K), K|O(K) is isomorphic to a subgroup
of Aut (L/O(L)) containing Inn (L/O(L)) properly with LO(K)/O(K) corre-
sponding to Inn (L/O(L)) and such that K|LO(K) is cyclic. Also if LJO(L) = A,,
then K|O(K) =~ X, and if L|O(L) =~ PSL(2, q) for some odd prime power q,
then q is a square and K/O(K) contains an involution that acts as a “‘field auto-
morphism” of order 2 on LO(K)]O(K).

Proof. Let Q = S Ce(L/O(L)). Then Q< S, D< S, Q,(Q) = (&) <
Z(S), Q is cyclic or generalized quaternion, D is dihedral, [Q, D] = [Q n D] =
1, 0D = Q x D, and S/(Q x D) is cyclic.

Let H = C4(t), N = Ng(L), M = C4(L/O(L)), and N = N/M. Then
SeSyl,(H), Ln M = O(L)< N, Qe Syl,(M), LIO(L) ~ L= N, N/L is
cyclic, and N is isomorphic to a subgroup of Aut (L) containing Inn (L) with L
corresponding to Inn (L). Also S/Q is isomorphic to a Sylow 2-subgroup of N.
Setting § = S/Q, we conclude that exactly one of the following holds: () S is
dihedral; (B) S is semidihedral; (y) S/Discyclicandif D < U < Swith /D =
Q,(S/D), then U = D x (%) where % is an involution. Also if L/O(L) =
PSL(2, q) for some odd prime power g, then g is a square and 7 acts like a
“field automorphism” of order 2 on L/O(L).

We shall assume that G is a counterexample to the proposition and shall
proceed in a series of three steps to a contradiction.

(1) S ¢ Syl(G).
Proof. Assume that S € Syl,(G). If Q is cyclic, then
r2(S) < ry(S/(Q x D)) + (@ x D) < 4,

which is false. Thus Q is generalized quaternion and r,(S/Q) > 2. Hence
S # Q x D and (y) holds. Let U denote the inverse image of U in S. Thus U
contains a subgroup V <1 U such that V = Cy(D), V n(Q x D) = Q,
[V/Q] = 2, and U = V x D. Also V/Q induces an outer automorphism of
order 2 on L/O(L) that centralizes DO(L)/O(L). Hence |D| > 23.

Let D = (y,d|y* = d*" = 1,d” = d~*) for some integer n > 2 and let
z =d* ', Note that Z(D) = {z), Q,(S) < U, C¢(D) = V x {z), and
U = V' x {(d*) where V' < Q' and V' is cyclic by Lemma 2.2.

Suppose that D is strongly involution closed in S with respect to G. Then,
since U = V x D, [11, Theorem 3.1] implies that D is strongly closed in S
with respect to G. Hence [11, Theorem] implies that F*(G) is isomorphic to
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Us(4), A, or PSL(2, q,) for some odd prime power g, > 5. Since Cx(F*(G)) =
1, we conclude that r,(G) < 4 which is a contradiction. Thus z¢ 1 S = z% n
U¢& D.

Leto e I(S) — (Q x D) = I(U) — (Q x D). Then U = (Q x D)) and
D{a) € Syl,(LLo)). Since U/Q =~ D{o) is neither dihedral nor semidihedral
and Cp(,(L/O(L)) = O(L), it follows from the structure of Aut (L/O(L)) that
there is an / € L such that ¢' € Z(D{0)). Then D{¢> = D x {¢") and U =
0<¢{a"» x D.

Suppose that t ~g z » zt. Then there is an involution ¢ € z¢ N (S —
(Q x D)). By the above, we may assume that D < Cg(o). Since <z, z) <
Z(S), there is an element g € G such that ¢ = z and C4(6)? < S. Then
D! < (Q,(Cs(0))? < Q,(S) < Uand (D?) < U’'. Thusz? = zsince Q,(U’) =
{t, z) and we have a contradiction. Hence we may assume that ¢ ~; z or
zt ~¢ z. Since {z,t) < Z(S), this fusion must take place in N4(S).

Suppose that Q,(S) < Q x D. Then Q,(S) = {¢t>) x D and {(z) =
Q,(Q,(S)) = Ngz(S)whichis false. ThusI(S) = I(U) € Q x DandU/D = V
is not generalized quaternion.

Suppose that C(Q) > Z(Q) = {(t>. Then |C{(Q)| = 4. If Cp(Q) = {u)
where u? = t, then Q,(S) = U, Z(U) = u) x <{z), {u, td>char S and
{t) char S. Thus {(z) =1 N4(S) which is false. If C,(Q) = {t, u) where u?> =
1, then Q,(S) = <u, t> x D and again {(z)> 0 Ng4(S), a contradiction. Thus
Cy(Q) = Z(Q) = <t) and Lemma 2.2 applies.

Suppose that V is semidihedral. Then r,(U) = r,(V x D) = 4and U < S.
Since S/(Q x D) is cyclic, Lemma 2.3 yields a contradiction. Thus V satisfies
(iii) of Lemma 2.2. Then |Q| > 2% and Q, = Q n Q,(V) is a maximal sub-
group of both Q, (V) and Q. Also Q, is generalized quaternion and Z(Q,(V)) =
Z,. Letting Z(Q,(V)) = {u) where u*> = ¢, we have Z(Q,(S)) = <u) x {z)
and we obtain a contradiction as above. Thus (1) holds.

Let S < T € Syl,(G) and let x € N7(S) — S be such that x2 € S. Note that
t* #t.

(2) Qiscyclic, |Q] = 4,and S # Q x D.

Proof. Suppose that Q is generalized quaternion. Then Q* < S and 0* N
0=[0,0% =1 since t*#¢ Hence Q= (0" <8 =250, U=
(@ x D)Q = QCs(Q) where Cg(Q) = ({t) x D)Q". Since Q* n (t) x D)
is a maximal subgroup of Q%, we have t* = z where Z(D) = (z). But Q0 =
(0"~ < § and U = D(Q¥)~. Thus () holds and § is semidihedral. Then
Q,8) =D and Q,(S) < D x Q. Hence Q,(S) =D x {t) and (z) =
Q,(Q,(S)) char X. Thus z* = z, a contradiction. It follows that Q is cyclic.
Suppose that Q = (¢>. If S/D is cyclic, then Q,(S) = {¢)> x D, z* = z and
Cs(Q,(S)) = {», z) where y* € {t, tz}. Then (z) char S, {(»*) char S and
hence (¢ char S, which is impossible. Thus ¢D ¢ U'(S/D) and there is an fe S
such that S/D = {tD) x {fD). Therefore t ¢ ®(S) and hence S = {¢> x X
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for some maximal subgroup X of S. Now [14, I, 17.4] implies that H = {t) x
K for some normal subgroup K of H. Then K = H® = L since H < N.
Also Ci(L/O(L)) = O(K) = O(H). Note that if S/{¢t) is dihedral or semi-
dihedral, then so is X and [12, Theorem 2] yields a contradiction. Hence (y)
holds and (iii) of the proposition holds. Thus Q is cyclic and |Q]| > 4. If
S = Q x D, then Q,(U'(Z(S))) = {t) char S, which is impossible. Con-
sequently (2) holds.

(3 S=Dx D, T =~ Dwr Z,,and ry(G) < 4.

Proof. Suppose that Cg¢(D) = Q x Z(D). Then § = S§/Q is dihedral or
semidihedral and D is a maximal subgroup of 5. If Q,(S) = Q,(Q x D) =
{t> x D, then C5(Q,(S)) = Q x Z(D) and {t) char S which is false. Then
S = (Q x D){o) for some involution ¢ and S is dihedral. Since {¢) is not
characteristic in S, Z(S) = (¢, z) and hence ¢ acts dihedrally or semidihedrally
on Q. Thus C4(o) = Cy({t, 6)) = {t, z,0) and [12, Theorem 2] yields a
contradiction. Hence @ x Z(D) is a maximal subgroup of C4(D) and (y) holds.
Thus Cy(D) = V x Z(D) for some subgroup V containing Q as a maximal
subgroup. Also U = VD = V x D. Suppose that Q,(S) < Q@ x D. Then
Q,(S) = (¢> x D and Cs(Q,(S)) = V x Z(D) where Q,(V) = {t>. Hence

Q0" (Cs(Q(5))) = <t> char S,

a contradiction. Thus {¢t> x D < Q,(S) < U and there is an involution
teV — Q such that V = Q<t). If V is abelian, then Q,(S) = {(1,¢> x D,
Cs(Q,(S)) = V x Z(D), and

QT (Cs(Q,(S))) = (2 char S,

a contradiction. A similar argument applies if V' is modular. Thus V is dihedral
or semidihedral. Setting S = S/D, we have C5(0) = Q since §/0 is cyclic.
Hence [14, I, 13.19] implies that S = U=V x D. Now V x D = § =
S* = V* x Dand t* # t. If V ¢ D, then [14, I, 12.5] implies that there is a
normal automorphism a of S such that V** = V and D™ = D. Since « is
normal, « acts trivially on S’ and hence ¢* = ¢, a contradiction. Thus S 2
D x D and V = D. Suppose that Y =V nV* # 1. Then Y < V and
Y <« V*. Since t*e€ {z, zt}, this is impossible. Thus S =V x V* and
{S,xy =2 Dwr Z,. But J,({S,x>) =S and hence S char (S, x>. Since
Z(S) = <t, z), we have N1(S) = (S, x), T = S, x>, and r,(T) < 4. This
contradiction concludes the proof of Proposition 3.2 and of Theorem 1.

4. Beginning the proof of Theorem 2

We now commence our proof of Theorem 2.

Let G,t, H, L, S, and D be as in Theorem 1 and assume that F*(G) is simple,
that r,(F*(G)) > 4 and that |D| = 23.

Observe that if |[F*(G)|, < 2'°, then [5] determines the structure of F*(G)
and the conclusion of Theorem 2 follows. Consequently we may assume that
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|F*(G)|, > 2'° and we shall obtain a contradiction by showing that |0%*(G)|, <
210,

Applying Theorem 1(v), we have S = E, X Dg, |S'| = 2,t¢ S, and S¢
Syl,(G). Hence we may choose involutions u, z € S such that

4.1) S =<z> Z(S) =<t uz)y, and S¢ Syl,(G).

Moreover we may choose involutions x, y of S such that S = (¢, u) x
{x, ), {x, y> = Dg, and {x, y)' = {z), and:

(4.2) The elements of Z(S)* are representatives for the distinct H-conjugacy
classes of I(S), u ~ x ~ xzin H,z ~y ~ yz ~ xu ~ xuzin H, uz ~ yu ~
yuzin Hytu ~ tx ~ txzin H,tz ~ ty ~ tyz ~ txu ~ txuzin H, tuz ~ tyu ~ .
tyuz in H, and D = {y, xu).

Since S € Syl,(Cg(2)) and S’ = {z), we have:
(4.3) t ~ zin G and ¢ is not a square in G.
Set 4 = {t,u, z, y) and B = {t, u, z, x).

4.4) &.6(S) = {4, B}, I(S) = A U B, and every elementary abelian sub-
group of S is contained in 4 or in B.

Also we have
4.5) Co(4) = Cy(4) = 0(Cg(4)) % 4,
Cs(B) = Cy(B) = O(C4(B)) x B, Cyx(z) = O(Cy(2))S.

Since u" N 4 = {u}, u? " B = {u, x, xz}, uz) n B = {uz}, and (uz)? n
A = {uz, yu, yuz}, we have

(4.6) A~ Bin H, {u) <« Ny(4), and <{uz) <« Ngx(B).
Also we have
@4.7)  Co(S) = Cy(S) = O(Ce(S)) x Z(S), Nu(S) = O(C(S)) x S,
Ce(Z(S)) = Cu(Z(S)) = O(Cx(Z(SN)S = O(CL(Z(S)))S.
Setting H = H/O(H), we conclude:

(4.8) There is a 3-element p € Cy(u) N Ny(A4) such that p* = p~ 1, C,(p) =

<t’ u>’ [Aa P] = <ya Z>, and NH(Z) = <i, a) X <?, Z, ﬁ’ )?) with (7, 29 ﬁ, 3_C> =
T,

(49) There is a 3-element p, € Cy(uz) N Ny(B) such that pf = il
CB(pl) = <t, uz), [B’ pl] = <Z, ux>’ and NH(B) = <t’ ﬁ2> X <2’ X, py, ?)
with ¢z, i, py, §> & Z,.
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Thus Nyz(4) < O(H)A{p, x> and hence
(4.10) Ng(4) = (O(H) n Ny(A)A4<p, x>
where O(C4(A)) = O(Ng(A)) = O(H) N Ny(A).
Similarly for B, we have
(4.11) Ngy(B) = (O(H) n Nu(B))B<py, ¥>
where O(C4(B)) = O(Ng(B)) = O(H) n Ny(B).

Suppose that L =~ «/,. Then Cgx(i) = (i, u) x W for some subgroup A
of H with {y,z, p> < Wand A = X, or I,. Suppose that L =~ PSL(2, q)
where ¢ = p*" for some odd prime integer p and integer n > 1. Then Cg(ii) =
(t,uy = U for some subgroup A of H such that W = PSL(2, p"), O¥(A) =~
PGL(2,p", and {j, %, p) < .

Hence S N 0%(C4(t, ) = {y, z) € Syl,(0*(Cg4(t, u))) in all cases and:

(4.12) If 1 e€t® and A € I(C4(7)) with A # 1, then O*(Cg(4, 7)) is of odd
order or has Sylow 2-subgroups of type E,.

Clearly:

(4.13) N4x(S) controls the G-fusion of element of t¢ N Z(S) and Ng(S) N
Ce(Z(8)) = O(Ce(S)) x 8.
Thus, since S ¢ Syl,(G), we have
Ne(8)/(N6(S) n Ce(Z(S))) o Aut (Z(S)) = GL(3, 2)
and 2 | [Ng(S)/(Ns(S) N Ce(Z(S)I. Set
? = INa(S)/(Ne(S) N Ce(Z(S))

and note that y < 6 since ¢ ~ zin G. Thus y € {2, 4, 6}.
Suppose that y = 6. Let P e Syl;(Ng(S)). Thent ~ tu ~ tz ~ tuz ~ u ~
uz in Ng(S) and X = (Ng(S) n Cx(Z(S))P = N4(S). Since

Z(S) = Cys(X) x [Z(S), X]

where Cy5)(X) = {z) < Ng(S) and E, = [Z(S), X] = N4(S), we conclude
that Ng(S) has 3 orbits on Z(S)*. This contradiction implies that y # 6.

In the next section, we shall examine the case when y = 2 and the remainder
of the paper will be concerned with the case y = 4.

5. The case |Ng(S)/(Ns(S) N Cs(Z(S)))| = 2

Throughout this section, we assume that y = 2 and we choose S, €
SyL,(Ng(S)). Then |S,/S| = 2 and 5 = {t, a} where o € {u, tu, uz, tuz, tz}.
We shall now proceed to prove that |G|, < 2° in a series of lemmas.
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LEMMA 5.1. If a # tz, then |G|, < 27.

Proof. Assume that o # ¢z and |G|, > 28.

Clearly S, € SyL(Ng(Kt, a))), S € Syl ,(Ce(<t, a))), and Ng(Kt, o)) =
Co(Kt, a))Sy.

Suppose that « = u. Then t N S = {t, u, x, xz}. Since S; < Ng(4) N
Ng(B), we conclude that S, leaves {x, xz} invariant.

Set M = Ng(4) and M = M/O(M). Now

CulCt, up) = (0(Cg(4)) x A)Xp, x)

where p* € O(Cg(4)) = OM), Cx(Ki, iy) = (i, a) x {J, z, p, Xy, and
Cy(Ki,a))is S, invariant. Let R = Cy(<%,#))S;. Then Cy(<f, i)) is of index 2
in R and O*(R) = (3, z, py. Thus X = {(j, z, p, Xp) < R. Since X = Z,, we
have R = Cg(X) x X where <7, #) is of index 2 in Cx(X). Hence there is an
involution 7€ (S; — S) N Cg({x, y)) such that S; = {1, t> x {x,y> with
{(t,ty = Dg and t* = u. Hence

So = <1, 1) x X, 2 € Syl,(Ce(x))

and 1 n S, = {t, u, x, xz} since |t9 N S| = 4. Since
I(S; — So) = yI(Kz, t)) v yzI(z, t)) and t° n (z2I(Kz, 1)) = 0,

it follows that t¢ n S, = {t, u, x, xz}. Also |S;| = 2° and hence there is a
2 group T containing Sy with |T: §;| = 2. Thus thereis anelementwe T — §;
such that w: {t, u} < {x, xz}and hence T is transitive on t% n S,. If S, char T,
then T € Syl,(G) and we are done. Thus, S, is not characteristic in 7.

Now S; = Q,(S,) = (D | De E(S,)). Thus there is an involution in
T — S,. Suppose that A€ I(T — S;). Then A leaves t° S; and S, —
(t¢ n S,) invariant. Thus A normalizes Y = {7, tu) x {y,z) and B =
{t, u, x, zy and hence A: Cy(t, u) = {tu, y, z) < Cy(x, xz) = <z, tu, z). Also
A normalizes Z(S,) = {tu, z) = S} and hence y* € t{tu, z». Thus implies that
Cs,;5(0) = {yy*B). Since Cy(A) = (#t*, uu*), we conclude that Cs (1) = Ds.
Hence J(T) = S, char T and we have a contradiction. Thus a # u.

Applying similar arguments when « € {tu, uz, tuz}, we obtain Lemma 5.1.

LemMA 5.2. Ifa = tz, then |G|, < 2°.
Proof. Assume that t5' = {z, tz} and that |G|, > 2'°. Then
tn S = {t, tz, ty, tyz, txu, txuz}.
We shall proceed to a contradiction via a series of lemmas.

LEMMA 5.3. A ~ Bin G and Ng(S) = Ng(A4) n Ng(B).

Proof. Assume that 4 ~ B in Ng(S) = O(C4(S))S; and let ve S, — S.
Then A° = B and ¢° = tz. Hence <I(Cs())) = {C4,p()> = C¢y,,,50) =
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E,since t’ = tzand v’> € S < Cg(t, u, z). Thus J,(S;) = S char S, and hence
S, € Syl,(G). Since |S;| = 2°, this is impossible and hence 4 <« Ng(S) and
B <1 N4(S). Then {S,, p) is transitive on t¢ n A = t{y, z) and N4(4) is
transitive on ¢ N 4. Similarly Ng(B) is transitive on t¢ N B. Since A ~ B
in H, we conclude that 4 ~ Bin G and Lemma 5.3 follows.

Next we investigate the subgroup M = Ng(A4). Similar considerations will
also clearly apply to the subgroup N;(B).

Set M = M/O(M) and F = {y, z). Then F =~ E, and Cy(A) = A4 since
Cs(A) = O(M) x A and MJA ¢, Aut (4) =~ GL(4,2) = /5. Also M acts
transitively on t9 N 4 = tF, Cy(f) = A{p, Xy and Cg(i)/4A = ;. Hence
|[M/A| = 3-23. Since C,(p) = <t, u) is not normal in M, we conclude that
O3(M/4) = 1 and hence M/4 =~ Z,. Note also that t¥ = tF and hence
F<= M.

Set W = 0, ,(M), V = O(M)[W, p], and M = M/(O(M) x F). Thus
OM) x F< V.

LeMMA 54. (1) M = W{p, X) and {p, Xy = Z5;
(i) Cy(p) = <1, @y; ~
Gi) Va M,Cp(p) =1andV =~ Z, x Z, or Ey.

Proof. Clearly (i) holds and <%, @) < W < M = W{g, X with {p, ¥) =
T, Also |W| =2*and E, = {1, i) < Cy(p) < W. Thus Cy(p) = <&, i)
and W = E,q or Z, x Qg by Lemma 2.1. Hence (ii) holds and ¥V <« M since
M = W<{p, ).

Suppose that W =~ Z, x Qg. Then Q,(W) = <{1,ii) = A. Let % be a
Sylow 2-subgroup of M = Ng(4)suchthat S < S; < ¥ andlety” =% n W.
Then ¥ <« U, U = ¥ {x), x ¢ ¥, and |%| = 2|¥"| = 27. Hence % ¢ Syl,(G)
and there is a 2-element s € No(%) — % such that s> e %. Then 4 # A< U
and A° N ¥ £ A since /A = Dg and |¥/4| = 4. However Q,(W) = 4
implies that A/F = Q, (¥ /F). This contradiction implies that W = E,¢. Since
V = [W,p] = Fand |V| = 24, (iii) follows from Lemma 2.1.

LEMMA 5.5. Assume that V =~ E,s and let % € Syl,(M) be such that S <
Sy < U. Then &3,(U) contains a unique element E such that:

(1) Cg(t) = <z, F) for a unique © € {u, tu};
(i) % = E<{x, t);
(i) |Cgx)| = |Ce(0)] = 2°;

(iv) t9ntE = tE = (F.

Proof. Clearly we may assume that O(M) = 1. Then E;4 = V = [W, p]<
M, W = 0,(M) =V{t,u), F=<y,z) = Cy(t),and M = W{p, x). Thus
{t,uy x {p, x)actson V with Cy(p) = 1and Cy(¢) = F. Thus<{z) = Cy(x) N
Cy(xt) and |Cy(x)] = |Cp(xt)] = 4. Also <t, u) centralizes Cy(t) = F and
{t, u) acts on Cy(x) # F. Since Cy(x) = E,, there is a unique 7 € {u, tu} such
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that t centralizes Cy,(x). Thus |Cy(7)| = 2* and since Cy(x) is {p)-invariant,
we have Cp(r) = V. Set E=V x {t). Then Ee &;,(%), E< % and
(i)—(iii) hold. Since I(tE) = tF v ttF, (iv) also holds. Now (iii) and (iv) imply
that &5,(%) = {E} and we are done.

LEMMA 5.6. V = Z, x Z,.

Proof. Assumethat V =~ E, . and choose % asin Lemma 5.5. Let &5,(%) =
{E} and set N = N4(FE). Also choose 4" € Syl,(N) such that < A4". Thus
C,(t) = S and C4(E) = S n E = Cgt) = <z, F). Suppose that fe AN is
such that [¢, f] € E. Thent’ € t° n tE = ¢¥ and hence fe ES = %. We con-
clude that C,(E) = E. Also setting /' = A'JE, we have & ¢ Aut (E) =
GL(5,2)and C,(1) = § = (i, X) = E,. Thus ./ is dihedral or semidihedral
by [14, 111, 11.9(b) and 14.23]. Since the 2-exponent of GL(5, 2) is 23, we have
|A47] < 2°. Thus there is a 2-element s € Ng(A") — A such that s> € A#". Then
E#E =E< N, E, < W,andi¢ E;since E, £ Cp(f) = S = %. Thus
X e E, or xte E,. Then Lemma 5.5(iii) implies that |E,| = 4, # = Dy,
|E, n E| = 23, and E,; n Cg(t) = {t,2z). Let {X,} = {X, Xi} n E,. Then
E, n E = CgX,) and hence xe E; or tx e E;. Letting x, = {x, xt} n E,,
we have E;, = (E n E,, x,, v) for some involution v. Then v: tE < tx,E and
Z(N) = (X,>. Since s: E«> E,, s normalizes I(# — (EE,)) = I(tE) u
I(tx,E). But I(tE) u I(tx,E) = t* U (tu)". Since t ~ tu in G, it follows
that |C,(t)] = |S| < |Cy(e(¢)] which is impossible. Now Lemma 5.4(iii)
yields Lemma 5.6.

Thus we have V=2Z, x Z,, Q(V)=F =Cp), and V< M =
V(K a)y x {p, X)). Since <f, ) normalizes Cy(X) and Cyp(X) = Z,, it follows
that 7 inverts V and there is a unique involution u, € {u, ut} such that u; e
Cu(V). Hence Cy(V) = <u;) x V< M.

Let% e Syl,(M)besuchthat S < S; < U, setW =U "W,V =UNV,
and E =¥ <u;>. Then E = (u,) X V', ¥V 2 Z, X Z,, Q(¥)=F, v <
U, E= Coy(¥)<a U, t inverts ¥', W = E{t), and U = {u,y x (¥{x, t)).
Also let X = {u;> x F = Q,(E).

LeMMA 5.7. (1) ¥ Kx, t) is isomorphic to a Sylow 2-subgroup of M,,.
() Z@«) = uy, 20, U = Q(U), and Q,(U') = F.

(iii) X = Z(@W)Q,(«") char %.

(iv) E = Jo(#) and W = Cu(X) char %.

Proof. Clearly [7, 1I, Lemma 2.1(vi)] implies that V(i) x {p, X)) has
Sylow 2-subgroups of type M,, and hence (i) holds. Then (ii)—(iv) follow and
we are done.

Since # = W <1 M, we have M = O(M)Ny (W), t* = tF = t” = t™, and
MW =~ %,. Thus Ny(#) = (O(M) n Ny(¥)) X W) Ny(#) n H) and
hence there is a 3-element k € Np(#") N Cy(u,) inverted by x such that x3
O(M) n Ny(#).
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Set N = Ng(#') and N = NJO(N). Clearly {%,k) < N and Z(#') =
X < CoW). Let U < N e Syl,(N). Then % < A since |%| = 27 and
W char %. Let fe A be such that t/ € tX. Then t/ €t n (tX) = tF = 1.
Hence fe ¥'S = %. Noting that C,(#") = X, we conclude:

LeMMA 58. () X = Z(#) e SyL(C(W)).
(i) Ce#) = O(N) x X.

Next we prove:

LemMMA 5.9. () |4 = 2°.
(ii) ¥ char 4.

Proof. Clearly we may assume that O(N) = 1. Thus X < N and N/X o
Aut (#7). Hence |N|,, = 3, N = O,(N){k, x>, and &/ = O,(N)x)>. Clearly
Co,my(t) = A = (t, X) and Cy(x) = {uy, t>. Since t% N {uy, t) = {t}, we
have Cp,y(k) = {uy, t). Let v; € ¥ be such that v} = y and set v, = v}.
Then v3 = yz, (v,0,)® = z, and Cy(x) = {v,v,). Since X < N, it follows that
N permutes the sets {tX, v, X, tv,X, tv,v,X}. Since [t N tX| = |t7]| = 4, it
follows that |O,(N)/#°| = 4. Then (i) holds and N/#" =~ Z,.

Suppose that #° < Cy(X) = O,(N). Then Z(N) = {u,). Setting N =
N/{u,), it follows that

since % N {t, u,» = {t}. Noting that Z, x Z, =~ E < N and |0,(N)| = 27,
we conclude from Lemmas 2.7 and 2.8 that there is a subgroup J of O,(N) with
uyed, JaN, t¢lJ, |J| =27, Cix) = {u), O,(N) = J(t), and with
J & Zz x Zg or with J isomorphic to a Sylow 2-subgroup of L,(4). Letting
x, = xifu;, = uand x; = xtif u, = ut, we have x,u; = xu, tx, ~ tin G,
t ~ txqu; = txu in G, and tx,u, ~ tx, in G. Since N = J{x, t), we have
|Cy(txquy)| < 23. But Cy(ix,it;) = Cy(ix,) = C,(tx,u,) since txsu; ~ tx, in
G. Thus |Cy(ix,)| < 2%. But #x, inverts © and hence |C;(iX,)| = 23 in either
case by Lemma 2.9. This contradiction implies that #° = Cy(X) and hence
T, & NJW o Aut (X) = GL(3, 2).

Clearly X <« & = O,(N){x), E< N, and hence F = O'(E) < N. Thus
Z(0,(N)) = F and Z(A") = {z). Suppose that Eg = Y <« A"; then t% n
Y = 0 since 4|S| < || = 2°, ze Cy(t), |Cy(t)l = 4, and Cy(t) < 4 or
Cy(t) < B. Suppose that Cy(¢) £ A. Then there is an involution t € Cy(¢) N
(x{u, z) v tx{u, z). Since [z, v,]| = 4, this is impossible. Thus Cy(z) < 4
and Y < N,(4) = % = #'{x) since Y normalizes X and [#, Y] = Cy(¢) <
A. Utilizing v, as above, it followsthat Y < #" = E{t). AssumethatY # X.
Then Y £ E and there is an involution t € (fu, F) n Y since O,(N) is transitive
on {tX, v, X, t,X, t,0,X}. But Cy,x)(t) = C,(7) = 4 and hence [t92™| =
2* which is impossible. Thus Y = X and X char 4. Then C,(X) = # char
A" and the lemma follows.
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Thus A" € Syl,(G), |G|, = |A| = 2° and the proof of Lemma 5.2 is com-
plete.

6. The case |Ns(S)/(Ns(S) N Cs(Z(S)))| = 4
As a result of Lemmas 5.1 and 5.2 we shall assume that
ING(S)/(Ng(S) 0 Co(Z(9)))| = 4

throughout the remainder of the paper.

Let S, € SyL,(Ng(S)). Then S< S, Cs,(t) = S, |Sy/S| = 4, |S,| = 27,
and Ng(S) = O(Ng(S))S;.

Suppose that ¢z ¢ ¢5; then ¢z ¢ t¥®, Since

{tyu, 2)* — {t, z, 1z} = {u, uz, tu, tuz}

and |t5!] = 4, we have t ~ a ~ az in S, for some a € {u, tu}. But z e Z(S,)
and hence 7z ~ az ~ ain S;. Thus #z € t5* and, by interchanging the roles of
u and tu, if necessary, we have:

LemMma 6.1. (i) 5t = t¥® = ¢(u, z).

() t°n S =t{y,z> U tuly z> U {tx, txz, tux, tuxz}.

(i) <I(S) — (1% N )y = wy x <x, y) and I(Kuy x {x, yy) = I(S) —
t°n S).

v) t°nA=1tluy,zyandt° n B = t{u, x, z).

) <Lu, x, z) is strongly closed in A with respect to G and {u, x, z) is strongly
closed in B with respect to G.

Set X =<u,y,z», M= Ng(d), and M = M/O(M). Since Cgz(4) =
O(M) x A, we have Cy(A) = A and M/A o Aut (4) = GL(4,2). Also
Cy(t) = Ny(A) = O(M)ALp, x) and Cyx(t) = A{p, X) by (4.10). Let P be a
Sylow p-subgroup of M for some prime p # 2. Since P normalizes X, it cen-
tralizes an element of 4 — X = t% n A. Then (4.10) and (4.11) imply that
|P| = 3. Thus {p) € Syls(M) and M = 0,(M){p, X).

Since [t9 N 4| = 2* and S < Ns,(4) < M, we have:

LEMMA 6.2. |M/A| e {12, 24, 48}.
We can easily eliminate one of these three cases.
LeEmMA 6.3. |M/A| # 12.

Proof. Assume that |M/A| = 12. Then, since M/4 has a subgroup iso-
morphic to T;, we have M/4 = Z, x Z,. Thus C,(05(M/A)) = <t, u) < M.
Let # = Ns,(4). Then S<a, M <, Sy, M € Syl,(M), A% = {4, B}, and
M € Syl,(Ng(B)). Also t* = {t, tu}. Letting Be S, — 4, we have 4* = B
and M? = Ng(B). But, by utilizing the element p, in (4.9), we have {t, uz) <
Ng(B). Hence t* = {t, tuz}. This contradiction establishes the lemma.

The remainder of this section is devoted to proving:
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LEMMA 6.4. If |M/A| = 24, then |G|, < 2°.

Thus, throughout the rest of this section, we assume that |[M/A| = 24 and
that |G|, > 2'° and we shall proceed to a contradiction.
Now p has the following orbits on 1t N 4 = t{u, y, z)>:

{t}, {tu}, {ty,tz,tyz}, and {tuy, tuz, tuyz}.

Since |tM| = 4, we have:

6.1) M = t{y,z)or tM = {1, tuz, tuy, tuyz}, t ~ tuin M, and C,(p) =
(,uy<a M.

Hence we have:

LEMMA 6.5. M/A = %, and M = 0, ,(M)p, x).

Next we prove:

LemMA 6.6. 1) S,/S =~ Z, and there is an element 1€ S; — S such that
S, =<8, and 1* ¢ S.

(i) If te€ S, — S is such that 1> ¢ S, then 1: A~ B, t*:t < tz, and
2 € Ny(A) A Ng(B).
(i) t™ = t{y,z)> andt ~ tuz in N4(B).

Proof. Assume that S,/S =~ E, and let ® € S; — S be such that t® = ru.
Then w:t« tu and w normalizes O*(C4(t, tu)) N S = {(y,z). Thus we
Ng(A) = M which contradicts (6.1) and (i) holds. Next, lett € S, — S be such
that t> ¢ S. Then S; = <S, t) and 12 € Ng(4) N Ng(B). Since 15t = t<{u, z)
and ¢ ~ fu in M, it follows that 7: 4 < B. Thus N4(B)/C4(B) =~ X, and ¢t ~
tuz in Ng(B) by the above argument applied to Ng(B). Hence (ii) holds and
(iii) follows from (6.1).

Fix 1 € S; — S such that t*> ¢ S and set a = 1°.

LemMMA 6.7. (1) Z(S,) = {z), 1: u <> uz, S;/S acts regularly on t{u, z ), and
u,z) <a S,.

(i) <S,a) = C5,(Ku, 2)).

(i) VB = ¢{xu, z).

iv) Qi(S)) = <S, a).

Proof. Clearly S;/S acts regularly on t<{u, z) and {z) < Z(S;) < {u, z).
If Z(S,) = <u, z), then ¢* € {tu, tuz} implies that t** = ¢, which is false and
(i)—(ii) hold. Since t* = ¢z, a € Ng(B), and N4(B)/C4(B) = Z,, the correspond-
ing result for Ng(B) in Lemma 6.6(iii) yields (iii). Finally S < Q,(S;) < (S, o),
|S{| = 27 and the fact that S is not characteristic in S, yield (iv).

Let S < (S, a) < U € Syl,(M), let W = O, ,(M), W =U W,
and F =<y, z). Then A < W < U, |W| = 25, W|A = E,, (t° n 4) =
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(G, F)<a M, and (t°nA> -t =F<a M. Also U = W{x), |%| =
27, and M = O(M)W (p, x)

LEMMA 6.8. Z(W) = {u, y, 2>, Z(M) = (i), and 0,(Z(M)) = {u).

Proof. Clearly 0,(Z(M)) < A and hence we may assume that O(M) = 1.
Since 0,(M) = # is {p)-invariantand F = (y, z> <« M,wehave F < Z(#").
Also <u) < Cy({4, p, x, a)) = Z(M) and we are done.

We can now obtain fairly precise information about the structure of %.

LEMMA 6.9. % satisfies exactly one of the following two conditions:

(1) % contains a normal subgroup ¥~ inverted by t with ¥v" =~ Z, X Z,,
Q) =F, Co(¥) = uy x ¥,and U = {u) x (V{x, t))) with V" {(x, t)
isomorphic to a Sylow 2-subgroup of M ,,. Also W = {u) x (¥"(t)) and there
is a 3-element k € Npy(W) v H such that k* = k™!, Cy(x) = {t, u), [W, k] =
v, and k> € Co(W).

(i) &3,(%) contains a unique element E such that % = E{x, t)>, En S =
X = <u, y,z) = Cgt), tF = 1y, 27, |Ce(x)| = |Cy(xt)| = 8, W = Et),
I(tE) = tE U (t)f, I(xE) = xF U (aw)E, and I(xtE) = (xt)E U (xtu)E. Also
there is a 3-element k € Ny(#W) N Ny(E) N H such that k¥* = k™1, Cg(k) =
{uy, F < [E, k], |[E, ]| = 16, k> € Co(#), and E = [W', k] x {u).

Proof. Clearly M = O(M)Ny(#") and, since t¥ = t*, we have
M = O(MYW (Nyy(W) ~ H).
Since C,(¢) = A, we have O(Ny(#") n H) = O(M) n Ny(#") n H and
0y (NuW) A H) = (OM) A Ny  H) x A.

Thus there is a 3-element k € Ny (#") N H such that ¥* = k™! and M =
W (i, xy. It follows that we may assume that O(M) = 1. Set M = M/F and
let v = [#,k]. Then |#'| = 2*,# = 0,(M), and Cy(x) = {t,u) = Z(M)
since t™ = tF.

Suppose that # =~ Z, x Qg. Then there is a subgroup Y of 4 such that
F<Y <A, Y<s M, W]Y = Qg, and M]Y &~ GL(2, 3). Thus /Y is semi-
dihedral of order 16. Since |%| = 27 and % e Syl,(N4(4)), it follows that %
has a normal subgroup 4* with 4 # A4* and 4 =~ A4*. Then A*Y/Y < %Y.
and hence 4*Y = A. Since A* # A, this is impossible. As Cj(K) = (§, i),
Lemma 2.1 implies that # & E,¢ and hence ¥~ = [#/, k] has order 16. Thus
VvV @ Egor¥V = Z, X Z,.

Suppose that ¥ =~ Z, x Z,. Then ¥' <« M, Q,(#)=F, Cy(¥) =
uy X V', W = {uy x (V{)), M =<Ku)d x v ({t> x <k, x)), t inverts ¥
and ¥'({t) x <k, x)) has Sylow 2-subgroups of type M,, by [7, II, Lemma
2.1(iv)~(vi)]. Thus (i) holds in this case.

Suppose that ¥" = E\s. Then E = (u) x ¥ € &3,(#%) and # = E{t).
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Since (u) = Z(M) and C,(x) = 1, it is clear that En S = Cgt) = X,
Ci(x, t) = <u, z), and |Cg(x)] = |Cg(xt)| = 8. Since % = E{x, t), it follows
that E is the unique element of &;,(%) and (ii) holds.

We shall now treat case (ii) of Lemma 6.9.

LEMMA 6.10. Assume that (ii) of Lemma 6.9 holds. Then the following con-
ditions hold:

(i) Ng(#) < Ng(4) = M and U € Syl,(Ng(#)).
(ii) t ~ tuin N4(E).
(iii) E e Syl,(Ce(E)) and C4(E) = O(C4(E)) x E.

Proof. Since Echar % and U(E)Y = (I(W — E)) = A, (i) follows.
Suppose that w € Ng(E) is such that t¥ = ru. Since Cg(t) = Cy(tu) = X, we
have w € Ng(A) = M and (ii) holds. Then tVo®) A tE = tE. Since¥ = ES <
Ng(E) and C,(E) = E, we have (iii).

LemMMA 6.11. Lemma 6.9(ii) does not hold.

Proof. Assume that Lemma 6.9(ii) holds and set N = Ng4(E) and N =
N/O(N). Clearly C4(E) = O(N) x E and NJE ¢ Aut (E) = GL(5, 2). Now
Lemma 6.10(ii) implies that Cy,z(iE) = Cy(r)E/E. However Cy(t) < Cy(t) =
O(M)A(x, x> and A{k, x> < N. Also O(M) n N centralizes ¢ and Cg(t) = X
and hence O(M) N N < C4(E) by [6, Theorem 5.3.4]. Thus Cy(t) =
(O(N) n H)A{x, x) and hence Cy,z(iE) x (KE, XE) =~ Z, x ;. Let% <
T e Syl,(N). Clearly % < 7 since E char %. Also exp (7 /E) < 8 and I |E
is dihedral or semidihedral since Cz(tE) = {tE, xE)». Hence |7| < 2° <
|G|, and there is a 2-element 7 € (7) —  suchthatt? e J. Set & = (I, 1)
and let E;, = E*. Then E; # E, E, < J,and t: E < E,. LettingJ = J/E,
we conclude that 1 # E, <« J and Z(J) < <X,1). However I(tE) u I(xtE) =
t%and t° N E; = 0. Thus (%) = Z(J) < E,. Let ¥ = [E, x] and choose
o € ¥ * such that Cy(x) = ¢z, o). Then ' = az, Cy(xt) = <z, y«) and there
is an element § € ¥~ — {z, y, «) such that §* = fyand ¥" = (z, y, «, ). Note
that Ng(S) = (z, u, a). Thus Cg(xE) = {z,u,a). Thus E n E, = Cg(x),
|E\| = 4,9 = Dg, and |¥| = 2°. Also I(xE) = x{z, u, &) so that x € E,.
Thus E, = <{u, z, a, x, ) for some involution é € E, — <u, z, a, x). Now
suppose that E, # F and E &~ E, < J. Then the above argument implies
that <u, z, «, x) < E, and E, = (%, §). Thus E, = <u, z, a, x, ed) for some
element e € E. However e € Cg(x) = <u, z, o) and hence E, = E,. Thus E
and E; are the only two normal subgroups of &5,(7), 7 = EE,{t)> where
t¢ EE, and Z(J) = {u, z). Note that I(xE) < E, and E n E; < Cg(9).
However, if En E; = Cg6), I(OE) < E, and if E n E; < Cg(J), then
{Cg(d), ) is elementary abelian of order 2° for every T e I(6E). Since
t: 0E « SxE, we have t¢ n (xE U 6E U x0E) = 0 and hence t¢ n (EE,) = 0.

On the other hand, I(9") = I(EE,) v I(tE) v T(xtE) and §: tE < xtE. It
follows that we may assume that t* = . Hence S* = C,(t)' = Cy(tu) = S
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and & = EE,N,(S) where T € N,(S) — N(S). Note that N,(S) =
{uy z, y, o, x, 1y = Ng(S) = Q;(Ny(S)) by Lemmas 6.6 and 6.7. Set Y =
{u, z, a, xy = {u, ay x {x,yy. Then

Y = (EE;) n NAS) < N,(S).

Also [x, E] < <u, z, ) < Y and hence E and E, = E° normalize Y. Thus
Y < &. Similarly, since Y{t) = N;(S) < Ny (S)and [¢, E] < Y, we conclude
that Y(¢) <« &.

Setting & = F/(Y{t)), we have 7: E = (B) & E, = (§) and & =
(B, 3, ¥y = Dg. Suppose that je I(¥ — 7). Thenj ~ 7in & and hencej e
Ny (S) — N4(S). Since Q;(N4(S)) = N(S), this is impossible. Hence Q,(¥) =
T char & and Ng(&) acts on {E, E,}. Thus & e Syl,(G) and |G|, = 2° which
is false and the proof of Lemma 6.11 is complete.

Thus, for the remainder of this section, we shall assume that Lemma 6.9(i)
holds.

Let k, € ¥~ be such that k} = y and set k, = x}. Then ¥ = {x;> x {(k,)
and Cy(x) = {kik,)>. Notethat % = {u) x (¥ x, 1)), Z(U) = {u, 2>, U’ =
{y, K1K,), and Q,(#%') = F. Thus X = Z(U)Q,(¥’) char %, Cp(X) = {u) X
(¥ (t)) char % and Jo({u) x (¥'{t))) = <u) x ¥ char%.

Set E = (u) x (¥<t)), N = Ng(E),and N = N/O(N). Then (%, k) < N,
Z(E) = X < Z(C4(E)), and Z(E) = X = N < Ng(X). Also E char % and
|%| = 27 implies that % ¢ Syl,(N). Since % € Syl,(Ny(4)) and C,(E) = X, it
follows that X € SylL(Cg4(E)) and Cg(E) = O(N) x X. Noting that
|Aut (E)|,» = 3, we conclude that N = O,(N )<k, x> where &> = 1.

Next we prove:

LEMMA 6.12. (i) t¥¢® ~ (tuF) = tN N (tuF) = 0.

(ii) Every involution of E — ({u) x ¥") is conjugate in N to t or tu.
(i) |N|, = 2°.

(iv) Co,m&®) = <F, u).

Proof. Suppose that n € Ng(X) is such that t* = tu. Thenn e Ng(4) = M.
Since t ~ tu in M, this is impossible. Since N = NG(E) < Ng(X), (i) holds.
Clearly <, i) < Co,m (%) and Co,5)(7) = A. This implies (iv). Also {u) x
¥ < N, if

tel(E — (Kup x ¥) = It ((uy x ¥)),
then 7% = tF and {1, tu, tx,, tui,, tk,, tUK,, tK1K,, tuk,K,} is a set of repre-
sentatives for the E-conjugacy classes of involutions in E — ({u#) x ¥7). Since

Ci() = {t,u) and k is transitive on {k,F, k,F, x,k,F}, we conclude that
|0,(N)/E| = 4, and we have (ii) and (iii).

LeEMMA 6.13. Let% < I where I is a 2-group. Then:

@) X = {u,y, z) is the unigue normal element §5(T") and SCN,(T) = 0.
(i) Ng() < No(X).
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Proof. Since r)(7) = ry(%) = 1 + ry(¥<x, t)) = 5, it follows from [16,
Four Generator Theorem] that J contains a normal subgroup Y with Y €
6¢(7). Then Cy(t) < A or Cy(t) < B, |Cy(t)| = 4,and t° n Y = 0. Suppose
that Cy(¢) £ A. Then there is an involution 7 € Cy(t) N (x{u, z)). Since
|[xs, ]| = 4, this is impossible. Thus Cy(r) < A4 and hence Cy(t) < X =
{u,y,z». Supposethat Y # X. Then Cy(¢) = 4 n Y is maximal in Y and hence
[Y,4] < A. Thus Y < Ny(4) = %. Ast° n Y = 0, there is an involution
te Y n {x, xu}. Since |[k,, T]| = 4, this is impossible and hence Y = X.
Next suppose that Y € £14(7) and Y <« . Then X < Y and hence Y <
Ng(A) = %. Then Y < Cp(X) = (u) x ¥ (t) and Y is conjugate in N to 4
by Lemma 6.12(ii). Thus t n Y # 0 and Y is conjugate in G to A. Since
[Ng(A)|l, = |%|, this is impossible and the lemma holds.

We shall now conclude the proof of Lemma 6.4.

Clearly Cy(X) <@ N and C4(E)E < Cy(X) < 0y, ,(N); thus N/Cr(X) o
Aut (X) = GL@3, 2). Let # < I e Syl,(N), so that |77| = 2°. Then J =
0,(N){x) and Cx(X) = E or Cx(X) = O,(N).

Suppose that Cyx(X) = E. Then C,(X) = E char J since X char J by
Lemma 6.13. Then J e Syl,(G) and |G|, = 2°. Hence Cyx(X) = O,(N),
Cy(X) = 0, 5(N), <u) < Z(N), and <ii) = Z(N). Set N = N/<@). Then
Co,m@) = A4 and Co,m)(®) = (). Applying Lemmas 2.6, 2.7, and 2.8 and
setting R = O(N)[ Oy, »(N), x]<u), we conclude that 0,(N) = R(¥) where
V' < A< N and # = Zg x Zg or R isisomorphic to a Sylow 2-subgroup of
L4(4). Note that Cg(k) = (i) and that R/<i) = R. Alsoset 2 = J n
0, ,(N),and Z = R n J. Then 2 char  since X char 7, 2 = C,(X) =
R{t> and X = Z(2).

Suppose that R is of type L;(4). Then ¢ acts freely on %/X since Z/X = E,¢
and 2/X = Z{¢t)/X. Then £ char J and {I(2 — &)) = {t({u) x ¥)) =
E char  and || = |G|, = 2° which is impossible.

Suppose that R = Z; x Z,. If Ris abelian, then R = <&) x [R, k] where
[R, ] = R and X7 centralizes an element of [R, ] of order 8. Since this is
impossible, we have R’ = <ii) and O'(R) = ®(R) = Z(R) = @) x 7. Also 1
inverts R/X and hence Jo(2/X) = %/X and # char 2 char . If i does not in-
vert R/<u), then Q,(2) = E and T € Syl,(G) which is impossible. Thus &
inverts R/{u).

Now #' = {u), X, &, and 2 are all characteristic subgroups of 7, ®(%) =
uy x V', 2 = Rt),and E = O(R)t). Also N = O(N)Ny(2), X char {u) x
¥ char # char 2 and |Aut (2)],, = 3. Since I(E — ®(R)) = t? U ()?, it
follows that N = O(N)2(Ny(2) n H) and hence there is a 3-element y €
Ny(2) N H such that y* = 71, 9> € O(N), Co(y) = <{t, u), and [2, 7] = &
Setting J = Ng(2) and J = JJO(J), we have (7, y) < J < Ng(X) n Cg(u),
Ce(2) = 0(J) x X,andJ = 0,(J){j, X). Since Coz(,)(y) = (i, ), it follows
that 0,(J) contains a maximal subgroup P containing # such that 0,(J) =
P(i> and P < J. Also since Zg x Zg = R/<uy < P/{u), we conclude that
P/{i) = Z,n x Z,n for some integer n > 4. Thus P’ = <u) and ®(P) is abelian.
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Since Z < ®(P), this is impossible. This contradiction completes the proof of
Lemma 6.4.

7. The case |M/A| = 48

In view of our results to this point, it suffices to prove:
LemMa 7.1. If |M]A| = 48, then |0*(G)|, < 2'°.

Since the remainder of our paper is devoted to proving this lemma, we shall
assume that |M/A| = 48 for the rest of the paper.

Lemma 7.2. (i) t°nd=tMnA4=1X
(ii) A ~ BinGand Ng(S) < M.
(i) M/A = Z, x 2,

Proof. Since |(M]A): (Cy,2(1))| = 8, (i) is clear. Suppose that 4 ~ B in
G. Then t¢ N B = t¥¢® and hence 4 ~ B in H, which is false. Thus (ii)
holds. Clearly M/A4 ¢ GL(4,2), Cy,z(1) = Z;, and O,(M/A) = 1 since
Cx(p) = (i, 4> 4 M. As GL(4, 2) has no subgroup isomorphic to GL(2, 3),
we have (iii).

Let S < S, < U e Syly(M), W = Oy y(M), W =%~ W,and F = (p, z).
Clearly we have:

(7.1) ¥ is a maximal subgroup of %, #W|A = Eg, U = W{x), |U| = 28,
[#] =27, Cy(t) = A, t¥ = t° n A = tX, and #'/A acts regularly on £X.

Since M = O(M)Ny(#) and t° N A = t* we also have:

(1.2) M = OMYW (Ny(#W') n H) where x € Ny (#") n H. Also there is a
3-element x € Ny(#") 0 H such that ¥* = k™%, ¥* € O(M), [4, k] = F, and
Cu) = (8, u).

Set % = C,(x). Then we have:

(71.3) 1% =8,C4(0) = {, ) < ¥, 1Y
{up, KU, k) < Ng(A%), and A¥ < N ,(S)

{t,tu}, % =~ Dy, W' = Z(¥) =
Sl.

Since X = (A4 — (t° n A)), we have:
(74 X< M.
Set ¥" = [#, k]. Then:

(15) F< V', W = VY, 1*eCo(W), VA|A = E,, and (X, k> < Ng(¥).
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Since # = C,(k) acts on [4, k] = F, we have:
(1.6) [F, %] =1.
Thus:

(7.7) % has the following orbits on ¢ N A4: {t, tu}, {tz, tuz}, {ty, tuy}, and
{tyz, tuyz}, ¥A]A acts regularly on these four orbits and 0,(Z(M)) = <{u).

LEMMA 7.3. (1) W' = ®(W) = O'(W) = X.
(i) F=<y,z)<¥ nAd <X
(i) <[%, x], [¥, xt]> = {u) and x or xt centralizes ¥ .

Proof. Clearly X < #” < A. Since #'|A = Eg and no element of tX is a
square, it follows that #°/X =~ E ¢ and (i) holds. Thus 7 ¢ ¥” and (ii) follows.

Finally x € Ng(#%) and [x, <t, up] = 1. Thus x or xt centralizes % and (iii)
holds.

LeMMA 7.4. ¥ satisfies one of the following five conditions :

() v =~ E,gand C,(t) = F.

() vV =2, x Z, F=Q,¥),and t inverts V.

(iii) There is a {x, x)-invariant subgroup 2 of ¥~ such that ¥ = F x 2,
2 = Qq, 2 = {u), and 2{x, x)|<{xk*> = GL(2, 3).

V) V' = < X=Z)=0¥)=0'(¥)=Q(%*), exp (¥) = 4,
VIV' = Z, x Zy, V|F = Qg, t inverts V|V, and (V" (x, x))|({x®> x F) =
GL(22,3). Alsoifac ¥V — Z(V), then |a| = 4, Cy(a) = {a, Z(¥")), and o* ¢
{u) v F.

) ¥v' = Z() = {u), ¥ contains subgroups Q and Q, with Q, = Q,
quaternion of order 8 such that v = Q, » Q,, ¥ char ¥4 = ¥'{t), and
01 = 0,

Proof. Suppose that (u) < Z(¥4). Then, as ¥4 is (x)-invariant, ¢t ¢ Z(¥A)
and C,(t) = A, it follows that Z(¥4) = X. Thus F <« ¥4, Cy p(K) =
{tF,uF), |¥A|F| = 2* and [¥AJF, x] = ¥'|F. Since no element of tF U tuF
is a square, we have ¥’ |F = E, or ¥'|F & Qg with (¥'|F)' = {uF). ¥’ |F =~
E,, then |¥"| = 2% and clearly (i) or (ii) hold. In the other case, X = Z(¥") and
C,(x) = <{u). Then Lemma 2.10 yields (iii) or (iv).

Finally suppose that Z(¥4) = <{u). Then (¥ A<k, X))/|A = £, and [7, VI,
Lemma 2.6] implies that ¥4 is of type &/5. Also Cy (k) = <t, u), |¥4| = 25,
and 74 contains a characteristic maximal subgroup 2 such that 2 contains
subgroups Q; and Q, with Q, & Q, =~ Qg and 2 = Q, * Q,. Moreover if
ve VA — 2, then Q) = Q,. Clearly ¥" = [¥4, k] = 2 and (v) holds. This
completes the proof of Lemma 7.4.

Our analysis of each of these five possibilities in Lemma 7.4 is presented in
one of the remaining five sections of the paper.
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8. The case of Lemma 7.4(i)

In this section, we shall prove:

LemMmA 8.1. If ¥ satisfies (i) of Lemma 7.4, then |0*(G)|, < 2'°.
Thus, throughout this section, we assume that ¥" =~ E ¢, Cy(¢) = F, and that
2% < |0*(G)|, and we shall proceed to a contradiction.

Clearly % n v =1 = [u, ¥7], Cy(x) # Cy(2), and % normalizes C,(x)
since [x, #] < (u)>. It follows that C,(¥") = & is a maximal subgroup of #.
Clearly u e 2, [2, ¥"] = 1, and (¥, k) < Ng(¥") n Ng(2). Setting 2 =
P x ¥v,wehave W = 9t>, 2<a U = W x,t), Z(U) = {u, z),and [P, t] =
{ud. Also |Cy(xt)] = 4 and xt does not centralize % since tx ~ tin G. Hence
[#, x] = 1and [2, xt] = {u).

LemmA 82. 2 ~ Z,.

Proof. Assume that 2 =~ E,. Then 2 = Eg,, |C,(x)| = 2* and |Cy(t)| =
|Cy(xt)| = 23. Hence 2 = J,(%) char % and % ¢ Syl,(Ng(2)). Let % < T ¢
Syl,(Ng(2)). Then % < 7,1t 2 = 0, I(t2) = t? and hence N,(2{t)) =
9S8 = . This implies that C,(2) = 2. Setting J = J/2, we have I o
Aut (2) = GL(6, 2) and C5(#) = (I, X). Thus J is dihedral or semidihedral
and |7| < 2* since the 2-exponent of GL(6, 2) is 8. Hence 2°* < |7| < 2!°
and J ¢ Syl,(G). Also Z(J) = <(x) and t2 ~ xt2 in J since |Cy(f)| =
[Co(XF)| # |Co(X)|. As T ¢ Syl,(G), there is a 2-element w e Ny(9) — T
suchthatw? € 7 and 2, = 2° < J and 2, # 2. Hencex € 2, and |2,| < 4.
Since |Cy(x)] = 2%, we have 2 N 2, = C,y(x) and {C,(x), x) < 2,. Thus
|2, = 4and T = Dgsince 2, <« . Letae 2, — {Cy(x), x>. Then

2, = {Cy(x), x, ), 0: t2 > tx2 and ¢: a2 o ax2.

On the other hand, I(9) = 2% U I(x2) u I(02) U I(ax2) U I(t2) L I(xt2)
and {(x, 2N 2;,0) < C4(2 N 2,) where 2 2, = E;4. Thus t°n I =
I(t2) U I(xt2) = t7 and hence S < C(7,o5(t), which is impossible. This
concludes the proof of Lemma 8.2.

Let 2 = (w) where w? = u. Clearly o' = 0™ = 0 1, Q,(2) = {u) x ¥,
and 0Y(2) = <u). Set E=Q,(2) and N = Ng(2), C = C4(2) and D =
Cy(E). Thus C < D= N < Cg(u), D/Cis a 2-group, O(N) = O(C) = O(D),
{U, x> < N, and Cy(k) = 2. Setting N = N/O(N), we prove:

LemMA 8.3. (i) C = Cg(iK) x ¥ where V" = [C, k|, Ca(K) is a cyclic 2-group,
and P = Q,(C(K)).

(ii) S normalizes Cg(x) and Ce(K){1) is dihedral or semidihedral.

(ili) 2 < C < D < O,(N).

Proof. Set Y = C(i)>. Clearly ¥ <« Y, Y is (&, X)> invariant, I({¥") =
7, §SeSyl,(Cx(), and 4 = S~ Y € Syl,(Cy(1)). Thus E, = AV |V €
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Syl,(Cy,7(#7)) and Y/¥ has dihedral or semidihedral Sylow 2-subgroups.
Since Z, ~ 3/ = Y, [1, 1, Proposition 1] and [8, Theorem 1] imply that
Y/¥" has a normal 2-complement. As ¥ < Z(C), we conclude that Y is a
2-group and hence (iii) holds. Also C/¥ is a maximal subgroup of Y/¥ and
9|7 < Z(C). Thus C/¥ is cyclic, C is abelian, and (i) holds. Since § =
A(X, 1), (ii) also holds.

LemMA 8.4. (i) D = Cp(K) x ¥ where ¥ = [D, k].

(i) S normalizes Cp(i) and Cy(iK){1 is dihedral or semidihedral,

(iii) either Cp(k) = Cg(k) (and C = D) or Cp(k) is dihedral or generalized
quaternion and Cg(K) is the unique cyclic maximal subgroup of Cp(ik) when
(CpK) is not isomorphic to Qsg.

Giv) t°nD =0.

V) 2 =P x ¥ char D if Cp(K) is not isomorphic to Qg.

(vi) Cx()) = ALk, XD.

Proof. Set Y = D(i). Clearly ¥ <« Y and A e Syl,(Cy(¥)). As in the
proof of the preceding lemma, Y/7 is dihedral or semidihedral and % acts
trivially on Y/¥". Thus (i)—(iii) and (v) hold. Since every involution of D cen-
tralizes E, (iv) also holds. Also Cy(¢) normalizes Cr(f) = X and hence Cy(¢) =
(O(Cx(A)) N N)ALk, ty. Since O(Cy(A)) n N < C by [6, Theorem 5.3.4],
(vi) also holds.

From the nature of the remainder of the proof of Lemma 8.1 and in order to
simplify the notation, it is clear that, without loss of generality, we may (and
shall) assume that O(N) = 1.

Set Z = Cp(x). Then D = # x ¥, #{¢t) is dihedral or semidihedral,
Z(%t)) = <uy and Z = Cyu(E) is cyclic, dihedral, or generalized quater-
nion. Also E = {u) x ¥ < Z(D)and t n D = 0. Lety be a generator of
the cyclic maximal subgroup of %#<{t>. Then # < {(y), y € C if and only if
C = Dand {(y?) = C(k) if and only if C # D. Also I(tD) = I(t®#) x F and
hence I(tD) = t? if #{t¢) is semidihedral and I(tD) = t? U (¢y)° if R{¢t) is
dihedral. However, if #<t) is dihedral and C # D, then £ is dihedral and
tntD = tPsince t n D = 0.

Also |Cy(xt)| = 4 and |Cyyp(x?)| = u, xt). Hence Z{xt) is dihedral or
semidihedral with 2 <« #{xt) and if © € I(xtD), then

CD(xr)(T) = <1’ u> X C«//(x) = E16'

On the other hand, 2 < # n Cy(x). Thus, by enumerating the possibilities
for #(x) and applying Lemmas 2.2 and 2.3, if necessary, if follows that if
7 € I(Zx), then either |Cy . (7)| > 23 or Ca¢xy is abelian of order 8. Hence
t% N (D{x)) = 0.

Setting E = E/{u), we have E =~ E;¢, Nactson E and D < Cy(E) = N.

LEMMA 8.5. Cy(E) = D and N/D ¢ Aut (E) = GL(4, 2).
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Proof. Clearly Cy(E) < O,(N). Suppose that D # Cy(E). Clearly
X = Cy(B) n Cy(t) = Cp(0).

Let D < Y < Cp(E) be such that Y/D = Ccygyp(t). Then Y is (x)-invariant
and Y normalizes D{t). Thus |Y/D| = 2 and [Y,k] =¥ < Y. Hence
Y < Cy(E) = D which is false and we are done.

Choose v, € ¥'* such that Cy(x) = <z, v;). Then v, = v,z and Cy(xt) =
{z, v;y). Since x normalizes #{t), we have #{x, t) = {y, x, t) and x nor-
malizes {p>. Thus (D{x, t>) = {(y*> x <z, y, v;> and

Coe,y@u((D<x, 19Y) = D char D{x, 1.

Thus E char D{x, t>. Suppose that 2 = # x ¥  is not characteristic in
D{x,t). Then y> = u and C = D = 2, which is a contradiction. Thus
2 char D{x, t>. Let D(x,t) < I e Syl,(N).

LEMMA 8.6. T # D{xt).

Proof. Suppose that I = D{x, t) € Syl,(N). Then I € Syl,(G), |T| =
21, Z(T) = <u, 2, Iyl 2 2%, T = <y*) x {z,»,0,), and Q(V(T)) =
{u)>. However, since x ~ u in G, there is an element g € G such that x°* = u
and C,(x)’ < 7. Since (y%, x, > < Cy(x), we have (y*)? < (C4(x)?)’. Thus
uYd < QO (CH(x)))) < Q,(0' (7)) = (u) and we have a contradiction.

LemMa 8.7. (i) Cyp(tD) = (tDY x {kD, xD) = Cy(t)D/D.
(i) O,(N) = D.
(i) /D ~ Dg, Z(T|D) = (xD> and tD ~ xtD in T.

Proof. Assume that Cy,,(tD) # Cy(t)D/D. Then £{t) is dihedral, C = D,
R = {y), and |Cy,p(tD): (Cy(t)D)/D)}} = 2. As N/D o GL(4,2) = g, it
follows from the structures of the centralizers of involutions in &g that
Cy,p(tD) has Sylow 2-subgroups of type Dg. Hence xD ~ xtD in N/D which
is false since t9 N D{x)> = 0. Thus (i) holds. Now (ii)-(iii) are immediate.

Lemma 8.8. 7 € Syl,(G).

Proof. Assume that there is a 2-element 7 € Ng(J) —  such that 12 € 7.
Let 2, = 2° and E, = E* = Q,(2,). Then 2 # 2, < J and E, < 7.
Since 1° N E = 0, we have Cg,(t) = {u, y,z) or Cg(t) = {u, x,z). Sup-
pose that Cg (1) = <u, y, z). Then [E;, A] < Aand E; € Cp(X) = 2{t) and
|E N E;| > 2% This implies that E, = Eand 2, < C,(E)=D =% x V.
Hence 2, = (2, n &) x ¥ where 2, n # = Z, and 2, n & is t-invariant.
This forces 2, N Z = 2 and 2, = 2 which is false. Thus Cg,(¢) = {u, x, z).
Since /D = Dg, we have |E; n D| > 23. Wealsohave<u,z) < E; n D <
Cp(x) < & x {z,v,), [E,t] < (u,x,z), and E; < Ny(B). Thus E; n
D < Ni(B) x <z,v,>. However [Ng(B),t] < B = (u) and hence
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Ng(B) =2 and E, n D = {u, z,v;y. Thus xDe E,D/D = E, and 2, n
D) = 0 = 2, n (xtD).

Since 1: 2 & 2,, 7 leaves I(7 — 22,) = I(tD v xtD) invariant. Since
tD ~ xtD in 7, it follows that C = D, # = (), and y* = y~!. Moreover
we may assume that ¢* = ¢y. Also

i, 2,00 < 210 2 < Co(x) S R x (2,01

and 2, is abelian. Thus 2,D = E;D and hence |2, n 2| = 2*and 2, n 2 =
P x {(z,vyy. Since 1 normalizes 2, N 2, 1€ Cyz(u) and hence (¢, u)* =
{ty, u). But {y, z, k) < Cg(t, u)) n Cy(ty, u) since [#, k] = 1. Now (4.12)
implies that

7 N OZ(CG(I’ u)) = <)’, Z> -7 N OZ(CG(tV’ u)) = <ll, Z>'

But ye 2and y ¢ 2, = 2%, which is a contradiction and the lemma follows.

We shall now conclude the proof of Lemma 8.1. Let Y be the maximal sub-
group of J such that D < Y and Y/D =~ Z,. Clearly Q,(Y/D) = {(xD) and
hence 1 N Y = 0. Hence t ¢ 0*(G) by [17, Lemma 5.38]. Since |0*(G)|, =
2" we have |7| = 2'? and |y| > 2°. Since x normalizes {y) and centralizes
P = Q,({yD), we have (y?, x, t> < Cy,(x). Since ¢ inverts y2, we have (y*) <
C,(x) £ T' < D{x). Hence {(y*y < D =% x ¥ and y'®*ecVOYR) =
{y?>. Since |y| > 2%, and u € Z(J), we obtain a contradiction as in Lemma 8.6.
Thus Lemma 8.1 is established.

9. The case of Lemma 7.4(ii)

In this section, we shall prove:
LEMMA 9.1. If ¥ satisfies (ii) of Lemma 1.4, then |0*(G)|, < 2'°.

Thus, throughout this section, we assume that ¥" ~ Z, x Z,, F = Q,(¥),
t inverts ¥°, and that 2'° < |0%(G)|, and we shall proceed to a contradiction.

Clearly {x, x) normalizes ¥" and [k, 7] =1 =% n¥". Let v, € ¥ be
such that v = y and set v, = v} and v = v,v,. Then v = yz, v* = z, and
Cy(x) = <(v). Then 2 = Cyu(¥") is a maximal subgroup of #. Clearly u € 2,
[2,7] =1, and (%, k) < Ng(¥") 0 Ng(#). Setting 2 = # x ¥, we have
W = 9t>, 2<aU = Xx, 1), Z(W) = u, z), and [P, t] = {u). Also
Cy,(xt) = (vy) and (u)> x C,(xt) < Cy(xt). Thus

Kuy x {op))(x, 13) < Calxt)

and hence (Ku) x <vpd)({x, tD) = Cy(xt) € Syl,(Cg(xt)), [x, #] = 1, and
[xt, 7] = (w.

Let teI(x2). Then Co(t) = 2 x <v), |Comy(®)| = 2° and Cyyy(7) is
abelian. Thus ¢ N (2{x)) = 0.

Note also that %’ = <{u) x (D> x P>, Co(U’) = 2,Q,(¥') = X, Cy(X) =
2y, and OV (") = (z).
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LEMMA 9.2. 2 =~ Z,.

Proof. Assume that 2 = (u, w) where *> = 1. Let % be of index 2 in the
2-subgroup 7 of G. Clearly 2 <1 J and 2{t> <« . Since t° n (x2) = 0,
we have 2(xt> < J. Then, since I(xt2) = (xt)?, we have |Cy(xt)| = 2°
which is a contradiction since ¢t ~ xt in G. This completes the proof of the
lemma.

Let 2 = (w) where ®w? = u. Thus ¢ inverts 2 = 2 x ¥, Q,(2) =
X, o™ = ou, I(t2) = t2, I(x2) = x({u) x {vy)),and I(xt2) = xt(P x {v)).

LEMMA 9.3. Let % < R where R is a 2-subgroup. Then X <@ R and X is the
unique normal element of & g(%).

Proof. Since X char %, it suffices, by induction on |#|, to assume that
X < # and to show that X is unique. Thuslet X # Y <1 # where Y € &3(%).
Since 27 < |Z], t° Y = 0. Thus |Cy()| = 4 and Cy(t) < <u, x, z) or
Cy(t) < {u, y, z). Note that if 7, € I(t2), 1, € I(x2), and 15 € I(xt2), then
(Ty, XD < (2%, <75, 09> < (73D, and (13, v) < (13). Hence Cy(r) < X and
Y < Ngy(A) =%. ThenY < 2, Y = X and we are done.

Clearly 2 = Jo(#') char W = 2{t>,{U, k) < Ng(#") < Ng(2), Ce(W') =
O(Cs(W")) x X, and k* € O(Cx(W)).

LEMMA 9.4. (i) 2 < Ng(#) 0 Cg(2) < Ng(W") and O(Ng(#")) is a normal
2-complement of Ng(W") n Cg(2).

(i) Either 2 € SyL(Ng(#") n Ce(2)) and tNe)nCe@ — 4x = 2 or Qisa
maximal subgroup of a Sylow 2-subgroup of Ng(#") n Cg(2) and V™) 0 Ca(d) —
t(? x F).

Proof. Let N = Ng(#'), N = NJO(N), and J = Cy(2). Clearly 2 < Z(J),
J< N < Ng(2), ON) = O(J) = O(Ce(#')), and J = Cy(2). Letz € J. Then
t*e 12 and hence * € tX = . Thust®> e Cy(#)2 = O(N) x 2. HenceJ/2
is an elementary abelian 2-group and (i) holds. Then

J12 = (C;()D)]2) x ([J, ©12)/D).
Note that Cy(f) = Cx(#) = X and ¥ = iX.

Let Z = [J, k]2. Then Z is () x (K, X))-invariant. Suppose that
|Z/2) = 8. Then there is an element T € & — 2 such that i* = #@. Hence
[%, k] € C3(f) = X < 3. Since Cgz/3(K) = 1, this is impossible.

Suppose that |Z/2| = 4. Then |Z| = 28, |Z/7| = 2%, (i) x (&, X))
normalizes Z/7 and 2/7 = Cgz,7(K) < Z(Z|V). Set I = [Z, ¥]. Since
¥ < &, we conclude that either |Z| = 2% or X/¥ = Qg. Assume that |Z| =
2. Then since ¥ < Z(Z) and Cg(k) = 1, [7, IV, Lemma 2.5] implies that
either ¥ =~ Zg x Zgor L = ¥ x ¥, where 7, is a {kK)-invariant 4-group.
In either case, we have |Cy 5 5 (XP)| = > 2% and we have a contradiction. Thus
TV = Qg and Cz(iK) = i) = I'. If ZT|<u) =~ Zz x Zg, then there is an
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element 1€ & — Zsuchthat ¥ = 1a. Hence (I@)* = 1@ and |Cy s, 1, (X7)| >
28 which is impossible. Hence Z/<ii) = Z, x Z, x E, and there is an element
1€ & — 2 such that ¥ = lii and we obtain a contradiction in the same way.
Hence Z = 3. Finally, let 7 € Cy(k). Then #* € iC3(%) = 2 and (ii) holds.

For the remainder of this section, let N = N4(2), C = C4(2), and N =
NJO(N). Clearly 2({t) x {k,x)) < N. Let Y = C<{t>andlet% = 2{x,t) <
T € Syl,(N). Clearly Y < Nas tinverts 2and k> e C. Alsolet ON) < Z < C
be such that Z = Cz(¥).

LemMa 9.5.(G) C=Z x ¥, ¥ = [C, k], & is a cyclic 2-group, and P =
Q, (). )

(ii) S normalizes & and A1 is dihedral or semidihedral.

(i) Cy@) = ACR, 5.

Proof. Clearly ¥ = nY e Syl,(Y), ¥ = (& n C){t), Cy(t) = A4, and
¥ < Y. Set Y = Y/¥". Then Cz(¥) = (i, ) by Lemma 9.4(ii). Hence & is
dihedral or semidihedral. Also & n C e Syl,(C), 2 = # x ¥ < Z(C) and
hence # < Z(C). Thus (S n C)~ is cyclic and (i)—(ii) hold. Finally

Cn(®) = (O(Cy(?)) n O(Ny(A) ALk, x)

as Cy(t) < Ng(4) = O(Ng(A))A{x, x). Since O(Cy(2)) N O(Ng(4)) < C4(2)
by [6, Theorem 5.3.4], (iii) also holds.

From the nature of the remainder of the proof of Lemma 9.1 and in order to
simplify the notation, it is clear that, without loss of generality, we may (and
shall) assume that O(N) = 1. Then C = # x ¥ and C{x, t) < T € Syl,(N).

LeMMa 9.6. (i) 2 = Q,(C) char C{x, 1.
(i) 7 # C<x, t).

Proof. Clearly t° nC =0 = t° n Cx. Also X char C{x, t> by Lemma
9.3. Thus C{t) = Ccy, (X) char C<{x, t). Since C = Jo(C{t)) and
Q,(C) = 2, (i) holds.

Suppose that 7 = C{x, t)>. Then J e Syl,(G) and t% N (C{(x)) =0
implies that || > 2!2 by [17, Lemma 5.38]. Hence |#| > 2°. Letting # =
{y>, we have y? € C,(x). Since Z(J) = {u, z), there is an element g € G such
that C,(x)’ < J and x* = u. Thus(¢*)? € 7 and hence 1 # (¢!®) e V3(9) <
. Then u? = u, a contradiction; hence (ii) holds.

LemMA 9.7. () [Nl = 3and Y = C{t> < O,(N).
(i) N = O,(N)Xk, x> and T = O,(N){x.

Proof. Clearly Y = C{t> < O,(N) and N/C < Aut (2). Thus |N|,, = 3
fC=RxvV #2=2 x ¥. On the other hand, suppose that C = 2.
Then every element of ¢C is an involution and ¢7 # t? = tX. Suppose that
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|N|,. # 3. Then |N|,, = 3-7 and N/O,(N) o GL(3, 2). Since <{x, x) =~ X,,
it follows that N/O,(N) = GL(3, 2). Also Cy(t) = A<k, x), |Cy(®)| = 325,
N permutes the eight Y-conjugacy classes in tC, and ¥ = tX. Since Ny(4) =
2({tY x <k, xD) is the stabilizer of t¥, we have a contradiction and (i) holds.
Clearly (ii) is immediate and we are done.

LeEMMA 9.8. Z{t) is dihedral.

Proof. Assume that £(t) is semidihedral. Then tC = t(Z x ¥°) decom-
poses into four conjugacy classes under Y = C{¢). Thus N/Y = X,. Note
that ¢C is not a square in N/C by Lemma 2.5. Thus O,(N)/C =~ Eg; where
Co,nyc(k) = <tC). Since X char by Lemma 9.3, we have C,(X) = C{¢)
or O,(N). Suppose that C,(X) = C{t). Then Cchar 7, 2 = Q,(C) char 7,
and J e Syl,(G). Suppose that C,(X) = O,(N). Then 2 < O,(N) < Cand
hence 2 = Q,(C4(X)’) char 7. Thus 2 char 7 and J e Syl,(G) in either case.
Moreover Ng(7) = Ny(9) = 7.

Clearly <u) < Z(J) < {u, z) and all involutions of X = <u, y, z) are G-
conjugate into {u, z)». Suppose that w € u¢ N ((u, z) — <u)). Then Z(J) =
{u), 0,(N) does not centralize X and <, z is the unique normal 4-subgroup of
T lyingin X. Let g € G be such that w? = uand C,(w)! < J. Since C{x, t) <
Cs(w) max I, Cy(w) < Cyru?, and u? ¢ Z(J), we have Cz(w)y =
C,Wf) max I and <{u, ) < Z(Cx(w)’).

Suppose & is an arbitrary maximal subgroup of  such that |Q,(Z(¥))| = 4.
Since Z(J) = <u), we have <u) < Q,(Z(¥)) and |Q,(Z(¥))| = 4. Since
Q(Z(F) = T, we have Q,(Z(¥)) < Ny(4) = 2{x, t). Hence Q(Z(¥)) <
X, Q(Z(¥)) = {u, z),and & = Cy(w).

This implies that g € Ng(Cy(w)). But Cy(w)/C = Egand X < (C(x, t)) <
Cs(w)'. Thus X = Q;(Cs(w)) and g normalizes C (w) N Ce(X) = C{¢).
Hence g € Ng(2) = N which is impossible since {u) < Z(N). We have shown
that u® N X = {u}.

Let Z = {y> and let g € G be such that x¥ = uand C,(x)? < J. Noting that
92 € C4(x), |y*| = 4, and u? ¢ C, we conclude that |y| = 23 and |7| = 2!1,
Setting w = u?, we also have w = 4 e O(J/C) = (J/C)' since T/|C =~ Z, x
Dg. Letting & = C[O,(N), k]<{x>, we have & max J and &/C =~ Dg. But
t% N (C{x)) = 0 and t € G’ since |7| = 2''. Then [13, Corollary 2.1.2]
implies that t¢ N Cw # 0. Let s € t n Cw. Then |C,(s)| < 2° and hence
[s7] = 25. Butw = u? € I(Cw), C{w) <« 7, and |Cw| = 27. Thens” = Cw
and hence D = {ce C| ¢ = ¢~ !} is a subgroup of C with |D| > 25. Thus s
inverts C and hence ts € C4(2) = C which is false and the proof of the lemma is
complete.

In view of Lemma 9.8, we conclude that ¢ inverts C = # x ¥. Set Z =
0,(N).
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LEMMA 9.9. (i) 2Z{t) = Cau(x).
(i) Z/C =~ Es.
(iii) 2 char I and T e Syl,(G).

Proof. Suppose that Z{t) # Cqu(x). Then, as Cy(x, t) = {t, u), we con-
clude that C,(kx) is dihedral or semidihedral. Also, since Cy(k) = #{t)> <
C4(x), we conclude that £(¢) is a maximal subgroup of Cu(x). Clearly Z =
D(C4(k)), x normalizes C,(k), and x leaves invariant the three maximal sub-
groups of C,(x). Let a generate the maximal cyclic subgroup of C,(x). Then
Cy(x) = (o, t), # = U' (), [, x] € #, « normalizes [C, k] = ¥°, and hence
o normalizes C,(x) = {v). Thus, as « does not centralize 2, o inverts ¥". Thus
ta € Cy(¥)and t ~ tain G. Set & = {C, x, t, a), so that #/C =~ Eg and
C{x, t) is a maximal subgroup of &. Since xt inverts Z = Q,(%), we conclude
that #{xt) is dihedral or semidihedral. If Z{xt) is semidihedral, then I(x¢tC) =
(xt). But C{xtd)<s Land C{(t) = Y= &. Hence C{x) = &, Clxt)y< &,
and |Cy(xt)] = 2|Ccy,n(x)| = 2% which is impossible. Thus #{xt) is di-
hedral and [#, x] = 1. Moreover &/C contains seven involutions with
Cc(tC) = X, Cc(aC) = R x F, Co(xC) = R x {v), Ce(taC) = {u) x ¥,
Ce(xtC) = (u) x vy), Co(xaC) = R x {vy), and Cp(xatC) = {u) x {v).
Suppose that & = J and let y € No(&¥) — &. Then y normalizes C, Ct, Ca,
and Cuat. Note that (a, x) is abelian or modular so that I(Cax) = 0. Hence
(Cx)’ # Cax and y acts trivially on &/C. Since I(xtC) = (xt)¢“*® and
|Ca(xt)| = 2°, this is a contradiction and we conclude that & = 7. Then
T =R x {v) x ), C4(T") = C, 2 char I, and I € Syl,(G). Hence
|| > 2° since |7| = 2. Clearly u € Z(J") and there is an element g € G such
that X = u and C,(x)? < . Then, since a*> € C4(x), we have (a*) € C =
# x ¥. Hence 1 # (¢'®) € # and u? = u, which is a contradiction. We con-
clude that (i) holds. »

Now Cu(t) = A, Z]Y acts regularly on the orbits of Y on %, x acts non-
trivially and fixed point freely on Z/Y, and ¢C decomposes into eight Y-
conjugacy classes. Thus (ii) holds by Lemma 2.5. Also X char  and C{t) <
Cr(X) < Z. If Co(X) = C{t), then 2 char 7, J e Syl,(G) and (iii) holds.
Suppose that (iii) does not hold. Then C,(X) = Z. Hence [Z, t] < Z’ and
Z' = U R) x ¥ ;thisforces Z' = {u) x ¥ and Co(Z) > C =R x ¥V
where Co(Z")/C =~ E,. It follows that Co(Z") = C[Z, k] is a maximal sub-
group of Z. Setting ¢ = [Z, k]Z’, we have # < C(Z"), &' < Z(¥),
F < N,and | £] = 27. Also {t> x {k, x) actson & = £/ {u), Cyk) = 1,
and 7 = &' < Z(#). Since | | = 2°, we conclude that ¢ is abelian by [7,
IV, Lemma 2.5]. Since <{k, xt) acts on [Z, k] and ¥" < Z([Z, x]), it follows
that [, k] is not abelian. Thus ¢ = [Z, k] and #' = <{u). Since Ny(4) =
C<t), we have N,(4) = Z'. Hence Q,(F) = X as C3(t) = X. Thus 7 ~
Zg x Zg and there is an element f € # — &’ with f* = Bu. Then fw €
Cq4(xt) < Y = 2{t) which is impossible and we are done.
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We can now conclude the proof of Lemma 9.1. Since |7| > 2!!, we have
|2| = 23 and ue Z(J). Also Ng(9) = Ny(F) = J. Then the final portion

of the proof of Lemma 9.8 applies to force a contradiction and the proof of
Lemma 9.1 is complete.

10. The case of Lemma 7.4 (iii)

In this section, we shall prove:

LemMma 10.1. If ¥ satisfies (iii) of Lemma 7.4, then |0*(G)|, < 2'°.

Thus throughout this section, we assume that ¥~ contains a {x, x)-invariant
subgroup 2suchthat ¥ = 2 x F, 2 = Q4, 2' = {u), and (2{x, x))/{x>) =
GL(2, 3). We shall also assume that |0%(G)|, > 2'! and we shall proceed to
obtain a contradiction.

Clearly ¥ n ¥ = (udand ¥ actson Ci(x) = {ve¥ |v* =vorv* = v~} =
{(z) x {q) where ge 2issuchthatg* = ¢~ ! = qu. Alsot? = tFort* = tuF
and hence ¢* € {gz, quz}. Since 2 = {q, q*, ¢, it follows that no element of
% can invert g. Then Cp(¥") = £ is a maximal subgroup of % and {%, k) <
Ng(¥) 0 Ng(2P). Also (¥, P, k, x) < Ng(2) and I(t¥") = t” U (tw)”. Set
E=Py =Px¥. Then W = EG), E< U = E{x, t), Z(U) = {u, z),
Z(E)y =2 x F,and [2, t] = <u).

LemMma 10.2. 2 = Z,.

Proof. Assume that 2 = (u, o) where w®> = 1. Then E = {w, y,z) X 2,
I(tE) = tX = t%, and {J(tE)) = A. Note that {x, ¢) = Dg and <{x, g) =
{x, xq) < {I(xE)) and hence <I(xE)) is not abelian. A similar argument
implies that {J(xtE)) is not abelian. But#’ = F x {q) and hence C,(Q,(%’) =
Cu(X) = E(t) char %. Since t° n E = Q and t¥ = tX = I(tE), we conclude
that 4 <« Ng(%). Hence |%| = |G|, = 28, which is false and the proof is com-
plete.

Let 2 = (w) where w* = % and ' = o~ ! = wu. Thus I(tE) = tX U
(tw)X,E=F x ? % 9, |E| =25 andif je I(E) — Z(E), then Cg(j) is abelian
of order 2°. Thus t® N E = 0. Also Ci(t) = Cg(tw) = X = Q,(Z(E)) and
Z(E) = F x 2 and X = Q,(Z(E)). If x inverts w, then I(xE) = x({(z) X
{w, q) and if x centralizes w, then I(xE) = x({(z)> x {g)). A similar result
holds for xt. Also %' = F x {q), Q(¥’') = X, and C,(X) = E{t). Thus
Q,(E) = E char % since Ci(t) = Cg(tw) = X.

Set N = Ng(E), N = NJO(N), and C = C4E). Thus (%, k) < N, x> e C,
and Z(E) = F x # < Z(C). Alsolet% < J € Syl,(N) and set Y = C{¢).
Note that E' = (u) < Z(N)and X = Q,(Z(E)) < N. Let ON) < # < C
be such that Z = Cg(k).
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Lemma 103.(i)) C = # x F where [C, k| = F, # = Cg(K) is a cyclic 2-
group, P = Q,(%), and X = Q,(C).

(ii) S normalizes &, C3() = (i), and RA{¥) is dihedral or semidihedral.

Gii) Cx() = ACR, %).

Proof. Let Iy =9 nC. Then < T, e Syl,(C), and F(t) e
Syl,(Y). Clearly F<a Y, Cg(t) = X,and F < Y. Set ¥ = Y/F. Then

Cyp ) S WNgf(A) S @UNT ) =UNC) =P

and hence Cz(¥) = <@)>. Thus Cz () = <%, @) and Fo(t) is dihedral or
semidihedral. Since Z < Z(Y), it follows that J is cyclic. As F < Z(C), (i)
holds. Since § = X<X, ), (ii) holds. Also Cy(t) = H n Ny(4) = (N n
O(Ny(A))) A<k, x>. Since N n O(Ny4(A)) centralizes Cg(t) = X, we have
Cy(t) = (O(N) n H)A{k, x) by [6, Lemma 5.3.4] and we are done.

From the nature of the remainder of the proof of Lemma 10.1 and in order to
simplify the notation, it is clear that, without loss of generality, we may (and
shall) assume that O(N) = 1. Then C = # x F, EC = F x (Z * 2) < N;
EC < Cy(X) < N, and t® n EC = 0. Since X < N, we also have:

(10.1) EC{x> ~ EC(t)> ~ EC{xt)in N.
LemMA 10.4. R<t) is dihedral.

Proof. Assume that #{t) is semidihedral, Then I(tEC) = tC, |%| > 8,
T = EC{x, t> by (10.1), and Z(T) = <u, z>. Also T’ = F x ON&) * {q)>
where 2 < UM &), C,(T') = F x R *» {q), O(CHT") = UY#), and
C,(OY(R)) = EC{x) or EC{xt). Let |#| = 2° for some integer @ > 3 and
let & = C,(OYR)) = CH(UY(C,(T))). Note thatif j e I(EC), then |C,(j)| =
29*3 and if je I(¥ — EC), then |Cy(j)| = 2°72. Thus Q(EC) = E< N4(9)
and hence J € Syl,(G). Then a > 5 and |U0'(#%)| = 2*. But then x centralizes
U'(#) and there is an element g € G such that X = u and C;(x)? < 7. Then

O*(R)Y < T'=F x OMR) *{q)

and »? = u which is a contradiction and the lemma follows.

Let # = <{y>. Then I(tEC) = t*¢ U (ty)E°. Since S < EC{x, t) and t% n
EC = (, we conclude that |[Ny(EC<t>): EC({t)> x <{x,x))| < 2.

LeMMA 10.5. Ny(EC(t)) # EC(Kt) x (K, xX)).

Proof. Assume that Ny(EC{t>) = EC({t)> x {k,x)). Thens = EC{x,t)
by (10.1). Supposethat Z = 2. Then T’ = F x {q), Q,(T') = X, C;(X) =
E{ty, and Q,(E) = E < Ng(J) since t° n E = 0. Then |7| = |G|, = 28
which is false. Hence |%#| = 23, ' = F x OY%) * {¢q), C4(T") = F x
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R * {q)>, BN CHT")) = OYR), and C,(VY(R)) = EC{x) or EC{(xt). But
then we obtain a contradiction as in the proof of Lemma 10.4 and we are done.

Set J = Ny(EC{t»). Then J = 0,(J)«k, x) and [0,(J)), ] = [EC, k] =
F x 2 =7 < J. Hence F < J, [0,(J), X] = 1and 0,(J) = ¥ Cp,(x).
Thus Z{t> = Cpc(sy(x) is a maximal subgroup of Co,;(x). Also Co,;)(t, k) =
{t,uy and Cyp,(;)(x) is {x)-invariant and dihedral or semidihedral. Then Lemmas
2.3 and 2.4 imply that (Cyp,j)(x), x)' < Z < Cy(¥"). Hence Co,;(x, V") = R,
is a maximal subgroup of Cy,(x), Co,)(k) = #,{t), &, is dihedral or gen-
eralized quaternion, and £ is the cyclic maximal subgroup of #,. Also #,EC =
Fx R x2and ¥ = (Fx Ry %« D{x,t)e Syl,(J). Then¥' = F x & * (g,
QF) = F x {u, 09, Z(¥) = <u, 2, y7 = (25, (0g)* " = wglu, z),
and (wgy)¢*? = wqy{u, z). Hence X = F x {u) char & and Cy(X) =
(F x (%, * 2)){t>char ¥. Butt® N (F x (#,*2)) = 0and I(t(F x &, * 2))
= tF*R1*2 a5 is easily seen. Thus & = T € SyL(G), |2| = 2%, and [x, #] =
1 since {x) normalizes the cyclic maximal subgroup of R,{t)>. Letting g € G be
such that x! = u and C4(x)? < Z, we conclude that (U'(#))! < I’ = F x

X * {q» and hence ¥ = u. This contradiction completes the proof of Lemma
10.1.

11. The case of Lemma 7.4(iv)

In this section we shall prove:

LemMA 11.1.  If ¥ satisfies (iv) of Lemma 1.4, then |0*(G)|, < 2!°.

Thus, throughout this section, we assume that ¥~ satisfies (iv) of Lemma
7.4 and that 2!° < |0?*(G)|, and we shall proceed to a contradiction.
Thus, if ge ¥ — X, then ¢' = ¢~ 'u = q3u since ¢ inverts ¥ /{u) and

¥ =gX U gXuqgUx

cannot be inverted by ¢. Since [#, x] < (u) = Z(#) < Cy(?¥"), Lemma
2.11(iii) implies that 2 = C,(¥") is a maximal subgroup of %. Clearly u € 2,
U, k) < Ng(¥) N Ng(P)and I(t¥) =t L (tw)”. Set 2 = PV = P« V.
Then # = 2(t), 2< U = 2x,t), Z(U) = {u, z), and [, t] = {u). Note

also that Cy,,,(xt) = Z, and hence there is an element v € ¥ — X such that

v? = uz and v* € v{u). If v** = v, then

& = <u, z, 0, xt, t> = Co]l(xt) € Sylz(CG(xt)).

But then &' = OY(¥) = Z,, v* = uz, and [, t] = v %u = z, which is im-
possible. Thus v** = vu.

LemMma 11.2. 2 = E,.

Proof. Assume that 2 = {(w) where w? = u. Clearly o' = o~ ! = ouand
Q,(2) = X. Suppose that xt inverts #. Then Cu(xt) = <u, z, wv, x, t) €
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Syl,(Cg(xt)). Since (wv)*> = z and [wv, t] = uz, this is impossible. Thus
[#2, xt] = 1 and 0" = 0~ L.

Set N = Ng(2), C = Cg(2), and N = NJO(N). Thus Z(2) = # x F <
Z(C), U, k> < N,x*€C,Z(2) =P x F=2n C=< N,and X < Z(C{t).
Let% < 7 € SyL(N). Then I, =Cn I < T,P x F < I, € Syl,(C),
and 7.t € Syl,(C{t)).

Suppose that 7, € 7 is such that ¢* € tF. Then

N, (A)=UNT, =P x F

and hence 1, € Cs (t) = X. Then since F < Z(7:{t)), we conclude that
C¢1<,>,F(tF) = AJF and that J,{t>/F is dihedral or semidihedral. Since
F < Z(C)and 2 = (? x F)|F < Z(CJF), it follows that C/F is a cyclic 2-
group and C = Cg(k) x F where Cg(K) is cyclic Z = Q,(C.(k)) and F =
[C, &].

From the nature of the remainder of the proof of Lemma 11.2 and in order
to simplify the notation, it is clear that, without loss of generality, we may (and
shall) assume that O(N) =

Set # = Cc(k). Then C = # x F, & is a cyclic 2-group, Z = Q,(%),
[C, k] = F,x* =1, and C{x, t) < 7. Since [xt, Z] = 1, it follows that
[xt, 5'(#)] = 1 and hence |#| < 2°. Suppose that |#| = 23. Then #{xt)
is a modular 2-group and letting # = {y), we conclude that y» € Cs(x?).
Since |yv| = 23, this is impossible. Thus # = 2.

Since N/C ¢ Aut (2) where 2 = 2 = ¥/, it is easy to see that [N],, = 3.
Thus N = O,(N)Xk, x) and I = O,(N){x).

Let Z = O,(N). ThenC{t) < Z, ¥V < Z,C¥V =PV =2 <
and Cy(t) = A. Clearly t°n 2 = 0.

Suppose that & = 2{t>. Then I = %, Q(J') = X char 7, C,(X) =
2(t> char 7, Q,(2(t)) = w, t) x Fchar J,? x Fchar 7,2 = C4(P x
F) char 7, and 9 € Syl,(G) which is false. Thus #" = 2{t) # Z.

Let Z, = N,(#). Since I(t2) = t? U (tw)?, it follows that |Z,/#"| = 2
and Z, is {x, x) invariant. Thus [Z, k] = ¥ < & and ¥ = P{¢) is of
index 2in ¥, = Cg, (k). Also Cy,(t) = {t, uy, ¥, is dihedral or semidihedral,
%, is {x) invariant, | = £, and %, n ¥ = {u). Since x normalizes the
unique cyclic maximal subgroup of #,, {x, x> acts trivially on #,/%} and
hence Z, = C4,(¥") is a maximal subgroup of %, by Lemma 2.1(iii). Thus %,
is dihedral or generalized quaternion of order 8, ¥ = Z, * ¥, Z, NV =
uy,and ¥, = (R, * ¥V'){t). Clearly t° n (R, * V") # Qand I(t(R, * V")) =
t?', Thus ¥ = Z,and T = (&, * ¥){x,t>. Hence X = Q,(F")and C(X) =
%, char 7. Since S < 7, it follows that 7 e Syl,(G) and |G|, = || = 2°.
This contradiction yields Lemma 11.2.

Hence 2 = (u, o) for some involution w, 2 = {w) x ¥, 2' = {u),
012 =X =0(2),% = 2(t),and U = 2{x, t). Setting E = Q,(2) = (@) %
X, we have E = Z(2) = E,¢ and hence t¢ n 2 = 0. Since Q;(#’) = X char %,

R
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we have Cy(X) = # char %. Also, if t € I(W — 2), then Cy (1) = (1, X)
and hence E char #" and 2 = C,(E) char #".
Clearly ™' € w{u). Suppose that ** = wu. Then

Cy(xt) = wv, t)> x {z, xt) € Syl,(Ce(xt)) and I(xt2) = xt{vy, z)> = (xt)>.

Also |[E, 2x]| = |[E, x]| = 2 # |[E, 2xt]| = |[E, xt]| = 4 since [x, o] = 1.
As ¥ ¢ Syl,(G), this is impossible. Thus o™ = w,

Calxt) = ¥ x (z, xt) € Syl (Cg(x1)),

u ~ zin G and I(xt2) = xt({w) x vy, z)) = (xt)? U (xtw)?. Also ®* = wu,
I(x2) = x{v, z) = x* and [E, x] = {u, z).

Set N = Ng(#), C = Cg(#), and N = NJ/O(N). Clearly (%, x) < N <
Ng@)and% n C = X. Let¥ < T € Syl,(N). Then% # T since ¥ ¢ Syl,(G)
and Ny(A) = %. Hence X = Cn J € Syl,(C),C = O(N) x X,and C = X.
Also N/C o Aut (#°) and hence |N/C|, = 3,<k)> € Syl3(N), N = O,(N) -
(K, Xy, and W < T = O,(N)Xx).

From the nature of the remainder of the proof of Lemma 11.1 and in order
to simplify the notation, it is clear that, without loss of generality, we may (and
shall) assume that O(N) = 1. Set & = O,(N). The Cy(t) = A, Cylk, t) =
{t, uy, and hence Cy(k) = ¥ = (¢, w) since I(t{u, ®)) = t{u). Also, since
2 < N,if ge v — X, then the four # -conjugacy classes of involutions in ¢t2
are represented by 7, twg, tog*, and twg**. Thus Z /W =~ E,, |%| = 2°, k acts
nontrivially on & /#", and & is transitive on /(z2). Thus Q,(2) = E is strongly
closed in #~ with respect to G.

LemMA 11.3. Let % < R where R is a 2-group. Then E <1 & and E is the
unique normal element of & 1¢(2).

Proof. Since E char %, it suffices, by induction, to assume that £ < % and
to prove that Eis unique. Thuslet £ #* Y <« & with Y € &,4(%). Since |%| =
28 < |Z],wehave 1 N Y = 0. Also4 < |Cy(t)| and if 7 € x{u, z), there is an
element g € ¥~ — X such that |[gq, ]| = 4. Hence Cy(¢r) < X. Suppose that
Y <# = 2{). ThenY < 2and hence Y = E. Thus Y £ # . Since
[Y, t] < Cy(¢) < X and 2 is transitive on tX, it follows that Y < 2C,(t) =
28 = 9. Thus there is an involution T € Y n (2x U 2xt). Since for any such
7 there is an element g € ¥° — X such that |[q, ]| = 4, we have a contradiction
and the lemma follows.

Let 7 € Noy(%) — # . Then t normalizes {x2, xt2} and 7> € # . Since
I[E, x2]| # |[E, xt2]|, we conclude that {[x, 7], [xt, t]) < 2 and hence a
Sylow 2-subgroup of N/2 is not semidihedral. Thus

N/2 >~ Z, x £, where {t2) = Cq,3(k), ¥ < [Z, k], and t ¢ [Z, k].
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Note that 7 = Z(x), |7| = 2!°, T ¢ Syl,(G), E char 7, 2 < C4(E) =
Cy(E) = C4(E) char I, and C,(E) <« N since E = Z(2).

Suppose that 2 = C4(E). SetJ = Ng(E)andJ = J/O(J). Clearly (7, k) <
J. Let 7 < & € Syl,(J). Then I # & and & € Syl,(G) since E char & by
Lemma 11.3. Also

2=CeE)nT < CLEYNn ¥ & and C4(E) n ¥ = Cy(E) e Syl,(C4(E)).
Suppose that 2 # C,(E). Then there is an element 7 € C,(E) — 2 such that
t* € t2. But & is transitive on 1(z2) and hence T € J which is false. Thus 2 =
Cy(E) € Syl,(C4(E)). Also 2/E =~ E, and any element of odd order in N,(2) n
C,(E) centralizes 2. Thus C4(E) = O(WJ)2 and J = Ny(9) = N,(2). Also
C;(2) = E and hence J/JE o Aut (2). Thus J = 0,(J)K, Xy and 0,(J) =
C;(2/E) and hence O,(J) acts trivially on X = U(2). Since CyE) = 2, we
have |0,(J): 2| | 2% and hence |G|, = |J|, = |¥| = |7 | which is a contradic-
tion.

Thus 2 # C4(E) = C4(E). Setting &, = C4(E), we have & = Z,{¢),
t ¢ 519

gl = Cg—(E) Chal‘ g— = Q"1<x, t>.

Also Z, = 2[Z,k]< N, |Z,| = 2%, and # = Cy (k) = {u, o) <« N. Set
N = N/#?. Then |Z,| = 25 Cz(®) = 1,and Z, x Z, @ 3 < N. Clearly
{uy = 2' < Z. Suppose that &} = {uy. Then¥" < [Z,k] < Z,,[Z, k] <
N,and 2 n [Z, k] = ¥". Since I(t¥") = t” and Cig, ,4(?) = X, this is impos-
sible. Thus & # <u) and &, is not isomorphic to Zg x Zs.

Suppose that &, =~ Z, x Z, x E,. Let & denote the inverse image in %,
of Q,(#,). Then ¥ < N, X n 2 = E and ¢ fixes an element #/E which is
impossible. Thus &, is isomorphic to a Sylow 2-subgroup of L;(4) by Lemma
29. Thus<u) < &, < O(Z) < E=Z(Z). f (%, = X, then v <
[Z,k] < Z,,[Z,x]< N,[Z,k] n 2 = ¥ and we obtain a contradiction
as above. Thus, utilizing k, we have F = ®(Z,) = & = Z(Z ), exp (Z,) =
4, Cy, () = 9/E, and I(tZ,) = t7'. Note also that 1 n &, = 0. Also
(K, x) acts faithfully on Z,/2; hence (% ,{x)) 2 = Dg and I(xZ,) = x*!
since I(x2) = x2. It follows that t¢ N (2 {x)) = 0.

Set J = NG(E),J = J/O(J),and let T < & € Syl,(J). Clearly (T, k> < J,
& e Syl,(J), T # &, and & € Syl,(G). On the other hand,

Since I(t% ;) = tZ*, we conclude that &, = & N C4(E) € Syl,(C4(E)). By the
same token, Cy o, (t%,) = I |%, = E, and hence & /%, is dihedral or semi-
dihedral. But &/%, o Aut (E) and hence &/%, =~ Dy. Since |[E, Z,x]| #
I[E, ]| = |[E, Z,xt]|, we conclude that {xZ,) = (¥/%,)’. Since |¥| =
211 = |G,| and 1€ N (Z<{x)) = 0, [17, Lemma 5.38] implies that |0*(G)|, <
21% This contradiction completes the proof of Lemma 11.1.
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12. The case of Lemma 7.4(v)

In this section we shall conclude the proof of Theorem 2 by proving:
LemMA 12.1. If ¥ satisfies (V) of Lemma 7.4, then |0*(G)|, < 2'°.

Thus, throughout this section, we assume that ¥~ satisfies (v) of Lemma 7.4
and that 2'° < |0?(G)|, and we shall proceed to a contradiction.

Thus Z(YA) = Z(U) = Z(V") = {u), VA = ¥t ) is of type g, ¥t, x) =
Dg™\_ Z, by utilizing the proof of [7, VI, Lemma 2.7(iii)], [¥4, k] = ¥ =
[#, k] = Q, * O, where Q; and Q, are quaternion of order 8 and Q| = Q,.
Also &,4(¥A) = {4} and every element of ¥4 — ¥ interchanges Q, and Q,.
Now & = C,(x) acts on ¥~ = [#', k] and hence % contains a maximal sub-
group £ normalizing both Q; and Q,. Since Z < C,(k), we have [Z?, 0,] =
[2, 0,] = 1. Then <%, k) < No(?) A Ng(¥)and 2 n ¥ = (ud. Set 2 =
PV = P+¥. Then W = 2>, 2 U = Kx, >, ZAU) = {u), Z(2) = P,
and 2’ = ®(2) = <{u).

Lemma 12.2. 2 =~ Z,.

Proof. Assume that 2 = (u, ) where > = 1. Then 2 = (w) x ¥,
I(t2) = tX = t?, and % = 9{x, t) ¢ Syl,(G). Note also that Z(M) = (i) and
set M = M){i). Then it is easy to see that &,,(%) = {3}. Since Z(%) = {u)
it follows that & 5,(%/<u)) = {2/{u)} and hence 2 char# and # = Z(2) char%.

Set N = Ng(2), C = Cg4(2), and N = NJO(N). Thus (%, > < N. Also
let % = XKx,t) < T € SyLL(N). Clearly¥% # I,% n C = 2, and I(tP) =
t{uy = t?. Hence C = O(N) x 2,C = Z,and N/Z ¢, Aut (2). Also Cy(t) =
X and hence Cy(¢) = Cy(¢) N Ny(A). Thus Cy(t) = (O(N) n Cy(t))A(k, x>
and Cy(f) = A(K, X». Moreover I(tZ) = t? and hence C5/3(12) = %/2 = E,.
Thus 7 /2 is dihedral or semidihedral. But /2 # /2. Hence t2 ~ xt2in 7,
Z(T12) = {(x2), and O,(N) = 2 since X ¢ O,(N).

On the other hand, 2 = (w) X ¥, 2 =<u), Z(2) = {w,u), ¥V = Q% Q,
and N/C < Aut (2). Hence every Sylow p-subgroup of N/C with p odd acts on
K@Y = 7. Thus |[N|, = 32

ONN|C) 2 Z3 x Z3, ¥V =[2,0,,,,(N)]< N,
and
Cy(¥) = O(N) x 2.

Thus N/Z ¢ Aut(¥) = X, \_Z, and hence /% = Dsg. Since |7| = 2°, T
is a maximal subgroup of some 2-subgroup & of G. Clearly Z(¥) = Z(T) =
uyand 24 &. Letae ¥ — 7 and set & = £[{u) and 2, = 2° Then
2 # 2,< 7 and hence 2{x) < 22,. Since Cy, (k) = 1, we have [Cy(%)| = 4
and |C3(%)| = 8. Thus |2 n 3| = 8, 2,2/2 ~ E,, and

I(T) = 1(23,) U I(t9) U I(x19).
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Since o leaves 22, invariant and 12 ~ xt2 in , we may assume that a leaves
I(t2) = t? invariant. As S = C,(t) < 7, this is a contradiction and the proof
of Lemma 12.2 is complete.

Let 2 = {(w) where w? = u. Then I(t2) = t* U (tw)?, 2 char %, and 2
char %, as in the preceding lemma.

Suppose that x¢ normalizes Q, and Q,. Then there is an element ¢, € Q; —
{u) such that ¢}' = q7!. Setting ¢, = ¢!, we have Cy(xt) = Cy(x, t) =
{u, 2y = (u, q195). If ©** = w, then

Cu(xt) = ¥ x {z, xt) € Syl,(Cg(xt))

and u ~ zin G. If @™ = w™?, then Cyu(xt) = Cy(xt){x, t) € Syl,(Cs(xt))
where Cy(xt) = {u, z, wq,) = Eg.

Suppose that QF = Q,. Then x € N4(Q,) N Ng(Q,) and there is an element
g€ Qy — <uysuchthatgi = g7 ' and Cy(x) = Cy(x, 1) = {4, 2> = {4, §:19,).
Also {u, z) < Cy(xt) = Eg and hence 0** = o~ ! and Cy(xt) = Cy(xt){x, t) e
Sy(Co(x1)). -

Set N = Ng(2), C = Cg(2), and N = N/O(N). Clearly <%, ) < N and
K3eC. Let% < 7 € Syl,(N), sothat% # . Asin the proof of Lemma 12.2,
we have Cy(¢) = (O(Cy(2)) n C)A(k, x).

LemMma 12.3.(i)) C = ON)C n ) where C = C n T is cyclic, C n
T <a T, (Cn T)Xt)is dihedral or semidihedral and ? < (C n T) n Z(C).

G) €CnIN2=CA"T)*«V andt’n(CnT)*V)=0.

(i) N/(CY) o Z, x Z,.

(iv) Cyx(t) = ALK, X).

Proof. Clearly Cn 7 < 7,(C n T)Kt) € Syl,(C<t)), and Cc, 7(t) =
{u). Since Z < (Cn T) n Z(C), (i) and (iv) hold. Since

(CnT))Y =((CnT)*xYV) =" =,

(CAT)x¥)| =25and Z(Cn T) *¥) = C n T is cyclic of order at least
4, (i) holds. Finally, since N/C < Aut (2), we have (iii) by [10, Section 1] and
we are done.

From the nature of the remainder of the proof of this lemma and in order to
simplify the notation, it is clear that, without loss of generality, we may (and
shall) assume that O(N) = 1. Then C=Cn J,(C*x ¥ Kx,t>) = CU < T,
and C2 = C * ¥ < O,(N). Let C = (y) and |C| = 2° for some integer
az=2.

LemMMA 12.4. (i) C * ¥ char C% = (C * ¥ )Xx, t) and 2 char C%.
) T # Cu.



616 MORTON E. HARRIS AND RONALD SOLOMON

Proof. If # = C, then C% = U, and C* ¥ = 2char%. Suppose that
P < C. Clearly Z(C%) = <{u). Setting (C%)~ = (CU)|{u), we have

)~ = (& x VKE, 1.

Since @ > 3, it is clear that J,((C%)~) = C x ¥ and hence C * ¥~ char C%.
Since Q,(C * ¥") = 2, (i) holds. Suppose that 7 = C%. Then I e Syl,(G)
and |y| = 2% > 2° and xt acts dihedrally or semidihedrally on C = {y)». Hence
O < Cy(x). Thus (9*) < Cy(x) < ' < C * ¥ . Since |y*| = 2° and
Z(J) = {u), we have x ~ u in G. This contradiction shows that (ii) holds.

LEMMA 12.5. (i) |Cy,cs9y(2): ((C * Y)Y x <, x)NC * V)| = 2.
(i) CK<t) is dihedral.

Proof. Assume that Ny((C * ¥)t)) = (C+* ¥)t) x {k,xD). If O,(N) #
C 7", then O,(N) = (C* ¥)t>and hence N = (C = ¥)(Kt> x <{k, x)) which
is false by Lemma 12.4(ii). Thus O,(N) = C = ¥ and J [O,(N) is dihedral or
semidihedral. Then Lemma 12.3(iii) implies that 7 /O,(N) = Ds.

Suppose that 7 € Syl,(G). Then |C| = |y| = 2* and J'(C * ¥") centralizes
C = {y>. Hence 7'(C = ¥") = (C » ¥")(x) and we obtain a contradiction as
in the proof of Lemma 12.4(ii). Thus J is a maximal subgroup of some 2-
subgroup &L of G. Letae ¥ — JT,set Y = Cx ¥, and Y; = Y% Clearly
Y, # Y since 2 = Q,(Y) and hence N (Y) = N (Y,) = J. Also Z(¥) =
(u). Setting & = F/(ud,wehave ¥ = C x ¥ = Z,a1 x Ejg = ¥,. Also
C#(X) = Ca(X) x Cy(X) where C(X) = E,; similarly for Cy(%%). Since ¥, is
abelian, we have 7 # YY,. Thus |Y,Y/Y| = 4and |¥, n ¥| = 2***. Since
xeY Yorxte Yy, lCY(xY)I = 4|CC(x)| and ICY(xiY)| = 4|Cy(X?)|, we have
C<Y,9%nY=Cx(#F nY)and i¢ ¥ since 1Y = 0. Since «
leaves Y'Y, invariant, it follows that we may assume that ¢* € ¢+C. Thus, since
Cy(t) = S < 7, it follows that C{t) is dihedral and that we may assume that

= ty. Hence Cg4(2, u)* = Cq4(ty, u). However

<y9 Z, K> < OZ(CG(I, U)) al 02(0(;(1% u))
and
(7 0 OXCo(t, w))* = T  O*(Ce(ty, u)).

Thus {y,z)>* = {y,z) by (4.12). Since [y, x] =z = [y, xt]andxY n Y; # 0
or xtY n'Y; # 0, we have y ¢ Y;. This contradiction shows that

NN(C x 97)t)) # (C* V)KE) x (K, XD).
But I(¢(C * ¥°)) = tC*?) if C{t) is semihidedral and I(t(C * ¥")) = t¢*” U
(ty)€* 7 if C{t) is dihedral. Then Cy(z) = A<k, x) implies Lemma 12.5.
Let Y = Ny((C * ¥)<t>). Then (C = ¥'){¢t> is of index 2 in 0,(Y), Y =
0,(Y)k, x), C{t) is of index 2 in Cp,yy(k), [02(Y), k] = ¥ < ¥,
Cov(x, t) = {t,uy and C,,(y)(x) is dihedral or semidihedral. Set

R = COz(Y)(K) N Ny(Qy) N Ny(Q,).
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Then 2 is of index 2 in Cy,(y)(x), [%, ¥"] = 1, t ¢ &, C is a maximal subgroup
of #, and hence £ is not abelian. Thus £ is dihedral or generalized quaternion,
RY = RDL =R+«V, RV =u, Y =R+ ?V)t) x {k, x)), and
K1) = Co,x)(K).

Clearly 1 n (% + ¥") = 0 by Lemma 2.12 and I(t(2 * ¥)) = t‘**"). Also

(® * ¥)]C < NIC

by [10, Section 1] and hence R * ¥~ < O,(N). Thus O,(N) = & « ¥ or O,(N)
= (R« V)t) = 0,(Y).

LEMMA 12.6. O,(N) = Z +« ¥V and T # (& = V" )Xx, t).

Proof. Assume that O,(N) = (# * ¥){t). Then, since t° N (% * ¥") =0,
QR*xYV)=R+x¥ and [({( R *Y¥)) = t?*"), wehave N = O,(N)Xk,x) =Y
where Z <« N and ¥ v Y. Also %<{t) is dihedral or semidihedral, |%Z| > 8,
and (#2<{t)>) = C. Hence we may assume that 7 = (Z * ¥"){t, x). Then
Z(T) = {u) and {u) < OY(T') = UY(C). Setting I = T/O(T"'), we have
@RYV) =R x ¥ and E¢4(9) = {(#¥)~}. Thus # * ¥ char 7.

Suppose that || > 2*. Then Z = Q,(Z * ¥°)) char T, Cy.y(P) =
C x ¥ char 7, 2 char 7, and I e Syl,(G). Since the cyclic maximal subgroup
of %#{t) is {x, ty-invariant and |C| > 8, we have [x, C] = 1. Thus '(C) <
Cs(x) < C * ¥ where U'(C) is cyclic of order at least 4. Since x ~ u in G,
this is impossible. Thus |2| = 23, C = 2, |7| = 2°, # % ¥ is extraspecial of
order 27, and # % ¥ char 7.

LetJ = Ng(Z + ¥),J = JJO(J) and let T < & € Syl,(J). Clearly T # &
and Z(¥) = <ud. Set & = L/(R * ¥). Then Cx({) = (%, 1) and & is di-
hedral or semidihedral with Z(&) = (%> and ¥ ~ 1% in & since I(t(Z * V")) =
t@*"), Thus & acts faithfully on £¥°/(u) and hence exp (¥) < 8.

Suppose that & =~ Dg. Then |#| = 2!° and & ¢ Syl,(G). Thus there is a
2-element f e No(¥) — S suchthat 2 e L. Set X = Z+ ¥V and &, = Z°.
Then ¥ # ¥, < Land 1 # &, < &. Since X € I, it follows that ¥, = E,
and ¢ &,. Then f leaves I(t%) U I(xt%) invariant. Since t¥ ~ xt% in &
and I(t%) = ¥, this is impossible.

Assume that || = 16. Then & e Syl,(G) since no element of E(P) is
normal in &. Hence || = 2! and O*(G) = G. Thus t° N x(Z * V") # 0 by
[17, Lemma 5.38]. Since (%) = U*(P), it follows that x acts trivially on 2/{u).
Since |Cy/(,5(X)| = 4, it follows that every element of I(x(Z * ¥)) is conjugate
via £ * ¥ into an element of Z{x).

Let © € I(#x) and let & be the inverse image in Z * ¥ of C g+ y)¢,5(%).
Then Z/{u) = Ei, Z = R + (V" 0 %), |Z| = 2°, © normalizes &, and &
normalizes {7, u). Hence |Cy,y(7)| = 25, Also Lemmas 2.2 and 2.3 imply
that Z{x) = R » Z(A{x)) where u € Z(A{x)) and |Z(%#<{x))| = 4. Note that
there is an involution u € 1% N (#{x) — A).

Suppose that Z(#<x)) is cyclic. Then #{x) =~ Z, * Qg and #{x) has four
conjugacy classes of involutions. If Z(#{x)) =~ E,, then #{x)> — £ contains
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two or four conjugacy classes of involutions. Since x and u are not conjugate
in&, (R *¥V)Kxd<a &,and |L/((Z# * ¥){x))| = 8, it follows that |Cy,(n)| = 27,
which is impossible. This establishes Lemma 12.6.

Since N/(C * ¥") has 2-exponent at most 4 and

Ny((Z = V)KtD) = (R = V)LD x (&, X)),

we have J/0,(N) = Dg. Also tO,(N) ~ xtO,(N), t ~ xt in J, and
Z(T|0,(N)) = {xO,(N)).

Assume that |#| = 23. Then |7| = 2!°, 7 ¢ Syl,(G), and O,(N) = Z * ¥V
is extraspecial or order 27. Let J be of index 2 in the 2-subgroup 4 of G.
Then Z(J,) = {u) and 2 * ¥" <1 F since I(t0,(N) U xtO,(N)) = t7 by the
usual argument. Letting

Ty £ & € Syl (Ng(0x(N))),

we have z(¥) = (), T # &, and Cyo,)(t) = E,. Also &]O,(N) acts
faithfully on O,(N)/{(u) and hence &/O,(N) has exponent 8, & = 7,
and &/0,(N) is dihedral or semidihedral or order 16. Also |&| = 2!,
Z(F]0,(N)) = {xO,(N)> and hence # » ¥ char &. Thus & e Syl,(G) and
the argument at the end of Lemma 12.6 applies to yield a contradiction.

Consequently, letting |2| = 2, we have a > 4. Then Z < O,(N) = R
and 2 = Q,(0,(N)’) char O,(N), Cy,\(?) = C * ¥ char O,(N), and hence
2 char O,(N). Also <{x, t) normalizes the cyclic maximal subgroup of Z{¢).
Hence [C, x] = 1 and x stabilizes the chain Z > %' > 1.

Clearly O,(N){x> <  and t% N 0,(N) = 0. Let § = J/O,(N)'. Then
(0,(N)” =& x ¥ where # =~ E, and ¥ =~ E,4. Clearly every involution of
x0,(N) is conjugate via O,(N) to an involution of Zx. Also if T € I(xO,(N))
and £ is the inverse image of Cy,y)~(%) in O,(N), then Z < %, & =
R * (V' N %), v normalizes Z, |Z| = 2°*2, |Z{(1)| = 2°*3, and & normalizes
{t, B,

Since [x, C] = 1, it follows from Lemmas 2.2 and 2.3 that |Z(2{x))| = 4.
Suppose that u € 19 N Zx. If Z(R<x)) is cyclic, then |Cy, ()| = 2°, |Co(u)| =
2%, and t¢ N (#{x)) consists of one or two #{x) conjugacy classes. Hence
|Cs(w)| = 2° which is impossible.

If Z(#{x)) = {u, A) where A2 = 1, then {x, ud = Z(A{x)), B(x> =
R x {x), and Z is dihedral since ¢ N {x, xu} = 0. Also, since t° N # = 0,
t% N #{x) consists of at most two #{x) conjugacy classes and again we have
a contradiction. Thus ¢ N (0,(N){x)) = 0.

Suppose that 7 € Syl,(G). Then t ¢ O*(G) by [17, Lemma 5.38], | 7| > 2'2,
and |C| > 2% Since C < Cy(x), we conclude that U!(C) < Cy(x) < I’ <
0,(N){x) and we obtain a contradiction from the fact that x ~ uin G. Hence
T ¢ Syl,(G).
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Let  be a maximal subgroup of the 2-subgroup & of 7 andleta e & — 7.
Then 1 = t*e€ T — (O,(N)Xx, 1)), $* € Syl,(C4(7)), and {u) # (S*)'. More-
over, since t¢ N (0,(N){x)) = 0, we conclude that N/O,(N) has a normal
2-complement. Also 3 | |0, ,.(N)/O,(N)| and O,, ,(N)/O»(N) o . Thus

0, ,(N)JO,(N) = Z3 x Z; and NJO,(N) = Z;\_ Z,.

Choose A" € Syl;(N) such that k € A”. Then Cop,y)(k) = Z and [0,(N), ] =
¥ are A -invariant. Then 0%(0, ,(N)) = ¥/ < N, 7" < N, Co,q\(¥H) =
R < N, and O,(N)J"' normalizes Q, and Q,. Thus x normalizes Q; and Q,.
Set N = N/O,(N). Then & = Cy(%) x [N, T] where |C3(%)| = |[F, £]| = 3.
Let 8, w € A4 be such that C3(%) = ¢(8) and [, ¥] = (®). Thus 7 normalizes
¥°(6) and ¥ {w). By choice of notation, we may assume that C,(d) = Q, and
Cy(w) = Q,. Then t normalizes [, ¥(6)] = Q, and Q,. But [, 1] € ¥
and hence [, 7] € C,(Q,) = Q,. Thus § acts nontrivially on Q0,{t>. Applying
Lemma 2.2 and noting that S has no subgroup isomorphic to Q,, it follows that
0,{1) = Z, » Qg. Thus Cy,(t) = {g,> where g5 = u. Hence C,(1)' =
(8%’ = <u) which is the final contradiction. Thus the proofs of Lemma 12.1
and Theorem 2 are complete.
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