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1. Introduction and statement of results

All groups considered in this paper are finite.
In current standard terminology, a group L such that L E and L/O(L) is

quasisimple is said to be 2-quasisimple. Also any subnormal 2-quasisimple
subgroup of a group G is called a 2-component of G.

Recently, a great deal of progress has been made on the fundamental problem
of classifying all finite groups G such that O(G) and such that G contains
an involution such that H Co(t) has a 2-component L (cf., [-2, Theorem 1],
[3], [4], and [18]). These results suggest the importance of investigating such
groups G in which Cn(L/O(L)) has 2-rank 1. Of particular interest is the case
where L is of dihedral type.
We shall now state the first main result of this paper.

THEOREM 1. Let G be a finite group with O(G) 1. Suppose the involution
t G Z(G) is such that H CG(t) contains a 2-component L such that a
Sylow 2-subgroup of L is dihedral, m2(Cn(L]O(L))) and such that Nn(L)]
(LCn(L/O(L))) is cyclic. Let S Syl2(NG(L)) be such that S and let D
S c L. Then the following conditions hold:

(i) L/O(L) is isomorphic to 7 or to PSL(2, q)for some oddprime power q
with q > 3, N(L) O(N(L))H and S Syl2(n).

(ii) O2(G)= F(G)= C(E(G))= land F*(G)= E(G).
(iii) If F*(G) is not simple, then F*(G) R x R where R is simple and

L (rr’l r R) - R.
(iv) IfF*(G) is simple and r2(F*(G)) < 4, then the possibilitiesfor F*(G) and

G can be obtainedfrom [7, Main Theorem].
(v) IfF*(G) is simple and r2(F*(G)) > 4, then

(t) Syl2(C(L]O(L))

and H C(t) contains a normal subgroup K such that H (t) x K, K()

H() L, C(L/O(L)) O(H) O(K), K/O(K) is isomorphic to a subgroup
of Aut (L/O(L)) containing Inn (L/O(L)) properly with (LO(K))/O(K) corre-
sponding to Inn (L/O(L))andsuch that K](LO(K)) is cyclic. Also ifL/O(L) - az7,
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then K/O(K) - X7 and ifL/O(L) - PSL(2, q)for some oddprime power q with
q > 3, then q is a square and K/O(K) contains an involution that acts as a "fieM
automorphism" of order 2 on (LO(K))/O(K).

The second main result of this paper treats the open case of Theorem (v) in
which ID[ is minimal.

THEOREM 2. Let G, t, H, L, S, and D be as in Theorem 1. Assume that F*(G)
is simple, r2(F*(G)) > 4 and [DI 23. Then ]F*(G)I2 _< 2t and exactly one

of the followiny two conclusions holds"

(i) L/O(L) - 7 and G is isomorphic to Aut
(ii) L/O(L)-6 - PSL(2, 9) and G is isomorphic to Aut (Sp(4, 4)),

Aut (SL(5, 2)), or Aut (PSU(5, 2)).

Before presenting a corollary of our results and its proof, we give some
definitions.
A subgroup K of G is tightly embedded in G if IKI is even and K intersects its

distinct conjugates in a subgroup of odd order. A standard subgroup of G is a
quasisimple subgroup A of G such that K C(A) is tightly embedded in G,
N(A) N(K) and A commutes with none of its conjugates. (The importance
of these concepts for the classification of simple groups is described in I-2,
Section 1].)

COROLLARY. Let G be a finite 9roup with O(G) and assume that A is a
standard subgroup of G such that IZ(A)I is odd and A/Z(A) - 7. Set X
(At). Then exactly one of the followint7 holds:

(1)
(2)
(3)
(4)
(5)

X= A and Z(A) 1;
X , andZ(A) 1;
X ,7 x d7 and Z(A)= 1;
G X9,X= G’,andZ(A) 1;
G Aut (oeg’e), X G’ and IZ(A)I 3.

Proof. Assume that (1) does not hold and set K C(A). If m2(K) > 2,
then [-4, Theorem] yields (2). Suppose that m2(K) and let I(K). Then
H= C(t) < N(K) N(A) and hence A- H. Thus H# G, Z(G),
and m2(Cn(A/O(A))) 1. Applying Theorem 1, we conclude that F*(G)
E(G) and O2(G) 1. Also if F*(G) is not simple, then clearly (3) holds. Sup-
pose that F*(G) is simple. If r2(G) < 4, then I-7, Main Theorem] implies that
(4) holds. Finally suppose that r2(G) > 4. Then Theorem 2 yields (5). This
completes the proof of the corollary.

Actually the same argument can be applied to any finite group G with O(G)
and such that G contains a standard subgroup A of type D8 such that

Na(A)/AC(A) is cyclic.
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The outline of the paper is as follows. Section 2 contains a collection of 2-
group lemmas which are utilized at various points in the later sections. In
Section 3, we prove Theorem 1. In the remainder of the paper (Sections 4-12),
we prove Theorem 2.
The analyses of Sections 8-12 are primarily due to the first author.
Our notation is fairly standard and tends to follow the notation of [6-] and

[7]. In particular, if n is a positive integer, then a" and X;" respectively denote
the alternating and symmetric groups of degree n. Moreover, for any finite
group J and any 2-power n, 6’(J) denotes the set of elementary abelian sub-
groups ofJ of order n and E" denotes an elementary abelian subgroup of order n.
Also for any finite group J, m2(J) denotes the 2-rank of J, r2(J) denotes the
sectional 2-rank of J and I(J) denotes the set of involutions of J.

2. Preliminary results

In this section, we present several results on 2-groups that are required at
various points in our proofs of Theorems and 2.
By surveying all groups of order 24, the following result is easily verified"

LEMMA 2.1. If X is a group of order 24 with IAut (X)I2 - 1, then X is iso-
morphic to El6 Z4 Z4, Z4 Q8, or Z4 * Qa.

LEMMA 2.2. Let ( y, X y2 X2"- and x x-) be a general-
ized quaternion group oforder 2"+ with n > 2. Assume that . is a maximal sub-
9roup of the 2-group S and that Z(S) Z(.) (t). Then exactly one of the
followin9 conditions holds:

(i) S is 9eneralized quaternion.
(ii) S is semidihedral.
(iii) n > 2 and there is an element v . (x) (oforder 4) and an involution

z S . such that x xt, v v, and X (., z). Also t, z, and xvz are
representatives for the 3 conjugacy classes of involutions of X.

Proof. Clearly Cs() (t) Z(.) and we may assume that (x)<a S.
If S contains a cyclic maximal subgroup, then [6, Theorems 5.4.3 and 5.4.4]
imply that (i) or (ii) holds. Thus we may assume that no maximal subgroup of
S is cyclic. Suppose that (x) < Cs((X)). Then Cs((X)) (x) x (z) for
some involution z e S . and zr zt since Iv, 2] -#- 1. Then

2rt-(yt) y
2n--2and hence zx Cs()- . which is impossible. Thus Cs((X))= (x),

n > 2 and there is an involution z S . such that x xt and M (x, z)
is a modular maximal subgroup of S. If zr z, set v y. If zy zt, then
(xy) xtyt xyand v xy does the job. In this last case, S’ (x2)
(S) and hence S/O(S) Es, so that exactly one of conditions (i)-(iii) hold.

The proof is complete.
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A proof similar to that just above yields"

LEMMA2.3. Let (y,x[y2 x2n= 1 and xr x-l) be a dihedral
group of order 2n+ with n > 2 and let x2n- t. Assume that is a maximal
subgroup of the 2-group S and that Z(S) Z() (t ). Then exactly one of
thefollowing conditions holds"

(i) S is dihedral.
(ii) S is semidihedral.
(iii) n > 2 and there is an involution v (t) and an involution

S , such that x xz, v v, and S (, ). Also t, v, vx, , and w are
representatives for the 5 conjugacy classes of involutions of S.

LEMMA2.4. Let if’ (y,x]y2 x2n= and x x-t where
x2- ) be a semidihedral group of order 2n+ with n >_ 3. Assume that Sf is a
maximal subgroup of the 2-group S and that Z(S) Z(Sf) (t ). Then there
is an involution S 5f such that S (Sf, ) and x xt and exactly one

of the following conditions holds"

(i) y y and I(S) I(3) {t, , tz} {xyz j Z }.
(ii) y yt and I(S) I(f) {t, z, tz}.

Proof. As above, we may assume that S contains no cyclic maximal sub-
group, Cs((X)) (x) . S and that S contains an involution z e S such
that x xt and I-y, z] (t). If [y, z] 1, then it is easy to see that (i) holds.
If I-y, z-] t, it is easy to see that (ii) holds and the proof is complete.

LEMMA2.5. Let.B Z4 x Z4 x Z, G Aut(B), and let teGbesuch
that fit fl- for all fl B. Then is not a square in G.

Proof. Let X g](B) and H C(X). Then H, H is an elementary
abelian 2-group, H O2(G) and G/H Aut (B/X) GL(3, 2) since H
C(B/X). Assume that z e G is such that z2 t. Then z2 H CG(B/X) and
z H since H is an elementary abelian 2-group. Let X < Bo < B be such that
C/x(Z) Bo/X. Then ]Bo] 2 and f(Bo)= X.

Let b Bo X. Then b" bx for some x s X and hence b b- bxx’.
Thus b e IX, ] and E, - LZ(Bo) < IX, z]. On the other hand, zz e H
CG(X). This implies that IX, z]l 2. This contradiction proves the lemma.

LMMA 2.6. Let T be a 2-group and let (t) x (p) be a subgroup ofAut (T)
such that Itl 2, Ipl 3, and ICr(t)l 4. Then ICr(p)I 1 andprecisely one

of the following holds"

(i) T - Z, x Zz, for some integer n > and inverts 3x(T).
(ii) T Ea6.
(iii) T is isomorphic to a Sylow 2-subgroup ofL3(4), Cr(t) (T) T’

Z(T) and the inverse image in T of Cr/.(r)(t) is isomorphic to Z x Z4 and is
inverted by t.
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(iv) T is isomorphic to a Sylow 2-subyroup of Ua(4), Cr(t) @(T) T’
Z(T) and the inverse imaye in T of Cr/.(r) is isomorphic to Z4 x Z4 and is
inverted by t.

Proof By [6, Theorem 5.3.4], p acts nontrivially on Cr(t). Hence Cr(t) -E4 and the result follows from I-15, Theorem B].

LEMMA 2.7. Let T be a 2-yroup with an involution t such that ICr(t)l 8 and
such that Cr(t) is not quaternion. Assume that T has an automorphism p oforder
3 such that t e Cr(p). Let T IT, p]. Then Cr(p) (t) ;g T1, T Tl(t)
and precisely one of the followin# holds:

(i)
(ii)
(iii)
(iv)
(v)

T1 E, and T - E8;
T Z2n X Z2n for some inte#er n > 2 and T1 char T;
T1 - El6 and T1 char T;
T1 is isomorphic to a Sylow 2-subtTroup ofLa(4) and T1 char T;
T1 is isomorphic to a Sylow 2-subyroup of Ua(4) and T1 char T.

Proof. Clearly (t) x (p) acts on T. Then I-6, Theorem 5.3.4] implies that
p is nontrivial on Cr(t). Thus Cr(t) (t) x [Cr(t), P-i where I-Cr(t), p]
E4. Hence Cr(p) (t).

Let T be a minimal counterexample to the lemma. Then Z(T) and
Z(T) I-Cr(t), p] E,. Let X Cr(t). Then X < T and p acts on
Nr(X) > X. If u Nr(X) X, then t, for some Z(T) and hence
Z(T) [Nr(X), t] [Nr(X), X]. Letting T/Z(T), we have

CT(i) NT(X), ICT(t)I 8, and Cr(t, p) (i>.

Since is not a square in T, neither is any element of tZ(T). Thus Cr(t) is not
quaternion. Since l < IT 1, we conclude that [, p]Cr(p) where
Cr(p) (i) ;g [, p] and hence T Tl(t) where Cr(p)= (t) T1
IT, p] <a T. Clearly ICr,(t)l 4. Then Lemma 2.6 implies that T1 has the
required isomorphism type. In all cases, l is abelian and Crl(t) E4. Thus,
if l is not isomorphic to E,, we have l Jo() char and hence T1 char T.
if l E4, then again T1 Jo(T) char T and we are done.

LEMMA 2.8. Let T be a 2-yroup that is isomorphic to a Sylow 2-subyroup of
Ua(4). Then Aut (T) does not contain a subyroup isomorphic to

Proof. Let <p, x llpl 3, Ixl 2, and px p-l> < Aut (T). Since
Z(T) E,, it follows from !-7, VI, Lemma 2.5(vii)-(viii)] that lx, Z(T)] 1.
Thus [p, Z(T)-I which is false by [-7, VI, Lemma 2.5(ii)] and we are done.

LEMMA 2.9. Let T be a nonabelian 2-group oforder 26 such that (p, x Ipl 3,
Ixl 2, p p-l> _< Aut (T) with Cr(p) 1. Then T is isomorphic to a
Sylow 2-subgroup ofL3(4) and Cr(x) is isomorphic to Da or Qs.
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Proof. By Lemma 2.8 and [7, VI, Lemma 2.18], it follows that T is isomor-
phic to a Sylow 2-subgroup of L3(4). Hence Z(T)= T’= dO(T)-E,,
TIT’ - E16, CT/T’(X) E4, and ICz(T)(x)l 2. Let T TIT’. Then Cy(x)
is not p-invariant. Also T has exactly five p-invariant subgroups isomorphic to
E,, say Y for < < 5, such that T # Tff where the union is disjoint.
Thus we may assume that x fixes T1, T2, and Ta and x" T - 5. Let T denote
the inverse image in T of T for < < 5. Three of the T are isomorphic to

Z x Z, and two of the T are isomorphic to E16. Thus we may assume that
T1 Z4 x Z. Thus CTI(X) (]1) Z4 where 2 z generates CZ(T)(X).
Thus z e Cr,(x) - Cr(x) and ICr,(x)l 4 for 1, 2, 3. Hence

IC,(X)CT&)i 8, (Z) Z(T) (CT,(X)CT(X)), and CT,(X)CT(X) CT(X).

Clearly CT(X) <_ CT,(X)CT(X) and hence CT(X) CT(X)CT2(X). As CT(7I)
T1, the lemma follows.

LEMMA 2.10. Let T be a group of order 25 with

;3 (p, x llpl 3, Ixi 2, and px p-l) <_ Aut (T).

Assume also that Z(T) - Es and [Cr(p)[ 2. Then exactly one ofthefollowing
two conditions holds"

(i) There is a (p, x) invariant subgroup Q of T with Q Q8, Q(p, x) -GL(2, 3), Q’ Cv(p) and with T [Z(T), p] x Q.
(ii) T’ Cr(p) < Z(T) dO(T) 31(T) Cr(p) x [Z(T), p], fl(T)

Z(T), exp (T) 4 andfor any T Z(T), one has ]el 4, e2 Cr(p),
e2 [Z(T), p], and Cr(e) (, Z(T)). Also

TIT’ - Z x Z,, T/[Z(T), p] Qa, and T (p, x)/[Z(T), p] - GL(2, 3).

Proof. Clearly T/Z(T) - E4 and hence [T’] 2 and T’ _< dO(T) <
Z(T). Since Cr(p) < Z(T), it follows that T’ Cr(p) (u) for some in-
volution u e T. Thus Cr/r,(P)= and T]T’ -E16 or Z4 x Z4. Setting
F= [Z(T),p], we have E4 - F. T(p,x) and Z(T)= (u) x F. Note
that ICy(x)] 2.

Suppose that TIT’ El6. Since Z(T)/T’ - F over T(p, x) and
[Cr/r,(x)[ 4, it follows that x fixes some p-irreducible subspace Q/T’ with
Q v Z(T), T’ < Q . T(p, x), and Q/T’ - E. Clearly (i) holds in this case.
Suppose that T]T’ - Z4 x Z. Then T’ (u) < dO(T) Z(T)

31(T), fl(T) Z(T), and exp (T) 4. Also T/F - Qa and T(p, x)/F -GL(2, 3). Letting o T- Z(T), we have ]el 4, CT(O0 (oq Z(T)),
T (e, co), and u [a, a]. If (2 U, then (a)2 u and 31(T/T ’) 1
which is false. Thus (2 T’ CT(D). Since T/F Qa and fx(T/F) (uF),
it follows that 0

2 F and we are done.
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LEMMA 2.11. Let T and (p, x) < Aut (T) be as in Lemma 2.10 and assume
that T satisfies conclusion (ii) of Lemma 2.10. Let z be an involution in

CAut 7’)((P, X)). Then the followin# conditions hold:

(i) [Z(T), z] 1;
(ii) z either inverts or acts trivially on TIT’;

(iii) m2(CAu (T)((P, X))) 1.

Proof. Since IC/()l >- 4 and Cztr(z) is p-invariant, (i) holds. Let T’
(u), F [Z(T), p], Cv(x) (z), and F (y, z) for some involution y e
F (z). Let W (v T /)2 f (UZ>>. Then W is a maximal subgroup of
T, W is abelian, W Z4 x E4, and W is (z, x)-invariant. Also LI(W)
(us) and hence there is a unique maximal subgroup Y of W such that uz Y
and Y/(uz)= Cw/<,z>(x). Then W Y x (y), Y Z4 x Z2, fl(Y)=
(u, z), r3(Y) (us), and Y is z-invariant. Hence Y (q) x (z) for some
element qeY- (u,z) such that q2 uz and qeq(u,z). Since T
qZ(T) qPZ(T) qP2Z(T), it follows that q {q, q-1 quz}. Thus
q {qu, qz q-lu} and (ii) holds. Suppose that E, (z, z) < CAut(T)
((p, X)). Then we may assume that q qu and ql q-u. Hence ql
q- and zz inverts T which is impossible and we are done.

Our final result of this section is"

LEMMA 2.12. Let T be a 2-#roup such that T R Q Q2 where QI, Q2
are quaternion of order 8, IRI >- 23 and R is dihedral or tTeneralized quater.nion.
Let z I(T). Then ICa(z)l >- 26.

Proof. Clearly we may assume that z q Z(T) and let Z(T) (u) where u
is an involution and Q Q f(R’) (u).

Suppose that IRI 23. Then T’ (u) and zr {z, zu}. Hence ICr(z)l
26 since TI 27. Suppose that IRI 2 -> 2’. Let (y) denote the cyclic
maximal subgroup of R, let (o) f2((Y)) and let U (09). Q Q2.
Then U < T, Cr(og) Cr(y) (y) * Qx * Q2 and U f(Cr(og)). Suppose
that z Cr(og). Then, since IC(o)i >_ 27 and Cr(o)’ (u), we have
ICc)()l >- 26. Suppose that z Cr(og); then z U and To (U, t) has
order 27 But To (To c R) Q Q2 where ITo c RI 23 (o) < To c R
and (09) : Z(To). Thus To c R is dihedral or quaternion and since z To, we
have ICo()l 26. This completes the proof of the lemma.

3. The proof of Theorem 1

In this section, we present our proof of Theorem 1.

PROPOSITION 3.1. Let G be a finite group with O(G)= 1. Assume that
G Z(G) contains an involution such that H Ca(t) contains a 2-component
L such that m2(L) > and m2(Cn(L/O(L))) 1. Then thefollowing conditions
hoM:
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(i) mz(Co(L/O(L))) 1, L . H, No(L) O(No(L))H, and Co(L/O(L)) is
tightly embedded in G;

(ii) O(G) F(G) C(E(G)) land F*(G) E(G);
(iii) either F*(G) is simple of F*(G)= R R where R is simple and

L <rrtlrR> - R.

Proof. Set N N(L), M C(L/O(L)), and/ N/O(N). Note that if
K is a 2-component ofHand K # L, then K < Cn(L/O(L)) and hence mz(K)
1. ThusL___ H < N. Also tCo(L) < M N. Choose SSyl2(N) such
that t S and let T S c M Sylz(M). Then T and hence Z(T) and
<t> fl(T). Thus N MH by the Frattini argument and mz(M)= 1.
Thus T is cyclic or generalized quaternion, M O(M)Cm(t) and No(L)
O(N(L))H. Next suppose that g G No(M) is such that IM c MoI is even.
Then there are elements m, m2 E M such that tm’ m2tt. Hence m2gm-
H < N < N(M) which implies that t7 e N(M), a contradiction. Thus (i)
holds.

Suppose that Q O2(G) # 1. Then # Co(t) Cn(L/O(L)) and hence
Q. Then t Z(Q) and f(Q) <t> < Z(G), which is false. Thus (ii)

holds.
Assume that E(G) R x R2 x x R, where r >_ 2 and R is simple for

all _< < r. Note that L2,(H) L2,(Cro)(t)) by [9, Corollary 3.2]. Sup-
pose that normalizes R with < _< r. Then, [-9, Lemma 2.18-1 implies that
L2,(H) L2,(Cno)(t)) L2 (Csx(t)) x... x L2,(CR(t)) and hence we may
assume that L is a 2-component of C,(t). But ICR(t)12 -> 2 for all j # 1.
Thus r 2, tR2, R < H, and L- R since m2(R1)_> 2. Choose Ue
Syl2(R2) with e U. Then Cv(t) < Cn(L) and hence fl(U) <t>. Then R2
is not simple, a contradiction, consequently we may assume that R R2.
Then

D <rrt r Rx> C,,.(t) H
and D R

_
R2. Since D is simple, m2(D) > 2 and D L. Thus normal-

izes R for all j _> 3. If r >_ 3, we proceed as above to obtain a contradiction.
Thus (iii) holds and the proof of the proposition is complete.

Thus, under the hypotheses of this lemma, if F*(G) E(G) is not simple
and the structure of L/O(L) is given, then the possibilities for G are determined
by the structure of Aut (L/O(L)). Also when a Sylow 2-subgroup of M is not
cyclic and F*(G) E(G) is simple, the possibilities for G are completely de-
termined by [3].
Combining [8, Theorem] and I-7, Main Theorem], it follows that conditions

(i)-(iv) of Theorem hold. Next we complete the proof of Theorem by
proving the following result.

PROPOSITION 3.2. Let G be a finite group with O(G) 1, F*(G) simple and
with r2(G) > 4. Suppose that G contains an involution t such that H Co(t)
contains a 2-component L with L/O(L) - A7 or PSL(2, q)for some odd prime
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power q, m2(CH(L/O(L))) 1 and with Nn(L)/(LCn(L/O(L))) cyclic. Let
S SyI2(NG(L)) be such that S and let D S c L SyI2(L). Then the
followiny conditions hold:

(i) (t) S c CG(L/O(L)) e SyI2(Ca(L/O(L))).
(ii) S SyI2(H) and L H().
(iii) H contains a normal subgroup K such that H ( ) x K where K()

H() L, Cr(L/O(L)) O(H) O(K), K/O(K) is isomorphic to a subgroup
of Aut (L/O(L)) containing Inn (L/O(L)) properly with LO(K)/O(K) corre-
sponding to Inn (L/O(L)) and such that KILO(K) is cyclic. Also ifL/O(L) - AT,
then K/O(K) - 27 and if L/O(L) - PSL(2, q) for some odd prime power q,
then q is a square and K/O(K) contains an involution that acts as a "field auto-
morphism" of order 2 on LO(K)/O(K).

Proof. Let a S c C(L/O(L)). Then O < S, D < S, fl(a) (t) <
z(s), a is cyclic or generalized quaternion, D is dihedral, [a, D] [a c D]
1, QD Q x D, and S/(Q x D)is cyclic.

Let H C(.t), N N(L), M CG(L/O(L)), and N N/M. Then
S SyI2(H), L M O(L) <a N, a Syl,.(M), L/O(L) E N, N/E is
cyclic, and N is isomorphic to a subgroup of Aut (E) containing Inn (E) with E
corresponding to Inn (E). Also S/Q is isomorphic to a Sylow 2-subgroup of N.
Setting S/Q, we conclude that exactly one of the following holds" (.) is
dihedral; (fl) is semidihedral; (7) //3 is cyclic and if/3 < [7 < with 0//3
f1(//3), then [7 /i x ({) where { is an involution. Also if L/O(L)
PSL(2, q) for some odd prime power q, then q is a square and { acts like a
"field automorphism" of order 2 on L/O(L).
We shall assume that G is a counterexample to the proposition and shall

proceed in a series of three steps to a contradiction.

(1) S q Syl2(G).

Proof. Assume that S Syl2(G). If Q is cyclic, then

rE(S) < rE(S/(Q x D)) / r2(Q x D) < 4,

which is false. Thus Q is generalized quaternion and r2(S/Q) > 2. Hence
S q: Q x D and (7) holds. Let U denote the inverse image of 7 in S. Thus U
contains a subgroup V- U such that V Co(D), Vc(Q x D)= Q,
I//QI--2, and U V x D. Also V/Q induces an outer automorphism of
order 2 on L/O(L) that centralizes DO(L)/O(L). Hence IDI >_ 23.

Let D (y, d ly2 d2 1, dy d-l) for some integer n >_ 2 and let
z d2-. Note that Z(D)= (z), f(S)_< U, Cs(D)= V x (z), and
U’ 1/’ (dE) where V’ < Q’ and V’ is cyclic by Lemma 2.2.
Suppose that D is strongly involution closed in S with respect to G. Then,

since U V x D, [l 1, Theorem 3.1] implies that D is strongly closed in S
with respect to G. Hence [11, Theorem] implies that F*(G) is isomorphic to
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Ua(4), AT, or PSL(2, ql) for some odd prime power ql > 5. Since Ca(F*(G))
1, we conclude that r2(G) < 4 which is a contradiction. Thus za c S z c

UD.
Let a e I(S)- (Q x D)= I(U)- (Q x O). Then U (Q x O)(a)and

D(6) Syl2(L(a)). Since U/Q - D(a) is neither dihedral nor semidihedral
and CL<,>(L/O(L)) O(L), it follows from the structure of Aut (L/O(L)) that
there is anleLsuchthatateZ(D(a)). ThenD(a) D x (at) and U=
Q(at) x O.
Suppose that , z , zt. Then there is an involution a z c (S

(Q x D)). By the above, we may assume that D < Cs(a). Since (t, z) <
Z(S), there is an element #G such that trg z and Cs(a) < S. Then
D < (fl(Cs(a)) < YI(S) < U and (D0’ < U’. Thus z z since fl(U’)
(t, z) and we have a contradiction. Hence we may assume that a z or
zt ~ z. Since (z, t) < Z(S), this fusion must take place in N(S).

Suppose that fl(S) < Q D. Then f(S) (t) x D and (z)
f(fl(S)’) N(S) which is false. Thus I(S) I(U) Q x D and U/D - V
is not generalized quaternion.

Suppose that Cv(Q) > Z(Q) (t). Then ICy(Q)] 4. If Cv(Q) (u)
where u2= t, then f(S)= U, Z(U)= (u) x (z), (u,t) char S and
(t) char S. Thus (z) N(S) which is false. If Cv(Q) (t, u) where u2

1, then f(S) (u, t) x D and again (z) Na(S), a contradiction. Thus
Cv(Q) Z(Q) (t ) and Lemma 2.2 applies.
Suppose that V is semidihedral. Then r2(U) r2(V x D) 4 and U < S.

Since S/(Q x D) is cyclic, Lemma 2.3 yields a contradiction. Thus V satisfies
(iii) of Lemma 2.2. Then Ial > 23 and Q1 Q c f(v) is a maximal sub-
group of both K(V) and Q. Also Q is generalized quaternion and Z(f(V)) "Z,. Letting Z(aa(V)) (u) where u2 t, we have Z(ax(S)) (u) x (z)
and we obtain a contradiction as above. Thus (1) holds.

Let S < T Syl2(G) and let x NT(S) S be such that x2 e S. Note that
tx#t.

(2) Q is cyclic, IOl >- 4, and S : Q x D.

Proof. Suppose that Q is generalized quaternion. Then QX < S and Q’ c
O [O, OX.] since :/: t. Hence O - (OX)~< S/Q, U=
(Q x D)Q Ocs(O) where Cs(O) ((t) x D)Qx. Since OX((t) x D)
is a maximal subgroup of QX, we have z where Z(D) (z). But Q
(QX)~ and /] b(QX)~. Thus (fl) holds and is semidihedral. Then
fl() /3 and fl(S) < D x Q. Hence tal(S)= O x (t) and (z)
f(fl(S)’) char X. Thus z z, a contradiction. It follows that Q is cyclic.
Suppose that Q (t). If S/D is cyclic, then fl(S) (t) x D, z z and
Cs(f(S)) (y, z) where y2 {t, tz}. Then (z) char S, (y2) char S and
hence (t) char S, which is impossible. Thus tD Ut(S/D) and there is anf S
such that S/D (tD) x (fD). Therefore 6 (S) and hence S (t) x X
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for some maximal subgroup X of S. Now [14, I, 17.4] implies that H (t)
K for some normal subgroup K of H. Then K() H() L since H < N.
Also Cr(L/O(L)) O(K) O(H). Note that if S/(t) is dihedral or semi-
dihedral, then so is X and [12, Theorem 2-1 yields a contradiction. Hence ()
holds and (iii) of the proposition holds. Thus Q is cyclic and QI -> 4. If
S Q x D, then fl(31(Z(S))) (t) char S, which is impossible. Con-
sequently (2) holds.

(3) S- D x D, T DwrZ2,andr2(G) < 4.

Proof Suppose that Cs(D) Q x Z(D). Then S/Q is dihedral or
semidihedral and /3 is a maximal subgroup of . If fl(S) fl(Q x D)
(t) x D, then Cs(fl(S)) Q x Z(D) and (t) char S which is false. Then
S (Q x D)(tr) for some involution a and is dihedral. Since (t) is not
characteristic in S, Z(S) (t, z) and hence tr acts dihedrally or semidihedrally
on Q. Thus Cs(tr)= CT((t, tr))= (t, z, tr) and [12, Theorem 2] yields a
contradiction. Hence Q x Z(D) is a maximal subgroup of Cs(D) and () holds.
Thus Cs(D) V x Z(D) for some subgroup 1/ containing Q as a maximal
subgroup. Also U I’D I" x D. Suppose that fl(S) < Q x D. Then
fl(S) (t) x D and Cs(I(S)) V x Z(D) where fl(V) (t). Hence

f(r3(Cs((S)))) (t ) char S,

a contradiction. Thus (t) x D < fl(S)< U and there is an involution
zeV- Q such that V Q(z). IfVisabelian, thenfl(S) (z,t) x D,
Cs(I)I(S)) V x Z(D), and

fl(D(Cs(fl(S)))) (t) char S,

a contradiction. A similar argument applies if V is modular. Thus V is dihedral
or semidihedral. Setting S/D, we have Cs() Q since /Q is cyclic.
Hence [14, I, 13.19] implies that S U= V x D. Now V x D S
S V x D and v t. If V D, then [14, I, 12.5] implies that there is a
normal automorphism e of S such that V" V and Dx" D. Since e is
normal, e acts trivially on S’ and hence t, a contradiction. Thus S -D x D and V D. Suppose that Y Vc V 4: 1. Then Y< V and
Y<a V x. Since te{z, zt}, this is impossible. Thus S= V x V and
(S, x) - D wr Z2, But J((S, x)) S and hence S char (S, x). Since
Z(S) (t, z), we have NT(S) (S, x), T (S, x), and r2(T) < 4. This
contradiction concludes the proof of Proposition 3.2 and of Theorem 1.

4. Beginning the proof of Theorem 2

We now commence our proof of Theorem 2.
Let G, t, H, L, S, and D be as in Theorem and assume that F*(G) is simple,

that r2(F*(G)) > 4 and that IDI 23.
Observe that if IF*(G)I2 < 21, then I-5] determines the structure of F*(G)

and the conclusion of Theorem 2 follows. Consequently we may assume that
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IF*(G)I2 > 21 and we shall obtain a contradiction by showing that IO2(G)12 <
2lo"

Applying Theorem l(v), we have S =
SyI2(G). Hence we may choose involutions u, z e S such that

(4.1) S’ (z), Z(S) (t, u, z), and S Syl2(G).

Moreover we may choose involutions x, y of S such that S (t, u) x
(x, y), (x, y) Da, and (x, y)’ (z), and:

(4.2) The elements of Z(S) are representatives for the distinct H-conjugacy
classes of I(S), u
yuz in H, tu tx txz in H, tz ty tyz txu txuz in H, tuz tyu
tyuz in H, and D (y, xu).

Since S Syl2(C(t)) and S’ (z>, we have:

(4.3) , z in G and t is not a square in G.

Set A (t, u, z, y) and B (t, u, z, x).

(4.4) oK16(S) {A, B }, I(S)
_
A w B, and every elementary abelian sub-

group of S is contained in A or in B.

Also we have

(4.5) C(A) Cn(A)= O(C(A)) x A,

C6(B) Cn(B)= O(C6(B)) x B, Cn(z)= O(C.(z))S.

Since un c A {u}, un c B {u, x, xz }, (uz)n B {uz }, and (uz)n
A {uz, yu, yuz }, we have

(4.6) A . B in H, (u) . Nn(A), and (uz) < No(B).

Also we have

(4.7) Ca(S)= CH(S)= O(Ca(S)) x Z(S), NH(S)= O(Ca(S)) x S,

c(z(s)) c,,(z(s))= o(c,,(z(s)))s o(c(z(s)))s.

Setting H H/O(H), we conclude:

(4.8) There is a 3-element p CH(u) Nn(A) such that px p-1, Ca(p)
(t,u),[A,p] (y,z),andNn()= (i,) x (y,z,p,x)with(y,z,p,x)
’4"

(4.9) There is a 3-element Pl e Ctt(uz) Nn(B) such that
Ca(p) (t, uz), [B, p] (z, ux), and Nn(B) (t, t) x (, xu, p,
with (, .,/51, Y) Z,.
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Thus Nn(A) < O(H)A(p, x) and hence

(4.10) Nn(A) (O(H) ( Nn(A))A(p, x)

where O(C;(A)) O(N((A)) O(U) N(A).

Similarly for B, we have

(4.11) Nn(B) (O(U) Nn(B))B(pa, y)

where O(C(B)) O(N6(B)) O(H) N,(B).

Suppose that E M. Then Cn() (, g) x for some subgroup
ofwith (y,z,p) < and Zs or Z,. Suppose that E PSL(2, q)
where q p2, for some odd prime integer p and integer n >_ 1. Then Cn()
(t, ) for some subgroup of such that ’ PSL(2, p’), O2’() -PGL(2, pn), and (.p, 2, fi) < .
Hence S c O2(C(t, u)) (y, z) Syl2(O2(C(t, u))) in all cases and:

(4.12) If z and 2 1(C()) with 2 z, then O2(C(2, z)) is of odd
order or has Sylow 2-subgroups of type E4.

Clearly:

(4.13) N(S) controls the G-fusion of element of a c Z(S) and N(S)
c(z(s)) o(c(s)) s.

Thus, since S Syl2(G), we have

N(S)/(N(S) C(Z(S))) Aut (Z(S)) - GL(3, 2)

and 2 [N(S)/(N(S) Cc(Z(S)))[. Set

IN(S)/(N(S) C(Z(S))I

and note that < 6 since - z in G. Thus V e (2, 4, 6}.
Suppose that V 6. Let P e Syl3(N(S)). Then tu tz tuz u

uz in N(S) and X (N(S) c C(Z(S))P
_

N(S). Since

z(s) Cz()(x) x [z(s), x]

where Cz(s)(X) (z)- N(S) and E4 [-Z(S), X]
_

N(S), we conclude
that N(S) has 3 orbits on Z(S) #. This contradiction implies that 6.

In the next section, we shall examine the case when V 2 and the remainder
of the paper will be concerned with the case V 4.

5. The case INe(S)/(Ne(S) r c(z(s)))l 2

Throughout this section, we assume that 2 and we choose St e
SyI2(N(S)). Then IS/SI 2 and s’ (t, a} where (u, tu, uz, tuz, tz }.
We shall now proceed to prove that 1612 < 29 in a series of lemmas.
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LEMMA 5.1. If q: tz, then IGI2 < 27.

Proof. Assume that - tz and [G[2 28.
Clearly S SyI2(N6((t, ))), S Syl2(C((t, ))), and N6((t, ))

Co((t,
Suppose that u. Then c S {t, u, x, xz }. Since St < No(A) c

No(B), we conclude that St leaves {x, xz } invariant.
Set M No(A) and

_
M/O(M). Now

Cl((t, u)) (O(Co(A)) x A)(p, x)

where pa O(C(A)) O(M), C((i, /)) (i, ) x (y, , 7, ), and
C((i, t)) is ff;t invariant. Let K Ct((l, ))ff;t. Then Ct((i, fi)) is of index 2
in R and O2(/) (y, , >. Thus X (y, z,/7, ) - . Since X E4, we
have R C(X) x X where (i, fi) is of index 2 in C(X). Hence there is an
involution z (St S) c Co((x, y)) such that St (z, t) x (x, y) with
(z,t) Daandt u. Hence

So (’c, t) x (x, z) SyI2(C6(x))

andt So {t,u,x, xz}sinceltc S[ 4. Since

I($1 So) yI((z, t)) w yzI((z, t)) and (zI((z, t))) O,

it follows that c St (t, u, x, xz}. Also ISll 26 and hence there is a
2 group T containing St with [T" $11 2. Thus there is an element o9 e T $1
such that " {t, u} - (x, xz } and hence T is transitive on 6 c $1. If St char T,
then T SyI2(G) and we are done. Thus, $1 is not characteristic in T.
Now S f(S)= (DID E6($1)). Thus there is an involution in
T- St. Suppose that 2eI(T-S). Then 2 leaves tcS and $1-
(t6c $1) invariant. Thus 2 normalizes Y (z, tu)x (y, z) and B
(t, u, x, z) and hence 2" Cr(t, u) (tu, y, z) Cr(x, xz) (z, tu, z). Also
normalizes Z(S) (tu, z) S and hence yz z(tu, z). Thus implies that

Cslm().) (yyB). Since Cn(/) (tt, uu), we conclude that Cs(2) Da.
Hence Je(T) St char T and we have a contradiction. Thus t - u.

Applying similar arguments when {tu, uz, tuz }, we obtain Lemma 5.1.

LEMMA 5.2. If tz, then IGI2 < 29.

Proof. Assume that st {t, tz} and that IG[2 -> 2l. Then

c S {t, tz, ty, tyz, txu, txuz }.

We shall proceed to a contradiction via a series of lemmas.

LEMMA 5.3. A B in G and No(S) N6(A) c No(B).

Proof. Assume that A B in No(S)= O(Co(S))S1 and let v e $1 S.
Then A B and tz. Hence (I(Cs(v))) (Cain(v)) C<t,,>(v) "
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E4 since tz and 1)
2 S Co(t, u, z). Thus Je(S1) S char $1 and hence

S SyI2(G). Since IS] 26, this is impossible and hence A < No(S) and
B <a No(S). Then ($1, p) is transitive on c A t(y, z) and No(A) is
transitive on c A. Similarly No(B) is transitive on c B. Since A B
in H, we conclude that A - B in G and Lemma 5.3 follows.
Next we investigate the subgroup M No(A). Similar considerations will

also clearly apply to the subgroup No(B).
Set / M/O(M) and F (y, z). Then F E4 and Ct(/) J. since

Co(A) O(M) x A and /J. Aut(A) GL(4,2) s8. Also

_
acts

transitively on c A tF, Ct(i) g(fi, ) and C(I)/I E3. Hence
IM/AI 3.23. Since CA() (t, U) is not normal in M, we conclude that
Oa(M/A) and hence M/A -E4. Note also that t tF and hence
F<M.

Set W O2,,2(M), V O(M)[W, p], and / M/(O(M) F). Thus
O(M) F <_ V.

LEMMA 5.4. (i) M W(, ) and (, ) - E3;
(ii) Cw() (, )
(iii) V < M, Cv() 1 and V Z4 x Z4 or El6.

Proof Clearly (i) holds and (, ) < I < l(t, 2) with (t, 2)
E3. Also ffl 24 and E, (, fi) < Cff(t) < 1. Thus C,(p)= (, )
and I E16 or Z2 Q8 by Lemma 2.1. Hence (ii) holds and V - M since
M W (iT,

Suppose that I - Z2 x Qa. Then fl(l) (i, fi) . Let q/ be a
Sylow 2-subgroup ofM No(A) such that S < Sx < q/and let "U q/c W.
Then q/" <a q/, q/ q/’(x), x q /", and I1 211 27. Hence q/ SyI2(G)
and there is a 2-element s No(q/) q/such that s2 q/. Then A 4: A <a q/

and A c "U A since q//A D8 and I/AI 4. However f(l) A
implies that A/F f("U/F). This contradiction implies that if" - E6. Since
V [W, tT] > ff and [VI 24, (iii) follows from Lemma 2.1.

LEMMA 5.5. Assume that - E6 and let q Syl2(M) be such that S <
S < q/. Then ga2(q/) contains a unique element E such that:

(i) Cn(t) (, F)for a unique {u, tu}
(ii) q/= E(x,t);
(iii) ICg(x)l- Iag(t)l- 2;
(iv) c tE= = tF.

Proof. Clearly we may assume that O(M) 1. Then E16 V [W, p] <3

M, W O2(M) V(t, u), F (y, z) Cv(t), and M W(p, x). Thus
(t, u) x (p, x) acts on V with Cv(p) and Cv(t) F. Thus (z) Cv(x)
Cv(xt) and [Cv(x)l [Cv(xt)[ 4. Also (t, u) centralizes Cv(t) F and
(t, u) acts on Cv(x) :A F. Since Cv(x) - E,, there is a unique z e {u, tu} such
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that z centralizes Cv,(X). Thus ICy(01 23 and since Cv(z) is (p)-invariant,
we have Cv(z)= V. Set E= V x (z). Then Eeg32(q/), E<Og and
(i)-(iii) hold. Since I(tE) tF tzF, (iv) also holds. Now (iii) and (iv) imply
that g32(q/) {E} and we are done.

LEMMA 5.6. V - Z, x Z4.

Proof. Assumethat -- E16 and choose q/ as in Lemma 5.5. Leta2(q/)
{E} and set N No(E). Also choose ff e Syl2(N) such that q/ < V. Thus
Cr(t) S and Cs(E) ScE= Cn(t) (z,F). Suppose that fear is
such that It, f]e E. Then y c tE and hence f ES ag. We con-
dude that Cr(E) E. Also setting r X/E, we have 4 Aut (E)
GL(5, 2) and Cr(i) (i, ) - E,. Thus is dihedral or semidihedral
by [14, III, 11.9(b) and 14.23]. Since the 2-exponent of GL(5, 2) is 23, we have
I1/’1 N 29. Thus there is a 2-element s e NG(r) V" such that s2 e ff. Then
E :/: E ES- /’, E71 < , and E since E C(i) $ . Thus
e E or i E. Then Lemma 5.5(iii) implies that IEll 4, D8,

[E cEI 23 and E Cr(t)= (z,z). Let {} {,i}cE. Then
E1 cE= Cr() and hence xE or txE. Letting x (x, xt}cE,
we have E (E c E, xx, v) for some involution v. Then v" tE - txE and
Z() (1). Since s" E - E, s normalizes I(r (EEl)) I(tE) w
I(txE). But I(tE) w I(txE) r w (tu)r. Since , tu in G, it follows
that IC(t)l ISl < Ic<>(t)l which is impossible. Now Lemma 5.4(iii)
yields Lemma 5.6.
Thus we have V Z x Z, fl(V)=ff Cv(t), and V-

V((i, fi) x (fi, )). Since (i, ) normalizes Cv() and Cv() - Z, it follows
that inverts V and there is a unique involution u (u, ut } such that
C(V). Hence C(V)= (-;) x V <a .

Let q/ SylE(M) be such that S < $1 < q/, set / q/c W, /" q/c V,
and E /(u). Then E (u) x t, / Z4 x Z4, f(/’) F, /" <a
ag, E C,(//’) < q./, inverts q/’, #r E(t), and q/ (ul) x C/(x, t)).
Also let X (u) x F KI(E).

LEMMA 5.7. (i) //’(x, t) is isomorphic to a Sylow 2-subgroup of M12.
(ii) Z(q/) (ux, z), q/ f(q/), and f(ql’) F.
(iii) X Z(q/)f(q/’) char
(iv) E Jo(C) and C,(X) char q/.

Proof Clearly [7, II, Lemma 2.1(vi)] implies that V((i) x (fi, 2)) has
Sylow 2-subgroups of type M2 and hence (i) holds. Then (ii)-(iv) follow and
we are done.

Since / W < /, we have M O(M)N(W’), * tF t, and
M/W - X3. Thus m() ((O(M) c Nu(/’)) x /’)(N(W’) c H) and
hence there is a 3-element e Nu(C) c Cn(ul) inverted by x such that xa e
O(M) c N(W’).
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Set N No() and R N/O(N). Clearly <0g, x> < N and Z(’)=
X < Co("///’). Let q/ < V" SyI2(N). Then < V" since IUl 27 and
"/U char q/. Letf ./V" be such that y tX. Then " t c (tX) tF ’.
Hencef q/’S q/. Noting that C(/) X, we conclude"

LEMMA 5.8. (i) X Z("#/’) SyI2(Co()).
(ii) Co(3q/’)= O(N) x X.

Next we prove"

LEMMA 5.9. (i) I1 29.
(ii) char

Proof. Clearly we may assume that O(N) 1. Thus X
Aut (). Hence INI2, 3, N 02(N)<x, x>, and 02(N)(x>. Clearly
C02N)(t) A (t, X> and Cr(x) <ul, t>. Since c (ul, t> {t}, we
have Co2o(x) (u, t>. Let v q/" be such that v y and set v2 v.
Then v yz, (vv2)2 z, and C(x) (vv2>. Since X< N, it follows that
N permutes the sets {tX, tviX, tv2X, tvv2X}. Since It c tXI Itl 4, it
follows that 102(N)UI 4. Then (i) holds and N//"

Suppose that < Cs(X)= O2(N). Then Z(N)= (u>. Setting ]V
N/<u>, it follows that

and C(l) Co,<)(t) - Es

since c (t, u) (t). Noting that Z4 x Z4 E7 <a N and IO2(N)I 27,
we conclude from Lemmas 2.7 and 2.8 that there is a subgroup J of O2(N) with
ul e J, J <a N, t q at, I11 27, Cs(t) (u>, Oz(N) J(t), and with
J Z8 Z8 or with isomorphic to a Sylow 2-subgroup of L3(4). Letting
xa x if ua u and xx xt if ul ut, we have xxu xu, tx , in G,
t txxux txu in G, and txxux tx in G. Since . J(x, t), we have
ICs(txau)l < 23. But Cs(/2xx) Cz(i2x) Cs(txxux) since txlu ’ txx in
G. Thus ICz(/2a)l < 22. But 121 inverts and hence ICs(12x) 2a in either
ease by Lemma 2.9. This contradiction implies that Cu(X) and hence
E4 - N] Aut (X) - GL(3, 2).

Clearly X <a .Ar 02(N)(x), E <a N, and hence F 3X(E)< N. Thus
Z(O2(N)) F and Z(.Ar) (z). Suppose that Ea Y <a V’; then t c
Y 0 since 41S] < Irl 29, z Cr(t), ICr(t)l >_ 4, and Cr(t) < A or
Cr(t) < B. Suppose that Cr(t) A. Then there is an involution z Cr(t) c
(x(u, z) w tx(u, z)). Since I[z, vail 4, this is impossible. Thus Cr(t) < A
and Y < Nar(A) ql /"(x) since Y normalizes X and It, Y] Cr(t) <
A. Utilizing v as above, it follows that Y < E(t). Assume that Y X.
Then Y E and there is an involution z (tuiF) c Y since O2(N) is transitive
on {tX, tvX, tv2X tvlv2X }. But Co(s)(z) Cr(z) A and hence Ix()l
24 which is impossible. Thus Y X and X char uV’. Then Car(X) 4 char
V" and the lemma follows.
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Thus .#" SyI2(G), [G[2 [dfr[ 29 and the proof of Lemma 5.2 is com-
plete.

6. The case ING(S)I(NG(S) c c(z(s)))l 4

As a result of Lemmas 5.1 and 5.2 we shall assume that

ING(S)/(NG(S) c CG(Z(S)))I 4

throughout the remainder of the paper.
Let $1 SyI2(NG(S)). Then S., St, Cs,(t)= S, ISx/SI 4, ISxl 27,

and N(S) O(N(S))S.
Suppose that tz q ts’; then tz q N(s). Since

<t, u, z> # {t, z, tz} {u, uz, tu, tuz}

and ItS’l 4, we have z in S for some {u, tu}. But z Z(S1)
and hence tz z in S. Thus tz s’ and, by interchanging the roles of
u and tu, if necessary, we have"

LEMMA 6.1. (i)
(ii) c S t(y,z) tu(y,z) w {tx, txz, tux, tuxz}.
(iii) (I(S) (tar S)) (u) x (x, y> and I((u> (x, y)) 1(S)-

(t S).
(iv) A
(v) (u, x, z is strongly closed in A with respect to G and (u, x, z is strongly

closed in B with respect to G.

Set X (u,y,z), M Na(A), and . M/O(M). Since C(A)=
O(M) x A, we have Ct($) $ and M/A Aut(A) - GL(4,2). Also
CM(t) Nn(A) O(M)A(p, x) and C(i) _(fi, ) by (4.10). Let P be a
Sylow p-subgroup of for some prime p 2. Since P normalizes X, it cen-
tralizes an element of A X G c A. Then (4.10) and (4.11) imply that
Iel 3. Thus <> Syl3(M) and M 02(M)(fi, .

Since It c .41-- 23 and S < Ns,(A) < M, we have"

LEMMA 6.2. IM/AI {12, 24, 48}.

We can easily eliminate one of these three cases.

LEMMA 6.3. IM/AI v 12.

Proof. Assume that !I1 12. Then, since I$ has a subgroup iso-
morphic to E3, we have M/A Z2 x E3. Thus Ca(03(/)) (t, u) . M.
Let g Ns,(A). Then S <, [ <, S, g Syl2(M), As’ {A, B }, and
// SyI2(N(B)). Also t {t, tu}. Letting fl $1 //, we have Aa B
and Ma NG(B). But, by utilizing the element pl in (4.9), we have (t, uz) <
Na(B). Hence {t, tuz }. This contradiction establishes the lemma.
The remainder of this section is devoted to proving"
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LEMMA 6.4. If IM/AI 24, then IGI2 -< 29.

Thus, throughout the rest of this section, we assume that I/1 24 and
that IGI2 > 21 and we shall proceed to a contradiction.
Now p has the following orbits on a n A (u, y, z):

{t }, {tu}, {ty, tz, tyz }, and {tuy, tuz, tuyz }.

Since ItM[ 4, we have"

(6.1) t t(y,z) ort {t, tuz, tuy, tuyz},t, tuinM, andCa(p)
(t,u)< M.

Hence we have:

LEMMA 6.5. M/A - E4 and M O2, 2(M)(p, x).

Next we prove:

LEMMA 6.6. (i) S1/S Z4 and there is an element
S (S,z) andz2S.

S such that

(ii) If z Sa S is such that "C
2 S, then z: A - B, "C2: tz, and

U(A) c U(a).
(iii) (y, z) and tuz in Na(B).

Proof Assume that S1/S - E4 and let 09 $1 S be such that t tu.
Then 09: tu and 09 normalizes 02(C(t, tu)) S (y, z). Thus 0

N(A’) M which contradicts (6.1) and (i) holds. Next, let z $1 S be such
that z2 S. Then $1 (S, z) and z2 N(A) c N(B). Since sl t(u, z)
and tu in M, it follows that z: A B. Thus Na(B)/C(B) - E4 and ,
tuz in N(B) by the above argument applied to N(B). Hence (ii) holds and
(iii) follows from (6.1).
FixzS1 Ssuchthatz2Sandset z2.

LEMMA 6.7. (i) Z(S) (z), z: u uz, Sa/S acts regularly on t(u, z), and
(u, z) < S.

(ii) (S, ) Csl((u, z)).
(iii)
(iv)

Proof. Clearly Sa/S acts regularly on t(u, z) and (z) < Z(Sa) <_ (u, z).
If Z(S) (u, z), then {tu, tuz} implies that ’ t, which is false and
(i)-(ii) hold. Since t" tz, N(B), and Na(B)/Ca(B) - E4, the correspond-
ing result for Na(B) in Lemma 6.6(iii) yields (iii). Finally S < fa(Sa) < (S, ),
ISl 27 and the fact that S is not characteristic in S yield (iv).

Let S < (S,cz) <_ all Syl2(M), let W O2,2(M), ////r / t W,
and F (y, z). Then A _< < q/, 11 26, W/A - E,, (t a c A)
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(t,F)< M, and ((tcA) ) F<a M. Also q/ W’(x), Iq/[
27, and M O(M)CC(p, x)

LEMMA 6.8. Z(C) (u, y, z), Z() (), and 02(Z(M)) (u).

Proof Clearly 02(Z(M)) < A and hence we may assume that O(M) 1.
Since O2(M) W" is (p)-invariant and F (y, z) <a M, we have F _< Z("g/’).
Also (u) < CM((A, p, x, )) Z(M) and we are done.

We can now obtain fairly precise information about the structure of

LEMMA 6.9. o?/ satisfies exactly one of the following two conditions"

(i) Oll contains a normal subgroup "/ inverted by with "U - Z4 x Z4,
1(/") F, C,(/’) (u) x 1/, and ll (u) x (/(x, ))) with
isomorphic to a Sylow 2-subgroup of M12. Also U (u) x ((t )) and there
is a 3-element tc Nvt(lU) H such that tc -1, C(x) (t, u), [#0, c]
"t/’, and c3

(ii) oa2(//) contains a unique element E such that ql E(x, t), E c S
X (u, y, z) CE(t), t(y, z), ICn(x)l ICn(xt)l 8, "tU E(t),
I(tE) u (tu), I(xE) x (xu), and I(xtE) (xt) (xtu). Also
there is a 3-element tc NM(W") NM(E) H such that tc to-1, Cn(tc)
(u), F _< [E, ], lIE, c]] 16, c3 Co(W’), and E [qt/’, ] x (u).

Proof. Clearly M O(M)Nt(W’) and, since u *, we have

M O(M)W’(Nu(qU) c H).

Since Cr(t) A, we have O(Nu(W’) c H) O(M) c Nu(qC) c H and

02, 2(Nu(W’) c H) (O(M) c Nu("tU) c H) x A.

Thus there is a 3-element NM() c H such that c- and g;/
"/(K, 2). It follows that we may assume that O(M) 1. Set M/F and
let [U, c]. Then I/[ 24, C O2(/), and Cr(c) (t, u) Z(/)
since t tF.
Suppose that # Z2 x Qs. Then there is a subgroup Y of A such that

F < Y < A, Y< M, IC/Y - Qa, and M/Y - GL(2, 3). Thus q//Y is semi-
dihedral of order 16. Since Iql 27 and q/ Syl2(No(A)), it follows that
has a normal subgroup A* with A # A* and A A*. Then A*Y/Y <a ql/Y.
and hence A*Y A. Since A* =# A, this is impossible. As C#(g)
Lemma 2.1 implies that / - E16 and hence [W’, ] has order 16. Thus
/" -- E16 or /" Z4 x Z4.

Suppose that /" Z4 x Z4. Then "g" < M, fll("g’) F, Ct("//’)
<u> x , W" <u> x (<t>), m <u> x "//’(<t> x
and /’(<t> x <to, x>) has Sylow 2-subgroups of type M12 by [7, II, Lemma
2.1(iv)-(vi)]. Thus (i) holds in this case.

Suppose that "g" E6. Then E <u> x "g" d32(q/) and "#/" E<t).
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Since (u)= Z(M) and C(x)= 1, it is clear that EcS CE(t)= X,
CE(x, t) (u, z), and ICE(x)I ICE(xt)l 8. Since E(x, t), it follows
that E is the unique element of fa2(q/) and (ii) holds.
We shall now treat case (ii) of Lemma 6.9.

LEMMA 6.10.
ditions hoM:

Assume that (ii) of Lemma 6.9 holds. Then the following con-

(i)
(ii)

(iii)

N(t) < N(A) M and ql Syl2(N(#)).
* tu m N(E).

E Syl2(CG(E)) and C(E) O(C(E)) E.

Proof. Since E char W" and (I(tE)) (I(- E)) A, (i) follows.
Suppose that w N(E) is such that tu. Since Cn(t) C(tu) X, we
have w N(A) M and (ii) holds. Then N"e c tE . Since q/ ES <
N(E) and C,(E) E, we have (iii).

LEMMA 6.11. Lemma 6.9(ii) does not hold.

Proof Assume that Lemma 6.9(ii) holds and set N N(E) and N
N/O(N). Clearly C(E) O(N) x E and /E7 Aut (E) - GL(5, 2). Now
Lemma 6.10(ii) implies that CN/(IE) N(t)E/E. However Cu(t) < Cz(t)
O(M)A(x, x) and A(x, x) < N. Also O(M) c N centralizes and C,(t) X
and hence O(M) N < C(E) by [6, Theorem 5.3.4]. Thus Cu(t)=
(O(N) c H)A<x, x> and hence CN/t(lff.) x <KE7, E> - Z2 x 3. Let q/ <

" e Syl2(N). Clearly q/ < 7- since E char q/. Also exp (r’/E) < 8 and -/E
is dihedral or semidihedral since Ca-/g(tE) <rE, xE>. Hence I’1 -< 29 <
[G[2 and there is a 2-element z e (-) 7- such that z2 e -. Set 6a <oq-, z>
and let E1 E*. Then E1 # E, E1 < q’, and t" E E,. Letting "/E,
we conclude that #-/t < ff and Z(ff) < <, >. However I(tE) I(xtE) c_
taandtacE 0. Thus<> Z() < /. Let [E, tc] and choose

= e //’ such that C,(x) <z, =>. Then o’ oz, C,(xt) <z, y=> and there
is an element/ e q/" <z, y, => such that/’ =/y and <z, y, =,/>. Note
that Ng(S) <z, u, >. Thus Cn(xE) <z, u, =>. Thus E c E1 Cr.(x),
let[ 4, D8, and 16a[ 29 Also I(xE) x<z,u,=> so that xeE,.
Thus E1 <u, z, =, x, 6> for some involution e E, <u, z, =, x>. Now
suppose that E2 # E and E E2 < ’. Then the above argument implies
that <u, z, =, x> < E2 and/7.2 <, Z>. Thus E2 <u, z, , x, edi> for some
element eeE. However eeCE(x) <u,z,> and hence E2 El. Thus E
and E, are the only two normal subgroups of 62(q’), - EE,<t> where
tqEE, and Z(")= <u,z). Note that I(xE)c_ E, and EthEl < C(6).
However, if E c E, Cg(di), I(E) c_ E, and if E c E, < Cn(), then
<Ce(6), z> is elementary abelian of order 2 for every , e I(6E). Since
t: fiE - xE, we have (xE 3 fiE xfiE) 0 and hence c (EEt) O.
On the other hand, I(q-) I(EEI) I(tE) T(xtE) and di: tE xtE. It

follows that we may assume that t* tu. Hence S Ca-(t)* C-(tu) S
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and 6 EE1Ne(S) where z e N(S) Nr(S). Note that Nr(S)
(u, z, y, , x, t) N(S) I(Nee(S)) by Lemmas 6.6 and 6.7. Set Y
(u, z, t, x) (u, ) x (x, y). Then

Y (EEl) Nx(S)< Nse(S).

Also Ix, El < (u,z,) < YandhenceEandE1 E*normalize Y. Thus
y < 6e. Similarly, since Y (t) Nx(S) Nse(S) and I-t, E] _< Y, we conclude
that Y (t) - 6.

Setting 6 S/(Y(t)), we have ’E (fl) E7 () and 6
(fl, , f) D8. Suppose that j e I(Se -). Then j f in
N(S) N-(S). Since f(N(S)) N-(S), this is impossible. Hence f (6e)
37- char 6e and No(5a) acts on {E, E1 }. Thus 5e e Syl2(G) and IG[2 29 which
is false and the proof of Lemma 6.1 is complete.

Thus, for the remainder of this section, we shall assume that Lemma 6.9(i)
holds.

Let x e be such that tc y and set/2 /" Then
and C(x) (xx2). Note that og (u) x ((x, t)), Z(q/) (u, z), q/’

(y, xtc2), and fl(q/’) F. Thus X Z(q/)fl(q/’) char q/, Ce(X) (u) x
((t)) char q/and Jo((U) x ((t))) (u) x char

Set E (u) x ((t)), N No(E), and/ N/O(N). Then (q/, x) < N,
Z(E) X < Z(Co(E)), and Z(E) X- N < No(X). Also E char q/and
Igl 27 implies that q/ SyI2(N). Since e SyI2(Ns()) and Ce(E) X, it
follows that X SyI2(Co(E)) and Co(E) O(N) x X. Noting that
IAut (E)I2, 3, we conclude that/ O2(N)(g, ) where 3 1.
Next we prove"

LEMMA 6.12. (i) N(x C (tuF) c (tuF) O.
(ii) Every involution ofE ((u) x ) is conjugate in N to or tu.

(iii) INI2 29.
(iv) Co(() <, >.
Proof. Suppose that n No(X) is such that n tu. Then n No(A) M.

Since tu in M, this is impossible. Since N No(E) < No(X), (i) holds.
Clearly <, ) < Co(n(g) and Co(n(l) A. This implies (iv). Also <u) x
q/ <a N, if

x e I(E- (<u) x q/’))= I(t((u) x q/’)),

then x zF and (t, tu, t, tu, tz, tu, tx2, tuz} is a set of repre-
sentatives for the E-conjugacy classes of involutions in E ((u) x ). Since
C() (t, u) and x is transitive on (xxF, F, zF}, we conclude that
[Oz(N)/E[ 4, and we have (ii) and (iii).

LEMMA 6.13. Let ql < " where ,Y- is a 2-group. Then"

(i) X (u, y, z) is the unique normal element g(Y’) and SCN,(-)
(ii) No(Y) < No(X).
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Proof Since r2(-) > r2(ql) > + r2("l/’(x, t)) 5, it follows from [16,
Four Generator Theorem] that - contains a normal subgroup with Y
s(). Then Cy(t) <_ A or Cy(t) <_ B, ICv(t)l > 4, and c Y 0. Suppose
that Cr(t) L A. Then there is an involution z Cr(t) c (x(u, z)). Since
I[xl, z]l 4, this is impossible. Thus Cr(t) < A and hence Cy(t) _< X
(u, y, z). Suppose that Y -#- X. Then Cr(t) A c Y is maximal in Y and hence
[Y, A] < A. Thus Y <_ N(A) q/. As c Y 0, there is an involution
z Y c {x, xu}. Since I[xl, vii 4, this is impossible and hence Y X.
Next suppose that Y66() and <a -. Then X< and hence Y <
Nr(A) q/. Then Y < C,(X) (u) x (t) and Y is conjugate in N to A
by Lemma 6.12(ii). Thus c Y -# 0 and Y is conjugate in G to A. Since
INo(A)Iz Iq/I, this is impossible and the lemma holds.
We shall now conclude the proof of Lemma 6.4.
Clearly Cu(X)<a N and Co(E)E <_ CN(X) < O2,,2(N); thus N/CN(X)

Aut (X) - GL(3, 2). Let q/ < gr SyI2(N), so that [-[ 29. Then
O2(N)(X) and Cs(X) or Cs(X) O2(N).
Suppose that CN(X) E. Then Ca-(X) E char since X char - by

29. Hence Cs(X)Lemma 6 13 Then - SylE(G and [G[2
CN(X) O2,,2(N), (u) < Z(N), and () Z(2). Set ?7 /(). Then
Co2)() 2 and Co,_s)() (). Applying Lemmas 2.6, 2.7, and 2.8 and
setting R O(N)[O2,,2(N), x](u), we conclude that O2(/) J() where
./7 < < d[7 and Z8 x Za or J is isomorphic to a Sylow 2-subgroup of
L3(4). Note that C(K) () and that K/() J. Also set
O2, 2(N), and R c ’. Then char " since X char -, Ca-(X)
#(t and X Z(.).
Suppose that/ is of type L3(4). Then acts freely on /X since /X - Ea 6

and [X (t)/X. Then char ’- and (I(. )) (t((u) x ))
E char and Il [G]2 29 which is impossible.

Suppose that J Za x Z8. If is abelian, then K () x [K, g] where
[K, g] - / and 2i centralizes an element of [K, g] of order 8. Since this is
impossible, we have K’ () and Sa(K) (K) Z(K) () x "/. Also
inverts K/. and hence Jo(/X) ]X and char char -. If does not in-
vert K/(fi), then )x(.) E and T SylE(G) which is impossible. Thus
inverts
Now t’ (u), X, , and . are all characteristic subgroups of 3r, (9)

(u) x , . (t), and E ()(t). Also N O(N)Nn(.), X char (u) x

" char t char . and IAut (-)12, 3. Since I(E ()) (tu), it
follows that N O(N)(Nn() H) and hence there is a 3-element
Nn(.) c H such that y-:, r O(N), Ca(y) (t, u), and [a,
Setting J Na(.)and J/O(J), we have (g-, y) <_ J <_ Na(X) Ca(u),
Ca(.) O(J) x X, and 2 O2(2)(, ). Since Co)() (,/i), it follows
that O(2) contains a maximal subgroup P containing such that O2(,)
P(i) and P - . Also since Z8 Zs - /(ff) < P/(), we conclude that
P/() Z2. x Zz. for some integer n > 4. Thus P’ () and (P) is abelian.
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Since _< ,(P), this is impossible. This contradiction completes the proof of
Lemma 6.4.

7. The case IM/AI 48

In view of our results to this point, it suffices to prove"

LEMMA 7.1. IfIM/AI 48, then IO2(G)I2 _< 2t.

Since the remainder of our paper is devoted to proving this lemma, we shall
assume that I//1 48 for the rest of the paper.

LEMMA 7.2. (i) n A M c A tX.
(ii) A , B in G and No(S) < M.
(iii) J/ _-_ Z2 x X4.

Proof. Since I(M/A)" (Ct/a(i))l 8, (i) is clear. Suppose that A B in
G. Then c B (B) and hence A B in H, which is false. Thus (ii)
holds. Clearly M/A GL(4,2), Cm/a(l) - X3, and O3(-/g)= since
Ca(/7) (,) . As GL(4, 2) has no subgroup isomorphic to GL(2, 3),
we have (iii).

Let S < St < ll SyI2(M), W O2,,2(M), "" 0/ W, and F (y, z).
Clearly we have"

(7.1.) is a maximal subgroup of q/, "//’/A
I1 27, Cr(t) A, r A tJ(, and C/A acts regularly on tX.

Since M O(M)N(C) and c A r we also have"

(7.2) M O(M)"IU(Nu(W’) c H) where x N(C) c H. Also there is a
3-element x Nt(C) c H such that x x-, xa O(M), [A, x] F, and
Ca(x) (t, u).

Set C(rc). Then we have"

(7.3) I01 8, ca(w) <t, u> < , * {t, tu}, - Ds, ’ Z(O30
<u>, <q/, x> < No(AYe), and A < Na(S) St.

Since X <A (t c A)>, we have"

(7.4) X<a M.

Set "//" ["//’, x]. Then"

(7.5) F < q/, /’0, xa Co(///-), /’A/A - E,, and <q/, x> _< No(q/’).
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Since Cr(x) acts on [A, x] F, we have"

(7.6) IF, ] 1.

Thus"

(7.7) has the following orbits on G c A" {t, tu}, {tz, tuz }, {ty, tuy}, and
{tyz, tuyz}, CA/A acts regularly on these four orbits and Oz(Z(M)) (u).

LEMMA 7.3. (i) q’ ("//’) Lx(//") X.
(ii) F= (y,z) < CcA < X.
(iii) ([, x], [, xt]) (u) and x or xt centralizes

Proof Clearly X < "//" < A. Since I/A - Ea and no element of tX is a
square, it follows that /X - E16 and (i) holds. Thus C and (ii) follows.
Finally x 6 NG() and Ix, (t, u)] 1. Thus x or xt centralizes and (iii)
holds.

LEMMA 7.4. C satisfies one ofthefollowingfive conditions"

(i) C -- Ex6 and C(t) F.
(ii) C Z4 x Z,, F fx(C), and inverts C.
(iii) There is a (x, x)-invariant subgroup . of C such that C F x .,- Q8, -’ (u), and (x, x)/(x3) - GL(2, 3).
(iv) C’ (u) < X= Z(C) (C) =L(C) fa(C),exp(C) =4,

C/C’ - Z4 x Z4, elF - Qs, inverts C/C’, and (C(x, X))/((/3) X F)
GL(2, 3). Also if C Z(C), then I1 4, C() <, z()>, and 2
(u) F.

(v) C’ Z(C) (u), C contains subgroups Q and Q2 with Qx - Qz
quaternion of order 8 such that Q Qz, "U char A (t), and
Q] Qz.

Proof. Suppose that <u> < Z(CA). Then, as ’A is <x>-invariant, Z(A)
and Cw(t) A, it follows that Z(CA) X. Thus F . CA, Ca/v(x)
<tF, uF>, [CAlF[ 24 and [AIF, ] ]F. Since no element of tF tuF
is a square, we have C/F - E4 or elF - Qs with (/F)’ <uF>. If elF
E4, then It[ 24 and clearly (i) or (ii) hold. In the other case, X Z(C) and
C(x) <u>. Then Lemma 2.10 yields (iii) or (iv).

Finally suppose that Z(CA) <u>. Then (CA<If, >)/ Z4 and [7, VI,
Lemma 2.6] implies that CA is of type s. Also Cva(X) <t, u>, ICA[ 26,
and CA contains a characteristic maximal subgroup . such that . contains
subgroupsQ and QzwithQa Q2 Qsand- Qx* Qz. Moreover if
v CA ., then Q Q2. Clearly C [CA, x] . and (v) holds. This
completes the proof of Lemma 7.4.
Our analysis of each of these five possibilities in Lemma 7.4 is presented in

one of the remaining five sections of the paper.
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8. The case of Lemma 7.4(i)

In this section, we shall prove"

LEMMA 8.1. If /" satisfies (i) of Lemma 7.4, then IO2(G)I2 <_ 21.
Thus, throughout this section, we assume that "U E16 C.r(t) F, and that

2 < IO2(6)12 and we shall proceed to a contradiction.

Clearly "//" ]-u, /’,1, C(x) # C(t), and o normalizes C(x)
since I-x, ] < (u). It follows that C,() is a maximal subgroup of .
Clearly u , [, "U] 1, and (q/, x) < NG(/’) c NG(#). Setting .

x "U, we have# 2(t), 2<a q/= .(x,t),Z(ql) (u,z), and [O, t]
(u). Also IC(xt)l 4 and xt does not centralize since tx in G. Hence
[,x] land[,xt] (u).

LEMMA 8.2. - Z4.

Proof. Assume that E,. Then . - E64, ICa(x)l 24 and ICa(t)l
ICa(xt)l 23. Hence .. Je()char and
Syl2(N6()). Then q/ < S7-, c . 0, I(t.) a and hence Na-(..(t))
.S . This implies that C(.) .. Setting
Aut (.) - GL(6, 2) and C(i) (i, ). Thus is dihedral or semidihedral
and I1 < 2* since the 2-exponent of GL(6, 2) is 8. Hence 23 < I-I < 21
and -6 Syl2(G). Also Z()= () and t. xt in since ICa(l)l
ICa(i)l ICa()l. As -6 Syl2(G), there is a 2-element
such that co2 6 -- and -1 .o, < q- and -1 q: -. Hence 6 1 and I11 < 4.
Since ]Ca(x)l 2", we have . c .1 Ca(x) and (Ca(x), x) < 1. Thus
I.ll 4 and - g 38 since 01 < . Let cz --1 (Ca(x), x). Then. (Ca(x), x, ), " t - tx and t" ct. x...
On the other hand, I(’) .# 3 I(x.) I() 3 I(ctx) I(t.) I(xt)
and (x, 1, ) < C(. l) where . 2 E16. Thus G c ’-
I(t.) w I(xt.)= and hence S < C<,o,>(t), which is impossible. This
concludes the proof of Lemma 8.2.

Let # (co)where 09
2 u. Clearly co= cox,= 09

and L51(.)= (u). Set E= f(.) and N= N(), C= C(.) and D
Cu(E). Thus C < D N < C(u), D/C is a 2-group, O(N) O(C) O(O),
(q/, x) < N, and Ca(x) #. Setting N N/O(N), we prove"

LEMMA 8.3. (i) C-" CO(g) x where [, ], Ce(g) is a cyclic 2-ttroup,
and f2(Ct(g)).

(ii) normalizes Ce(x) and Ce(g)(I) is dihedral or semidihedral.
(iii) 2 < C < O < O2(N).

Proof. Set Y C(i). Clearly r < , y is (, if) invariant, 1(i/), SyI2(CI(i)), and F Syl2(Cr(i)). Thus E,
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Syl2(Cr/(i)) and 7//Y has dihedral or semidihedral Sylow 2-subgroups.
Since Z // , [1, I, Proposition 1-1 and [8, Theorem 1-] imply that
Y/ has a normal 2-complement. As /Y < Z(C’), we conclude that F is a
2-group and hence (iii) holds. Also C/ is a maximal subgroup of //Y and
//" < Z(C). Thus C/r is cyclic, C is abelian, and (i) holds. Since S
(, i), (ii) also holds.

LEMMA 8.4. (i) Co(g) /7 where

(ii) S normalizes Co(g) and Co(g)(I) is dihedral or semidihedral;
(iii) either Co(g) Co(g) (and C D) or Co(g) is dihedral or generalized

quaternion and Co(g) is the unique cyclic maximal subgroup of Co(g) when
(CK) is not isomorphic to Q8.

(iv) D=0.
(v) x / char D if Co(g) is not isomorphic to Q8.
(vi) Cs(l) <, >.
Proof. Set (>. Clearly /Y- Y and Syl2(Cr(l)). As in the

proof of the preceding lemma, Y//Y is dihedral or semidihedral and g acts
trivially on Y//. Thus (i)-(iii) and (v) hold. Since every involution of D cen-
tralizes E7, (iv) also holds. Also Cs(t) normalizes C(t) X and hence Cl(t)
(O(Cn(A)) c N)A<x, t>. Since O(Cn(A)) N <_ C by [-6, Theorem 5.3.4],
(vi) also holds.
From the nature of the remainder of the proof of Lemma 8.1 and in order to

simplify the notation, it is clear that, without loss of generality, we may (and
shall) assume that O(N) 1.

Set Co(x). Then D x //, (t) is dihedral or semidihedral,
Z((t)) (u) and Cs<t>(E) is cyclic, dihedral, or generalized quater-
nion. Also E (u) x < Z(D) and D 0. Let V be a generator of
the cyclic maximal subgroup of (t). Then < (V), C if and only if
C D and (V2) Cc(x)if and only if C # D. Also I(tD) I(t) x F and
hence I(tD) if (t) is semidihedral and I(tD) tw (t) if (t) is
dihedral. However, if (t) is dihedral and C # D, then is dihedral and

tD sincetD 0.
Also IC(xt)l 4 and IC<x,>(xt)l <u, xt>. Hence t(xt) is dihedral or

semidihedral with # <a (xt) and if z I(xtD), then

Co(x)(Z,) (’C, U) X Cr(x Et6.
On the other hand, < c Cs(x). Thus, by enumerating the possibilities
for (x) and applying Lemmas 2.2 and 2.3, if necessary, if follows that if
z I(x), then either IC<x>(,)l > 23 or C(x> is abelian of order 8. Hence

c (D(x)) O.
Setting/ El(u), we have E16, N acts on/ and D < CN() N.

LEMMA 8.5. CN() h and N]D Aut () - GL(4, 2).
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Proof. Clearly Cs(/) < O2(N). Suppose that D - Cs(/). Clearly

X Cl(ff) c Clv(t) Co(t).

Let D < Y < Co(g) be such that Y/D Cctf:/o(t). Then Y is (x)-invariant
and Y normalizes D(t). Thus Y/DI 2 and [Y, xl q/’- Y. Hence
Y < Cs(E) D which is false and we are done.
Choose v q/" # such that C(x) (z, v). Then v vz and C(xt)

(z, vy). Since x normalizes (t), we have (x, t) (V, x, t) and x nor-
malizes (y). Thus (D(x, t))’ (2) X (Z, y, vl) and

Co<x,t>(f((D(x, t))’) D char D(x, t).

Thus E char D(x, t). Suppose that 2--# x is not characteristic in
D(x, t). Then y2 u and C D ., which is a contradiction. Thus. char D(x, ). Let D(x, t) < " Syl2(N).

LEMMA 8.6. - : D(x t).

Proof. Suppose that - D(x, t) e Syl2(N). Then oq" e Syl2(G), I-I
2, Z(-)= (u, z), I1 >- 25, ’= (y2) x (z, y, Vl), and f(Ll(-’))=
(u). However, since x u in G, there is an element # G such that x u
and Cr(x) <_ . Since (2, x, t) <_ Cr(x), we have (y4)g _< (C.(x)g),. Thus
(u) _< fl(3((C-(x)O)’)) _< fl(r31(-’)) (u) and we have a contradiction.

LEMMA 8.7. (i) Cmo(tD) (tD) x (teD, xD) CN(t)D/D.
(ii) O2(N) D.
(iii) W/D - D8, Z(-/D) (xD) and tD xtD in )’-.

Proof. Assume that Cmo(tD) Cs(t)D/D. Then (t) is dihedral, C D,
(y), and ICmo(tD): ((Cs(t)D)/D)I 2. As N/D GL(4, 2) - a, it

follows from the structures of the centralizers of involutions in a’8 that
Cmo(tD) has Sylow 2-subgroups of type Da. Hence xD xtD in N/D which
is false since c D(x) 0. Thus (i) holds. Now (ii)-(iii) are immediate.

LEMMA 8.8. ’- Syl2(G).

Proof. Assume that there is a 2-element z Na(J") J- such that 17
2

Let . =. and E E f(.). Then . -.1- - and E< 37".
Since a cE= 0, we have Cg(t)= (u,y,z) or Cg(t)= (u,x,z). Sup-
pose that Ce(t) (u, y, z). Then [El, A] < A and E C(X) .(t) and
IEcEI[ _> 24 This implies thatE Eand. < Cr(E) D 9 x
Hence .1 (. 90 x /" where . c 9 Z4 and . 9 is t-invariant.
This forces . c 9 and .1 . which is false. Thus Cry(t) (u, x, z).
Since -/D D8, we have [E c D[ >_ 23. We also have (u, z) < E c D <
Co(x) <_ x (Z, Vl), [E,t-[ _< (u,x,z), and E < Nr(B). Thus E1
D <_ Ng(B) x (z, v). However [N(B), t-I < 9 c B (u) and hence
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Ns(B) 3 and E1 cD (u,z, vl). Thus xDE1D]D E, and -1 c
(tV) 0 .1 (xtD).

Since z" . +-. -1, z leaves I(- --1) I(tD w xtD) invariant. Since
tD xtD in -, it follows that C D, (V), and Vt V-. Moreover
we may assume that tV. Also

(u, z, v) <_ . c . < C(x) < N x (z,

and -1 is abelian. Thus .ID E1D and hence [-1 c [ 24 and .1 c .
# x (z, v1). Since z normalizes -1 c ., z C(u) and hence (t, u)=
(tV, u). But (y, z, x) < CG((t, u)) c CG(tV, u) since [, x] 1. Now (4.12)
implies that

Z" - 02(Ca(t, u)) (y, z) " 02(Ca(t, u)) (u,

But y e . and y . ., which is a contradiction and the lemma follows.
We shall now conclude the proof of Lemma 8.1. Let Y be the maximal sub-

group of oj- such that D < and Y/D - Z4. Clearly fI(Y/D) (xD) and
hence t 6 c Y 0. Hence O2(G) by [17, Lemma 5.38]. Since 102(G)12 >
211, we have I-I >- 212 and lyl >- 2. Since x normalizes () and centralizes

f2(()), we have (,2, X, t) < C:r(x). Since inverts )2, we have (y4) <
Ca-(x)’ < -’ <_ D(x). Hence (?8) _< D x q/" and y16 ,1(;)
(y2). Since [Yl >- 25, and u e Z(-), we obtain a contradiction as in Lemma 8.6.
Thus Lemma 8.1 is established.

9. The case of Lemma 7.4(ii)

Inthis section, we shall prove"

LEMA 9.1. If satisfies (ii) of Lemma 7.4, then IO2(G)12 < 21

Thus, throughout this section, we assume that q/" - Z4 x Z4, F ’1(’),
inverts /’, and that 21 < IO2(6)12 and we shall proceed to a contradiction.
Clearly <x, x> normalizes / and [-x3, ] c /. Let v /" be

andv v v2 Thenv =yz, v2such that v y and set v2 v z, and
C(x) (v>. Then # C(/) is a maximal subgroup of . Clearly u e ,
[-, /] 1, and <q/, x) < N() c NG(). Setting . x /, we have
$//" .(t), . < q/ .(x, t), Z(q/) (u, z), and [#, t] (u). Also
C,(xt) (vy) and (u) x C(xt) < Ca(xt). Thus

((u) x (vy))((x, t)) < C(xt)

and hence ((u) x (vy))((x, t))= C(xt) Syl2(Ca(xt)), [-x, -1 1, and
[xt, ]

Let z I(xa). Then Ca()= <v>, Ifa<>(w)l 25 and Ca<>(z)is
abeiian. Thus c (.(x)) 0.
Note alsothatq/’ (u) x (v) x (y), C(ql’)= .,f(ql’)= X, C(X)=

a(t), and 3(q/’) (z).
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LEMMA 9.2. Z.

Proof Assume that (u, 0)) where 0)2 1. Let 0g be of index 2 in the
2-subgroup of G. Clearly 2 < - and 2(t)< -. Since c (x2) 0,
we have (xt)<a Y-. Then, since l(xt)= (xt), we have ]Cv-(xt)] 26
which is a contradiction since xt in G. This completes the proof of the
lemma.

Let N <0)> where 0)2.._ /d. Thus inverts . x q/, fl()=
X, 0),,t 0)u, I(t.) t, I(x) x(<u> x <vy>), and I(xt) xt( x <v>).

LEMMA 9.3. Let all N where is a 2-subgroup. Then X < and X is the
unique normal element of fs().

Proof. Since X char q/, it suffices, by induction on IN], to assume that
X< and to show that X is unique. Thus let X # Y N where Y gs(N).
Since 27 < ]1, tc Y 0. Thus iCy(t)] > 4 and Cr(t)N <u, x, z> or
Cr(t) N <u, y, z>. Note that if zl I(t), "2 I(X..), and "13 ( I(xt.), then

Y N Ne(A) q/. Then Y N , Y X and we are done.
Clearly 2 Jo(#/) char 2<t >, <q/, w> N No(#) N No(2), Co()

O(Co(#)) x X, and tc3 O(Co(lr)).

LEMMA 9.4. (i) N No(t/) c Co(.) N No(C and O(No(qCr)) is a normal
2-complement ofNo(C c Co(2).

(ii) Either SylE(NO(//’) c Co()) and Iz(r) cz() tX or . is a
maximal subgroup ofa Sylow 2-subgroup ofNo(r) c Co() and Na(r) ’ ca()

x F).

Proof. Let N No(qCr), N N/O(N), and J CN(). Clearly 2 N Z(J),
J N N No(J2), O(N) O(J) O(Co(qCr)), and J Cs(). Let z e J. Then
t’ z2 and hence "- tX . Thus z2 Cu(CK’) O(N) x .. Hence
is an elementary abelian 2-group and (i) holds. Then

x (([j,

Note that C() Cs(/) and .
Let [, ]. Then v is ((i) x (, ))-invariant. Suppose that

]/21 > 8. Then there is an element e o_ such that iN. Hence
[, ] e Cj(/) Y N . Since Cyril(g) 1, this is impossible.
Suppose that 1/[ 4. Then 11 2s, I]/[ 24 (</> x <if, 2>)

normalizes e// and // C/(g) N Z(ff]). Set [, ff]. Since
< , we conclude that either Il 26 or Y/ Qs. Assume that Il

26. Then since N Z() and Cr() 1, [7, IV, Lemma 2.5] implies that
either Zs x Zs or 5 x "/a where qPa is a <g>-invariant 4-group.
In either case, we have ]Ca<e, r>(ff/)] -> 26 and we have a contradiction. Thus
// - Qs and C.(g) <> ’. If 5/(> Zs x Z8, then there is an
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element c - such that , ff. Hence ()) and ICj<, >(i)l >-
26 which is impossible. Hence /(ff) - Z x Z x E and there is an element. such that ; and we obtain a contradiction in the same way.
Hence ff .. Finally, let C(g). Then lC(ff) lff and (ii) holds.
For the remainder of this section, let N N(.), C C6(.), and N

N/O(N). Clearly.((t) x (, x)) _< N. Let Y C(t)andlet# .(x, t) <
F- Syl2(N). Clearly Y < N as inverts . and a C. Also let O(N) <_ <_ C
be such that Ce(g).

LEMMA 9.5. (i) C X qT, /7 [C, -l, is a cyclic 2-yroup, and
n2().

(ii) normalizes o and o(t) is dihedral or semidihedral.
(iii) CN(i) (K,

Proof Clearly if’ " c Y SyI2(Y), 6a (6" c C)(t), Cs(t) A, and
q/" < Y. Set Y/I/’. Then C() (if, ) by Lemma 9.4(ii). Hence S is
dihedral or semidihedral. Also 6a c C Syl2(C), <_ Z(C) and
hence < Z((7). Thus (S c C) is cyclic and (i)-(ii) hold. Finally

c(t) (o(c(t)) c O(N,I(A))4(, x)

as CN(t) < Nn(A) O(Nn(A))A<t, x>. Since O(CN(t)) c O(Nn(A)) < Co(.)
by [6, Theorem 5.3.4], (iii) also holds.
From the nature of the remainder of the proof of Lemma 9.1 and in order to

simplify the notation, it is clear that, without loss of generality, we may (and
shall) assume that O(N) 1. Then C x and C<x, > < 3r Syl2(N).

LEMMA 9.6. (i) . "2(C) char C<x, t>.
(ii) - # C<x, >.
Proof. Clearly c C 0 Cx. Also X charC<x,t) by Lemma

9.3. Thus C<t> Cc<,,t>(X) char C<x, t>. Since C do(C<t>) and
fl2(C) , (i) holds.

Suppose that C<x, t>. Then - SyI2(G) and tOc (C<x))= 0
implies that I1 >- 2x2 by [17, Lemma 5.38]. Hence I1 >- 26. Letting
<>, we have y2 z C-(x). Since Z() <u, z >, there is an element g z G such
that C(x) < " and x u. Thus (2) e and hence #- (6) r33(-) <. Then u" u, a contradiction; hence (ii) holds.

LEMMA 9.7. (i) INI2, 3 and Y C<t> < O2(N).
(ii) N O2(N)<tc, x> and -= 02(N)<x>.

Proof. Clearly Y C<t) < O2(N) and N/C Aut (.9.). Thus INI2, 3
if C= Y/ x #. x . On the other hand, suppose that C=..
Then every element of tC is an involution and - # a tX. Suppose that
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INI2, v 3. Then [N[2, 3.7 and N/O2(N) GL(3, 2). Since (x, x) X3,

it follows that N/O2(N) - GL(3, 2). Also CN(t) A(x, x), ICN(t)[ 3.25,
N permutes the eight Y-conjugacy classes in tC, and r tX. Since Nu(A)
.((t) x (x, x)) is the stabilizer of r, we have a contradiction and (i) holds.
Clearly (ii) is immediate and we are done.

LEMMA 9.8. (t) is dihedral.

Proof. Assume that (t) is semidihedral. Then tC t( x /) decom-
poses into four conjugacy classes under Y C(t). Thus N/Y E,. Note
that tC is not a square in N/C by Lemma 2.5. Thus 02(N)/C - Es where
Co2)/c(C) (tC). Since X char - by Lemma 9.3, we have Cx(X)
or O2(N). Suppose that C:r(X) C(t). Then C char ’, . f2(C) char -,
and - Syl2(G). Suppose that C:r(X) O2(N). Then . < O2(N)’ < C and
hence fz(Ca-(X)’) char -. Thus 2 char - and - Syl2(G) in either case.
Moreover N6(-) N(’) -.

Clearly (u) < Z(-) < (u, z) and all involutions of X (u, y, z) are G-
conjugate into (u, z). Suppose that o9 u c ((u, z) (u)). Then Z(7-)
(u), 02(N) does not centralize X and (u, z) is the unique normal 4-subgroup of
q- lying in X. Let g G be such that cog u and C(og)g < -. Since C(x, t) <
Q,r(og) max d’, Cx(og)o < Cx(uO, and uO Z(’), we have
Cx(uO max " and (u, u) < Z(Cx(og)o).
Suppose 6a is an arbitrary maximal subgroup of- such that [fl(Z(S))I > 4.

Since Z() (u), we have (u) _< fll(Z(Se)) and IFI(Z(6a)) 4. Since
f(Z(S’)) ’, we have fI(Z(Se)) < Na-(A) .(x, t). Hence fI(Z(6)) <
X, fl(Z(6a)) (u, z), and 6a Cx(og).

This implies that g N(Cx(og)). But C:r(og)/C - Es and X < (C(x, t))’ <
Ca-(og)’. Thus X ft(Cx(og)’) and g normalizes Cr(og) c Co(X) C(t).
Hence g No(.2) N which is impossible since (u) <_ Z(N). We have shown
that u c X (u}.

Let (y) and let G be such that x u and Cx(x) < ". Noting that
)2 {E C-(X), ITzl > 4, and ug C, we conclude that lyl 23 and I-I 211.
Setting w u, we also have w ua 3(-/C) (-/C)’ since -/C Z2 x
Da. Letting if’ C[02(N), x](x), we have 6e max 3r and 6e/C - D8. But
t n (C(x)) 0 and t G’ since la’l 2. Then [13, Corollary 2.1.2]
implies that t c Cw v O. Let s Cw. Then IC/s)l <_ 25 and hence
Isl >_ 26. But w u I(Cw), C(w) <a oq’, and Ifwl 27. Then s Cw
and hence D {c C c c-1} is a subgroup of C with IDI > 26. Thus s
inverts C and hence ts Ca(.) C which is false and the proof of the lemma is
complete.

In view of Lemma 9.8, we conclude that inverts C x . Set .Z
O(N).
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LEMMA 9.9. (i) (t) C(x).
(ii) :Z/C - Es.
(iii) . char and " Syl2(G).

Proof. Suppose that (t) :/: C(x). Then, as C(x, t) (t, u), we con-
elude that C(x) is dihedral or semidihedral. Also, since Cr(x) (t)<
Ce(x), we conclude that (t) is a maximal subgroup of C(x). Clearly
(C(x)), x normalizes C(x), and x leaves invariant the three maximal sub-
groups of C(x). Let a generate the maximal cyclic subgroup of Ce(x). Then
C.(tc) <a, t>, 3(<a>), [a, x] , a normalizes [C, x] "//’, and hence
normalizes C(x) <v>. Thus, as does not centralize ., inverts . Thus
t z Cu() and t in G. Set 5e <C, x, t, >, so that 5e/C Es and
C<x, > is a maximal subgroup of 5e. Since xt inverts t2z(), we conclude
that gl<xt > is dihedral or semidihedral. If Yl<xt > is semidihedral, then I(xtC)
(xt)c. But C<xt> < 5e and C<t> Y . St’. Hence C<x> . 5a, C<xt> - ,and IC(xt)l 21Cc<,t>(xt)l 26 which is impossible. Thus gt<xt> is di-
hedral and [, x] 1. Moreover 5t’/C contains seven involutions with
Cc(tC) X, Cc(aC) 9 x F, Cc(xC) x <v>, Cc(taC) <u> x ,
Cc(xtC) <u) x (vy), Cc(xaC)= 9 x <vy), and Cc(xatC)= <u) x <v>.
Suppose that 5a # - and let T N(6a) 6e. Then normalizes C, Ct, Ca,
and Cat. Note that (a, x) is abelian or modular so that I(Cax) 0. Hence
(Cx) # Cax and acts trivially on /C. Since I(xtC) (xt)<c’,> and
IC(xt)l 25, this is a contradiction and we conclude that if’ 37-. Then

-’ 9 x <v) x (y), C(3r’’) C,char-, and- Syl2(G). Hence
la[ > 25 since I’1 > 211. Clearly u Z(’) and there is an element g G such
that xg u and C(x) < 3r. Then, since a2 C(x), we have (a*)a e C
#t x /. Hence 1 # (a16) e 9 and u u, which is a contradiction. We con-
clude that (i) holds.
Now Ce(t) A, Er/y acts regularly on the orbits of Y on , x acts non-

trivially and fixed point freely on Z/Y, and tC decomposes into eight Y-
conjugacy classes. Thus (ii) holds by Lemma 2.5. Also X char 37- and C(t > <
Ca-(X) <_ Er. If Cr(X) C<t), then . char -, - Syl2(G) and (iii) holds.
Suppose that (iii) does not hold. Then Ca-(X) . Hence I-Z, t-I < ’ and

’ Lt(9) x /’; this forces ’ (u) x "/ and Cer(Er’) > C x
where C(Er’)/C - E,. It follows that C(.oe’) C[.e, tc’l is a maximal sub-
group of .oe. Setting # [.e, tcjoe,, we have a < Cer(Er’), ’ < Z(a),
< N, andlaCl 27 Also(t) x <x,x) actson /<u),C(x) 1,
and / ’ < Z(). Since I1 26, we conclude that a’ is abelian by [7,
IV, Lemma 2.5]. Since <to, xt ) acts on I-, x-I and q/" < Z([, x]), it follows
that [o, tc-I is not abelian. Thus a [o, x] and a’ (u). Since Ne(A)
C(t), we have Ns(A) r,. Hence fl() X as C(t) ,12’. Thus ,r7 -Zs x Zs and there is an element fla Z’ withfl flu. Thenfltoe
C.(xt) < Y .<t ) which is impossible and we are done.
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We can now conclude the proof of Lemma 9.1. Since Il 2la, we have
I1 > 23 and u Z(-). Also No(r) NN(Y’) ’. Then the final portion
of the proof of Lemma 9.8 applies to force a contradiction and the proof of
Lemma 9.1 is complete.

10. The case of Lemma 7.4(iii)

In this section, we shall prove"

LEMMA 10.1. If ,//" satisfies (iii) of Lemma 7.4, then IO2(G)I2 < 21.

Thus throughout this section, we assume that contains a (, x)-invariant
subgroup . such that /" . F, . Qs, 2’ (u), and (.(x, x))/(3) -GL(2, 3). We shall also assume that [O2(G)12 >_ 211 and we shall proceed to
obtain a contradiction.

Clearly c (u) and acts on C(x) {v q/" v v or v v- }
(z) x (q)whereq.issuchthatqX= q-1 =qu. Alsot tFort tuF
and hence qt {qz, quz }. Since 2 (q, q, q2), it follows that no element of
03t can invert q. Then C() is a maximal subgroup of 0 and (q/, x) <
No("U) c No(). Also ("U, , , x) < No(.2) and I(t) w (tu). Set
E P/" P. q/". ThenW" E(t),E< ql E(x, t), Z(ql) (u,z),
Z(E) # x F, and[,t] (u).

LEMMA 10.2. # Z,,.

Proof Assume that (u, to) where o92 1. Then E (o9, y, z) .,
I(tE) tX , and (I(tE)) A. Note that (x, q) " Da and (x, q)
(x, xq) < (I(xE)) and hence (I(xE)) is not abelian. A similar argument
implies that (I(xtE)) is not abelian. But q/’ F (q) and hence C(f(q/’)
Cu(X) E(t) char q/. Since c E 0 and tX I(tE), we conclude
that A <a No(q/). Hence [q/I IGI2 2, which is false and the proof is com-
plete.

Let # (09) where (./)2
(tto)X, E F 0 2, ]El 26, and ifj I(E) Z(E), then C(j) is abelian
of order 25. Thus c E 0. Also Ce(t) Ce(tto) X )(Z(E)) and
Z(E) F x # and X I)i(Z(E)). If x inverts to, then I(xE) x((z) x
(to, q)) and if x centralizes to, then I(xE) x((z) x (q)). A similar result
holds for xt. Also q/’ F x (q), f(q/’) X, and C,(X) E(t). Thus
fl(E) E char q/since C(t) C(tto) X.

Set N No(E), N/O(N), and C Co(E). Thus (q_/, re) < N, x3 C,
andZ(E) F < Z(C). Also letq/ < -Syl2(N) andset Y C(t).
Note thatE’ (u) < Z(N) and X ft(Z(E))<a N. LetO(m) < < C
be such that
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LEMMA 10.3. (i) C x F where [, ] , C(g) is a cyclic 2-
yroup, f12(), and 1().

(ii) J normalizes , C(I) (t), and (i) is dihedral or semidihedral.
(iii) Cz(l) A(, .
Proof. Let o q- c C. Then 3to <a d-, oo 6 Syl2(C), and o(t)

Syl2(Y). Clearly F< Y, CE(t) X, and < F. Set Y/F. Then

Co() _< (No())- _< ( c -o)- ( c c)-

and hence Co() <>. Thus Co<>() <L t> and o<> is dihedral or
semidihedral. Since < Z(), it follows that 3ro is cyclic. As F < Z(C), (i)
holds. Since X<, i>, (ii) holds. Also CN(t) H c NN(A) (N c
O(Na(A)))A<tc, x>. Since N c O(Nz(A)) centralizes C(t) X, we have
C(t) (O(N) c H)A<, x> by [6, Lemma 5.3.4] and we are done.

From the nature of the remainder of the proof of Lemma 10.1 and in order to
simplify the notation, it is clear that, without loss of generality, we may (and
shall) assume thatO(N) 1. ThenC F, EC F x ( . .). N;
EC < Cu(X) . N, and EC 0. Since X N, we also have"

(10.1) EC<x> EC<t> EC<xt> in N.

LEMMA 10.4. <t) b dihedral.

Proof Assume that < t> is semidihedral, Then I(tEC) tEc, Il > 8,
EC<x, t> by (10.1), and Z(-) <u, z>. Also -’ F x L() <q>

where # < (5’(), Ca-(-’) F x <q>, ?3’(Ca-(’-’)) LI(), and
C(3()) EC<x> or EC<xt>. Let I1 2 for some integer a >_ 3 and
let 6e C-(r3()) C/r3’(C(3r’))). Note that ifj z I(EC), then IC(j)l >-
2"+z and ifj I(6e- EC), then ICse(j)l- 2+2. Thus fI(EC) E< N(-)
and hence - Syl2(G). Then a >_ 5 and IrJX(01 >_ 2, But then x centralizes
r3() and there is an element g G such that xg u and C(x) < -. Then

(52()) < -’= F x ’(), <q>

and u u which is a contradiction and the lemma follows.

Let <>. Then I(tEC) ’c
t3 (t)zc. Since S < EC<x, t> and c

EC 0, we conclude that INs(EC<t>)" EC(<t> x <x, x>)l < 2.

LEMMA 10.5. N(EC<t>)

Proof. AssumethatNs(EC<t>) EC(<t> x <x,x>). Then- EC<x,t>
by (10.1). Suppose that . Then -’ F x <q>, fl(-’) X, Ca-(X)
E<t>, and fl(E) E < No(-) since c E 0. Then 13rl IGI2 28
which is false. Hence ICel >- 23, -’ F x r3(). <q>, Ca-(3r’) F x
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# (q), t31(C:(")) L51(), and Ca-(L51()) EC(x) or EC(xt). But
then we obtain a contradiction as in the proof of Lemma 10.4 and we are done.

Set J NN(EC<t>). Then J O2(J)<x, x> and [O2(J), tc] [EC, tc]
F x . < J. Hence F < J, [O2(J), X] and O2(J) Co2s)(x).
Thus <t> Cc<t>(x) is a maximal subgroup of Co2s)(x). Also Cos)(t, x)
<t, u> and Cos)(x)is <x>-invariant and dihedral or semidihedral. Then Lemmas
2.3 and 2.4 imply that <Cos)(x), x>’ < < Cu(). Hence Co,s)(x, )
is a maximal subgroup of Cos)(x), Cos)(x) 5<t>, a is dihedral or gen-
eralized quaternion, and is the cyclic maximal subgroup of 1. Also aEC
F x 1 * - and (F 1 * .)<x, t> z Syl2(J). Then if" F x <q>,
)1(’) F x <u, 0)q>, Z() <u, z>, y y<z>, (0)q)<a"> 0)q<u, z>,
and (0)qy)<a"> 0)qy<u, z>. Hence X F x <u> char 5 and C(X)
(F x ( ))<t> char . But c (F x (1 *-)) 0 and I(t(F x 1 * ))

ev’ a) as is easily seen. Thus - Syl2(G), Ictl >_ 24, and Ix, ]
since <x> normalizes the cyclic maximal subgroup of Rt<t>. Letting G be

such that xg u and Cr(x) < , we conclude that (LI()) < -’ F x
<q> and hence u u. This contradiction completes the proof of Lemma

10.1.

11. The case of Lemma 7.4(iv)

In this section we shall prove"

LEMMA 11.1. Ift satisfies (iv) ofLemma 7.4, then [O2(G)12 < 21.

Thus, throughout this section, we assume that satisfies (iv) of Lemma
7.4 and that 21 < IO2(G)12 and we shall proceed to a contradiction.

Thus, if q q/" X, then qt q- u qau since inverts q/(u) and

7t/" qX w qX qX
cannot be inverted by t. Since [a, x] < (u) Z() < Cr(/), Lemma
2.1 l(iii) implies that C,(//) is a maximal subgroup of 0. Clearly u #,
(q/, c> < N(//) c N(#) and I(tt/’) t* (tu). Set .9. #/ # .
Then W" .<t>, . <a q/ .(x, t>, Z(q/) (u, z>, and [, t] <u>. Note
also that C,/<,>(xt) - Z, and hence there is an element v q/" X such that
v2 uzandd’tv<u>. Ifvxt v, then

6e <u, z, v, xt, t> C,(xt) Syl2(C(xt)).

But then S’ L1(5a) Z2, v2 uz, and Iv, t] v-2u z, which is im-
possible. Thus d‘t vu.

LEMMA 11.2. # - E4.

Proof. Assume that # <0)> where 0)2 U. Clearly 0)’ 0)-1 0)u and
fl(.) X. Suppose that xt inverts #. Then C(xt) <u, z, 0)v, x, t>
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Syl2(Co(xt)). Since (oov)2 z and [ov, t] uz, this is impossible. Thus
[, xt] and to 0-1.

Set N No(.), C Co(.), and N N/O(N). Thus Z(.) 3 x F <
Z(C), (oll, c) <_ N, tc3 C, Z(.) x F c C< N, and X <_ Z(C(t)).
LetOg < y-SyI2(N). Then C c q- < q’, x F < Syl2(C),
and x(t) e SyI2(C(t)).
Suppose that zl x is such that ’ tF. Then

zINr,(A) ogc 3 x F

and hence zl C,(t) X. Then since F < Z(r(t)), we conclude that
Cr<t>/r(tF) A/F and that 7"(t)/F is dihedral or semidihedral. Since
F < Z(C) and ( x F)/F < Z(C/F), it follows that C/F is a cyclic 2-
group and C Ce(g) x F where Ce(g) is cyclic f2(Cc(g)) and F
[c,
From the nature of the remainder of the proof of Lemma 11.2 and in order

to simplify the notation, it is clear that, without loss of generality, we may (and
shall) assume that O(N) 1.

Set Cc(x). Then C x F, is acyclic 2-group,
[C, rc] F, x3 1, and C(x,t) < ". Since [xt,] 1, it follows that
[xt, L()] and hence Il < 2a. Suppose that I1 2a. Then (xt)
is a modular 2-group and letting (), we conclude that v Ca-(xt).
Since Ivl 2a, this is impossible. Thus .

Since N/C Aut (.) where . r, it is easy to see that [N[2, 3.
Thus N O2(N)(x, x) and - 02(N)(x).

Let O2(N). Then C(t) < , < , Cr

and C(t) A. Clearly c . 0.
Suppose that .(t). Then 7- q/, f(,) X char ’, C.(X)

.(t) char 7-, fl(.(t)) (09, t) x F char -, x F char -, . Cr( x
F) char -, and - Syl2(G) which is false. Thus .(t

Let e N(). Since I(t) w (too), it follows that [I/V’[ 2
and 1 is (to, x) invariant. Thus [e, x] V" < e and o (t) is of
index 2 in 1 C(rc). Also C(t) (t, u), 0 is dihedral or semidihedral,

is (x) invariant, , and 1 c q/ (u). Since x normalizes the
unique cyclic maximal subgroup of 1, (, x) acts trivially on/ and
hence C(/) is a maximal subgroup of by Lemma 2.1(iii). Thus
is dihedral or generalized quaternion of order 8, lq/" * /, 1 c q/

(u), and 1 (1 * /)(t). Clearly c ( //) 0 and I(t(l /))
tz,. Thus e e andS- (1 * )(x,t). Hence X f(-’) and Cy(X)

char -. Since S < -, it follows that " Syl2(G) and IGI2 Irl 29.
This contradiction yields Lemma 11.2.
Hence (u, o) for some involution 09, . (o) x //’, .’ (u),

L(.) X= (2), .(t), and (x,t). SettingE f(.) (to) x
X, we have E Z(.) E6 and hence c . 0. Since fl(q/’) Xchar q/,
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we have Cu(X) char q/. Also, if I(fg" .), then Cr() (, X)
and hence E char and . C(E) char .

Clearly ot o(u). Suppose that ot ou. Then

C(xt) (coy, ) x (z, xt ) Syl2(C(xt)) and I(xt) xt (vy, z ) (xt).
Also lIE, .x]l lIE, x]l 2 - lIE, xt]l lEE, xt]l 4 since Ix, 09] 1.
As q/q Syl2(G), this is impossible. Thus coxt 09,

C(xt) 1 x (z, xt) SyI2(C(xt)),

u z in G and I(xt) xt((co) x (vy, z)) (xt) w (xtco)a. Also co cou,
I(x) x(v, z) x and [E, x-] (u, z).

Set N N(C/Q, C C(), and N N/O(N). Clearly (q/, x) < N <
N(.) and q/c C X. Let q/ < - e Syl(N). Then oh’ - oj- since q/ Sylz(G)
and Nr(A) q/. Hence X C :Y e Sylz(C), C O(N) x X, and C" X.
Also N/C Aut (/z)and hence IN/CI2,- 3, <> Syl(), O2()
(, 2), and q/ < - Oz(N)(2).
From the nature of the remainder of the proof of Lemma 11.1 and in order

to simplify the notation, it is clear that, without loss of generality, we may (and
shall) assume that O(N) 1. Set Y’ O2(N). The C(t) A, C.(x, t)
(t, u), and hence C:z(c) o (t, co) since I(t(u, co)) t(u). Also, since. < N, if q X, then the four -conjugacy classes of involutions in t.
are represented by t, tcoq, tcoq, and tcoq. Thus e///" g E4, [1 29, tc acts
nontrivially on e/W-, and e is transitive on I(t.). Thus f(2) E is strongly
closed in with respect to G.

LEMMA 11.3. Let ell < where is a 2-#roup.
unique normal element of 6()

Then E < g and E is the

Proofi Since E char q/, it suffices, by induction, to assume that E - and
to prove that E is unique. Thus let E :- Y < with Y e 16(). Since IUl
28 < I1, we have G n Y 0. Also 4 < ICr(t)] and if z x(u, z), there is an
element q X such that I[q, z]l 4. Hence Cr(t) < X. Suppose that
Y < 2(t). Then Y < and hence Y E. Thus Y .fg’. Since
[Y, t] < Cr(t) < X and . is transitive on tX, it follows that Y < Ca(t)
.S q/. Thus there is an involution Y c (x w xt). Since for any such
z there is an element q X such that I[q, z]l 4, we have a contradiction
and the lemma follows.

Let z N(q/) q. Then z normalizes {x., xt.} and "17
2 "if/’. Since

lIE, x.][ # lIE, xt.][, we conclude that (Ix, z], [xt, z]) < . and hence a
Sylow 2-subgroup of N/. is not semidihedral. Thus

N/., Z2 x X;, where (t.) C:/a(), "// < [, c], and



CLASSIFYING FINITE GROUPS, 613

Note that q- (x), ]-[ 21, - SyI2(G), E char q-, . _< Cr(E)
C(E) C(E) char -, and C(E) < N since E Z(.).
Suppose that . Cr(E). Set J Na(E) and J/O(J). Clearly (-, g) _<

J. Let - _< 6 Syl2(J). Then - v and 6 SyI2(G) since E char by
Lemma 11.3. Also

Co(E) c " < Co(E) c 5e <a and Co(E) 5 Ce(E) SyI2(C(E)).
Suppose that . - Cz(E). Then there is an element Cee(E) such that
t" t.. But e is transitive on I(t) and hence z 37- which is false. Thus .
Cse(E) Sylz(C(E)). Also /E - E4 and any element of odd order in Ns()
Cs(E) centralizes .. Thus C(E) O(J) and ] Ns(.) Ns(a). Also
Cs(.) E and hence J/E Aut (). Thus Y O2(3)(ff ) and O2(,)
Cs(/E) and hence O2() acts trivially on r31(.). Since Cs(E) ., we
have 102()"-112a and hence IGI2 IJIz Iel I-I which is a contradic-
tion.
Thus 0 4= Cr(E) C(E). Setting Ce(E), we have

1 Cr(E) char - (x, t).

Also 1 -[, x] <a N, [l 28, and Czr(x) (u, o9) - N. Set
N/. Then [al 26, C() 1, andZ4 x Z, .- . Clearly

(u) .’ < e]. Suppose that Y’] (u). Then < [Y’, tc] <
N, and . c [, x] . Since I(t/’) and Ct.(t) X, this is impos-
sible. Thus e]

_
(u) and ea is not isomorphic to Z8 x Z.

Suppose that ea Z4 x Z4 x E4. Let 5f denote the inverse image in
of fl(). Then 5f - N, oj. . E and fixes an element t/E which is
impossible. Thus 1 is isomorphic to a Sylow 2-subgroup of L(4) by Lemma
2.9. Thus (u) < e < (e) < E Z(). If(I)() X, then/" <_
[., ] < , [Y’, ] <a N, [Y’, x] c . and we obtain a contradiction
as above. Thus, utilizing , we have E () ] Z(), exp (1)
4, C,m(t) /E, and I(t.a) r’. Note also that c 1 0. Also
(, x> acts faithfully on /.; hence (l<x>). D8 and I(Xrl) x
since I(x) x. It follows that c (Y’l<X>) 0.

Set J N(E), J/O(J), and let W < 5e Syl2(J). Clearly <’, x> < J,
q Sylz(J), ’- 5P, and 5e Sylz(G). On the other hand,

Y C(E) c Y" < 5e c C(E)_

Since I(tl) , we conclude that a 5e c C(E) Syl2(C(E)). By the
same token, Cz/,(t) -/Y’x E4 and hence 5e/y’ is dihedral or semi-
dihedral. But 5elSe Aut (E) and hence 5e/e Ds. Since lIE, ’x]l
lIE, t]l lIE, Erxt]l, we conclude that <x> (Se]Y’a)’. Since lSe
21 [G2[ and c (l(x>) 0, [17, Lemma 5.38] implies that [O2(G)12 <_
2l. This contradiction completes the proof of Lemma 11.1.
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12. The case of Lemma 7.4(v)

In this section we shall conclude the proof of Theorem 2 by proving"

LEMMA 12.1. lfF satisfies (v) ofLemma 7.4, then IO2(G)12 < 2x.
Thus, throughout this section, we assume that / satisfies (v) of Lemma 7.4

and that 2x < IO2(G)12 and we shall proceed to a contradiction.
Thus Z(A) Z(ql) Z() (u), A t/"(t) is of type a’8, "/r(t, x)

D8-’L Z2 by utilizing the proof of [7, VI, Lemma 2.7(iii)], ]-q/"A, tc] q/"

1-"/, x] Q Q2 where Q1 and Q2 are quaternion of order 8 and Q Q2.
Also 616(UA) {A } and every element of /A Sr interchanges Q and Q2.
Now o C(tc) acts on "U r#-, x] and hence o contains a maximal sub-
group t normalizing both Q1 and Q2. Since # < C(c), we have [#, Q]
[,Q2] 1. Then(q/,tc) < NG()cNG()andc (u). Set.
"/ /. Then (t), . <a q./ .(x, t), Z(q/) (u), Z(.) #,
and 2’ () (u).

LEMMA 12.2.

Proof. Assume that # (u, 09) where 092 1. Then .
I(t.) tX a, and ql (x, t) Syl2(G). Note also that Z() (fi) and
set/ ](fi). Then it is easy to see that 632(q7) {.}. Since Z(q/)
it follows that 632(q//(u)) {./(u) } and hence . char q/and # Z(.) char q/.

Set N N(.), C Co(.), and/ N/O(N). Thus (qz’, x) < N. Also
let ll .(x, t) <_ r- Syl2(N). Clearly q/ # -, q/c C , and I(t)
t(u) . Hence C O(N) x #, C-" , and N/ Aut (.). Also Ca(t)
X and hence C.(t) CN(t) c Nn(A). Thus CN(t) (o(m) c Cs(t))A(x, x)
and Crq(i) (ff, ). Moreover I(t) and hence C-/l(i)
Thus /. is dihedral or semidihedral. But q// -: Y-/. Hence t.
Z(/.) (x.), and O2(N) . since O2(N).
On the other hand, . (09) x //", 2’ (u), Z(.) (09, u), r Q , Q2

and N/C" c Aut (). Hence every Sylow p-subgroup ofN/C with p odd acts on
./() "/. Thus 1212’ 32,

O(N/C)
_

Z3 x Z, ’ [., O2,,2,2,(N)] < N,

and

C(t/’) O(N) x .
Thus/] Aut "/) Z,-_ Z2 and hence -/q/ D8. Since I’1 29,
is a maximal subgroup of some 2-subgroup 5a of G. Clearly Z(5a) Z(Y-)
(u) and .9. b. Let e 5e y" and set 57 5/(u) and .1 .’. Then. # 21 <a " and hence (x) < .%. Since Ce/<>(K) 1, we have IC(2)l 4
and IC(2)l 8. Thus 1. c l 8, ..]. - E,, and

I(r’) I(.) w I(t.) w I(xt).
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Since leaves .al invariant and ta xt. in ’, we may assume that leaves
I(ta) invariant. As S Cee(t) < 3r, this is a contradiction and the proof
of Lemma 12.2 is complete.

Let <o> where (,0
2 U. Then I(ta) w (to9), a char q/, and

char q/, as in the preceding lemma.
Suppose that xt normalizes QI and Q2. Then there is an element q Qt

<u> such that q,t q-( 1. Setting q2 q, we have C(xt) Cf(x, t)
<u, z> <u, qlq>. If 0’t

09, then

Cou(xt) x <z, xt> Syl2(Co(xt))

and u z in G. If oxt= 0-1, then C(xt) Ca(xt)<x, t> Syl2(Co(xt))
where Ca(xt) <u, z, 09q> - Es.

Suppose that QXt Q2. Then x No(Qx) c No(Q2) and there is an element
q Q1 <u> such that q q- and C(x) C(x, t) <u, z> <u, qlq2>.
Also <u, z > < Cw(xt) - E8 and hence 09

x’ 0- and C(xt) C(xt)<x, t >
SyI2(Co(xt)).

Set N No(.), C Co(a), and

_
N/O(N). Clearly <, x> < N and

xa C. Let q < e SyI2(N), so that # 7-. As in the proof of Lemma 12.2,
we have CN(t) (O(CN(t)) c C)A(x, x>.

LEMMA 12.3. (i) C O(N)(C c oq-) where C c 7" is cyclic, C c- - -, (C c -)<t> is dihedral or semidihedral and < (C c oq’) c Z(C).
(ii) (C c ’)a (C c -) and c ((C c -) /’) O.
(iii) N/(C) Z2 x :6.
(iv) C() ]<, >.
Proof. Clearly C c < -, (C c )<t> Syl2(C<t>), and Ccr)(t)

<u>. Since < (C c -) c Z(C), (i) and (iv) hold. Since

((c c :r))’ ((c c :r), 3’ ’ <u>,

I((C (3 -) /’)l -> 26 and Z((C c -) ) C c " is cyclic of order at least
4, (ii) holds. Finally, since N/C Aut (.), we have (iii) by [10, Section 1] and
we are done.

From the nature of the remainder of the proof of this lemma and in order to
simplify the notation, it is clear that, without loss of generality, we may (and
shall) assume that O(N) 1. Then C C c ’, (C
and C. C < Oz(N). Let C <> and ICI 2 for some integer
a>2.

LEMMA 12.4. (i)
(ii) " #- Ca//.

C char cql (C l/’)<x, > and . char Cq/.
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Proof. If C, then C// //, and C, / . char q/. Suppose that
< C. Clearly Z(COll) (u). Setting (C//) (COlt)/(u), we have

(c)- ( x )(, ).

Since a > 3, it is clear that Jo((Cll) ~) t x 7 and hence C r char C//.
Since fl2(C * ) 2, (i) holds. Suppose that " CO//. Then " SyI2(G)
and Il 2a >-- 25 and xt acts dihedrally or semidihedrally on C (]). Hence
(V2) _< C:r(x). Thus (V4) _< Cr(x)’ <_ -’ <_ C, St. Since Il > 2a and
Z() (u), we have x u in G. This contradiction shows that (ii) holds.

LEMMA 12.5. (i) ICNl(c,)(t)" ((C /)((t) (c, x))/(C //’))[ 2.
(ii) C( ) is dihedral.

Proof. Assume that N((C )(t)) (C )((t) x (, x)). If O2(N)
C , then O2(N) (C )(t) and hence N (C )((t) x (, x)) which
is false by Lemma 12.4(ii). Thus O2(N) C * and /02(N) is dihedral or
semidihedral. Then Lemma 12.3(iii) implies that ]O2(N) D8.

Suppose that SyI2(G). Then [C[ IV[ 2 and W’(C ) centralizes
C (V). Hence f’(C ) (C )(x) and we obtain a contradiction as
in the proof of Lemma 12.4(ii). Thus f is a maximal subgroup of some 2-
subgroupofG. Leta f, set Y C,, and Y Y. Clearly
Y Y since 2(Y) and hence Nz(Y) N(Yx) . Also Z()
(u). Setting ff /(u), we have x Z2a_I x E6 . Also
C() C() x Cg() where C() E4; similarly for C?(). Since is
abelian, we have f YY. Thus IYY/YI 4 and I [ 2a+. Since
x e g Y or xt r [Cv()l 4lC()l and [Cv()[ 41Ce(1)l, we have, = x ( ) and since a r 0. Sincea
leaves YY invariant, it follows that we may assume that te tC. Thus, since
Cz(t) S , it follows that C(t) is dihedral and that we may assume that

tV. Hence Ca(t, u) Ca(tV, u). However

(y, z, ) 02(C6(t, u)) 02(C(t, U))
and

( 02(CG(t, u))) 02(Co(ty, u)).

Thus (y, z) (y, z) by (4.12). Since [y, x] z [y, xt] and xY Y 0
or xtY Y 4 , we have y Y. This contradiction shows that

Ns(C * )(t)) (C )((t) x (, x)).

But I(t(C )) (c* if C(t) is semihidedral and I(t(C )) tc** w
(tV)c* if C(t) is dihedral. Then C(t) A(, x) implies Lemma 12.5.

Let Y N((C )(t)). Then (C )(t) is of index 2 in O2(Y), Y
O2(Y)(, x), C(t) is of index 2 in Co(r(), [o2(r), ] L
Co(r(, t) (t, u) and Co(r() is dihedral or semidihedral. Set

Co(() N(Q) N,(Q).
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Then is of index 2 in Co2r)(tc), [, /] 1, , C is a maximal subgroup
of, and hence is not abelian. Thus is dihedral or generalized quaternion,
#t"" 92 ,"//’, 9 c (u), Y (9, q/’)((t) x (to, x)), and

Clearly c ( /’) 0 by Lemma 2.12 and I(t(9 q/’)) *). Also

( ’)/c < N/C

by [10, Section 1] and hence R / < O2(N). Thus O2(N) * " or O2(N)
( "U)(t) O2(Y).

LEMMA 12.6. O2(N) 9 /" and " # ( )(x, t).

Proof. Assume that O2(N) (9 q/")(t). Then, since (9 /’) =0,
fx(9 /) 9 /" and I(t( //)) (s**), we have N O2(N)(I x) Y
where <a N and <a Y. Also (t) is dihedral or semidihedral, [9[ > 8,
and ((t))’ C. Hence we may assume that - ( "//’)(t, x). Then
Z(-) (u) and (u) < 731(-’) 31(C). Setting Y-/LSx(d-’), we have
(9/) x and 664() {(/")~ }. Thus /" char ".

Suppose that [[ > 24. Then f2(( * q/")’) char Y-, Cs**(#)
C char -, . char -, and - Syl2(G). Since the cyclic maximal subgroup
of 9(t) is (x, t)-invariant and [C[ > 8, we have Ix, C] 1. Thus 73(C) <
C-(x)’ < C where ?3x(C) is cyclic of order at least 4. Since x u in G,
this is impossible. Thus [] 23, C #, ]-[ 29, 9 /" is extraspecial of
order 27, and 9 /" char .

Let J N(9 /"), J J/O(J) and let - < St’ Syl2(J). Clearly
and Z(b) (u). Set 5 5a/(9, /). Then Cy() (, ) and 57 is di-
hedral or semidihedral with Z(ST) () and 2 in 57 since I(t( U))
s**). Thus 5 acts faithfully on //(u) and hence exp (5) < 8.
Suppose that 57 D8. Then [5[ 2t and St’ 6 Syl2(G). Thus there is.a

2-element fl No(5a) 5 such that f12 5a. Set 6f 9 /" and OYx OYa.
Then OY 4: OYx < 5 and 4: 6x <a 6. Since 1, it follows that 1
and . Then fl leaves I(toy) w I(xtoy) invariant. Since tOY xtOY in
and I(tOY) c, this is impossible.
Assume that Il 16. Then St’ Syl2.(G) since no element of 64(5) is

normal in 5. Hence 15a 2xx and O2(G) G. Thus a c x( /’) -# 0 by
[ 17, Lemma 5.38]. Since () 52(57), it follows that x acts trivially on
Since IC/<,>()l 4, it follows that every element of I(x( )) is conjugate
via into an element of (x).

Let z I(x) and let be the inverse image in of C(.)/<,>().
Then /(u) - E16, * (/ c ), Irl 2, , normalizes , and
normalizes (z, u). Hence IC<,>()l >- 2. Also Lemmas 2.2 and 2.3 imply
that (x) Z((x)) where u Z((x)) and IZ(<x>)l 4. Note that
there is an involution # s c ((x) ).

Suppose that Z((x)) is cyclic. Then (x) Z, Qa and (x) has four
conjugacy classes of involutions. If Z((x)) - E4, then (x) contains
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two or four conjugacy classes of involutions. Since x and # are not conjugate
in 5e, (, )(x) < 6, and ISe/(( )(x))l 8, it follows that IC/m)l -> 27,
which is impossible. This establishes Lemma 12.6.

Since N/(C "U) has 2-exponent at most 4 and

m(( )<t>) ( "r)(<t> <x, x>),

we have -/02(N) D8. Also tO2(N) xtO2(N), xt in .d’, and
Z(-/O2(N)) (xO2(N)).
Assume that I1 23. Then lY-I 2, a- Syl2(G), and O2(N)

is extraspecial or order 27. Let be of index 2 in the 2-subgroup r of G.
Then Z(-I) (u) and / "U < ’1 since I(tO2(N) w xtO2(N)) a- by the
usual argument. Letting

"1 <- 5 Syl2(N(O2(N))),

we have z(6e) (u), " 6e, and Cse/o2(N)(t) - E4. Also 5/02(N) acts
faithfully on 02(N)/(u) and hence 6e/O2(N) has exponent 8, 6e ’-1,
and 5e/O2(N) is dihedral or semidihedral or order 16. Also Iel 2xx,
Z(/O2(N)) (xO2(N)) and hence

_
/" char 6e. Thus 6t’ Syl2(G) and

the argument at the end of Lemma 12.6 applies to yield a contradiction.
Consequently, letting I1 2a, we have a > 4. Then # < O2(N)’ R’

and f2(O2(N)’) char O2(N), Co2m(#) C "t char O2(N), and hence. char 02(N). Also (x, t) normalizes the cyclic maximal subgroup of (t).
Hence [C, x] and x stabilizes the chain > Y/’ > 1.

Clearly 02(N)(x) -ca 2- and G c O2(N) 0. Let d 2-/02(N)’. Then
(O2(N)) X where 9 - E, and / Ex6. Clearly every involution of
xO2(N) is conjugate via O2(N) to an involution of 9x. Also if z I(xO2(N))
and is the inverse image of CoN))~() in O2(N), then < 0, .Z
9t (/" c e), z normalizes , I[ 2a+ 2, I(z)l 2a+ a, and normalizes
(, ’).

Since Ix, C] 1, it follows from Lemmas 2.2 and 2.3 that IZ(<x>)l 4.
Suppose that #

G c x. If Z(l(x)) is cyclic, then IC<>(m)l 23, IC(m)l
25, and c ((x)) consists of one or two #(x) conjugacy classes. Hence
IC/#)l >- 26 which is impossible.

If Z((x)) (#, ,) where /,2 1, then (x, u) Z((x)), (x)
9t x (x), and is dihedral since c {x, xu} 0. Also, since a c 9 0,
a c t(x) consists of at most two 9(x) conjugacy classes and again we have
a contradiction. Thus t c (02(N)(x)) O.

Suppose that " Syl2(G). Then $ O2(G) by [17, Lemma 5.38], la’l -> 212,
and ICI -> 2", Since C <_ Cr(x), we conclude that Lt(C) < C(x)’ < -’ <
02(N)(x) and we obtain a contradiction from the fact that x u in G. Hence

" q Syl2(G).



CLASSIFYING FINITE GROUPS, 619

Let - be a maximal subgroup of the 2-subgroup of- and let 6a ’.
Then z od- (02(N)(x, )), S SyI2(Ca(z)), and (u) #- (S)’. More-
over, since c (02(N)(x)) 0, we conclude that N/O2(N) has a normal
2-complement. Also 31[02,2,(N)/O2(N)I and 02,2,(N)/O2(N) a’6. Thus

02.2,(N)/O2(N) - Z3 x Z3 and N/O2(N) - Z,-1._ Z2.

Choose V Syl3(N) such that x dV. Then C02(N)(x) and [O2(N), x]
/" are dl-invariant. Then 02(02,2,(N)) /’4/" <a N, <a N, Co2N(//’/")

<a N, and 02(N)-’ normalizes Q1 and Q2. Thus x normalizes Q1 and Q2.
Set/ N/O2(N). Then dt7 C({) [dlT, {] where IC()l- 17, ]1 3.
Let 6, 09 be such that C({) () and [MT, ] (). Thus z normalizes
/(di) and //(o9). By choice of notation, we may assume that C,(di) Q and
C,(o9) 02. Then z normalizes [/, /’(di)] 02 and O. But [, z] /"

and hence [, z] C;(Q) Q2. Thus acts nontrivially on Q2(z). Applying
Lemma 2.2 and noting that S has no subgroup isomorphic to Q2, it follows that
Q2("c) - z4 * Q8. Thus Ce(z) (q2) where q2

2 u. Hence C:r(z)’
(S) (u) which is the final contradiction. Thus the proofs of Lemma 12.1
and Theorem 2 are complete.
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