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1. Introduction

In [3], Birkhoff and Pierce proved that each complete (resp. -complete)
f-algebra A with a ring unit is isomorphic to an f-algebra of extended functions
on the Boolean space of the complete (resp. a-complete) Boolean algebra of
components of the ring unit of A. Another theorem of this type has been
obtained by Henriksen and Johnson. In [4], those authors showed that each
-algebra A (i.e., an archimedean f-algebra with a ring unit) is isomorphic

to an f-algebra of extended functions on the compact Hausdorff space of all
maximal /-ideals in A. The latter result has been generalized by Johnson
[5], who showed that each archimedean f-algebra (resp. f-ring) which contains
no nonzero nilpotents is isomorphic to an f-algebra (resp. f-ring) of extended
functions on a certain locally compact Hausdorff space.

It is our purpose here to show that an archimedean f-algebra (resp. f-ring)
containing no nonzero nilpotents may be represented as an f-algebra (resp.
f-ring) of extended functions on a variety of topological spaces, where the
spaces in question are collections of /-prime ideals equipped with the hull-
kernel topology. This is the content of Theorem 4.2, the main result of the
present article. That theorem will be used to give new proofs of the various
representation theorems quoted earlier.

Several of the preliminary results appearing here are essentially due to
Amemiya. We mention especially Lemma 3.3, which is a slight generaliza-
tion of the corollary to Theorem 4.5 of [1], and Lemma 4.1, which is Theorem
18.1 of [1]. Amemiya’s results are phrased in terms of spectral functions, so
in order to keep the present article reasonably self-contained, we take the
liberty of restating them in terms of /-prime modules. (The relationship
between spectral functions and/-prime modules was observed in [6].)

2. Preliminaries

The present section and the next are devoted to a brief discussion of that
part of the theory of lattice-ordered groups (/-groups) and lattice-ordered
rings (/-rings) which is to be applied in subsequent portions of this article.
For a more complete discussion of these systems, the reader is referred to
[2] and [3].

All /-groups G considered here are assumed to be commutative. If x is
anelemenofG,henlex+ x v 0, x-= (--x) v 0, and Ix] x+ + x-.
A subgroup I of G is called an 1-module if x =< [Yl and y e I imply that

x e I. (This differs from the terminology in [6]; we make the change since
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we wish to reserve the term "ideal" for a ring concept.) An/-module I is
called an 1-prime module if x ^ y e I implies that either x e I or y e I. It is
easy o see hat he/-module I is an/-prime module if, and only if, the quo-
tient/-group G/I is totally ordered.

Let X) denote a collection of/-prime modules in G. For any subset $ of X),
the kernel of S, denoted by k(S), is the set of elements in G that are common
to all of the/-modules in $. For any subset A of G, the hull of A, denoted by
h(A), is the set of all P in such that P

_
A. It was shown in [6] that

the correspondence $ -- 6-, where $- h(k($)), is a closure operator which
makes into a topological space. The topology so defined on X) is called
the Stone or hull-kernel topology. If x is an element of G, then let X)

{P e X)’x P}. The collection/X):x e G} is a basis for the open sets for the
hull-kernel topology on X). If k(X)) 10}, then X) is said to be dense.
An/-prime module is called minimal if there is no/-prime module properly

contained in it. Proofs of the assertions in the following result can be found
in [6]. (A topological space is called zero-dimensional if the family of all
closed-and-open subsets is a basis.)

LEMMA 2.1. If G is an 1-group, then
(a) an 1-prime module P in G is minimal if, and only if, for each x e P

there is an element y P such that Ix ^ Yl 0;
(b) the set 9 of all minimal 1-prime modules is dense; and
(c) the set 9, when equipped with the hull-kernel topology, is a zero-dimen-

sional Hausdorff space; in fact, for each x in G, the set 9 is closed (and open)
in9.

Let A be a lattice-ordered ring. A subset of A which is both an/-module
and a ring ideal will be called an 1-ideal. An 1-prime ideal is an/-ideal I which
is also an/-prime module, i.e., x ^ y e I implies that x e I or y e I. A lattice-
ordered ring is called a function ring or an f-ring if a ^ b 0 and c >= 0 imply
that ca ^ b--ac ^ b--O.

It is known (see [1] or [3]) that the multiplicative operation in an archime-
commutative. (An /-group is called archimedean if na <= bdean firing is

for all nonnegative integers n implies that a =< 0.) Since the main results
of the present article are stated for archimedean f-rings, we henceforth assume
that all lattice-ordered rings considered here are commutative.

LEMMA 2.2. Thefollowing statements are equivalent in a lattice-ordered ring A.
(i) A has a dense set of 1-prime ideals.
(ii) ,A is an f-ring.
(iii) Eery minimal 1-prime module in A is a ring ideal.

The semi-normal rings of [1] are the same as f-algebras. This can be seen as follows.
When the appropriate results in [6] are used to rephrase Amemiya’s definition of semi-
normal ring in terms of minimal/-prime modules, we get condition (iii) of Lemma 2.2.
The assertion follows from the equivalence of (ii) and (iii) of that lemma, which is ob-
viously valid without the assumption of commuttivity.
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Proof. (i) implies (ii). Let be a dense set of /-prime ideals.
If a ^ b 0, thenaeP orbeP, whereP is any element of . Thus, if
c => 0, then caePorbeP, and so ca ^ beP. Since is dense, we must
have ca ^ b-O.

(ii) implies (iii). Let P be a minimal/-prime module, and suppose that
a e P, x e A. By Lemma 2.1(a), there is an element b e P such that
al ^ bl 0. Thus, (Ixl’l al) ^ bl 0, and since P is an /-prime

module, we must have ]x].la]eP. But uvl <- ]ul vl in any /-ring,
and so xa P.

(iii) implies (i). This is an immediate consequence of Lemma 2.1(b).
The proof of the next result is similar to the proof of Lemma 2 in [8], so

will be omitted.

LEMMA 2.3. If a is a positive element of the firing A, and if I is an l-ideal
such that a I, then there is an 1-ideal P of A which contains I, and which is
maximal with respect to the property of not containing a; moreover, P is an
1-prime ideal.

A collection S of nonzero positive elements of the/-group G is called a meet
orthogonal set if s ^ 0 for each pair of distinct elements of S. By Zorn’s
lemma, each /-group contains a maximal meet orthogonal set. It is clear
that S is a maximal meet orthogonal set if, and only if, Ix ^ s 0 for each
s e S implies that x 0. A collection S of nonzero elements of the f-ring A
is called an orthogonal set if st 0 for each pair of distinct elements of S.
Again, Zorn’s lemma insures the existence of maximal orthogonal sets. If A
has no nonzero nilpotents, then the orthogonal set S is a maximal orthogonal
set if, and only if, xs 0 for each s in S implies that x 0. In an f-ring,
squares are positive, and a ^ b 0 implies that ab 0. These remarks can
be used to prove the following result.

LEMMA 2.4. Let A be an f-ring which contains no nonzero nilpotents, and
let S be a maximal orthogonal subset of A. Then the set s2: s e S} is both maxi-
mal orthogonal and maximal meet orthogonal.

3. Lattice-ordered groups
If I is an /-module in the/-group G, then we shall also use the symbol I

to denote the natural homomorphism of G upon the quotient /-group G/I.
By G+, we mean the set of all positive elements in G. Let a be a nonzero
positive element of G, and let P be an/-prime module of G such that a P.
For x e G+, let (x/a, P) be the infimum of all rational numbers m/n,
n > 0, for which nP(x) <= mP(a). (The infimum of the empty set is under-
stood to be -t-oo.) If x is an arbitrary element of G, then put (x/a, P)
(x+/a, P) (x- P). Since x+ ^ x- 0, either x+ e P or x- e P, and so
(x/a, P) is well defined. It is easy to see that

(x/a, P) inf {m/n, n > O" (ma nx)- P}
inf {m/n, n > O’(ma nx) + P}.
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Techniques identical to those used to prove the first part of Theorem 5.1
in [6] will yield a proof of statement (a) of the following result. Assertion
(b) follows from a routine calculation, using the fact that G/P is a totally
ordered group when P is an/-prime module in G. If G is a vector lattice,
and if I is an/-module of the underlying/-group, then I is closed under multi-
plication by real numbers, i.e., I is a linear subspace of G. This observation
together with (a) and (b) yields statement (c) below.

LEMMA 3.1. Let X) be a dense collection of 1-prime modules in the 1-group
G, let T be a meet orthogonal subset of G, and let the set 9C U {’t e T} be
equipped with the hull-kernel topology. For P 9C, and x e G, put :(P)
(x/t, P) where is the unique element of T for which P. Then,

(a) is a continuous mapping from : to the two-point compactification of
the real line;

(b) if (P) and (P) are finite, then

x ^ (P) 2,(P) ^ f(P),

X v y(P) 2,(P) v z2(P),

x + y(P) 4(P) + (P) and

(c) if G is a vector lattice, and if a is a real number, then in addition to
a and b we have

a-(P) a(P)
provided 4(P) is finite.

If B is a nonempty subset of the/-group G, then B" denotes the set of all x
inGsuchthat xl ^ bl 0foreachbinB. If Bconsistsofasingle
element b, we write b" instead of {b} .
The next result can be found in [6]. It is stated here for ease of reference.

LEMMA 3.2. If 5 is a dense collection of 1-prime modules in the 1-group G,
then b" k(X)b) for each element b of G.

LEMMA 3.3. Let be a dense collection of 1-prime modules in the archimedean
l-group G, and let a, b be nonzero elements of G+ such that X)b a. If x is an.
element of G+ such that (x/a, P) 0 for each P 5, then x b’,

Proof. If (x/a, P) inf {m/n:n > O, nP(x) <- mP(a)} 0 for each
P e X), then nP(x) -< P(a) for each n e N, and each P e, where N denotes
the set of positive integers. Thus, (a nx)-e P for each n e N, and each
Peb. ByLemma3.2, (a nx)-eb’, i.e., (a nx)- ^ b O for each
neN. Therefore, b ((nx a)+)", and since Lemma 3.2 implies that
c is, in particular, a subgroup of G for arbitrary c in G, we conclude that
(nx a) + ^ nb O for each n eN. Hence,

(nx- a) ^ nb <= (nx--a) +
^ nb O.
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and so
nx ^ (nb -- a) a (nx a) ^ nb <= O,

n(x ^ b) <- nx ^ nb <= nx ^ (nb + a) <- a.

We have shown that n(x ^ b) <= a for each n N, and since G is archimedean,
we conclude that x ^ b -< 0, i.e., x ^ b 0. This completes the proof of
the lemma.

4. The representation theorem
LEMMA 4.1. If P is an 1-prime ideal Of the l-ring A, and if a, b are positive

elements of A such that ab P, then (xy/ab, P) (x/a, P)(y/b, P) for all
x, y in A, provided the right-hand side of this equation makes sense.

Proof. We may assume that x and y are elements of A+. If m/n and
ml/nl are positive rationalssuch that 0 <- nP(x)

_
raP(a), and 0 <- nl P(y) <=

m P(b), then 0 -_< nn P(xy) <= mm P(ab). Now

inf Imm/nn’nP(x) <- raP(a), n P(y) <- m P(b)} (x/a, P)(y/b, P),

and so (xy/ab, P) <= (x/a, P)(y/b, P).
Suppose that there is a positive rational m/n for which

(xy/ab, P) < m/n < (x/a, P)(y/b, P).

Then either (x/a, P) > m/n, or (y/b, P) > 1, i.e., either nP(x) > mP(a),
or P(y) > P(b), and thus nP(xy) > mP(ab). But also, nP(xy) <= mP(ab),
which is impossible. This completes the proof of the lemma.
By an extended (real-valued) function on the topological space X, we mean

a continuous mapping of X into the two-point compactification of the real
line R which is real-valued on an everywhere dense subset of X. Let D(X)
denote the set of all extended functions on X. If f, g are in D(X), and if
a is in R, then the functions af, f ^ g, and f v g, which are defined pointwise,
are in D(X). Let R(f) denote the set of points in X at which f is real-valued.
If there is a function h in D(X) such that h(x) f(x) - g(x) for each x in
R(f) n R(g), then h is called the sum of f and g, and is denoted by f - g.
If there is a function/ in D(X) such that k(x) f(x)g(x) for each x in
R(f) n R(g), then k is called the product of f and g, and is denoted by fg.
Since R(f) n R(g) is dense in X, the sum and product are uniquely defined,
provided they exist. A nonempty subset of D(X) which is a ring with respect
to the above operations of sum and product is called a ring of extended func-
tions on X. Algebras, firings, and f-algebras of extended functions are defined
analogously.
We now come to the main representation theorem. (An isomorphism of

an /-ring (resp. /-algebra) is a ring (resp. algebra) isomorphism which pre-
serves the lattice operations.)
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THEOREM 4.2. Let A be an archimedean f-ring (resp. f-algebra) which con-
tains no nonzero nilpotents, let be a dense collection of 1-prime ideals in A,
and let T be a subset of A whose elements are squares of a maximal orthogonal
subset of A+. If the set 9 U It’t e T} is equipped with the hull-kernel
topology, then A is isomorphic to an firing (resp. f-algebra) of extended functions
on .

Proof. First assume that A is an f-ring.
To see that a set T with the prescribed properties exists, take any maximal

orthogonal subset $1, and let S S {s2"s S}. By Lemma 2.4, S is,
in particular, a maximal orthogonal set of positive elements. Now put
T S2. Another application of Lemma 2.4 shows that T is a subset of A+
which is both maximal orthogonal and maximal meet orthogonal.

Since T is a meet orthogonal set, the sets t, e T, are pairwise disjoint;
since X) is dense, none of these sets is empty. If P e 9, then let be the unique
element of T for which e P. For an element x e A+, put x*(P) (tx/t, P).
If x is an arbitrary element of A, then put x*(P) (x+)*(P) (x-)*(P).
Sincex+ ^ x- 0, wehavetx+ ^ tx--- O. Thus, tx+ePortx-eP, and
so x*(P) is well defined.
We now show that x* is an extended function on if:. For each y in A,

let (P) (y/t, P). Then x*(P) "(P), and it follows from (a) of Lemma
3.1 that x* is a continuous mapping of 9 into the two-point compactification
of the real line.
To show that R(x*) is dense in C, we may assume that x is an element of

A+. Let 9b be a nonempty basic open set in 9C. Thus, b 0, and we may
take beA+. Suppose thatx*(P) + for eachPin 9Cb. Now 9C

n 9 (J {X)^’t T}. Since (tx/t, P) + for each P in ^t, it follows
that (t/tx, P) 0 for each such P. Clearly, tx P for P e x)b^t, and so by
Lemma3.3, tisin (b ^ t) ,i.e.,b ^ 0. Thus, beT’,andsinceTisa
maximal meet orthogonal set, b 0, a contradiction.
We have shown that the set A* {x*’x e A} is a subset of D(9). It

follows easily from (b) of Lemma 3.1 that

(x - y)* x* + y* (x ^ y)* * *x ^ y*, and (xv y)* x*v y

for all x, y in A.
Now let P e 9, and let be the unique element of T for which P. Sup-

pose that s2, where s e S. If x*(P) and y*(P) are finite, then by Lemma
4.1 we have

(xy)*(P) (sxy/s, P) (sx/s, P)(sy/s, P).

Another application of Lemma 4.1 gives

(s2z/s, P) (s/s, P)(sz/s, P) (sz/s, P)

for each z in A, and so (xy)*(P) x*(P)y*(P).
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Thus, the set A* is an/-ring of extended functions on 9C, and the mapping,
x -- x is a homomorphism of the firing A upon A*.
To show that the above mapping is an isomorphism, let x* 0. We may

suppose that x is an element of A+. If e T, then x*(P) = (tx/t, P) 0
+/-"for each P 2t, and so Lemma 3.3 insures that tx Therefore, tx ^ 0

for eachteT. But thentx ^ tx O, or tx O for each e T. SinceTisa
maximal orthogonal set, we have x 0. Since A* is the isomorphic image of
an f-ring, it is also an f-ring.

This completes the proof of the theorem when A is an firing. The assertion
for f-algebras follows from the result for f-rings and (c) of Lemma 3.1.

5. Locally compact spaces
Throughout this section, we let 6’ denote the collection of ll/-prime ideals

of the f-ring A. In virtue of Lemma 2.2, 6 is dense.
If is a nonzero positive element of A, then let denote the set of all

/-ideals in A which are maximal with respect to the property of not containing
t. By Lemma 2.3, such ideals exist, and moreover, each is prime, i.e., et

_
LEMMA 5.1. If is a nonzero positive element of the firing A, then the set

6 is a compact Hausdorff space when equipped with the hull-kernel topology.

Proof. We first prove that the set (9, is compact. Consider a collection
of relatively closed subsets of (Pt whose intersection is empty. We may
suppose that they have the form h(b) n t, where b ranges over some subset
B of A+, and where h(b) {P e 6’b P}. Thus, h(B) n 6t , or h(B)
h(t). In virtue of Lemma 2.3, each/-ideal is the intersection of all/-prime
ideals containing it, and so e (B), the/-ideal generated by B. Hence, there
exist nonnegative integers nl, ..., nk, elements bl, ..., bk in B, and elements
al, ..., a in A+ such that

__< abl - ab nbl - nbk.
Since (9+ (, u (9, and (9,

___
6, n 6 for any positive elements x, y,

it follows that (Pt

_
13 (Pb, or Vl (h(b) 6t) 0. This proves that

is compact.
To show that 6 is compact, let 6t

___
U (gb’b e B}, where B is some subset

of A+. If P e (t, then by Lemma 2.3, there is an element Q in 6t such that
P

___
Q. Moreover, there is an element b in B such that Q e (Pb. Hence, the

collection {(b’b e B} is an open covering of the compact set (gt, and so there
exist finitely many elements b, ..., b in B such that (9t

___
(J (. But

( (, so the former set is compact.
To see that 6 is a Hausdorff space, let P and Q be distinct elements of

6, and choose x e P n A+ such that x e Q, and y e Q A+ such that y P.
Then P h(x) n (, and Q e h(y) n (P. Now

(x- y) + - y _>- x, (x- y)-+ x >_- y,



276 os KIST

so
(P (P u ((,_)+, and (P (G u 5)(_)

Thus, P e (P(_)-, Q e 5)(_)+, and these two sets are disjoint. Since P and
Q have disjoint neighborhoods in , they obviously also have disjoint neigh-
borhoods in . This completes the proof of the lemma.

LEMM+/- 5.2. If is a nonzero positive element o] the archimedean f-ring A,
then (P is dense in

Proof. By Lemma 3.2, we have /(5)), so it suffices to show that
k(()

___
t’. If x is an element of A+ such that x e , then by Lemma 3.3,

there is an element P e (P such that (x/t, P) > O. Choose a positive rational
m/n so that (x/t, P) > m/n; then (mr nx)- P, and so (mt nx) + P,
since P is an/-prime ideal. By Lemma 2.3, there is an element Q e such
that P __c Q. :Now

0 ((rot nx)+/t, Q) ((mt nx)/t, Q) v O,

or (x/t,Q) >-- m/n > O. Thus, xeQ, andsok((pt) c_t.
The following result has been proved in [5]. The proof given here is based

on Theorem 4.2.

THEOREM 5.3. An archimedean f-ring (resp. f-algebra) A which contains
no nonzero nilpotents is isomorphic to an firing (resp. f-algebra) of extended
functions on some locally compact Hausdorff space.

Proof. Let S be a maximal orthogonal subset of A+, and put X)

U{(pt:t e T}, where T S. By LemmaS.2,/c((Pt) t’, andthusk(O) T’.
Lemma 2.4 insures that T is a maximal meet orthogonal set, so X) is dense.
By letting C U {Dt:t e T}, it is clear that E X). By Theorem 4.2, A
is isomorphic to an f-ring (resp. f-algebra) of extended functions on c. It
is an immediate consequence of Lemma 5.1 that C is a locally compact Haus-
dorff space.

6. Zero-dimensional spaces

Recall that each minimal /-prime module in an f-ring A is a ring ideal
(Lemma 2.2), and that the set of all minimal/-prime modules in any lattice-
ordered group is a dense zero-dimensional Hausdorff space (Lemma 2.1).
Applying Theorem 4.2 with the set of all minimal/-prime modules in A, we
obtain

THEOnEM 6.1. An archimedean f-ring (resp. f-algebra) which contains no
nonzero nilpotents is isomorphic to an f-ring (resp. f-algebra) of extended func-
tions on some zero-dimensional Hausdorff space.

Let 9 denote the space of all minimal/-prime modules in the lattice-ordered
group G, and let 19a:a G+}. For each pair of elements a, b in G+,
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we have aAb a [’1 b, and ayb a -] b. Thus, , when partially
ordered by set inclusion, is a (distributive) lattice.
A positive element 1 in G is called a weak order unit if the set {1} is maximal

meet orthogonal. If G has a weak order unit, then Lemma 2.1(a) implies
that .
A component of the weak order unit 1 is an element e such that

e ^ (1 e) 0. It is known that the set of all components of 1 is a Bool-
ean algebra when equipped with the lattice operations which it inherits from
G.
An/-module I is called a direct summand of G if there is an/-module J such

that I n J {0}, and G I -t- J. If I is a direct summand of G with com-
plementary direct summand J, then it is easy to see that J I’.
The following lemma is a consequence of certain of the developments in

[1] and [6], but for the sake of completeness, we give an independent proof.

LEMMA 6.2. Let G be a lattice-ordered group with a wealc order unit 1, and
suppose that for each a G+ the 1-module a" is a direct summand of G. Then

is a Boolean algebra, and is homeomorphic to the Boolean space of .
Moreover, and the Boolean algebra B of all components of 1 are isomorphic.

Proof. For e in B, put (e) e. It is clear that the mapping t pre-
serves finite infima and suprema. To show that this mapping is onto , let
G a" a ,whereaeG+,andwritel uv, whereuea andrea
Since 1 u v v, and since G is a distributive lattice, we have a ^ 1 a ^ v,

a"so a a^l a^v a n v. Now v e implies that a v
By Lemma 3.2, (9a)

__
k(Ov), and by Lemma 2.1(c), a. Thus,, and v is obviously a component of 1.

To see that is one-to-one, let ], where e and f are elements of B.
xBy Lemma 3.2, we have e therefore, (1 e) ] 0, and

(1 -f) e 0. Nowl e v (1 e) implies thatf=f 1 =f e;
andl =f v (l-f) implies thate e 1 e f.

For Pe, letf(P) {Ue’PeU}. It is easy to see thatf(P) is a
prime ideal in the Boolean algebra , and that the mapping f is a homeo-
morphism of into the Boolean space of . To show that this mapping is
onto, let Q be a prime ideal in ,andletP {xeG’eQ}. Ifx] [y],
and y e P, then the identity implies that x e P; if x and y are in P,
then the inequality Ix + y x + ]y ], the previous identity, and the
identity+ , which holds for u, v in G+, imply that x y e P.
Thus, P is an/-module. It is easy to see that un/-module I is an/-primemodule
if, andonlyif, x y 0impliesthatxeIoryeI. Hence, ifx y 0,
then n 0 9, and so e Q or e Q, i.e., x e P or y e P. To show
that P is minimal, let x e P; since is a Boolean algebra, has a comple-
ment, say, in . We may assume that both x and y are in G+. Because
Qisaproper ideal, eQ, i.e., y eP. Now , 9, and
since is dense, we must have x y 0. By Lemma 2.1(a), P e . The
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inclusion f(P) Q, and the fact that prime ideals in a Boolean algebra are
maximal imply that f(P) Q. This completes the proof of the lemma.

It is clear that a ring unit 1 in an firing A is a weak order unit. With the
notation as in Theorem 4.2, let 0 , the space of all minimal/-prime mod-
ules in A; taking T [1}, we have 9 . An archimedean firing with a
ring unit has no nonzero nilpotents. (A proof of this can be found in [3].)
From these remarks and Lemma 6.2, we get

THEOREM 6.3. Let A be an archimedean f-ring (resp. f-algebra) with ring
unit 1, and suppose that for each element a A+, the 1-module a" is a direct
sunmand of A. Then A is isomorphic to an f-ring (resp. f-algebra) of extended
functions on the Boolean space of the Boolean algebra of components of 1.

It is known (see, e.g., [7]) that the/-module a" is a direct summand of G
for each positive element of a C-complete lattice-ordered group G. Thus,
the previous result yields the representation theorem of Birkhoff and Pierce
which was quoted in the introduction.
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