ON THE DECOMPOSITION THEORY FOR KRULL VALUATIONS

BY
P. Ribenboim

Let K be a field endowed with a Krull valuation $v, L \mid K$ a finite Galoisian extension, $v=\left\{w=w_{1}, w_{2}, \cdots, w_{g}\right\}$ the set of distinct prolongations of v to L. We define and study the decomposition field and decomposition group associated with a distinguished set ε of valuations, $\varepsilon \subseteq$.

Among other results, we obtain a new proof that the value group $w(Z)$ and the residue-class field Z / w of the decomposition field Z of w in $L \mid K$ are respectively the same as those of the ground field $K: w(Z)=v(K), Z / w=$ K / v; cf. [1], [4, pp. 70 ff .].

Finally, the theory is applied to define the decomposition field of a prolongation of the valuation v to a finite extension of K, which may be neither normal nor separable.

An example is given to show that the results indicated cannot be improved.

1. Known results and a technical lemma

Let w_{1}, w_{2} be valuations of a field L, and x_{1}, x_{2} nonzero elements of L. We say that the pair (w_{1}, x_{1}) is compatible with the pair (w_{2}, x_{2}) in case

$$
\left(w_{1} \wedge w_{2}\right)\left(x_{1}\right)=\left(w_{\perp} \wedge w_{2}\right)\left(x_{2}\right)
$$

where $w_{1} \wedge w_{2}$ denotes the greatest lower bound of w_{1}, w_{2} in the ordered set of valuations of L (cf. [4, p. 43] or [3]).

This relation is transitive: If $\left(w_{1}, x_{1}\right)$ is compatible with $\left(w_{2}, x_{2}\right)$, and if (w_{2}, x_{2}) is compatible with $\left(w_{3}, x_{3}\right)$, let us consider $w_{1} \wedge w_{2}$ and $w_{2} \wedge w_{3}$. Since both valuations are coarser than w_{2}, one is coarser than the other, say $w_{1} \wedge w_{2} \geqq w_{2} \wedge w_{3}$; hence $w_{1} \wedge w_{3}=w_{2} \wedge w_{3}$. Thus, if either $\left(w_{1} \wedge w_{2}\right)(y)=0$ or $\left(w_{2} \wedge w_{3}\right)(y)=0$, we have $\left(w_{1} \wedge w_{3}\right)(y)=0$. This implies that

$$
\left(w_{1} \wedge w_{3}\right)\left(x_{1} / x_{3}\right)=\left(w_{1} \wedge w_{3}\right)\left(x_{1} / x_{2}\right)+\left(w_{1} \wedge w_{3}\right)\left(x_{2} / x_{3}\right)=0
$$

showing that $\left(w_{1}, x_{1}\right)$ is compatible with $\left(w_{3}, x_{3}\right)$.
More generally, the set $\left\{\left(w_{1}, x_{1}\right),\left(w_{2}, x_{2}\right), \cdots,\left(w_{g}, x_{g}\right)\right\}$ is said to be compatible when (w_{i}, x_{i}) is compatible with (w_{j}, x_{j}), for any $i \neq j$.

The following theorems will be used (cf. [3]):
Approximation Theorem. If w_{1}, \cdots, w_{g} are pairwise incomparable valuations of L, if $x_{1}, \cdots, x_{g} \in L$ are such that

$$
\left\{\left(w_{1}, x_{1}\right),\left(w_{2}, x_{2}\right), \cdots,\left(w_{g}, x_{g}\right)\right\}
$$

Received July 18, 1961; received in revised form January 4, 1962.
is compatible, then there exists $x \in L$ such that

$$
w_{i}(x)=w_{i}\left(x_{i}\right) \quad \text { for every } i=1, \cdots, g .
$$

Strong Approximation Theorem. Let w_{1}, \cdots, w_{g} be pairwise incomparable valuations of L, let $x_{1}, \cdots, x_{g} \in L$ be such that $\left\{\left(w_{1}, x_{1}\right), \cdots,\left(w_{g}, x_{g}\right)\right\}$ is compatible, and let $b_{1}, \cdots, b_{g} \in L$. Then, in order that there exist an element $x \in L$ such that

$$
w_{i}\left(x-b_{i}\right)=w_{i}\left(x_{i}\right) \quad \text { for every } i=1, \cdots, g,
$$

it is necessary and sufficient that the following condition hold:
If $w_{i}\left(b_{i}-b_{j}\right)<w_{i}\left(x_{i}\right)$, for indices $i \neq j$, then

$$
\left(w_{i} \wedge w_{j}\right)\left(x_{i}\right)=\left(w_{i} \wedge w_{j}\right)\left(b_{i}-b_{j}\right) .
$$

The following technical result will be used in the proof of Theorem 2:
Lemma 1. Let $L \mid K$ be an algebraic extension, v a valuation of K, and $w_{1}, \cdots, w_{\theta}$ a set of distinct prolongations of v to L. Given an element $x_{1} \in L$, $x_{1} \neq 0$, there exist elements $x_{2}, \cdots, x_{g} \in L$ such that $\left\{\left(w_{1}, x_{1}\right), \cdots,\left(w_{g}, x_{g}\right)\right\}$ is compatible and ${ }^{1}$

$$
w_{1}\left(x_{1}\right)<w_{i}\left(x_{i}\right) \quad \text { for every } i=2, \cdots, g .
$$

Proof. By the transitivity property of the compatibility relation, it is sufficient to consider the case where $g=2$.
If $w_{1}\left(x_{1}\right)<w_{2}\left(x_{1}\right)$, we take $x_{2}=x_{1}$.
If $w_{1}\left(x_{1}\right)=w_{2}\left(x_{1}\right)$, we take $x_{2}=x_{1} y$, with $\left(w_{1} \wedge w_{2}\right)(y)=0, w_{2}(y)>0$, observing that such an element $y \in L$ exists, since $w_{1} \wedge w_{2} \neq w_{2}$.
If $w_{2}\left(x_{1}\right)<w_{1}\left(x_{1}\right)$, let m be an integer such that $m \cdot w_{1}(L) \subseteq v(K)$, $m \cdot w_{2}(L) \subseteq v(K)$; hence, there exist elements $y_{1}, y_{2} \epsilon K$ such that $m \cdot w_{1}\left(x_{1}\right)=v\left(y_{1}\right), m \cdot w_{2}\left(x_{1}\right)=v\left(y_{2}\right)$, and hence $v\left(y_{2}\right)<v\left(y_{1}\right)$. Taking $x_{2}=x_{1} \cdot\left(y_{1} / y_{2}\right)^{2}$, we have

$$
\left(w_{1} \wedge w_{2}\right)\left(y_{2}\right)=m \cdot\left(w_{1} \wedge w_{2}\right)\left(x_{1}\right)=\left(w_{1} \wedge w_{2}\right)\left(y_{1}\right) ;
$$

hence $\left(w_{1} \wedge w_{2}\right)\left(x_{1}\right)=\left(w_{1} \wedge w_{2}\right)\left(x_{2}\right)$, so $\left(w_{1}, x_{1}\right)$ is compatible with $\left(w_{2}, x_{2}\right)$.
Finally,

$$
\begin{aligned}
w_{2}\left(x_{2}\right)=w_{2}\left(x_{1}\right)+2 \cdot\left[v\left(y_{1}\right)-v\left(y_{2}\right)\right] & >w_{2}\left(x_{1}\right)+(1 / m)\left[v\left(y_{1}\right)-v\left(y_{2}\right)\right] \\
& =w_{2}\left(x_{1}\right)+w_{1}\left(x_{1}\right)-w_{2}\left(x_{1}\right)=w_{1}\left(x_{1}\right)
\end{aligned}
$$

2. New results

Let $L \mid K$ be a finite Galoisian extension, $\mathfrak{K}=\operatorname{Gal}(L \mid K)$; let v be a valuation of K, and ε a nonempty set of prolongations of v to L.

[^0]The set

$$
\mathcal{Z}_{L \mid K}(\mathcal{E})=\mathbb{Z}(\mathcal{E})=\{\sigma \in \mathscr{K} \mid w \circ \sigma \in \mathcal{E} \text { for every } w \in \mathcal{E}\}
$$

is clearly a subgroup of \mathscr{K}, called the decomposition group of the set ε in $L \mid K$. The field of invariants of $Z(\mathcal{E})$ is denoted by $Z_{L \mid K}(\mathcal{E})=Z(\mathcal{E})$, and it is called the decomposition field of the set ε in $L \mid K$.

The special case where ε is reduced to only one prolongation w of v is already well known; corresponding notations $\mathcal{Z}(w), Z(w)$ will be used.

A nonempty set ε of valuations of L, prolongations of the valuation v of K, is called a distinguished set whenever there exists an intermediate field F, $K \subseteq F \subseteq L$, such that
(1) all the valuations $w \in \mathcal{E}$ have the same restriction w^{F} to F;
(2) ε is the set of all the prolongations of w^{F} to L.

Trivial distinguished sets are \mathcal{V} (the set of all the prolongations of v to L) and each set $\{w\}$, where w is any prolongation of v to L.

In general, there may exist sets \mathcal{E} which are not distinguished, because
If \mathcal{E} is a distinguished set, then the number of elements in \mathcal{E} divides the degree [$L: K$] (a more precise assertion will be made later).

Indeed, if ε is a distinguished set of valuations of L, if F is a field such that ε is the set of all prolongations to L of some valuation u of F, then $[L: F]=e \cdot f \cdot t \cdot \chi^{q}(c f .[4$, p. 78]), where
e is the ramification index of any $w \in \mathcal{E}$ in $L \mid F$,
f is the inertial degree of any $w \in \mathcal{E}$ in $L \mid F$,
t is the number of valuations in ε,
χ is the characteristic exponent of the residue-class field $K / v, q \geqq 0$.
Hence, t divides $[L: K]=[L: F] \cdot[F: K]$.
Theorem 1. Let $\&$ be a nonempty set of prolongations of v to L.
(a) If $w \in \mathcal{V}, w \notin \mathcal{E}$, then the restriction of w to $Z(\mathcal{E})$ is distinct from the restriction to $Z(\mathcal{E})$ of any valuation in \mathcal{E}.
(b) $Z(\varepsilon)$ is the smallest intermediate field with property (a).
(c) If, moreover, \mathcal{E} is a distinguished set, then all the valuations in ε have the same restriction to $Z(\varepsilon)$.

Proof. (a) If $w \in \mathcal{V}$ has the same restriction to $Z(\varepsilon)$ as a valuation $w^{\prime} \in \mathcal{E}$, then w, w^{\prime} are conjugate valuations in the extension $L \mid Z(\mathcal{E})$, having Galois group $\mathbb{Z}(\mathcal{E})$; so there exists $\sigma \in \mathbb{Z}(\mathcal{E})$ such that $w=w^{\prime} \circ \sigma \in \mathcal{E}$.
(b) Let F be a field, $K \subseteq F \subseteq L, \mathcal{F}=\operatorname{Gal}(L \mid F)$, and assume that F satisfies property (a) of $Z(\mathcal{E})$; we want to show that $F \supseteq Z(\mathcal{E})$, or equivalently, $\mathfrak{F} \subseteq \mathbb{Z}(\mathcal{E})$. Let $\sigma \in \mathfrak{F}, w \in \mathcal{E}$; then $w \circ \sigma$ is a valuation of L having the same restriction to F as w; by property (a) of F, we must have $w \circ \sigma \epsilon \mathcal{E}$. This shows that $\sigma \in \mathbb{Z}(\mathcal{E})$, and hence $\mathcal{F} \subseteq \mathbb{Z}(\mathcal{E})$.
(c) There exists an intermediate field F such that \mathcal{E} is the set of all the prolongations to L of a valuation of F. Hence, F satisfies property (a) above;
by (b), $F \supseteq Z(\varepsilon)$; hence all the valuations in ε have the same restriction to $Z(\varepsilon)$.

Theorem 2. (a) If ε is any nonempty set of prolongations of v to L, then, for every $w \in \mathcal{E},(w(Z(\mathcal{E})): v(K))$ divides

$$
(\mathbb{Z}(w): \mathbb{Z}(\varepsilon) \cap \mathbb{Z}(w))=[Z(\mathcal{E}) \cdot Z(w): Z(w)]
$$

in particular, if $\mathcal{E}=\{w\}$, then $w(Z(w))=v(K)$.
(b) $Z(w) / w=K / v$ for every prolongation w of v to L.

Proof. (a) We may assume that $Z(\varepsilon) \neq K$. Let us denote $H=Z(\mathcal{E}) \cdot Z(w), \mathfrak{H}=\operatorname{Gal}(L \mid H)=\mathbb{Z}(\mathcal{E}) \cap \mathbb{Z}(w), m=(\mathbb{Z}(w): \mathfrak{H})=$ [$H: Z(w)$].

To show that $(w(Z(\varepsilon)): v(K))$ divides m, it is sufficient to establish that if $\alpha \epsilon w(Z(\varepsilon))$, then $m \alpha \in v(K)$. Indeed, this implies that the totally ordered abelian group $w(Z(\varepsilon)) \subseteq(1 / m) v(K)$, so it must be of type $\left(1 / m^{\prime}\right) v(K)$, where m^{\prime} divides m.

Let $\alpha \in w(Z(\varepsilon)) \subseteq w(H)$. Denote by $u_{1}=w^{H}$ the restriction of w to $H ; u_{1}$ is not the only prolongation of v to H, for otherwise $\mathcal{E}=\mathcal{V}$ by Theorem 1 (a), and $Z(\varepsilon)=K$ by Theorem 1 (b).

Let u_{2}, \cdots, u_{s} be the other valuations of H extending v. If $x_{1} \in H$ is such that $\alpha=u_{1}\left(x_{1}\right)$, by Lemma 1, there exist $x_{2}, \cdots, x_{s} \in H$ such that

$$
\left\{\left(u_{1}, x_{1}\right), \cdots,\left(u_{s}, x_{s}\right)\right\}
$$

is compatible and $u_{1}\left(x_{1}\right)<u_{i}\left(x_{i}\right)$ for every $i=2, \cdots, s$. As the valuations $u_{1}, u_{2}, \cdots, u_{s}$ are pairwise incomparable (since they are prolongations of v), by the Approximation Theorem there exists $c \epsilon H$ such that $u_{i}(c)=u_{i}\left(x_{i}\right)$ for every $i=1,2, \cdots, s$.

Let

$$
b=N_{H \mid Z(w)}(c)=\prod_{\sigma} \sigma(c) \in Z(w)
$$

(where σ runs through a set of representatives of right cosets of \mathfrak{H} in $\mathbb{Z}(w)$). We observe that for every such σ we have $w \circ \sigma=w$; on the other hand, their number is $m=(\mathcal{Z}(w): \mathscr{C})$. Then

$$
w(b)=\sum_{\sigma} w(\sigma(c))=\sum_{\sigma} w(c)=m \alpha
$$

Let now

$$
a=\operatorname{Tr}_{Z(w) \mid K}(b)=\sum_{\tau} \tau(b) \epsilon K
$$

(where τ runs through a set of representatives of right cosets of $\mathcal{Z}(w)$ in \mathfrak{K}); we have $v(a)=w(a) \geqq \min _{\tau}\{w \circ \tau(b)\}$, and we want to compute the exact value of a.

If $\tau \in \mathbb{Z}(w)$, then $w \circ \tau=w$, and hence $w(\tau(b))=w(b)=m \alpha$.
If $\tau \notin \mathbb{Z}(w)$, then $\tau \sigma \notin \mathbb{Z}(w)$ (for each $\sigma \in \mathbb{Z}(w)$). Hence $(w \circ \tau \sigma)^{H} \neq w^{H}$, since otherwise the valuations $w \circ \tau \sigma, w$ would be conjugate in the extension $L \mid H$, and thus there would exist $\varphi \in \mathfrak{H C}$ such that $w \circ \tau \sigma=w \circ \varphi, \tau \sigma \varphi^{-1} \in \mathbb{Z}(w)$
and $\tau \sigma \in \mathbb{Z}(w) \cdot \mathfrak{F}=\mathbb{Z}(w)$, a contradiction. It follows that $w \circ \tau \sigma(c)=$ $u_{i}(c)=u_{i}\left(x_{i}\right)>\alpha$, for some $u_{i} \neq u_{1}$.

It follows that if $\tau \notin \mathcal{Z}(w)$, then

$$
w \circ \tau(b)=w \circ \tau\left(\prod_{\sigma} \sigma(c)\right)=\sum_{\sigma} w \circ \tau \sigma(c)>m \alpha .
$$

We conclude that there exists precisely one τ such that $w \circ \tau(b)=m \alpha$ is the minimum possible. Hence, $v(a)=w(a)=\min _{\tau}\{w \circ \tau(b)\}=m \alpha$, so $m \alpha \in v(K)$.
(b) We know that $Z(w) / w$ is an extension of K / v (after a canonical identification). We must show that if $b \in A_{w} \cap Z(w)$ (valuation ring of the restriction of w to $Z(w)$) there exists $a \in A$ (valuation ring of v) such that $b \equiv a\left(\bmod P_{w} \cap Z(w)\right)$ (prime ideal of the restriction of w to $\left.Z(w)\right)$.

We may assume $b \neq 0$ and $Z(w) \neq K$.
Let u_{1} be the restriction of w to $Z(w) . \quad u_{1}$ is not the only prolongation of v to $Z(w)$, for otherwise v has only one prolongation to L, by Theorem 1 (a) applied to $\mathcal{E}=\{W\}$; then $Z(w)=K$.

Let u_{2}, \cdots, u_{s} be the other prolongations of v to $Z(w)$. We want to apply the Strong Approximation Theorem.

Let j be an index such that $u_{1}>u_{1} \wedge u_{j} \geqq u_{1} \wedge u_{i}$, for every $i=2, \cdots, s$; hence, there exists an element $x_{1} \in Z(w)$ such that $u_{1}\left(x_{1}\right)>0$, but

$$
\left(u_{1} \wedge u_{j}\right)\left(x_{1}\right)=\left(u_{1} \wedge u_{i}\right)\left(x_{1}\right)=0
$$

for every $i=2, \cdots, s$.
By Lemma 1, there exist elements $x_{2}, \cdots, x_{s} \in Z(w)$ such that

$$
\left\{\left(u_{1}, x_{1}\right), \cdots,\left(u_{s}, x_{s}\right)\right\}
$$

is compatible and $0<u_{1}\left(x_{1}\right)<u_{i}\left(x_{i}\right)$ for every $i=2, \cdots$, s; hence $\left(u_{i} \wedge u_{1}\right)\left(x_{i}\right)=\left(u_{i} \wedge u_{1}\right)\left(x_{1}\right)=0$. Considering the elements $b, 1, \cdots, 1$, we now verify the condition of the Strong Approximation Theorem.

If $u_{1}(b-1)<u_{1}\left(x_{1}\right)$, from $0 \leqq u_{1}(b-1)$ we deduce that

$$
0 \leqq\left(u_{i} \wedge u_{1}\right)(b-1) \leqq\left(u_{i} \wedge u_{1}\right)\left(x_{1}\right)=0
$$

If $u_{i}(b-1)<u_{i}\left(x_{i}\right)$ and $0 \leqq u_{i}(b-1)$, then

$$
0 \leqq\left(u_{i} \wedge u_{1}\right)(b-1) \leqq\left(u_{i} \wedge u_{1}\right)\left(x_{i}\right)=0
$$

if, however, $u_{i}(b-1)<0$, then $u_{i}(b)=u_{i}(b-1)$, so from $u_{1}(b) \geqq 0$ it follows that

$$
\left(u_{1} \wedge u_{i}\right)(b-1)=\left(u_{1} \wedge u_{i}\right)(b)=0=\left(u_{1} \wedge u_{i}\right)\left(x_{i}\right)
$$

By the Strong Approximation Theorem, there exists an element $z \in Z(w)$ such that $u_{1}(z-b)=u_{1}\left(x_{1}\right)>0, u_{i}(z-1)=u_{i}\left(x_{i}\right)>0$, for every $i=2, \cdots, s$. So $u_{1}(z) \geqq 0$ (because $\left.u_{1}(b) \geqq 0\right), u_{i}(z)=0$ for $i \neq 1$, and

$$
z \equiv b \quad\left(\bmod P_{w} \cap Z(w)\right)
$$

Now, let $a=N_{z(w) \mid K}(z) \in K$, so $a=\prod_{\tau} \tau(z)$ (where τ runs through a set of representatives of the right cosets of $Z(w)$ in \mathfrak{K}).

It follows that $a \in A$, since

$$
v(a)=w(a)=w\left(\prod_{\tau} \tau(z)\right)=\sum_{\tau} w \circ \tau(z) \geqq 0,
$$

because each valuation $w \circ \tau$ induces one of the valuations $u_{1}, u_{2}, \cdots, u_{s}$, and $u_{i}(z) \geqq 0$ for every $i=1, \cdots, s$.

We finish the proof as in part (a), by showing that $a \equiv b\left(\bmod P_{w} \cap Z(w)\right)$; in fact, it is sufficient to show that $a \equiv z\left(\bmod P_{w} \cap Z(w)\right)$. For that purpose, we remark that if $\tau \notin Z(w)$, then $w \circ \tau \neq w$; hence its restriction to $Z(w)$ is some $u_{i} \neq u_{1}$, so

$$
w(\tau(z)-1)=w(\tau(z-1))=u_{i}(z-1)=u_{i}\left(x_{i}\right)>0
$$

and $\tau(z) \equiv 1\left(\bmod P_{w}\right)$. Therefore

$$
a=\prod_{\tau} \tau(z)=z \cdot \prod_{\tau \neq \varepsilon} \tau(z) \equiv z \quad\left(\bmod P_{w} \cap Z(w)\right)
$$

Theorem 3. If F is any intermediate field, $\mathfrak{F}=\operatorname{Gal}(L \mid F)$, and w is any prolongation of v to L, then
(a) $[Z(w) \cdot F: Z(w)]=e_{F \mid K}(w) \cdot f_{F \mid K}(w) \cdot \chi$, where $r \geqq 0$ and χ is the characteristic exponent of K / v;
(b) if \mathcal{E} denotes the set of valuations of L having the same restriction to F as w, then the number t of valuations in \mathcal{E} is equal to

$$
t=(\mathfrak{F}: \mathbb{Z}(w) \cap \mathfrak{F})=[Z(w) \cdot F: F]
$$

and the number g of prolongations of v to L is equal to

$$
g=\frac{t \cdot[F: K]}{[Z(w) \cdot F: Z(w)]},
$$

where

$$
\frac{[F: K]}{[Z(w) \cdot F: Z(w)]}=\frac{[Z(w): K]}{[Z(w) \cdot F: F]}
$$

is equal to the number of distinct prolongations of v to F; in particular, t divides g.
Proof. (a) Let $H=Z(w) \cdot F$; by standard results, or Theorem 1 (a) applied to $\mathcal{E}=\{w\}$, the restriction of w to $Z(w)$ has only one prolongation to L; the same is true of the restriction of w to H, since $H \supseteq Z(w)$. Hence

$$
\begin{gathered}
{[L: Z(w)]=e_{L \mid Z(w)} \cdot f_{L \mid Z(w)} \cdot \chi^{q}} \\
{[L: H]=e_{L \mid H} \cdot f_{L \mid H} \cdot \chi^{q^{\prime}}}
\end{gathered}
$$

where $q \geqq 0, q^{\prime} \geqq 0$, and the indices e, f are computed for w. By the transitivity of e and f, we have

$$
[H: Z(w)]=e_{H \mid Z(w)} \cdot f_{H \mid Z(w)} \cdot \chi^{q-q^{\prime}}
$$

Since $e_{H \mid Z(w)} \cdot f_{H \mid Z(w)} \leqq[H: Z(w)]$ (cf. [4, p. 55]), we have $q-q^{\prime} \geqq 0$.

Finally, since $Z(w)$ is the decomposition field of w over K, and $H=Z(w) \cdot F$ is the decomposition field of w over F, we have

$$
e_{Z(w) \mid K}=f_{Z(w) \mid K}=e_{H \mid F}=f_{H \mid F}=1
$$

by Theorem 2 , so that $e_{H \mid Z(w)}=e_{H \mid K}=e_{F \mid K}$, and similarly for f.
(b) Since $H=Z(w) \cdot F$ is the decomposition field of w in $L \mid F$, the number t of valuations in the set ε is equal to $t=[H: F]$ (cf. [4, p. 74]). Similarly, $g=[Z(w): K]$; hence, by transitivity of degrees,

$$
g=\frac{t \cdot[F: K]}{[H: Z(w)]}
$$

We show now that the prolongations of v to F correspond in a one-to-one way to the double cosets $\mathbb{Z}(w) \sigma \mathcal{F}$ (for $\sigma \in \Re$). Indeed, if u is any prolongation of v to F, let $w^{\prime}=w \circ \sigma$ be any prolongation of u to L; if $w_{1}^{\prime}=w \circ \sigma_{1}$ is another prolongation of u, then $w^{\prime}, w_{1}^{\prime}$ are conjugate with respect to \mathfrak{F}; hence $w_{1}^{\prime}=w^{\prime} \circ \xi, \xi \in \mathcal{F}$, so $w \circ \sigma_{1}=w \circ \sigma \xi$ and $\sigma_{1} \in \mathbb{Z}(w) \sigma \mathcal{F}$. The mapping that associates with u the double coset $\mathcal{Z}(w) \sigma \mathcal{F}$ is well defined, onto the set of double cosets, and one-to-one.

Hence the number of prolongations of v to F is equal to the number of double cosets $\mathbb{Z}(w) \sigma \mathcal{F}$, that is,

$$
\frac{(\mathfrak{K}: \mathcal{F})}{(\mathbb{Z}(w): Z(w) \cap \mathfrak{F})}=\frac{[F: K]}{[H: Z(w)]}=\frac{[Z(w): K]}{[H: F]}=\frac{g}{t}
$$

We now apply the preceding considerations to define the decomposition field of a valuation w in an extension which may be neither separable nor normal.

Let $M \mid K$ be a finite (algebraic) extension, v a valuation of K, and $w=w_{1}, \cdots, w_{g}$ its prolongations to M. Let S be the separable closure of K in M, and L the normal extension of K, generated by S; hence $L \mid K$ is a finite Galoisian extension, whose group will be denoted by \mathcal{K}. Let ε be the set of prolongations to L of the restriction w^{S} of w to S; hence \mathcal{E} is a distinguished set of valuations of L.

Definition. The decomposition field $Z_{L \mid K}(\varepsilon)$ of the set ε in $L \mid K$ is called the decomposition field of w in $M \mid K$ and denoted by $Z_{M \mid K}(w)=Z(w)$.

Since all the valuations in ε have the same restriction to S, by Theorem 1 (b), we deduce that $Z(w)=Z_{L \mid K}(\varepsilon) \subseteq S$.

The restriction of each valuation $w_{i} \neq w$ to $Z(w)$ is different from the restriction of w to $Z(w)$.

This follows from the facts that $M \mid S$ is a purely inseparable extension (hence the restrictions w_{i}^{s}, w^{s} are distinct) and that the restriction of w to $Z(w)$ has only one prolongation to L.

[^1]Let F be an intermediate field such that $w_{i}^{F} \neq w^{F}$ for every $i=2, \cdots, g$; since $F \mid(F \cap S)$ is a purely inseparable extension, $w_{i}^{F \cap S} \neq w^{F \cap S}$. All the valuations in \mathcal{E} have the same restriction w^{S} to S, and hence also the same restriction $w^{F \cap S}$ to $F \cap S$. On the other hand, if u is a prolongation of $w^{F \cap s}$ to L, then $u \in \mathcal{E}$, for otherwise $u^{S}=w_{i}^{S}$ for some $i>1$, and hence $w^{F \cap S}=w_{i}^{F \cap S}$, a contradiction. By Theorem 1 (b), we conclude that

$$
F \supseteq F \cap S \supseteq Z(\varepsilon)=Z(w)
$$

Similarly, for every $u \in \mathcal{E}$ we have

$$
[Z(u) \cdot Z(w): Z(u)]=e_{Z(w) \mid K}(w) \cdot f_{Z(w) \mid K}(w) \cdot \chi^{q}
$$

(with $q \geqq 0$), and the number of distinct prolongations of v to M is equal to

$$
\frac{[S: K]}{[Z(u) \cdot S: Z(u)]}
$$

where u is any prolongation of v to L.
This last assertion follows at once from Theorem 3 (b), applied to the extension $L \mid K$ and the intermediate field $F=S$, if we observe that each valuation of S has only one prolongation to M.

The following example shows that the results of Theorem 3 are, in a sense, the best ones to be expected.

Example. There exists a field K, endowed with a discrete valuation v, of rank 1 , such that, given any two integers $\mu>1, \nu>1$, there exists a finite Galoisian extension L of K, with the following property: There exists a distinguished set ε of valuations, prolongations of v to L, such that if u is the restriction of any $w \in \mathcal{E}$ to the decomposition field $Z(\varepsilon)$, then

$$
e_{Z(\xi) \mid K}(u)=\mu, \quad f_{Z(\delta) \mid \boldsymbol{K}}(u)=\nu
$$

In this construction, we shall use Krull's existence theorem (cf. [2]).
Given μ, ν, let p be any prime number such that $\mu \nu<p$, and let $t=(p-\mu \nu)+1>1$.

Let K be a field of characteristic zero, with a discrete valuation v such that K / v has also characteristic zero, and let us assume that K admits at least one more nonequivalent discrete valuation v^{\prime}. We may take, for example, $K=\mathbf{Q}(X), v$ being that prolongation of the trivial valuation of \mathbf{Q} such that $v(X)=1$; then $K / v=\mathbf{Q}$; moreover, we may take v^{\prime} equal to the natural prolongation of the 2 -adic valuation of \mathbf{Q} to $\mathbf{Q}(X)=K$, so v^{\prime} is also discrete.

By Krull's existence theorem, there exists a separable extension $F \mid K$, of degree p, such that v admits t prolongations $u_{1}, u_{2}, \cdots, u_{t}$ to F, for which we have $e_{F \mid K}\left(u_{1}\right)=\mu, f_{F \mid K}\left(u_{1}\right)=\nu, e_{F \mid K}\left(u_{i}\right)=1, f_{F \mid K}\left(u_{i}\right)=1$, for every $i=2, \cdots, t$.

Let $L \mid K$ be the smallest normal extension of K containing F, and let ε be the set of all the prolongations of u_{1} to L.

We show now that $Z(\varepsilon)=F$. Indeed, $Z(\varepsilon)$ is the smallest subfield of L
such that all the valuations of ε have the same restriction to $Z(\varepsilon)$, but some valuation of L, extending v and not in ε, has distinct restriction to $Z(\varepsilon)$. As F has this property, then $F \supseteq Z(\mathcal{E})$. As $[F: K]=p$ prime, if $F \neq Z(\varepsilon)$, then $Z(\mathcal{E})=K$; this means that $Z(\varepsilon)=K=\operatorname{Gal}(L \mid K)$, so $\varepsilon=\mathcal{V}$ (set of all the prolongations of v to L), which is impossible, since any prolongation of $u_{i}, i \geqq 2$, to L does not belong to ε.

The same example shows us that there may exist cases in which $Z(w) \cdot Z(\varepsilon)$ contains strictly $Z(w)$, that is, $Z(w)$ does not contain $Z(\varepsilon)$, for some $w \in \mathcal{E}$.

Similarly, if in the previous example we take p such that $p \neq 2 \mu \nu-1$, then $t \neq \mu \nu$. Let $w \in \mathcal{E}$; since $[Z(w) \cdot Z(\mathcal{E}): Z(w)]=\mu \nu$, then the number g of prolongations of v to L is

$$
g=\frac{t \cdot[Z(\varepsilon): K]}{[Z(w) \cdot Z(\varepsilon): Z(w)]} \neq[Z(\varepsilon): K]
$$

Hence, contrary to the case where ε is reduced to only one valuation, in general we have $[Z(\mathcal{E}): K] \neq g$.

Bibliography

1. Wolfgang Krull, Allgemeine Bewertungstheorie, J. Reine Angew. Math., vol. 167 (1932), pp. 160-196.
2. ——, Über eine Existenzsatz der Bewertungstheorie, Abh. Math. Sem. Univ. Hamburg, vol. 23 (1959), pp. 29-35.
3. P. Ribenboim, Le théorème d'approximation pour les valuations de Krull, Math. Zeitschrift, vol. 68 (1957), pp. 1-18.
4. Oscar Zariski and Pierre Samuel, Commutative algebra, Vol. II, Princeton, Van Nostrand, 1960.

[^0]: ${ }^{1}$ Since the value groups of the valuations w_{1}, \cdots, w_{g} may be considered as subgroups of the divisible group generated by $v(K)$, we may compare the values $w_{1}\left(x_{1}\right)$, $w_{i}\left(x_{i}\right)$.

[^1]: $Z(w)$ is the smallest field between K and M with the above property.

