TWO THEOREMS ON AUTOMORPHIC FUNCTIONS

Dedicated to Hans Rademacher on his seventieth birthday

by Joseph Lehner

1. Recently Rademacher gave a new proof of the fundamental theorem that a modular function belonging to a modular congruence subgroup and which is regular and bounded in the upper half-plane is a constant [6]. His argument relies on the divergence of the Poincaré series

$$\sum_{\mathbf{v}} | \mathbf{c}\mathbf{z} + d |^{-2}, \quad V = \begin{pmatrix} a & b \\ c & d \end{pmatrix},$$

where V runs over the principal congruence subgroup of level N with the restriction $-\frac{1}{2}N \leq \Re(V(i)) < \frac{1}{2}N$.

The natural generalization of the modular group is the class of horocyclic groups (Grenzkreisgruppen, Fuchsian groups of the first kind) that have fundamental regions with a finite number of sides. We call this class \mathfrak{F} . In attempting to apply Rademacher's reasoning one must first prove the divergence of the analogous Poincaré series, a fact we state as Theorem 1. For convenience we shall assume our groups are defined on the unit disk \mathfrak{U} . As is well known, every linear transformation mapping \mathfrak{U} on itself can be written as

$$\begin{pmatrix} a & \bar{c} \\ c & \bar{a} \end{pmatrix}$$
, $a\bar{a} - c\bar{c} = 1$.

Theorem 1. If $\Gamma \in \mathfrak{F}$, then

(1)
$$\sum_{n=0}^{\infty} |c_n z + \bar{a}_n|^{-2} = \infty$$

for each $z \in \mathfrak{U}$. Here

$$\left\{V_n = \begin{pmatrix}a_n & \bar{c}_n\\c_n & \bar{a}_n\end{pmatrix}, n \ge 0; V_0 = I\right\}$$

is an enumeration of the elements of Γ .

Theorem 1 is classical ([3], pp. 255–258). The first object of this paper is to present a new proof. After this it will be easy to extend Rademacher's argument and so obtain

THEOREM 2. A function regular and bounded in \mathfrak{U} and automorphic on a group $\Gamma \in \mathfrak{F}$ is a constant.

I am indebted to W. K. Hayman for a helpful conversation on some points in Section 2.

Received May 10, 1961.

2. Let $\Gamma \in \mathfrak{F}$. Let the elements of Γ be denoted as in Theorem 1. It is known that there is only a finite number of n for which $c_n = 0$; for these n, and only these n, $V_n(0) = 0$. The set $\{\bar{a}_n/c_n, c_n \neq 0\}$ is bounded above, and it is trivial that $|\bar{a}_n/c_n| > 1$.

We shall prove Theorem 1 by contradiction: Assume

(2)
$$\sum |c_n z + \bar{a}_n|^{-2} < \infty$$

for some $z = z_0 \epsilon \mathfrak{U}$. Since for each $z \epsilon \mathfrak{U}$ the ratio $|c_n z_0 + \bar{a}_n|/|c_n z + \bar{a}_n|$ is bounded above, this implies that (2) converges throughout \mathfrak{U} .

Now

$$\frac{1 - |V_n z|^2}{1 - |z|^2} = \frac{1}{|c_n z + a_n|^2};$$

hence (2) implies the convergence of $\sum (1 - |V_n z|^2)$, from which it follows that

(3)
$$\sum (1 - |V_n z|) < \infty.$$

Consider the Blaschke product

(4)
$$\pi(z) = \prod_{n=0}^{\infty} \frac{z-z_n}{\overline{z}_n z-1} \exp\left(-i\beta_n\right),$$

where

$$z_n = V_n(0), \qquad \beta_n = \arg z_n.$$

It can be shown [2] that the product converges uniformly in $|z| \leq \rho < 1$ whenever (3) holds. Hence, $\pi(z)$ is regular in \mathfrak{U} . Obviously $|\pi(z)| \leq 1$.

It is also true that

$$|\pi(z)| = \prod_n |(z - z_n)/(\bar{z}_n z - 1)|$$

converges absolutely, and so the factors may be rearranged. Now

$$|(z - z_n)/(\bar{z}_n z - 1)| = |V_n^{-1}z|.$$

It follows that $|\pi|$ is invariant under Γ :

$$(5) \qquad \qquad |\pi(Lz)| = |\pi(z)|$$

for each $L \in \Gamma$ and each $z \in \mathfrak{U}$.

It is known that $\pi(z)$ possesses radial limits of absolute value 1 almost everywhere ([5], p. 196). π vanishes exactly on the set $\{z_n\}$. Let

$$\mathfrak{D} = \mathfrak{U} - \{z_n\}.$$

Then the function

(6)
$$\phi(z) = \log |\pi(z)|$$

is harmonic in \mathfrak{D} and invariant under Γ . The limit function

(7)
$$\omega(\theta) = \lim_{r \to 1} \phi(re^{i\theta})$$

vanishes for almost all θ .

3. We now proceed as follows. An upper bound for ϕ in \mathfrak{A} is clearly 0. If Γ has a compact fundamental region R (i.e., R is contained in a disk $|z| \leq \rho < 1$), it is clear that the maximum ϕ will be attained at a point of R. For if $\omega(\theta_0)$ exists and equals 0, let $\zeta_n = r_n \exp(i\theta_0)$ be a sequence tending to $\exp(i\theta_0)$. Each ζ_n has an image—call it ζ'_n —that lies in \overline{R} . Let ζ'_p be a subsequence converging to ζ^* , a point of \overline{R} . Because of the invariance of ϕ , we deduce $\phi(\zeta'_p) \to 0$ from $\phi(\zeta_p) \to 0$. But $\zeta^* \notin \{z_n\}$, for $\phi(z) \to -\infty$ as $z \to z_n$. Hence ϕ is continuous at ζ^* , and $\phi(\zeta^*) = 0$. ϕ assumes its maximum at ζ^* , an interior point of \mathfrak{D} . This shows that $\phi(z)$ is constant, which is a contradiction and proves Theorem 1 for this case.

When R has vertices on the unit circle, the method fails, for the images ζ'_n may tend to the vertices. To get around the difficulty we need a geometrical lemma.

4. Let Q be the unit circle.

LEMMA. Let \mathfrak{O} be the set of parabolic vertices of Γ . Let $\alpha \in \mathbb{Q} - \mathfrak{O}$, and let λ_{α} be a radius terminating in α . Then there is a constant ρ ($0 < \rho < 1$), depending only on Γ , such that on λ_{α} there is a sequence $\zeta_n \to \alpha$ having Γ -images ζ'_n lying in the disk $|z| \leq \rho$.

This result is due to Hedlund ([4], p. 538). For the sake of completeness we reproduce the proof.

A horocycle C(p, r) is a euclidean circle of radius r < 1 tangent to \mathbb{Q} at p. Let p_1, p_2, \dots, p_s be the parabolic vertices of R. Since R has a finite number of sides, s is finite. Draw horocycles $C_i = C(p_i, r_i), i = 1, 2, \dots, s$, so that the union of their interiors covers the interior of R. This can be done by taking r_i near enough to 1.

Let P_i be a parabolic element of Γ generating the subgroup of Γ that fixes p_i . Then C_i is invariant under P_i . If z_0 is a point on C_i different from p_i , there are two images of z_0 on C_i , say z_1 , z_2 , whose euclidean distances from the origin are minimal. The horocycle C_i is partitioned into a countable number of arcs, each of which is the image of $z_1 z_2$ by some power of P_i . Every point $z \in C_i - p_i$ lies on one of these arcs, and so z is equivalent under Γ to a point on the arc $z_1 z_2$. Let d_i be the maximum of $|z_1|$, $|z_2|$. Then every point z on C_i other than p_i has a Γ -image whose distance from the origin is not more than d_i . Here $d_i < 1$ and depends on i but not on the point $z \in C_i$. Set $\rho = \max(d_1, \dots, d_i)$. We have $\rho < 1$, and every point on any of the horocycles C_i except a point of tangency has a Γ -image lying in the disk $|z| \leq \rho$.

Let C be the set of horocycles $\{C_i, i = 1, \dots, s\}$ together with all their images under Γ . Every point of \mathfrak{A} is interior to some element of the set C. If α' is any point other than α on the ray $O\alpha$, it lies interior to one of the horocycles of the set C. But the ray $\alpha'\alpha$ cannot lie entirely in any one member of C, for this would imply that α is a parabolic vertex. Hence $\alpha'\alpha$ must intersect one of the elements of C. It is now clear there is a sequence of points ζ_n on λ_{α} such that $\zeta_n \to \alpha$ and each ζ_n is the intersection of an element of C with λ_{α} . By what has been proved, each ζ_n has a Γ -image in the disk $|z| \leq \rho$.

5. We can now complete the proof of Theorem 1. Since ϕ has the radial limit 0 almost everywhere, there is a θ_0 such that $\alpha = \exp(i\theta_0)$ is not in the countable set \mathcal{O} and such that $\phi(r\alpha) \to 0$ with $r \to 1$. If ζ_n , ζ'_n are the sequences of the lemma, we have $\phi(\zeta'_p) \to 0$ and $\zeta'_p \to \zeta^*$ with $|\zeta^*| \leq \rho < 1$. The remainder of the proof is the same as in Section 3.

6. We can now prove Theorem 2 by Rademacher's method [6]. Since $\Gamma \in \mathfrak{F}$, the series (1) diverges (Theorem 1). Let $z_n = V_n(0)$ be different from 0 for $n \ge N$ (cf. beginning of Section 2). The divergence of (1) at z = 0 implies the divergence of $\sum (1 - |z_n|)$, or what is the same thing,

(8)
$$\prod_{n=N}^{\infty} |z_n| = 0.$$

Let F(z) be automorphic on Γ and regular and bounded on \mathfrak{U} . If F is not constant, we can find an integer k such that

$$G(z) = (F(z) - F(0))/z^{k}$$

has the property $G(0) \neq 0$, G is regular and bounded in \mathfrak{U} . For $z_n \neq 0$ we have

$$G(z_n) = 0$$

by virtue of $F(z_n) = F(0)$. Jensen's inequality ([1], p. 109) yields

$$|z_N z_{N+1} \cdots z_m| \ge |G(0)|/M > 0, \qquad m > N,$$

where |G(z)| < M for $z \in \mathfrak{U}$. For $m \to \infty$ this contradicts (8) unless G(0) = 0. Hence there is no integer k, and F is constant.

References

- 1. L. BIEBERBACH, Lehrbuch der Funktionentheorie, vol. 2, rev. ed., Leipzig und Berlin, Teubner, 1931.
- W. BLASCHKE, Eine Erweiterung des Satzes von Vitali über Folgen analytischer Funktionen, Ber. Verh. Sächs. Akad. Wiss. Leipzig, Math.-Nat. Kl., vol. 67 (1915), pp. 194-200.
- 3. P. FATOU, Fonctions automorphes (Vol. II of Théorie des fonctions algébriques by P. Appel and E. Goursat), Paris, Gauthier-Villars, 1930.
- 4. G. A. HEDLUND, Fuchsian groups and transitive horocycles, Duke Math. J., vol. 2 (1936), pp. 530-542.
- 5. R. NEVANLINNA, Eindeutige analytische Funktionen, Berlin, J. Springer, 1936.
- H. RADEMACHER, A proof of a theorem on modular functions, Amer. J. Math., vol. 82 (1960), pp. 338-340.

MICHIGAN STATE UNIVERSITY EAST LANSING, MICHIGAN