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1. Recently Rademacher gave a new proof of the fundamental theorem
that a modular function belonging to a modular congruence subgroup and
which is regular and bounded in the upper hail-plane is a constant [6]. I-Iis
argument relies on the divergence of the Poincar series

where V runs over the principal congruence subgroup of level N with the re-
striction 1/2N -< (V(i) ( 1/2N.
The natural generalization of the modular group is the class of horocyclic

groups (Grenzkreisgruppen, Fuchsian groups of the first kind) that have
fundamental regions with a finite number of sides. We call this class ft. In
attempting to apply Rademacher’s reasoning one must first prove the diver-
gence of the analogous Poincar series, a fact we state as Theorem 1. For
convenience we shall assume our groups are defined on the unit disk . As
is well known, every linear transformation mapping t on itself can be written

If F if, then

  =olc z +

as

THEOREM 1.

(1)

for each z e . Here

fVn (an n) I}c n ,n>=O;Vo=

is an enumeration of the elements of F.

Theorem 1 is classical ([3], pp. 255-258). The first object of this paper is
to present a new proof. After this it will be easy to extend Rademacher’s
argument and so obtain

THEOREM 2. A function regular and bounded in and automorphic on a
group F e is a constant.

I am indebted to W. K. Hayman for a helpful conversation on some points
in Section 2.
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2. Let F e ft. Let the elements of F be denoted as in Theorem 1. It is
known that there is only a finite number of n for which c 0; for these n,
and only these n, V(0) 0. The set {G/c, c 0} is bounded above, and
it is trivial that G/c > 1.
We shall prove Theorem i by contradiction: Assume

(2) lcz q- dn - <
for some z z0 e t. Since for each z e t the ratio c. z0 q- a, I/[ c z q- an
is bounded above, this implies that (2) converges throughout t.
Now

Vzl
I1 lc. +al;

hence (2) implies the convergence of 1 Vn z 12 ), from which it follows
that

(3) 5: ( v z I) < .
Consider the Blaschke product

(4)

where
nIo Z--Znr(z) nz 1

exp (--if/n),

z V(0), t arg z..

It can be shown [2] that the product converges uniformly in lz _-< p < 1
whenever (3) holds. Hence, r(z) is regular in t. Obviously r(z) =< 1.

It is also true that

(z)l IL I(z z.)/( z

converges absolutely, and so the factors may be rearranged.

I(z- z.)/(.z- )1 IV;z I.
It follows that r[is invariant under r"

Now

(5)

for each L e F and each z e .
It is known that r(z) possesses radial limits of absolute value 1 almost every-

where ([5], p. 196). r vanishes exactly on the set {zn}. Let

Then the function

(6)

= {z}.

(z)

is harmonic in and invariant under F. The limit function

(7) 0(0) limr oh(re’)
vanishes for almost all 0.
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3. We now proceed as follows. An upper bound for in t is clearly 0.
If r has a compact fundamental region R (i.e., R is contained in a
disk z =< p <: 1), it is clear that the maximum of will be attained at a
point of R. For if (00) exists and equals 0, let ’n rn exp (i00) be a sequence
tending to exp (iOo). Each ’ has an image--call it ’Rthat lies in/. Let

be a subsequence converging to *, a point of t. Because of the invariance
of , we deduce (") -- 0 from (’) --, 0. But * e {z}, for (z) --.
as z -- z. Hence is continuous at ’*, and (*) 0. assumes its maxi-
mum at *, an interior point of ). This shows that (z) is constant, which
is a contradiction and proves Theorem 1 for this case.
When R has vertices on the unit circle, the method fails, for the images

may tend to the vertices. To get around the difficulty we need a geometrical
lemma.

4. Let Q be the unit circle.

LEMM_. Let 5 be the set of parabolic vertices of F. Let a 5), and let ,
be a radius terminating in a. Then there is a constant p (0 p 1), depending
only on F, such that on there is a sequence a having F-images ’, lying
in the disk z <-- P.

This result is due to Hedlund ([4], p. 538). For the sake of completeness
ve reproduce the proof.
A horocycle C(p, r) is a euclidean circle of radius r < 1 tangent to at p.

Let pl, p2, p be the parabolic vertices of R. Since R has a finite number
of sides, s is finite. Draw horocycles C C(p, r), i 1, 2, s, so that
the union of their interiors covers the interior of R. This can be done by
taking r near enough to 1.

Let P be a prabolic element of F generating the subgroup of 1 that fixes
p. Then C is invariant under P. If z0 is a point on C different from p,
there are two images of z0 on C, say zl, z2, whose euclidean distances from
the origin are minimal. The horocycle C is partitioned into a countable
number of arcs, each of which is the image of z z by some power of P. Every
point z e C p lies on one of these arcs, and so z is equivalent under F to a
point on the arc zz. Let d be the maximum of]zl, zl. Then every
point z on C other than p has a F-image whose distance from the origin is not
more than d. Here d <: 1 and depends on i but not on the point z e C.
Set p max (d, d). We have p < 1, and every point on any of the
horocycles C except a point of tangency has a F-image lying in the disk

Let C be the set of horocycles C, i 1, s} together with all their
images under F. Every point of is interior to some element of the set C.
If a’ is any point other than a on the ray Oa, it lies interior to one of the horo-
cycles of the set C. But the ray aa cannot lie entirely in any one member of
C, for this would imply that a is a parabolic vertex. Hence aa must intersect
one of the elements of C. It is now clear there is a sequence of points on
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such that i’ - a and each ’n is the intersection of an element of C with ,.
By what has been proved, each n has a F-image in the disk z _-< p.

5. We can now complete the proof of Theorem 1. Since has the radial
limit 0 almost everywhere, there is a 00 such that a exp (i00) is not in the
countable set (P and such that (r) - 0 with r -, 1. If n, " are the se-
quences of the lemma, we have (’P) --+ 0 and ’P --, ’* with ’* -<_ p < 1.
The remainder of the proof is the same as in Section 3.

6. We can now prove Theorem 2 by Rademacher’s method [6]. Since
F e 5:, the series (1) diverges (Theorem 1). Let z V(0) be different from
0 for n _>_ N (cf. beginning of Section 2). The divergence of (1) at z 0
implies the divergence of (1 Zn I), Or what is the same thing,

(8) =0.

Let F(z) be automorphic on I’ and regular and bounded on t. If F is not
constant, we can find an integer/ such that

G(z) (F(z) F(O) )/z

has the property G(0) 0, G is regular and bounded in . For z 0
we have

0

by virtue of F(zn) F(O). Jensen’s inequality ([1], p. 109) yields

z z+...z, [>=[G(O)I/M > O, m > N,

wherelG(z) < M for zest. For m -- this contradicts (8) unless
G(0) 0. Hence there is no integer , and F is constant.
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