WARING'S PROBLEM FOR ALGEBRAIC NUMBER FIELDS AND PRIMES OF THE FORM $\left(p^{r}-1\right) /\left(p^{d}-1\right)$

Dedicated to Hans Rademacher on the occasion of his seventieth birthday

BY
Paul T. Bateman and Rosemarie M. Stemmler ${ }^{1}$
\section*{1. Introduction}

Let K be an algebraic number field of finite degree n over the rationals, and let $J(K)$ be its ring of integers. If m is a positive integer greater than unity, let $J_{m}(K)$ be the additive group generated by the $m^{\text {th }}$ powers of the elements of $J(K)$. Clearly $J_{m}(K)$ is a subring of $J(K)$. Needless to say, $J_{m}(K)$ is that subset of $J(K)$ in which Waring's problem for $m^{\text {th }}$ powers is to be considered. The identity

$$
m!x=\sum_{k=0}^{m-1}(-1)^{m-1-k}\binom{m-1}{k}\left\{(x+k)^{m}-k^{m}\right\}
$$

shows that

$$
m!J(K) \subset J_{m}(K) \subset J(K)
$$

Hence $J_{m}(K)$ consists of certain of the residue classes of $J(K)$ modulo $m!J(K)$. Further $J_{m}(K)$ can be determined in a particular case by an examination of the quotient ring $J(K) /\{m!J(K)\}$. This determination can be rather complicated, especially when m is composite.

When m is a prime q, the situation is somewhat simpler than in the general case. In particular, it is easy to characterize those algebraic number fields K for which $J_{q}(K)=J(K)$. We shall do this in this paper. Examples of our main result are as follows: (A) $J_{3}(K)=J(K)$ unless either 3 is ramified ${ }^{2}$ in $J(K)$ or 2 has in $J(K)$ a prime ideal factor of second degree, (B) $J_{11}(K)=J(K)$ unless 11 is ramified in $J(K)$, (C) $J_{31}(K)=J(K)$ unless either 31 is ramified in $J(K)$ or 2 has in $J(K)$ a prime ideal factor of fifth degree or 5 has in $J(K)$ a prime ideal factor of third degree. For most primes q the situation is analogous to that for $q=11$, that is, we usually can say that $J_{q}(K)=J(K)$ if and only if q is not ramified in $J(K)$. This generalizes the familiar result [10] that $J_{2}(K)=J(K)$ if and only if 2 is not ramified in $J(K)$.

The primes for which complications occur are those special primes q ex-

[^0]pressible in the form
\[

$$
\begin{equation*}
q=\left(p^{r}-1\right) /\left(p^{d}-1\right) \tag{*}
\end{equation*}
$$

\]

where p is also a prime number and r and d are positive integers. Here d must be a divisor of r, since otherwise $\left(p^{r}-1\right) /\left(p^{d}-1\right)$ would not be an integer, in view of the identity

$$
\left(p^{r}-1\right) /\left(p^{d}-1\right)=\sum_{i=1}^{[r / d]} p^{r-i d}+\left(p^{r-[r / d] d}-1\right) /\left(p^{d}-1\right)
$$

where $[u$] denotes the greatest integer not exceeding the real number u. Further r must actually be a prime-power, and d must be the largest divisor of r other than r itself, since otherwise $\left(p^{r}-1\right) /\left(p^{d}-1\right)$ would be composite, in view of the identity

$$
\left(p^{r}-1\right) /\left(p^{d}-1\right)=\prod \Phi_{j}(p)
$$

where j runs over the divisors of r which are not divisors of d, and $\Phi_{j}(x)$ is the $j^{\text {th }}$ cyclotomic polynomial. Thus in specifying an expression for a prime q in the form (*), it is enough to give the value of r.

Our precise result is the following, which is a restatement of Theorem 3 below. If q is a prime number not expressible in the form (*), then $J_{q}(K)=J(K)$ if and only if q is unramified in $J(K)$. If q is a prime number expressible in the form (*), let

$$
q=\left(p_{1}^{r_{1}}-1\right) /\left(p_{1}^{d_{1}}-1\right), \quad \cdots, \quad q=\left(p_{v}^{r_{v}}-1\right) /\left(p_{v}{ }^{d_{v}}-1\right)
$$

be all the ways it can be so expressed. Then $J_{q}(K)=J(K)$ if and only if q is unramified in $J(K)$ and p_{i} does not have in $J(K)$ a prime ideal factor of degree r_{i} for $i=1,2, \cdots, v$.

The prime numbers of the form (*) are comparatively rare. For example, the table at the end of the paper shows that there are only 28 of them less than $(10)^{5}$. Within the range of the table, 31 is the only prime with more than one expression in the form (*). We shall show by the sieve method that $\sum^{*} q^{-1 / 2}$ converges, where the sum runs over the primes of the form (*), each taken in the multiplicity of its occurrence in the form (*). More specifically, we shall show that if x is large, there are at most $50 x^{1 / 2}(\log x)^{-2}$ primes of the form ($*$) not exceeding x, repetitions counting.

Special cases of our main result such as (A), (B), and (C) above can easily be read off by use of the table.

Siegel [9, 10] has shown that if ν is a totally positive element of $J_{m}(K)$, then ν is expressible as a sum of $\left(2^{m-1}+n\right) m n+1$ or fewer $m^{\text {th }}$ powers of totally positive elements of $J(K)$, provided that, if K is totally real, the norm of ν is sufficiently large. Tatuzawa [12] has improved this result by showing that $8 m n(m+n)$ or fewer summands will suffice. ${ }^{3}$ It would naturally be desirable to eliminate the strong dependence of these results on the

[^1]field degree n. While this would probably be a rather ambitious task, on the other hand one of us has shown that a result of this kind is readily obtainable for the so-called easier Waring problem. Specifically, it is shown in [11] that for any prime q every element ν of $J_{q}(K)$ is expressible as a sum of at most $2^{q-1}+q / 3+1$ integers of the form $\pm \lambda^{q}$, where $\lambda \in J(K)$. The results obtained in this paper tell us for which fields K we can make such an assertion for every element ν of $J(K)$.

2. A theorem of Tornheim

We shall require the following result of Tornheim [13] and so we include a brief proof for convenience. As is customary we denote the finite field of p^{r} elements, where p is a prime, by $G F\left(p^{r}\right)$.

Theorem 1. Suppose q is a prime. Then every element of $\operatorname{GF}\left(p^{r}\right)$ is expressible as a sum of $q^{\text {th }}$ powers of elements of $G F\left(p^{r}\right)$ unless $q=\left(p^{r}-1\right) /\left(p^{d}-1\right)$ for some divisor d of r, in which special case the $q^{\text {th }}$ powers form a subfield of p^{d} elements.

Proof. If $q \nmid\left(p^{r}-1\right)$, then the operation of taking the $q^{\text {th }}$ power gives an automorphism of the multiplicative group of $G F\left(p^{r}\right)$, and hence every element of $G F\left(p^{r}\right)$ is a $q^{\text {th }}$ power. If $q \mid\left(p^{r}-1\right)$, regardless of whether or not q has the special form mentioned in the statement of the theorem, the nonzero $q^{\text {th }}$ powers form a subgroup H of index q in the multiplicative group of $G F\left(p^{r}\right)$. If $q=\left(p^{r}-1\right) /\left(p^{d}-1\right)$ for some divisor d of r, then H must coincide with the multiplicative group of that subfield of $G F\left(p^{r}\right)$ which has p^{d} elements, so that in this case we have the result indicated. Now suppose $q \mid\left(p^{r}-1\right)$ but q does not have the previous special form. Then H does not coincide with the multiplicative group of any subfield of $G F\left(p^{r}\right)$. However, the set L consisting of those elements of $G F\left(p^{r}\right)$ which are expressible as the sum of $q^{\text {th }}$ powers is closed under addition and multiplication, and therefore L is a subfield of $G F\left(p^{r}\right)$. Thus the multiplicative group of L properly contains H. Since H has prime index q in the multiplicative group of $G F\left(p^{r}\right)$, we must have $L=G F\left(p^{r}\right)$. This completes the proof.

3. How to determine $J_{q}(K)$

The Chinese Remainder Theorem enables us to prove the following result on the determination of $J_{q}(K)$, which is implicit in [11].

Theorem 2. Suppose q is a prime number. Suppose $P_{1}, P_{2}, \cdots, P_{s}$ are the distinct prime ideals of $J(K)$ dividing $(q-1)!$. Then an element ν of $J(K)$ is in $J_{q}(K)$ if and only if it satisfies the following conditions:
(a) For each $i(i=1,2, \cdots, s)$ there are elements $\rho_{i 1}, \cdots, \rho_{i m(i)}$ of $J(K)$ such that

$$
\nu \equiv \rho_{i 1}^{q}+\cdots+\rho_{i m(i)}^{q} \quad\left(\bmod P_{i}\right) .
$$

(b) There is an element δ of $J(K)$ such that

$$
\nu \equiv \delta^{q} \quad(\bmod q J(K))
$$

Remark. In order to obtain the result on the easier Waring problem mentioned at the end of $\S 1$, all we need do, in view of the identity of the first paragraph of $\S 1$, is to show that we can always take $m(i) \leqq q / 3$. This is rather simple to do by easy group-theoretic arguments.

Proof. First suppose $\nu \in J_{q}(K)$. Then by definition ν is the sum of a finite number of elements of the form $\pm \lambda^{q}$, where $\lambda \in J(K)$. Since

$$
-\lambda^{q} \equiv(-\lambda)^{q} \quad(\bmod q!J(K))
$$

this implies that ν is congruent to a sum of $q^{\text {th }}$ powers modulo $q!J(K)$. Hence (a) holds. Since

$$
\mu_{1}^{q}+\mu_{2}^{q}+\cdots+\mu_{n}^{q} \equiv\left(\mu_{1}+\mu_{2}+\cdots+\mu_{n}\right)^{q} \quad(\bmod q J(K))
$$

for any $\mu_{1}, \mu_{2}, \cdots, \mu_{n}$ in $J(K)$, it follows that (b) holds also.
Now suppose (a) and (b) hold. By inserting zero terms if necessary we may assume that $m_{1}, m_{2}, \cdots, m_{s}$ all have the same value $m-1$. For $j=1, \cdots, m-1$ we choose $\gamma_{j} \epsilon J(K)$ by the Chinese Remainder Theorem so that

$$
\gamma_{j} \equiv \rho_{i j} \quad\left(\bmod P_{i}\right) \quad(i=1, \cdots, s)
$$

Put $\gamma_{m}=-1$. Then

$$
\nu \equiv 1^{q}+\gamma_{1}^{q}+\cdots+\gamma_{m}^{q} \quad\left(\bmod P_{1} P_{2} \cdots P_{s}\right)
$$

Define a sequence $\beta_{1}, \beta_{2}, \cdots$ of elements of $J(K)$ as follows. Put $\beta_{1}=1$ and

$$
\beta_{k+1}=\beta_{k}+h\left(\nu-\beta_{k}{ }^{q}-\gamma_{1}^{q}-\cdots-\gamma_{m}^{q}\right),
$$

where h is a fixed rational integer such that $h q \equiv 1(\bmod (q-1)!)$. Then it is easy to see by induction that $\beta_{k} \equiv 1\left(\bmod P_{1} P_{2} \cdots P_{s}\right)$ and

$$
\nu \equiv{\beta_{k}}^{q}+\gamma_{1}^{q}+\cdots+\gamma_{m}^{q} \quad\left(\bmod \left(P_{1} P_{2} \cdots P_{s}\right)^{k}\right)
$$

for any positive integral value of k. Choose k so large that

$$
(q-1)!J(K) \mid\left(P_{1} P_{2} \cdots P_{s}\right)^{k}
$$

Choose α_{0} in $J(K)$ so that for this value of k we have

$$
\alpha_{0} \equiv \beta_{k} \quad(\bmod (q-1)!J(K)), \quad \alpha_{0} \equiv \delta \quad(\bmod q J(K))
$$

and for $j=1,2, \cdots, m$ choose α_{j} in $J(K)$ so that

$$
\alpha_{j} \equiv \gamma_{j} \quad(\bmod (q-1)!J(K)), \quad \alpha_{j} \equiv 0 \quad(\bmod q J(K))
$$

Then clearly

$$
\nu \equiv \alpha_{0}^{q}+\alpha_{1}^{q}+\cdots+\alpha_{m}^{q} \quad(\bmod q!J(K)),
$$

since this congruence holds both modulo $(q-1)!J(K)$ and modulo $q J(K)$.

Since $q!J(K) \subset J_{q}(K)$, we conclude that $\nu \in J_{q}(K)$. Hence (a) and (b) imply that $\nu \in J_{q}(K)$.

4. Main result on the characterization of $J_{q}(K)$

The previous two theorems enable us to prove the following main result.
Theorem 3. Suppose q is a prime number. Then $J_{q}(K) \neq J(K)$ if and only if at least one of the following holds:
(i) q is ramified in $J(K)$.
(ii) q is expressible in the form $\left(p^{r}-1\right) /\left(p^{d}-1\right)$, where p is a prime and r and d are positive integers, and p has in $J(K)$ a prime ideal factor of degree r.

Proof. Suppose (i) holds. Then $q J(K)$ is divisible by the square of some prime ideal Q in $J(K)$. Thus the coprime-residue-class group modulo $q J(K)$ has order divisible by q. Hence not all coprime-residue-classes contain $q^{\text {th }}$ powers, since in an Abelian group of order divisible by q the mapping $X \rightarrow X^{q}$ is a homomorphism of the group strictly into itself. Therefore, by Theorem $2, J_{q}(K)$ is properly contained in $J(K)$ when (i) holds.

Suppose (ii) holds. Suppose P is a prime ideal in $J(K)$ of degree r which divides p. Then $G F(N P)$ falls under the exceptional case of Theorem 1. Thus by Theorem 1 not all residue-classes modulo P contain sums of $q^{\text {th }}$ powers. Therefore by Theorem $2, J_{q}(K)$ is properly contained in $J(K)$ when (ii) holds.

Now suppose neither (i) nor (ii) holds. Suppose $P_{1}, P_{2}, \cdots, P_{s}$ are the distinct prime ideals dividing $(q-1)!J(K)$. Since (ii) does not hold, for $i=1,2, \cdots, s$ we know that $G F\left(N P_{i}\right)$ does not come under the exceptional case of Theorem 1. It follows that for $i=1,2, \cdots, s$ every residue-class modulo P_{i} contains a sum of $q^{\text {th }}$ powers. Thus condition (a) of Theorem 2 holds for any ν in $J(K)$. On the other hand, since (i) does not hold,

$$
q J(K)=Q_{1} Q_{2} \cdots Q_{t}
$$

where $Q_{1}, Q_{2}, \cdots, Q_{t}$ are distinct prime ideals. If $\nu \in J(K)$ and if we choose $\delta \epsilon J(K)$ so that

$$
\delta \equiv \nu^{N Q_{j} / q} \quad\left(\bmod Q_{j}\right) \quad(j=1, \cdots, t)
$$

we will have

$$
\delta^{q} \equiv \nu^{N Q_{j}} \equiv \nu \quad\left(\bmod Q_{j}\right) \quad(j=1, \cdots, t)
$$

and thus

$$
\delta^{q} \equiv \nu \quad(\bmod q J(K))
$$

Thus condition (b) of Theorem 2 holds for any ν in $J(K)$. Since conditions (a) and (b) of Theorem 2 hold for any ν in $J(K)$, it follows that $J_{q}(K)=J(K)$ when neither (i) nor (ii) holds. Thus Theorem 3 is proved.

As mentioned in the Introduction, the exceptional case of Theorem 1 and the case (ii) of Theorem 3 cannot occur unless r is a prime-power and d is the largest divisor of r other than r itself.

Our arguments enable us to give the following description of $J_{q}(K)$ when
$J_{q}(K) \neq J(K)$. If (i) holds but (ii) does not, then $J_{q}(K)$ is equal to the ring $R_{q}(K)$ consisting of those integers of K which are congruent to $q^{\text {th }}$ powers modulo $q J(K)$. If (ii) holds but (i) does not, then $J_{q}(K)$ is equal to the ring $S_{q}(K)$ consisting of those integers of K which are congruent to $q^{\text {th }}$ powers modulo each of the prime ideals of the type referred to in the statement of (ii). If both (i) and (ii) hold, then $J_{q}(K)=R_{q}(K) \cap S_{q}(K)$.

5. Frequency of occurrence of primes of the form (*)

Let $H(x)$ denote the number of primes q not exceeding x and expressible in the form (*) for some prime p and some positive integers ${ }^{4} r$ and d, each q being counted according to the multiplicity of its occurrence in the form (*). (Thus 31 is counted twice.) In this section we use Atle Selberg's sieve method to show that $H(x) \leqq 50 x^{1 / 2}(\log x)^{-2}$ for large x. The crude form of Brun's sieve method given in [5] would show that

$$
H(x)=O\left(x^{1 / 2}(\log \log x)^{2}(\log x)^{-2}\right)
$$

for large x, which would be sufficient to show that $\sum^{*} q^{-1 / 2}$ converges. Our proof will be accomplished by means of several lemmas. In what follows, sums or products on the letter p are to be extended over the primes, and sums on the letter m are to be extended over the positive integers.

Lemma 1 (Atle Selberg). Suppose F is a polynomial in one variable with integral coefficients. Suppose N is a positive integer greater than 1 and $1<z<N$. Let S be the number of positive integers j between 1 and N inclusive such that $F(j)$ is relatively prime to $\prod_{p \leqq z} p$. Let $\omega(m)$ denote the number of solutions of the congruence

$$
F(X) \equiv 0 \quad(\bmod m)
$$

If $\omega(p)=p$ for some prime p not exceeding z, then $S=0$. If $\omega(p)<p$ for all primes p not exceeding z, then

$$
S \leqq N / Z+R
$$

where

$$
\begin{gathered}
Z=\sum_{m \leqq z} a_{m} m^{-1}, \quad a_{m}=\mu^{2}(m) \omega(m) \prod_{p \mid m}(1-\omega(p) / p)^{-1} \\
R=z^{2} \prod_{p \leqq z}(1-\omega(p) / p)^{-2}
\end{gathered}
$$

Proof. See [8].
Lemma 2. Suppose F is the product of k distinct polynomials with integral coefficients each irreducible over the field of rational numbers. Suppose $\omega(m)$ and a_{m} are defined as in Lemma 1. If $\omega(p)<p$ for all primes p, then for x large

$$
\begin{aligned}
& \sum_{m \leqq x} a_{m} m^{-1}=\{k!C(F)\}^{-1}(\log x)^{k}+A_{k-1}(\log x)^{k-1}+\cdots \\
&+A_{1} \log x+A_{0}+O\left(x^{\theta-1}\right)
\end{aligned}
$$

[^2]where A_{0}, \cdots, A_{k-1} are certain constants depending on F,
$$
C(F)=\prod_{p}\left\{(1-1 / p)^{-k}(1-\omega(p) / p)\right\}
$$
and θ is a number between $\frac{1}{2}$ and 1 depending only on the degrees of the factors of F.

Proof. Suppose the k irreducible factors of F are $f_{1}, f_{2}, \cdots, f_{k}$, and let $\omega_{i}(m)$ be the number of solutions of the congruence $f_{i}(X) \equiv 0(\bmod m)$. Then for all but finitely many primes p we know that $\omega_{i}(p)$ is the number of distinct prime ideals of first degree in the algebraic number field generated by a zero of f_{i} (see [16]). It is also known that

$$
\sum_{p}\left(\omega_{i}(p)-1\right) / p
$$

converges. Clearly $\omega(p)=\omega_{1}(p)+\cdots+\omega_{k}(p)$ for all but finitely many primes p, so that

$$
\sum_{p}(\omega(p)-k) / p
$$

converges. Then for $\operatorname{Re} s>1$ we have

$$
\begin{aligned}
\sum_{m} \frac{a_{m}}{m^{s}} & =\prod_{p}\left\{1+\frac{\omega(p)}{p^{s}}\left(1-\frac{\omega(p)}{p}\right)^{-1}\right\} \\
& =\sum_{m} \frac{\delta_{m}}{m^{s}} \cdot \prod_{p}\left(1-\frac{\omega(p)}{p^{s}}\right)^{-1} \\
& =\sum_{m} \frac{\varepsilon_{m}}{m^{s}} \cdot \prod_{p}\left(1-\frac{\omega_{1}(p)+\cdots+\omega_{k}(p)}{p^{s}}\right)^{-1} \\
& =\sum_{m} \frac{\eta_{m}}{m^{s}} \cdot \prod_{p}\left\{\left(1-\frac{\omega_{1}(p)}{p^{s}}\right) \cdots\left(1-\frac{\omega_{k}(p)}{p^{s}}\right)\right\}^{-1} \\
& =\sum_{m} \frac{\theta_{m}}{m^{s}} \cdot \zeta_{1}(s) \cdots \zeta_{k}(s)
\end{aligned}
$$

where $\zeta_{i}(s)$ is the Dedekind zeta-function of the field generated by a zero of f_{i}, and $\sum \delta_{m} m^{-s}, \sum \varepsilon_{m} m^{-s}, \sum \eta_{m} m^{-s}$, and $\sum \theta_{m} m^{-s}$ converge absolutely for $\operatorname{Re} s>\frac{1}{2}$. Now put (for $\operatorname{Re} s>1$)

$$
\sum b_{m} m^{-s}=\zeta_{1}(s) \cdots \zeta_{k}(s)
$$

Then by an elementary argument of the type discussed in [14] we readily deduce from Weber's theorem $[15,16]$ that

$$
\sum_{m \leqq x} b_{m}=B_{k-1} x(\log x)^{k-1}+B_{k-2} x(\log x)^{k-2}+\cdots+B_{0} x+O\left(x^{\theta}\right)
$$

where θ is as announced. (Complex-variable methods using the functional equation of the Dedekind zeta-function would give a better value of θ.) A further elementary argument gives as an immediate consequence of the above

$$
\sum_{m \leqq x} a_{m}=D_{k-1} x(\log x)^{k-1}+D_{k-2} x(\log x)^{k-2}+\cdots+D_{0} x+O\left(x^{\theta}\right)
$$

where $D_{0}, D_{1}, \cdots, D_{k-1}$ are certain constants. But

$$
\begin{aligned}
(k-1)!D_{k-1} & =\lim _{s \rightarrow 1+}(s-1)^{k} \sum_{m} a_{m} m^{-s} \\
& =\lim _{s \rightarrow 1+} \zeta(s)^{-k} \sum_{m} a_{m} m^{-s} \\
& =\lim _{s \rightarrow 1+} \prod_{p}\left\{\left(1-\frac{1}{p^{s}}\right)^{k}\left(1+\frac{\omega(p)(1-\omega(p) / p)^{-1}}{p^{s}}\right)\right\} \\
& =\prod_{p}\left\{\left(1-\frac{1}{p}\right)^{k}\left(1+\frac{\omega(p)}{p-\omega(p)}\right)\right\}=\frac{1}{C(F)}
\end{aligned}
$$

where the limit step follows from the fact that

$$
\lim _{s \rightarrow 1+} \sum_{p} \frac{\omega(p)-k}{p^{s}}=\sum_{p} \frac{\omega(p)-k}{p} .
$$

The result of the lemma now follows from the formula

$$
\sum_{m \leqq x} a_{m} m^{-1}=x^{-1} \sum_{m \leqq x} a_{m}+\int_{1}^{x} u^{-2}\left(\sum_{m \leqq u} a_{m}\right) d u .
$$

Lemma 3. Suppose $f_{1}, f_{2}, \cdots, f_{k}$ are distinct irreducible polynomials with integral coefficients and positive leading coefficients, and suppose F is their product. Let $Q_{F}(N)$ be the number of positive integers j between 1 and N inclusive such that $f_{1}(j), \cdots, f_{k}(j)$ are all primes. Then for large N we have

$$
Q_{F}(N) \leqq 2^{k} k!C(F) N(\log N)^{-k}+o\left(N(\log N)^{-k}\right)
$$

Remark. Heuristically we would expect to have

$$
Q_{F}(N)=h_{1}^{-1} h_{2}^{-1} \cdots h_{k}^{-1} C(F) \int_{2}^{N}(\log u)^{-k} d u+o\left(N(\log N)^{-k}\right)
$$

where $h_{1}, h_{2}, \cdots, h_{k}$ are the degrees of $f_{1}, f_{2}, \cdots, f_{k}$ respectively. Thus Selberg's method gives an upper bound for $Q_{F}(N)$ which is $2^{k} k!h_{1} h_{2} \cdots h_{k}$ times the conjectured asymptotic value.

Proof. The result is trivial if $\omega(p)=p$ for some prime p. Otherwise we apply Lemma 1 to F with $z=N^{1 / 2}(\log N)^{-(3 k+1) / 2}$. In view of Lemma 2 the quantity Z of Lemma 1 satisfies

$$
Z=\{k!C(F)\}^{-1}\{\log z\}^{k}+O\left(\{\log z\}^{k-1}\right)
$$

Also

$$
\begin{aligned}
R & =z^{2} \exp \left\{-2 \sum_{p \leqq z} \log \left(1-\omega(p) p^{-1}\right)\right\} \\
& =z^{2} \exp \left\{2 \sum_{p \leqq z}\left(k p^{-1}+c_{p}-d_{p}\right)\right\},
\end{aligned}
$$

where

$$
c_{p}=\begin{gathered}
\omega(p)-k \\
p
\end{gathered}, \quad d_{p}=\frac{\omega(p)}{p}+\log \left(1-\frac{\omega(p)}{p}\right)
$$

Since $\sum c_{p}$ and $\sum d_{p}$ converge and since

$$
\sum_{p \leqq z} p^{-1}=\log \log z+O(1)
$$

we have

$$
R \leqq z^{2} \exp (2 k \log \log z+\log B)=B z^{2}(\log z)^{2 k}
$$

where B is a positive constant. Thus

$$
\begin{aligned}
Q_{F}(N) & \leqq O(z)+S \\
& \leqq O(z)+N / Z+R \\
& =O(z)+k!C(F) N(\log z)^{-k}+O\left(N(\log z)^{-k-1}\right)+O\left(z^{2}(\log z)^{2 k}\right)
\end{aligned}
$$

In view of our choice of z we have

$$
Q_{F}(N) \leqq 2^{k} k!C(F) N(\log N)^{-k}+O\left(N(\log \log N)(\log N)^{-k-1}\right)
$$

which gives the result of Lemma 3.
Lemma 4. Suppose r is a prime-power and d is the largest divisor of r other than r itself. Let $P_{r}(N)$ denote the number of primes p such that $p \leqq N$ and $\left(p^{r}-1\right) /\left(p^{d}-1\right)$ is prime. If r is a power of 2 , then $P_{r}(N) \leqq 1$. If r is a power of an odd prime, then for large N we have

$$
P_{r}(N) \leqq 8 C_{r} N(\log N)^{-2}+o\left(N(\log N)^{-2}\right)
$$

Here

$$
C_{r}=\prod_{p}\left\{(1-1 / p)^{-2}(1-\omega(p) / p)\right\}
$$

where $\omega(p)=2$ if $p \mid r, \omega(p)=\phi(r)+1$ if $p \equiv 1(\bmod r)$, and $\omega(p)=1$ otherwise.

Remark. Heuristically we would expect to have

$$
P_{r}(N) \sim r^{-1} C_{r} \int_{2}^{N}(\log u)^{-2} d u
$$

as $N \rightarrow+\infty$. Also note that

$$
\omega(p)=2+\chi_{1}(p)+\cdots+\chi_{\phi(r)-1}(p)
$$

where $\chi_{1}, \cdots, \chi_{\phi(r)-1}$ are the nonprincipal residue-characters modulo r.
Proof. If r is a power of 2, then

$$
\left(p^{r}-1\right) /\left(p^{d}-1\right)=p^{d}+1
$$

which is divisible by 2 when p is odd. Thus $P_{r}(N) \leqq 1$, with equality only if $2^{d}+1$ is a Fermat prime and $N \geqq 2$. Now suppose r is a power of an odd prime. Then, in view of Lemma 3, all we need to do is find the number $\omega(p)$ of solutions of the congruence

$$
\begin{equation*}
X\left(X^{r-d}+X^{r-2 d}+\cdots+X^{d}+1\right) \equiv 0 \quad(\bmod p) \tag{1}
\end{equation*}
$$

which is one more than the number of solutions of the congruence

$$
\begin{equation*}
X^{r-d}+X^{r-2 d}+\cdots+X^{d}+1 \equiv 0 \quad(\bmod p) \tag{2}
\end{equation*}
$$

Any solution of (2) is relatively prime to p and satisfies $X^{r} \equiv 1(\bmod p)$, so that its multiplicative order modulo p must be a divisor of r. But if the multiplicative order of X_{0} is a divisor of r other than r itself, then $X_{0}{ }^{d} \equiv 1(\bmod p)$, and so

$$
r / d \equiv X_{0}^{r-d}+X_{0}^{r-2 d}+\cdots+1 \equiv 0 \quad(\bmod p)
$$

Thus if p does not divide r, the number of solutions of (2) is equal to the number of elements of exact order r in the coprime-residue-class group modulo p, namely, $\phi(r)$ if $p \equiv 1(\bmod r)$ and zero if $p \not \equiv 1(\bmod r)$. If p is the unique prime dividing r, then $X \equiv 1(\bmod p)$ is a solution of (2) and is the only one, since no other element of the coprime-residue-class group modulo p has order dividing r. Thus the number of solutions of (1) is as given in the statement of the lemma.

Lemma 5. Let $P_{3}(N)$ denote the number of primes p such that $p \leqq N$ and $p^{2}+p+1$ is prime. Then for large N we have

$$
P_{3}(N) \leqq 8 C_{3} N(\log N)^{-2}+o\left(N(\log N)^{-2}\right)
$$

where

$$
C_{3}=\prod_{p}\left\{\left(1-\frac{1}{p}\right)^{-2}\left(1-\frac{2+\chi(p)}{p}\right)\right\}=1.52 \cdots
$$

and $\chi(p)=-1,0$, or 1 according as p is congruent to $-1,0$, or 1 modulo 3 . In particular

$$
P_{3}(N) \leqq 12.3 N(\log N)^{-2}
$$

for all sufficiently large N.
Remark. The heuristic result here is

$$
P_{3}(N) \sim \frac{1}{2} C_{3} \int_{2}^{N}(\log u)^{-2} d u=0.76 \cdots \int_{2}^{N}(\log u)^{-2} d u
$$

as $N \rightarrow+\infty$. We notice that

$$
\begin{aligned}
C_{3} & =L(1, \chi)^{-1} \prod_{p}\left\{\left(1-\frac{1}{p}\right)^{-2}\left(1-\frac{\chi(p)}{p}\right)^{-1}\left(1-\frac{2+\chi(p)}{p}\right)\right\} \\
& =\frac{3 \sqrt{3}}{\pi} \prod_{p}\left\{\left(\frac{p}{p-1}\right)^{2}\left(\frac{p-\chi(p)-2}{p-\chi(p)}\right)\right\} \\
& =1.6539 \cdots \prod_{p}\left\{1-\frac{p+2 \chi(p) p-\chi(p)}{(p-1)^{2}(p-\chi(p))}\right\}
\end{aligned}
$$

Proof. Lemma 5 is a special case of Lemma 4.

Lemma 6. Suppose $H(x)$ is defined as at the beginning of this section and $P_{3}(x)$ is as defined in Lemma 5. Then

$$
H(x)=P_{3}\left(x^{1 / 2}\right)+O\left(x^{1 / 4}(\log x)^{-2}\right)
$$

Proof. If r is a fixed prime-power and d is the largest divisor of r other than r itself, let $G_{r}(x)$ denote the number of primes q such that $q \leqq x$ and $q=\left(p^{r}-1\right) /\left(p^{d}-1\right)$ for some prime p. Since

$$
\left(p^{r}-1\right) /\left(p^{d}-1\right) \geqq p^{r-d} \geqq 2^{r-d} \geqq 2^{r / 2} \geqq e^{r / 3}
$$

we have

$$
H(x)=\sum_{r \leqq 3 \log x} G_{r}(x)
$$

Since $p^{2}+p+1 \leqq x$ if and only if $p \leqq\left(x-\frac{3}{4}\right)^{1 / 2}-\frac{1}{2}$, we have

$$
G_{3}(x)=P_{3}\left(\left(x-\frac{3}{4}\right)^{1 / 2}-\frac{1}{2}\right)=P_{3}\left(x^{1 / 2}\right)+O(1) .
$$

By Lemma 4

$$
G_{5}(x) \leqq P_{5}\left(x^{1 / 4}\right)=O\left(x^{1 / 4}(\log x)^{-2}\right)
$$

If r is an odd prime-power greater than 6 , we have trivially

$$
G_{r}(x) \leqq x^{1 /(r-d)}=x^{1 / \phi(r)} \leqq x^{1 / 6}
$$

Finally if r is a power of 2 , then

$$
G_{r}(x) \leqq 1 \leqq x^{1 / 6}
$$

Combining these results, we have

$$
\begin{aligned}
H(x) & =P_{3}\left(x^{1 / 2}\right)+O(1)+O\left(x^{1 / 4}(\log x)^{-2}\right)+O\left(x^{1 / 6} \log x\right) \\
& =P_{3}\left(x^{1 / 2}\right)+O\left(x^{1 / 4}(\log x)^{-2}\right)
\end{aligned}
$$

Theorem 4. If $H(x)$ denotes the number of primes of the form (*) not exceeding x, then

$$
H(x) \leqq 50 x^{1 / 2}(\log x)^{-2} \leqq 12.5 \int_{2}^{x^{1 / 2}}(\log u)^{-2} d u
$$

for all sufficiently large x.
Remark. Heuristically we would expect to have (as $x \rightarrow+\infty$)

$$
H(x) \sim P_{3}\left(x^{1 / 2}\right) \sim \frac{1}{2} C_{3} \int_{2}^{x^{1 / 2}}(\log u)^{-2} d u=0.76 \cdots \int_{2}^{x^{1 / 2}}(\log u)^{-2} d u
$$

Proof. The theorem follows from Lemmas 5 and 6.
Corollary. The series $\sum^{*} q^{-1 / 2}$ converges, the sum being taken over all primes of the form (*), each taken in the multiplicity of its occurrence in the form (*).

Proof. Cf. the proof of Theorem 120 of [5].

6. Numerical data

Table II lists the first 240 primes q of the form

$$
\begin{equation*}
q=\left(p^{r}-1\right) /\left(p^{d}-1\right) \tag{*}
\end{equation*}
$$

where p is a prime and r and d are positive integers. It is part of a more extensive unpublished table giving the 814 such primes less than 1.275×10^{10}.

Most primes of the form (*) have $r=3$, that is, are of the form $p^{2}+p+1$, where p is a prime. In fact up to 1.275×10^{10} there are only 38 primes of the form (*) with $r \neq 3$; these are already known and can be found among the data in [1], [2], and [3]. However, Table II apparently does go beyond previously published tables of primes of the form $p^{2}+p+1$. This was made possible by the efforts of Mr. Roger A. Horn, a student in the 1961 Undergraduate Summer Program of the University of Illinois Digital Computer Laboratory, who used the Illiac to prepare a list of the 776 primes of the form $p^{2}+p+1$ less than 1.275×10^{10}. Up to 1.21×10^{8} Mr. Horn's list agrees perfectly with a similar but shorter list made earlier by us from inspection of Poletti's table [7] of the primes of the form $N^{2}+N+1$ less than 1.21×10^{8}, except that we had missed 86927653 because of a typographical error in Poletti's paper. (Poletti's list gives 86927653 as $(9333)^{2}+9333+1$ instead of as $(9323)^{2}+9323+1$.)

The 38 primes of the form (*) which do not exceed 1.275×10^{10} and which have $r \neq 3$ are distributed as follows: sixteen are of the form $\left(p^{5}-1\right) /(p-1)$, six are of the form $\left(p^{7}-1\right) /(p-1)$, three are of the form $\left(p^{9}-1\right) /\left(p^{3}-1\right)$, three are of the form $\left(p^{13}-1\right) /(p-1)$, and there are ten primes which are one of a kind, namely $2^{1}+1,2^{2}+1,2^{4}+1$, $2^{8}+1,2^{16}+1,2^{17}-1,2^{18}+2^{9}+1,2^{19}-1,\left(5^{11}-1\right) /(5-1)$, and $2^{31}-1$.

Table I shows that the numerical data agree remarkably well with the heuristic formulas mentioned in the remarks after Lemma 5 and Theorem 4.

TABLE I

x	$H(x)$	$G_{3}(x)$	$\frac{1}{2} C_{3} \int_{2}^{x^{1 / 2}}(\log u)^{-2} d u$
10^{1}	3	1	1
10^{2}	8	3	3
10^{3}	12	4	5
10^{4}	19	8	8
10^{5}	28	13	14
10^{6}	44	23	26
10^{7}	76	52	55
10^{8}	146	117	123
10^{9}	318	286	292
10^{10}	744	706	720
1.275×10^{10}	814	776	793

TABLE II
Table of primes q of the form $q=\left(p^{r}-1\right) /\left(p^{d}-1\right)$, where p is a prime and r and d are positive integers.

q	p^{r}	q	p^{r}	q	p^{r}
3	2^{2}	732541	29^{5}	12190573	$3491{ }^{3}$
5	2^{4}	735307	$857{ }^{3}$	12207031	5^{11}
7	2^{3}	797161	3^{13}	12655807	$3557{ }^{3}$
13	3^{3}	830833	$911{ }^{3}$	13479913	$3671{ }^{3}$
17	2^{8}	1191373	$1091{ }^{3}$	15066043	$3881{ }^{3}$
31	2^{5}	1204507	$1097{ }^{3}$	15916111	$3989{ }^{3}$
31	5^{3}	1353733	$1163{ }^{3}$	17284807	$4157{ }^{3}$
73	2^{9}	1395943	$1181{ }^{3}$	17787307	4217^{3}
127	2^{7}	1424443	$1193{ }^{3}$	18143341	4259^{3}
257	2^{16}	1482307	1217^{3}	19443691	4409^{3}
307	17^{3}	1772893	11^{9}	22292563	4721^{3}
757	3^{9}	1886503	$1373{ }^{3}$	22406023	$4733{ }^{3}$
1093	3^{7}	2037757	$1427{ }^{3}$	22576753	$4751{ }^{3}$
1723	41^{3}	2212657	$1487{ }^{3}$	23790007	4877^{3}
2801	$7{ }^{5}$	2432041	1559^{3}	23907211	4889^{3}
3541	59^{3}	2507473	$1583{ }^{3}$	24735703	$4973{ }^{3}$
5113	71^{3}	2922391	1709^{3}	25035013	$5003{ }^{3}$
8011	89^{3}	3281533	$1811{ }^{3}$	25396561	5039^{3}
8191	2^{13}	3413257	$1847{ }^{3}$	25646167	17^{7}
10303	101^{3}	3500201	43^{5}	25882657	5087^{3}
17293	$131{ }^{3}$	3730693	$1931{ }^{3}$	28638553	$5351{ }^{3}$
19531	5^{7}	3894703	$1973{ }^{3}$	28792661	73^{5}
28057	$167{ }^{3}$	4534771	$2129{ }^{3}$	30266503	$5501{ }^{3}$
30103	$173{ }^{3}$	5168803	$2273{ }^{3}$	34427557	$5867{ }^{3}$
30941	13^{5}	5229043	13^{7}	36572257	$6047{ }^{3}$
65537	2^{32}	5333791	2309^{3}	38112103	$6173{ }^{3}$
86143	$293{ }^{3}$	5473261	2339^{3}	39449441	79^{5}
88741	17^{5}	5815333	$2411{ }^{3}$	40825711	6389^{3}
131071	2^{17}	7094233	$2663{ }^{3}$	42922153	$6551{ }^{3}$
147073	$383{ }^{3}$	7450171	2729^{3}	43158331	6569^{3}
262657	2^{27}	7781311	2789^{3}	43553401	$6599{ }^{3}$
292561	23^{5}	8746807	2957^{3}	44269063	$6653{ }^{3}$
459007	$677{ }^{3}$	8817931	$2969{ }^{3}$	45151681	6719^{3}
492103	$701{ }^{3}$	9069133	$3011{ }^{3}$	45717883	6761^{3}
524287	2^{19}	9250723	$3041{ }^{3}$	46124473	$6791{ }^{3}$
552793	743^{3}	9843907	$3137{ }^{3}$	46696723	$6833{ }^{3}$
579883	761^{3}	10378063	$3221{ }^{3}$	47851807	6917^{3}
598303	$773{ }^{3}$	10572253	$3251{ }^{3}$	48037081	83^{5}
684757	$827{ }^{3}$	11611057	$3407{ }^{3}$	49189183	7013^{3}
704761	839^{3}	11899051	3449^{3}	52265671	7229^{3}

TABLE II (Continued)
Table of primes q of the form $q=\left(p^{r}-1\right) /\left(p^{d}-1\right)$, where p is a prime and r and d are positive integers.

q	p^{r}	q	p^{r}	q	p^{r}
52613263	$7253{ }^{3}$	142265257	$11927{ }^{3}$	256240057	$16007{ }^{3}$
56964757	7547^{3}	142408423	$11933{ }^{3}$	258357403	$16073{ }^{3}$
62149573	$7883{ }^{3}$	143700157	11987^{3}	262209281	$127{ }^{5}$
62433703	$7901{ }^{3}$	146736883	12113^{3}	263396671	$16229{ }^{3}$
65504743	$8093{ }^{3}$	147464593	$12143{ }^{3}$	265738903	$16301{ }^{3}$
67757593	$8231{ }^{3}$	149511757	12227^{3}	269665663	16421^{3}
67856407	$8237{ }^{3}$	150099253	$12251{ }^{3}$	271639843	$16481{ }^{3}$
70350157	$8387{ }^{3}$	150540631	12269^{3}	274018363	$16553{ }^{3}$
72275503	$8501{ }^{3}$	155588203	12473^{3}	275809057	16607^{3}
72991393	$8543{ }^{3}$	159807523	12641^{3}	277605583	16661^{3}
74433757	8627^{3}	159959257	$12647{ }^{3}$	278606173	16691^{3}
75160231	8669^{3}	171858991	13109^{3}	285660703	$16901{ }^{3}$
75368443	$8681{ }^{3}$	173277733	13163^{3}	293214253	$17123{ }^{3}$
76413823	8741^{3}	175019671	13229^{3}	300450223	17333^{3}
76623763	$8753{ }^{3}$	177728893	$13331{ }^{3}$	302533843	$17393{ }^{3}$
77572057	8807^{3}	181427431	13469^{3}	305175781	5^{13}
80344333	$8963{ }^{3}$	181912657	$13487{ }^{3}$	305463007	$17477{ }^{3}$
82074541	9059^{3}	182236501	$13499{ }^{3}$	308827903	$17573{ }^{3}$
86927653	9323^{3}	183697363	13553^{3}	309672007	$17597{ }^{3}$
90658963	$9521{ }^{3}$	185327383	13613^{3}	310728757	17627^{3}
90887623	$9533{ }^{3}$	194086693	$13931{ }^{3}$	318176407	$17837{ }^{3}$
93886411	9689^{3}	198457657	14087^{3}	327230011	18089^{3}
94468681	9719^{3}	206482531	14369^{3}	329404351	18149^{3}
94935793	9743^{3}	210815881	14519^{3}	333336307	18257^{3}
95052751	9749^{3}	211687951	14549^{3}	333774631	18269^{3}
96108613	9803^{3}	221042557	14867^{3}	338615203	$18401{ }^{3}$
103052953	10151^{3}	223188661	$14939{ }^{3}$	350869093	18731^{3}
104519953	10223^{3}	223547353	$14951{ }^{3}$	352444303	$18773{ }^{3}$
105873811	10289^{3}	227331007	15077^{3}	357191101	18899^{3}
112137511	10589^{3}	228236557	15107^{3}	359007757	$18947{ }^{3}$
113028793	10631^{3}	229143907	15137^{3}	361513183	$19013{ }^{3}$
116240743	10781^{3}	229507351	15149^{3}	369081733	19211^{3}
124802413	11171^{3}	237575983	$15413{ }^{3}$	373243081	19319^{3}
125742583	11213^{3}	241103257	15527^{3}	376495813	$19403{ }^{3}$
126416293	11243^{3}	242409331	15569^{3}	386574583	19661^{3}
133390951	11549^{3}	244656523	15641^{3}	399180421	19979^{3}
135059263	11621^{3}	247668907	15737^{3}	399660073	$19991{ }^{3}$
137299807	11717^{3}	249561007	$15797{ }^{3}$	404955253	20123^{3}
138709507	11777^{3}	252222043	15881^{3}	408828181	20219^{3}
138992311	11789^{3}	253557853	$15923{ }^{3}$	414916531	20369^{3}

As in the previous section $H(x)$ is the total number of primes of the form (*) not exceeding x, and $G_{3}(x)=P_{3}\left(\left(x-\frac{3}{4}\right)^{1 / 2}-\frac{1}{2}\right)$ is the number of primes of the form $p^{2}+p+1$ not exceeding x. (For the values of x listed in Table I, we actually have $G_{3}(x)=P_{3}\left(x^{1 / 2}\right)$ except for the value $x=10$.) The values in the last column of Table I are given to the nearest integer.

References

1. A. J. C. Cunningham and H. J. Woodall, Factorisation of $y^{n} \mp 1$, London, Hodgson, 1925.
2. L. E. Dickson, On finite algebras, Nachr. Ges. Wiss. Göttingen, 1905, pp. 358-393.
3. M. Kraitchik, Recherches sur la théorie des nombres, vol. 2, Factorisation, Paris, Gauthier-Villars, 1929.
4. E. Landau, Handbuch der Lehre von der Verteilung der Primzahlen, vol. 1, Leipzig, Teubner, 1909, particularly §110.
5. -_, Elementary number theory, New York, Chelsea, 1958 (translation of the first half of the first volume of Vorlesungen über Zahlentheorie, Leipzig, Hirzel, 1927), particularly Theorems 116-120.
6. ——, Vorlesungen über Zahlentheorie, vol. 3, Leipzig, Hirzel, 1927, particularly pp. 125-142.
7. L. Poletti, Le serie dei numeri primi appartenenti alle due forme quadratiche (A) $n^{2}+n+1 e(B) n^{2}+n-1$ per l'intervallo compreso entro 121 milioni, e cioè per tutti i valori di n fino a 11000, Atti Accad. Naz. Lincei, Mem. Cl. Sci. Fis. Mat. Nat. (6), vol. 3 (1929), pp. 193-218.
8. K. Prachar, Primzahlverteilung, Berlin, Springer, 1957, particularly pp. 35-42.
9. C. L. Siegel, Generalization of Waring's problem to algebraic number fields, Amer. J. Math., vol. 66 (1944), pp. 122-136.
10. --, Sums of $m^{\text {th }}$ powers of algebraic integers, Ann. of Math. (2), vol. 46 (1945), pp. 313-339.
11. Rosemarie M. Stemmler, The easier Waring problem in algebraic number fields, Acta Arithmetica, vol. 6 (1961), pp. 447-468.
12. T. Tatuzawa, On the Waring problem in an algebraic number field, J. Math. Soc. Japan, vol. 10 (1958), pp. 322-341.
13. L. Tornheim, Sums of n-th powers in fields of prime characteristic, Duke Math. J., vol. 4 (1938), pp. 359-362.
14. J. P. Tull, Dirichlet multiplication in lattice point problems, Duke Math. J., vol. 26 (1959), pp. 73-80.
15. H. Weber, Ueber Zahlengruppen in algebraischen Körpern, Math. Ann., vol. 49 (1897), pp. 83-100.
16. -—, Lehrbuch der Algebra, 2nd ed., vol. 2, Braunschweig, Vieweg, 1899.

University of Illinois
Urbana, Illinois
Purdue Univeristy
Lafayette, Indiana

[^0]: Received April 24, 1961; received in revised form August 16, 1961.
 ${ }^{1}$ This work was supported by the Office of Naval Research.
 ${ }^{2}$ The phrase " q is ramified in $J(K)$ " means that q is divisible by the square of some prime ideal in $J(K)$. By the so-called ramification theorem (see [6]) the condition that q is ramified in $J(K)$ is equivalent to the condition that q divides the discriminant of K. Accordingly our results could easily be modified by replacing the former condition by the latter.

[^1]: ${ }^{3}$ A further improvement was obtained recently by O. Körner, Über das Waringsche Problem in algebraischen Zahlkörper, Math. Ann., vol. 144 (1961), pp. 224-238.

[^2]: ${ }^{4}$ In view of the remarks made in the introduction, r must actually be a primepower, and d must be the largest divisor of r other than r itself.

