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A set of points some of which are connected by an edge will be called a
graph G. Two vertices are connected by at most one edge, and loops (i.e.,
edges whose endpoints coincide) will be excluded. Vertices will be denoted
by a, 8, - - - , edges will be denoted by e; , €2, - - - or by (a, 8) where the edge
(e, B) connects the vertices « and B.

G — ¢ — -+ — ¢ will denote the graph from which the edges e;, - -+ , e
have been omitted, and G — a; — - -+ — o4 denotes the graph from which the
vertices oy , - - - , a and all the edges emanating from them have been omitted;
similarly G + e; + - - - + ¢, will denote the graph to which the edgese; , - - , e
have been added (without generating a new vertex).

The valency v(a) of a vertex will denote the number of edges emanating
from it. G will denote a graph having v vertices and u edges. The graph
G?g (i.e., the graph of k vertices any two of which are connected by an edge)
will be called the complete k-gon.

A graph is called even if every circuit of it has an even number of edges.

Turén! proved that every

G, V= —(k—k—_% n* =1 + ()
forn = (k — 1)t +r,0 = r <k — 1, contains a complete k-gon, and he
determined the structure of the G¥*’s which do not contain a complete k-gon.
Thusif weput f(2m) = m2, f(2m + 1) = m(m + 1), a special case of Turan’s
theorem states that every G¥ia)4+1 contains a triangle.

In 1941 Rademacher proved that for even n every 7,41 contains at least
[n/2] triangles and that [n/2] is best possible. Rademacher’s proof was not
published. Later on’ I simplified Rademacher’s proof and proved more
generally that for ¢ £ 3, n > 2f, every G$%ay+: contains atleast {{n/2] triangles.
Further I conjectured that for ¢ < [n/2] every Gf(a)+: contains at least t[n/2]
triangles. It is easy to see that for n = 2m, 2m > 4, the conjecture is false

for ¢ = n/2. To see this, consider a graph G4, whose vertices are
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o, -, azn and whose edges are
(@i,a;), 1Sism+1<js2m,
and the m 4 1 further edges
(@i, i), 1=<4i=m, and (a1, amu).

It is easy to see that this graph contains m® — 1 triangles (for 2m = 4 an
unwanted triangle (o1, a2, a3) enters and ruins the counting, and in fact it is
easy to see that for 2m = 4 the conjecture holds for { = m = 2). For odd
n = 2m + 1 perhaps every Giimii+:, t < 2m — 2, contains at least tm
triangles. But here is a Giipmityram—1, 2m + 1 = 9, which contains fewer
than m(2m — 1) triangles. The vertices of our graph are a;, -« , asmy1
the edges are

(ai,a;), 1=2i=m+2<j=2m-+1,
and the following 2m + 1 edges:
(a1, or), (o2, ar), (az,as), (az,as), (as,as),
3sk=m+2.

It is easy to see that this graph contains 2m* — m — 1 < m(2m — 1) triangles.
For 2m + 1 = 5 we must have { £ 4, and it is easy to see that the conjecture
holds for all these t. For2m + 1 =7,¢ £ 9, and by a little longer argument
one can easily convince oneself that the conjecture holds for all these .

In the present paper we are going to prove the following

TaEOREM. There exists a constant ¢; > 0 sothat for ¢ < ¢;n/2 every Gyiays
contains at least t{n/2] triangles.

First we need three lemmas.
LemMA 1. Every Gita_1y42 which is not even contains a triangle.

Lemma 1 was found jointly by Gallai and myself. (The lemma was also
found by Mr. Andrésfai independently.)
Let G be a graph with n vertices which is not even and contains no triangle.

Let a1, - -+, azx41 be the vertices of the odd circuit of our graph having the
least number of vertices. We can assume 3 < 2k 4+ 1 = n. The subgraph
of G spanned by a1, - , a1 can have no other edges; otherwise our graph

would contain an odd circuit having fewer than 2k + 1 edges. Let 8, - --,
Brn2t—1 be the other vertices of G. Any of the 8’s can be connected with at
most two of the a’s, for otherwise G contains an odd circuit of fewer than
2k + 1 edges. Finally by Turdn’s theorem the subgraph of G spanned by
B1, -+, Bn_z_1 can have at most f(n — 2k — 1) edges. Thus the number
of edges of G is at most

% +1+2m—2—1)+f(n—2% —1) < f(n —1) + 1
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by a simple calculation (equality only for 2k + 1 = 5). This completes the
proof of our lemma.

Our proof in fact gives that a graph G of n vertices whose smallest odd
circuit has 2k + 1 vertices, k > 1, has at most 2n — 2k — 1 + f(n — 2k — 1)
edges, and the following simple example shows that this result is best possible.
Let the vertices of G be

Qp,y t Oy, Bl""76u7 Y1y " 5 Yokt

v=[n—2k—1:l u=n_|:n—2k—1}
2 ’ 2 ‘

The edges of G are (ai ) ﬁi)? ('YI ) ai)y (73 ) Oli), 1 é ) é v, (72 ) 61)7 (74 ) Bi))
1 = ¢ £ u, further the edges (v:, vit1), 1 = ¢ = 2k, (71, vort1)-

LemMmA 2. There exists a constant ¢c; > 0 so that every Gicoy1 contains at
least [c; n] triangles having a common edge (on , o) (i.e., all the edges (a1, B:),
(a2, Bi), (o1, 00), 1 £ 4 = [e n], are in Gitayp).

Let (a;, Bi,v:), 1 =7 = r, be a maximal system of disjoint triangles of our
graph G§t)y41 . In other words if we omit the vertices ai, s, vi, 1 £ ¢ < r,
the subgraph of G4, spanned by the remaining n — 3r vertices contains no
triangle and has therefore at most f(n — 3r) edges (by Turidn’s theorem).

Denote by G(n, ¢) the graph Githys1 — 2ot (a; + B; + #;), and let
2@ (a:), v (8:), v*?(v:) be the valencies of a;, Bi, vs in G(n, i). Now we
show that for some 7, 1 = ¢z = r, we must have

(1) v (a;) + 0 (B:) + (i) > n(l + 9e) — 3i.

For if (1) would not hold for any ¢, 1 < 7 < r, then the number of edges of
G5%)y 41 would be not greater than

(2) it (n(1 + 9¢) — 37) + f(n — 3r) < f(n)

by a simple calculation for sufficiently small ¢, . But (2) is an evident con-
tradiction since G¢my41 has by definition f(n) + 1 edges.

Thus (1) holds for say ¢ = % . Then a simple computation shows that
there are at least 3[con] vertices of G(n, %) which are connected with more
than one of the vertices oy, , Bi , v, - TLherefore there are at least [can] of
them which are connected with the same pair, i.e., G(n,%), and therefore
G57)y 41, contains the configuration required by Lemma 2, which completes
the proof of the lemma.

By more careful considerations we can prove that every G}Z‘Z)H contains
n/6 + O(1) triangles (cu ,02,8:),1 = ¢ < n/6 4+ O(1), and that this result
is best possible.

LemmA 3. Let 6 > 0 be a fixzed number. Consider any graph
G u>f(n) = (n/2)(1 = 8), n > m(s),
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whichcontainsa triangle. Then G contains an edge (o , az) and [csn] + 1,¢5 =

c3(0), vertices By, <+, Br, 7 = [can] + 1, so that all the triangles (e1 , a2, B:),
1 =4 =7, arein G,

By assumption Q™ contains a triangle (ai, as, @3). Assume first that
(3) v(a1) + v(a) + v(az) > n(1 + 9¢) + 9.

Then as in the proof of Lemma 2 we can show that G\ contains the required
configuration.

If (3) is not satisfied, then G\ — a; — az — a3 has n — 3 vertices and at
least u — n(1 4 9¢c3) — 9edges. Butif ¢; < §/18, then for n > n,

u—n(l+9c) —9
> f(n) — (n/2)(1 — a) — n(l + 9¢;) — 9 > f(n — 3).

Thus by Lemma 2, G — oy — oz — a3, and therefore G{, contains the
configuration required by Lemma 3, which completes the proof of Lemma 3.

Now we can prove our Theorem. Let there be given a Giiay1:, t < ¢ n/2.
Assume first that after the omission of any r = [¢;n/2¢s], ¢s = ¢z(%) (6 =% in
Lemma 3), edges the graph will still contain a triangle. For sufficiently small
1, €1/2¢; < %; thus it will be permissible to apply Lemma 3 during the omis-
sion of these edges.

By Lemma 3 (or Lemma, 2) there exists an edge e; which is contained in at
least [csn] 4+ 1 triangles of GSf 4. ; again by Lemma 3 in Gifay4: — e; there
exists an edge e; which is contained in [e;n] + 1 triangles of Giayr: — e;.
Suppose we have already chosen the edges e;, ‘-, e, each of which is con-
tained inatleast [c; n] + 1 triangles. By our assumption Ky —er— - —e,
contains at least one triangle; thus by Lemma 3 there is an edge e,41 in
G§tyy4e — eg — -+ — e, which is contained in at least [c;n] + 1 triangles in
this graph. These triangles incident on the edges e;, - -+ , e,41 are evidently
distinet; thus G§a)+¢ contains at least (» + 1) ([esn] + 1) > ¢;n’/2 > tn/2
triangles, which proves our Theorem in this case.

Therefore we can assume that there are I = r < n/4edges e, ---, e; 80
that G = G§¢ay4e — e — -+ — e;contains no triangle, and we can assume that
l is the smallest integer with this property. Byl = r < n/4, G has

fn) +t—1>f(n) —n/4>f(n—-1)4+1

edges. Thus by Lemma 1, G is even.

By Turin’s theorem, I = ¢t. Assume first { = ¢ (it is not necessary to treat
the cases I = ¢t and | > t separately, but perhaps it will be easier for the
reader to do so). Then G has f(n) edges, and by Turdn’s theorem G is
of the following form: The vertices of G are oy, -, amm , B,y =5 Brnsal »
and the edges are (a;, B;),1 =1 = [n/2],1 £ j = n — [n/2]. A simple
argument shows that the addition of every further edge introduces at least
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[n/2] triangles and that these triangles are distinet. Thus G§(ay4: contains
at least t[n/2] triangles, and our Theorem is proved in this case too.

Assume finally I = ¢t + w, 0 < w < n/4 (since I < n/4). It will be more
convenient to assume first that n is even. Put n = 2m. Since G is even, it
is contained in a graph G(E, u) whose verticesare as, -+ , otm—u , B1, =+ * , B
and whose edges are (&, 8;),1 £ ¢ =<m —wu,1 £j = m + u (since G has
more than f(2m) — m/2 = m* — m/2 edges, we have 0 < u < (m/2)"?).

Clearly every one of the edges ¢;, - - - , ¢; connect two a’s or two 8’s. For
if say e; would connect an o with a 3, then

(n)
Gitmy4t — €1 — *** — €11 — €41 — **° — €

would be even, and hence would contain no triangle, which contradicts the
minimum property of I.

By our assumption G is a subgraph of G(E, u). Assume that G is obtained
from G(E, u) by the omission of x edges. Then we evidently have

l=a+u+t (orw=2zx-+u),

and G§{ay4: is obtained from G by adding ! edges e; , - - , e; which are all of
the form (as, , ai,) or (Bi, Bi,). Put e; = (Bi,, Bi,), and let us estimate
the number of triangles (8, , 8:, , @;) in G(E, u) + ¢;. Clearly at most z of
the edges (8, , @;), (Bs; , @;) are not in G(E, u); thus G(E, u) 4+ e; contains
at least

m—u—

triangles (if e; connects two o’s, then G(E, u) -+ e; contains at least m + u — x
triangles). For different e;’s these triangles are clearly different; thus

Gitmpe =G +ea+ - +e
contains at least

(4) (m—u—2a)l=m—u—2z)(x+d+1t) 2tm=1tn/2)

triangles. (4) follows by simple computation from ! = w4+t < m/2.
(4) completes the proof of our Theorem for n = 2m. Forn = 2m + 1 the
proof is almost identical and can be omitted. Thus the proof of our Theorem
is complete.

It seems possible that a slight improvement of this proof will give the con-
jecture that every Githy4e , t < [n/2] contains at least t[n/2] triangles, but I
have not been successful in doing this.

I have not succeeded in formulating a reasonable conjecture about the
minimum number of trianglesa G5 (a1, must containif [n/2] < t < (3) — f(n).
It is easy to see that if ¢ is close to (3) — f(n), then G{{s)+; contains more
than #[n/2] triangles, and it would be easy to obtain a best possible result in
this case. But I have not investigated the range of ¢ for which this is possible.
I just remark that G{y)_;, I < 2, contains at least () — I(n — 2) triangles
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and that Gy contains at least () — 3(n — 2) + 1 triangles, and that
these results are best possible. The simple proofs are left to the reader.

Turén’s theorem implies that every G$33%, contains a complete 4-gon. As
an analogue of the theorem of Rademacher I can prove by very much more
complicated arguments that it contains at least n* complete 4-gons; this
result is easily seen to be best possible.

BupapreEst, HUNGARY



