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I. Introduction and summary of results
1. Let P nd Q 0 be fixed elements of R, the p-dic completion of the

rational field R, nd consider second order linear recurrence

(W)" W0, W, ..-, W,
defined by

(1.1) W,+ PW,+ QW, (n O, 1, 2,

whose initial values W0, W are elements of R. If P, Q, W0, W re p-udic
integers, all. the W. are p-adic integers, and we say that (W) is integral.
Any element X 0 of the field R my be written as X pU, where U

is a unit of R. We call x the (p-adic) value of X, writing x (X), with
the usual convention that if X 0, x + . In particular, we write

(1.2) w (W) (n 0, 1, 2,... ).

The sequence (w) is called the value function of the recurrence (W).
We solve completely here the problem of determining the vlue function of

any such recurrence (W); indeed we shall give specific formulas for (w).
Since R, contains the rational field R, our results give a far-reaching generali-
zation of Lucas’s "Laws of apparition and repetition" for the appearance of
multiples of p in the special recurrences (Lucas [4])"

(L)" L0=0, L= 1, ..., L, ...,
(S)" So 2, S P, ..., t-n,

It should be possible to carry out a similar generalization for the functions
(L) and (S) discussed by Lehmer in his thesis (Lehmer [3]), where P is re-
placed by the square root of an integer of R, but this will not be done here.

2. Let

(2.1) f(z) z- Pz-+-Q

be the polynomial associated with the recurrence (1.1), and let D denote its
discriminant. If p divides D, we call p a discriminantal divisor of f(z) or of
(w).

It turns out that the only case presenting any difficulty occurs when P
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and Q are both p-adic units, and (W) is integral. If the value w of W is
positive, we call n a zero of (W) modulo p of order wn. If (w) is bounded,
the recurrence is said to have bounded zeros. In Chapter V of the paper,
we give necessary and sufficient conditions that (W) has bounded zeros, and
in particular no zeros.

If (W) has zeros, we may assume that W0 --- 0 (mod p), and W. is a unit.
Let In (Ln) be the value function of the p-adic Lucas function (L). If p
is not a discriminantal divisor, let r be the rank of apparition of p in (L), that
is, the first positive zero of (L) modulo p. (As in the classical case, r divides
p (D/p).) If p is a discriminantal divisor, let r 1. Then there exists
an explicitly calculable p-adic integer such that the value function of (W)
is given by

Wn 0 if n0(modr),
(2.2)

’Wn lr "+-( n/r) if n ------ 0 (mod r).

If we represent in the canonical form

an p O<-_a<p,

and let An a0 alp + -t- ap forn 0, 1, 2, then (2.2) gives
the following law of repetition for powers of p in the terms W0, Wr, Wr, of
(W) which are divisible by p:

If m =- A,_I (mod pn), but m An (mod p+l),then the order of p in W,ris
n - lr.

Lucas’s law of apparition for the sequence (L) is the special case when
is zero.
We show conversely that if p is odd, then there exists a recurrence (W)

whose value function (w) is given by (2.2). Furthermore, (W) is unique up
to a unit multiplier.

In the special case where P and Q, W0 and W1 are rational integers, these
results show that for any choice of n we may choose the initial values of (W)
in such a way that the law of repetition for powers of p up to the n l, 1
power is anythingwe please. The simplicity of Lucas’s law of repetition is thus
quite exceptional.

3. The concluding chapter of the paper gives a generalization of the rela-
tion between Lucas (L) and (S) recurrences. Assume that p is odd. Two
integral sequences (W) and (V) with the same characteristic polynomial
z Pz - Q are said to be polar if (W0, W1, V0, V) 0 where denotes
the bilinear polar form of z Pzw + Qw. For example, (L) and (S) are
polar. We show that the relationships between the laws of apparition and
repetition of the prime p in (L) and (S) discovered by Lucas extend to any
two polar sequences.

It would be interesting to determine whether there is a p-adic analogue of
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the cyclotomic sequence (Q) of Sylvester for any two polar sequences. It is
not hard to show that (W) in the cases of most interest is p-adically a divisi-
bility sequence.

It is of some interest that the case when the prime p is ramified in the root
field of z Pz + Q does not require special treatment. For cubic sequences
over the rational field (Ward [6]), the ramified case is troublesome. Even
though the results for the laws of apparition of unramified primes are quali-
tatively similar to those obtained here, their proof requires a complicated induc-
tion (Ward [6]). It would be of some interest therefore to study the p-adic
cubic linear recurrences to see whether they actually need a different treat-
ment from quadratic p-adic recurrences.
The general plan of the present investigation is sufficiently indicated by the

chapter headings. The relevant information about p-adic fields summarized
in Chapter III may be found in Hasse [2].

II. Reduction to integral sequences
4. To avoid trivial cases, when the determination of the value function of

(W) is immediate, we shall assume that not both W0 and W1 are zero, and
that W PWI Wo + QW) 0; for otherwise (W) satisfies a recursion of
order one. We shall also assume that the characteristic polynomial (2.1)
has distinct nonzero roots which do not differ merely in sign. Thus through-
out the remainder of the paper, P, Q, and D are assumed to be different from
zero.

Let (P) a and (Q) b, so that P paV, Q pbV, where U and V
are units. Also let W0 p0 V’0, Wl pWlV; where V’o and V’ are units.
Finally, let

-FdWn p V’

where c and d are integers at our disposal. Then

+2 P UWn-F1 p VW, (n O, 1, ),
and

w’0
We choose c so that a c and b 2c shall be nonnegative and as smll s

possible. Then if d Min{w0, w c}, W’0 und W’ ure integers, und nt leust
one is u unit. Evidently the value function of (W) is known as soon as the
value function of the integral recurrence (W’) is determined.
The appropriate choices of c are as follows. If 2a b, then

a- c ((2a- b) + (b- 2c)) (b 2c),

and we choose c [b/2]. Ifb > 2a, then

b- 2c (b- 2a) +2(a- c) > 2(a- c),
and we choose c a.

If we let P’ pa-CU and Q’ pb-2cV, then

n-2 WnWl QW
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and the reduction procedure iust described leads to the following possibilities
for the integers P’ and Q’.

Case Choice of c Value of (P’) Value of (Q’)
I. 2a _-> b, b even 1/2b 1/2(2a b) 0

II. 2a > b, b odd 1/2(b- 1) 1/2(2a- b-1)
III. b > 2a a 0 (b- 2a) > 0

We shall show next that only Case I need be discussed, and that P’ may
be assumed to be a unit unless p is two, when P’ may be double a unit.
The two subsequences

W W’2 W2 and W’I,W’3,...,W.+I,...
of (W’) both satisfy the recurrence

+2 P Wn+l-Q W

whereP* p,2 2Q’andQ* Q’2. Hence in Case I if P’ is not a unit,
then P* and Q* are both units unless p is two, when the value of P* is one.
In Case II, the value of P* is at least one if P’ is not a unit, while the value of
Q* is two. Consequently a substitution of the form W* "**p ledsto
recursion for (W**) of type I.

5. It remains to discuss Case III, and Case II when P’ is a unit. In either
Q, p’ P’case z P’z d- =- z(z (mod p) a unit Hence by Hensel’s

lemma, z P’z -k Q’ splits in R. Let its roots be , and 5. Evidently one
root is a unit. Let it be 5. Then () (Q’) c’ > 0. Evidently , t
is a unit. Hence the general term of (W’) may be put in the form

(5.1) W’ F,n d- A"

where F and A are both integers of R.
At least one ofW I+AandW’ l+Aisaunit. Letd=(A).

If d 0,(W’.) 0if n # d. If d > 0, F is aunit. Hence by (5.1),
k(W’,) nc’ if n < d/c’, and (Wn)= d if n > d/c’. If c’ divides d, so
that d /cc’, (W) is not completely determined; all that can be said in
general is that ,(W ->- lcc’.
We may summarize the results of these reductions in the following theorem.

THEOREM 5.1. The rank function of any linear p-adic quadratic recurrence
can be determined provided that the ranlc function of any integral recurrence can
be determined in the following two cases:

Case 1. p odd, Q and P units;
Case 2. p even, Q a unit, P a unit, or double a unit.

III. Properties of the root field

6. Let a and tS denote the roots of f(z), distinct and nonzero by (4.2), and
let R denote the root field R,(a, ). Then 9 is either R or the simple
quadratic extension R(v’D) according as D is or is not a square in R. If
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p is a discriminantal divisor, d (D) is positive, p ramifies in if and
only if d is odd. If p is not a discriminantal divisor, it is said to be ordinary.
In particular, two is ordinary if and only if P is a dyadic unit.

Let r p or w/p according as p is unramified or ramified, and let e (r)
be 1 or 1/2 accordingly. Every element 0 of 9 may be uniquely repre-
sented as a series in r:

= ]?, p 0, N > -o,

whose coefficients p, are either zero or roots of unity in .
We define () Ne as the value of $ in . is a unit if ($) 0 and a

principal unit when p is odd if () 0 and p0 1. If p is even, we require
in addition for principal units that pl 0 if p is unramified, and pl p2

p3 0 if p is ramified. Thus when p 2 and is a principal unit,

(- 1)>-2.

Every unit u of may be written uniquely as

(6.t) u -.
Here i" is a root of unity, and is a principal unit. If p is odd, i" is either a
p 1)8 or (p2 1)s root of unity. If p is even, " is a twelfth root of unity.
The order of , that is, the least positive integer n such that ’ 1, is called
the order of the unit u. If the order is r, i" is said to be a primitive rth root
of unity. Thus a principal unit is of order one. We shall make repeated
use of the following simple lemma.

LEMMA 6.1. With the notations of formula (6.1), if ul 11 and u. .
are units of 9 then ul =- u2 (mod r) if and only if 1 2

By v (mod r) we mean as usual that the p-adic value of v in 9p
is positive.

7. If , is a principal unit, we define the logarithm of k by the formula

(7.1) log ].--, (1 ,)n/n.

Then log 1 + ( 1) r where O(r) > 0. Consequently

(7.2) 4,(log ,) ,/,(4, ) > o.
We call the value of log , or of k 1 the logarithmic value of the principal
unit k. Note that when p is two, the logarithmic value of k is at least two.
The exponential function e is defined for all 0 with $(0) > 0 by

d
and

(7.3) e
g .

We shall make repeated use of the elementary formulas

log(bl k-) log 1 + log 2, log(4,,1/,) log 1 log ,.
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Finally if is any integer of 9, we define v to mean evl**. Thus

(7.4) log v log .
(7.2) and (7.3) give the useful lemma

LEMMA 7.1. If b is a principal unit of and , is any integer of 9 then
the logarithmic value of b is given by the formula
(7.5) (log") (log) (v_ 1) (u) +(-- 1).

IV. The zeros mod p of integral recurrences. If the rank function (w)of (W) is bounded, we say that (W) has
bounded zeros. Let

( z w z Pzw -t- Qw

(z, w; z’, w’) zz’- (P/2)(zw’ + z’w) + Qww’

denote the quadratic and bilinear forms associated with the polynomial f(z).
We call the p-adic integer (W1, W0) the invariant of the recurrence (W).
It is easily shown that

(8.2) dP(Wn+ Wn) Qn(wl Wo).

Hence the p-adic value of (Wn+l, Wn) is independent of n.

THEOREM 8.1. Let W) be an integral recurrence. Then a sujcient condi-
tion that all terms of (W) are units is that the invariant of (W) be a multiple of p.

It follows that a necessary condition that (W) have zeros is that the in-
variant of (W) be a unit. This condition always holds if is a quadratic
extension of R, and in particular when p is two and P and Q are odd.

Proof. Since (W) is an integral recurrence, not both W0 and W are di-
visible by p. Hence since Q is always a unit, )(Wi, W0) -= 0 (rood p) im-
plies that both W0 and W are units. It follows by induction from (8.2)
that Wn is a unit for every n.

For example, the invariant of the Lucas function Sn a -t- n is D. Con-
sequently (S) has no zeros modulo p if p is a discriminantal divisor.

Let (V) be a second integral recurrence belonging to f(z) with initial values
V0 and V. Then it is easily shown that

(8.3) (W,+, Wn Vn-l, Vn) Qnx(W, W0 V1, V0).

If I’(W, W0 V1, V0) 0, we say that (W) and (V) are polar sequences.
We develop the properties of polar sequences in Chapter VI. If (W) is self-
polar, it satisfies a recurrence of order one, and the determination of (w) is
trivial.

V. The rank function for ordinary primes

9. Let (W) be an integral recurrence satisfying the conditions of Theorem
5.1 whose invariant is a unit of R, and assume that p is ordinary and hence
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unramified in. If p is two, this entails P and Q both odd.
The general term of (W) may be written

(9.1) Wn- (Aan- Bn)/(c-

where

(9.2) A W- WoB, B Wi-- W0a

are both integers in . It follows from (8.1) and (9.2) that

AB (W1, W0).

Consequently, both A and B are units in ,. We may therefore write with
the notation of formula (6.1)

(9.3) A/B p2 b2.
Since both and are units in R, both o and are units in 9,.

Consequently

(9.4) / pl 1.
Furthermore pl 1 since ( /)2 (D) 0. Let A/B be of order s,
and// of order r. These orders have an interesting arithmetical interpre-
tation. For let (L) denote the p-adic Lucas recurrence of f(z) defined by
L0- 0, L lsothatA B 1, andL (-- )/(a-- ).

Since a,/, and a / are all units, l, dp(Ln) dp((/(x) 1). Hence
the vlue l, is zero if r does not divide n.

Consequently r is the first zero of (L) rood p, or the rank of apparition of p
in (L), and l is the logarithmic value of the principal unit

THEORE 9.1. The rank of apparition of p in (L) divides p (D/p).

Here (D/p) is 1 if D is a square in R, and -1 if D is not u square.
It is shown in the next chapter that this theorem is also true when p divides

D if we then let (D/p) O.
Proof. If (D/P) -1, p is odd and R. Consequently

a- /- (mod p), L_ 0 (mod p),

and r divides p 1.
If (D/p) -1, is quadratic extension of R. Let( be the ring of

integers of ,. Then /(r) is isomorphic to the finite field of order
Consequently

a , P a (mod r), Lp+ ---- 0 (mod ), L+ 0 (mod p),

and r divides p 1, which completes the proof.
If g(z) denotes the polynomial (z A)(z B) z P’z Q’ where

P’ 2W PWo and Q’ W PW Wo - QW are inR with Q’ a unit,
then s is the rank of apparition of p in the Lucas recurrence (L’) of g(z) de-
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fined by

(9.5) (As- Bn)/(A- B).

Now by (9.1), (9.3), and (9.4),

(9.6) Wn- (Ba/(a- )){p. 2- p[’i*}.

Here Ban/(a ) is a unit in
W. -= 0 (mod p) if and only if p2

Consequently by Lemma 6.1,

LEMMA 9.1. If Pl and p. are roots of unity in %, of orders r and s, then there
exists a positive integer n such that p p if and only if s divides r.

Proof. The lemma is evident, since the roots of unity in 9 form a finite
cyclic group.
We may thus state

THEOREM 9.2. If (W) is an integral sequence and p is an ordinary prime,
the sequence (W) has zeros if and only if the rank of apparition of p in (L’)
divides the rank of apparition of p in L).

This theorem along with Theorem 10.1 contains as a special case results
obtained by Ward [5] and Hall [1] for rational integral sequences by more in-
volved methods.

It follows that if (W) has zeros mod p, they lie in an arithmetical progres-
sion of constant difference r. There is no essential loss in generality in as-
suming then that W0 0 (mod p). Then by formula (9.1) Wo (Wo)
(A/B 1) > 0. Thus in formula (9.3), pis 1, A/B isa principal unit, and
O(Wn) 0 unlcss r divides n.

THEOREM 9.3. If p is an ordinary prime and (W) is an integral recurrence
with Wo =- 0 (mod p), then the zeros of (W) are bounded if the p-adic value of
Wo is less than the p-adic value of Lr. Here r is the rank of apparition of p in
the Lucas sequence L

The value function (w) of (W) is then given by the formulas

wn- 0, n 0 (modr); Wn TO, n =-- 0 (modr).

This case is definitely exceptional, since the usual value for lr will be one;
it is however worth noting that P and Q can be chosen so that lr is as large as
we please.

Proof. Since A and B are units, w0 is the logarithmic value of A/B. Simi-
larly lr is the logarithmic value of (/a)r. Under the hypotheses of the the-
orem, one obtains from (9.6)

Wrn- (Barn/(a- ))((A/B- 1)((B/a)*- 1)).

Here Barn/(a ) is a unit, and by formula (7.1),

(/B ) < ((/.) ).
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Consequently Wrn (Wrn) (A/B 1) w0. The determination of
(w) follows immediately, completing the proof.

10. We come now to the case of real interest when w0 -> lr. Then A/B
and (/3/) are both principal units, and we may write

(10.1) (/oe)-- bl, A/B 2, (log k.) >= (log 1).

Consequently

(0.2) (og ,_)/(log 1)

is an integer of

LEMMA 10.1. , is an integer of R,.

Proof. We need consider only the case when {R is a quadratic extension of
R. Then {R is normal over R with a Galois group of order two. Let de-
note the result of applying the generating automorphism of the group to any
element of {R. Then
Now a /, a, so that by (9.2), g_ B, B A. Consequently

1 k]-1 and 2 k’. But by formula (7.1), if is a principal
unit, log log . Hence by formula (10.2),

p

which completes the proof.
It follows from this lemma and the results of Section 7 that

(10.3) k. k, an integer of R.
Hence by formulas (9.6) and (10.1),

Boa BoaW, {$ $7} $’t{$- I }.

Now BVv/( /) is a unit. Hence by Lemma 7.1

wr (W) (k 1) (v m) + log k (v m) + 1,.

We have thus proved the following result"

THEOREM 10.1. Under the hypotheses"
(i) W) is integral and its associated polynomial z Pz + Q has unit

coefficients and distinct roots,
(ii) p is not a discriminantal divisor,
(iii) W0-= 0(modp), W 0(modp),
(iv) wo O(W0) >- lr O(L),

the value function w) of (W) is given by the formula

(10.4) Wn 0 if n 0 (mod r),

w, O(v n/r) + l, if n 0 (modr).
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Here , is the p-adic integer

og{ (Wl Wo )/(w Wo )} og{/ }.

It will be recalled that r is the rank of apparition of p in the Lucas recur-
rence (L).

VI. The value function for discriminantal divisors

11. There remains the case when p is a discriminantal divisor, so that
(a f) 0 (rood r). Then /a is a principal unit in, and we may write

(ii.I) /a b,

which is simply formula (10.1) with r 1. Now W0 (A B)/(a )
is an integer, so that A/B is also a principal unit in , say

(11.2) A/B .
Evidently (log k) ->_ (log ), so that

11.3 (log h)/ (log b)

is an integer in . Hence Lemma 10.1 applies, and is an integer in R.
Hence proceeding as in Section 10,

W=L\, -_ /.
For p is a discriminantal divisor for the polynomial (z ar) (z 3r).
On the other hand the case when p is a discriminantal divisor may be in-

cluded in the previous case by taking r 1 when L1 1, so that ll 0 and

The results of this section and Theorems 8.1 and 9.2 give the following
criteria for the value function of (W) to be unbounded.

THEOREM 11.1. Necessary and sugcient conditions that an integral recur-
rence (W) have unbounded zeros are

(i) W PWI Wo QW is a unit of R, and either
(ii) p is a discriminantal divisor of z Pz q- Q, or

(iii) p is ordinary, and (W Wo)/(W Wo) is a unit in whose
order divides the order of the unit /.

It is convenient finally to state the results obtained on the rank function
as a separate theorem.

THEOREM 11.2. If p is a discriminantal divisor of f z every integral recur-
rence belonging to f z) has unbounded zeros. Furthermore

log{ (W Wo )/(W Wo a)} log{/a 1}

is a p-adic integer, and the ranlc function (w) of (W) is given by the formula
w (- n).
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If we define r in formula (10.4) to be one when p is a discriminantal divisor,
the last statement of Theorem 11.2 is a special case of formula (10.4); for
since L1 1, lr 0 when r 1.
The law of repetition for powers of primes stated in the introduction fol-

lows immediately.

VII. The determination of a sequence by its zeros

19.. If p is odd, the law of repetition of p in (W) essentially determines
(W). More precisely, we have the following theorem.

THEOREM 12.1. Let p be an odd prime, and let 9 be an arbitrarily chosen
integer of Then there exists an integral recurrence (W) whose rantc function
(w) is given by formula (10.4). Furthermore (W) is uniquely determined by
w up to a unit factor.
Proof. Let r be one if p is a discriminantal divisor, and otherwise let r be

the rank of p in (L). Then

(/)r

is a principal unit. Let 9 be an element of . Then 1/29 and -1/29 are also
in ,. Consequently

are both units in 9, and

(12.1) A/B 1, AB 1.

Now let
Wn (Aan- Bn)/(oz- ) (n 0, 1, ).

Then (W) is easily seen to satisfy the conditions of the theorem. But if
(W’) were a second such sequence, by the results of Section 10, we would
have, with an obvious notation, A’/B’ A/B and A’B’ a unit of . Hence,
A’/A B’/Bisaunitcof. ThusW cWn.
A similar result holds when p is two if 9 is even. But if 9 is odd, (12.1)

does not determine A and B.

VIII. Polar sequences

13. With the terminology of Section 8, let (W) and (V) be polar sequences.
Then by formulas (8.1), (8.2), and (8.3)

(13.1) Wn+l V+I (P/2)(W,+I Vn + W, V,+I) + QWn Vr O.

We shall assume throughout the discussion that either p is odd, P, W both
units, or p is even, P is not a unit and Q a unit. Thus P/2 on the right of
(13.1) is integral. We shall also assume that at least one of W0, W1 and one
of V:, V1 is a unit. Consequently in neither (W) nor (V) can two consecu-
tive terms be divisible by p.
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LEMMA 13.1. Two polar sequences can have no common zeros modulo p.

For if (W) and (V) are polar and W -= V --=- 0 (mod p), then by (13.1),
Wn+I V,+I =--- 0 (rood p), so that either (W) or (V) has consecutive zeros.
Let

Wn--- (Acn-

and as in Section 9, let

(13.2)

where k0, ., k3 are principal units, m, p2, m are roots of unity, and the order
r of pl is the rank of p in (L). With a prior notation,

(13.3)

It is easily shown (Section 8) that the invariants and polar form of (W)
and (V) are given by the formulas

(I)(Wl, W0) AB,

(13.4) I,(W1, W0 ;V, V0) A + Br.
It follows that (W) and (V) are polar if and only if

(13.5) p2 p, b b3.
The next lemma is a simple consequence of (13.4).

LEMMA 13.2. If (W) and (V) are polar sequences with unit invariants, and
if Wn (Aa B)/(a ), then Vn may be put in the form
(13.6) V C(A -q- Bn)

where C is a unit of Rp. Consequently all sequences (V) with unit invariant
polar to (W) have the same rank function.

If k2 and
divides 2/cj if/ci is even, k. divides lci. Here i, j 2 or 3. We thus obtain
the following restrictions on k and k

(i) /,/ are not both odd.

(13.7) (ii) k 0 (mod4) - ks--- 0 (rood4) ,: ke ka.

(iii) / 2 (rood4) :, koddand k 2/-, i,j 2or3.

THEOREM 13.1. If (W) and (V) are polar, and p is a discriminantal di-
visor, at most one of (W) and V) has zeros modulo p.

Proof. In view of Theorem 8.1, it suffices to show that the hypotheses im-
ply that not both of the invariants of (W) nd (V) are units. In the contrary
case, A, B, F, and A are units in R. But since W0 and V0 are both integers
and r divides a , r divides A B and F A. Hence both A/B and F/A
are principal units, so that p. p8 1, contradicting (13.5).
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A simple illustration is the polar pair of Lucas sequences (L) and (S) whose
invariants are 1 and D respectively.

14. We assume from now on that p is not a discriminantal divisor. By
Lemma 9.1 and Theorem 9.2, (W) has zeros if and only if/c divides r, and
similarly for (V). Hence we have by (13.7)

LEMMA 14.1. If the rantc of p in (L) is odd, at most one of a pair of polar
sequences can have zeros; if the rant is even, either both polar sequences have
zeros, or neither has zeros.

It follows from formula (13.6) that

(14.1) LV CW CQWo

Now assume that (W) has zeros modulo p, and that the rank r of p in (L)
is even. We may also assume that W0 0 (mod p). Since W -= 0 (mod p),
on taking n r/2 in (14.1) we see that V/ 0 (mod p). Thus all the zeros

of (V) lie in an arithmetical progression of constant difference r and initial value
r/2; that is, the zeros of (V) are all odd multiples of r/2. In the special case
when P and Q are rational integers and (W) (L), (V) (S), this is
Lucas’s law of apparition of primes in (S).
We conclude by determining the law of repetition for (V). Since

W0 0 (mod p) and V/ 0 (mod p), we have A/B , (/): --where is a unit. Evidently where is given by (13.3). Then
proceeding as in Section 10, if (log )/(log) and (log b)/(log b),

2. Thus we have as a consequence of Theorem 10.1

THEOREM 14.1. If the ranlc r of p in (L) is even and (W) has zeros, then
under the hypotheses of Theorem 10.l, the value function (v) of any sequence (V)
with unit invariant polar to W) is given by the formulas

v, 0 if n r/2 (mod4),

v (2- (2n- r)/2r) - l if n r/2 (modr).
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