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I. Introduction

In the initial sections of this paper we classify arbitrary torsion-free abelin
groups in mnner similar to that used to classify the subgroups of the ra-
tionals. An existence theorem is presented to complete the picture, and
these results re pplied to give new examples of indecomposble groups of
any finite rnk.
The remaining sections are concerned with certain countable mixed groups

of torsion-free rnk 1; they re essentially classified by the invarints which
cme up in Kplnsky nd Mackey’s solution [6] of the nlogous problem
for modules over complete discrete valuation rings. The proof of the present
classification theorem depends heavily on the author’s adaptation [10] of
their work to modules over (not necessarily complete) discrete valuation
rings. Again n existence theorem shows the set of invariants is complete.
Although these invarints re clumsy, they re used to solve cancellation,
squre-root, nd isomorphic refinement problems.

II. Basic definitions and notation

All groups considered re belian nd re written dditively. If G is
group, the set of ll elements in G of finite order forms subgroup T, the
torsion subgroup of G. G is orsion if T G; G is $orsion-free if T 0. An
arbitrary group my contain elements of infinite order nd elements of finite
order. Since most work on belin groups hs been done on torsion groups
nd torsion-free groups, general group is clled mixed to distinguish it from
these prticulr cses.

Let p be prime integer, x n element of G. x is divisible by p in case
there is y G such that py x. x hs p-height n, denoted h(x) n, if n
is mximl with the property that x is divisible by p; if there is no such n,
x hs infinite p-height.

Let I denote the rational integers, Q the rtionl numbers. If G is group,
Q (R) z G is vector spce over Q. The ran]c of G is the dimension of Q (R) G.
(There re other notions of rnk in belin group theory; the one defined
bove is sometimes clled the "torsion-free rnk" of G. No confusion should
rise from our bbrevition since no other kind of rnk will be used.) Closely
llied to the concept of rank is that of independence: A set x} of elements of
G is independen in cse mx 0, m e I, implies m 0 for all i. In
prticulr, ech element in an independent set must hve infinite order. A
basis is mximl independent subset; ll bses hve the sme crdinlity
which is equal to the rnk.
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If p is prime in I, we my form Ip, the ring of quotients of I with respect
to (p). This is the ring of p-adic fractions consisting of ll elements of Q
whose denominators re prime to p. Observe that p is the unique (up to
ssocites) prime in the ring Ip. We must lso consider (unitary) modules
over I,. The definitions given bove for groups my be pplied to I-
modules, with the following simplification. Since I hs only one prime, we
spek of the height of n element x, h(x), instead of the vrious p-heights.
For complete discussion of these ideas, s well s the concept of Ulm

invariants, the reder is referred to [4, 5, 8].

III. Torsion-free groups
THEOREM 1. Let G and G’ be torsion-free abelian groups of finite rank s.

]’hen G is isomorphic to G’ if and only if there are bases xl xs in G, xlx: in G’ such that h( mi x:) hp(mi x) for all primes p and all integersm

Proof. We define an isomorphism f s follows. First, set f(x) x for
M1 i. Suppose y 0, y e G. Then, since the x’sform a bsis, my mx
for some nonzero integer m nd integers mi. We my ssume that m p
for some prime p, since G modulo the subgroup generated by the x’s is torsion,
and is thus the direct sum of primary groups. Hence h( mx) >= k;
therefore, there is unique (G’ is torsion-free) element y’ G’ such that
pky, mx. Serf(y) y’. It is a simplemtter to verify thatfis
a well-defined isomorphism.

Let P denote the set of primes in I, nd let I denote the cartesian product
of s copies of I. An ordered bsis xl, xs induces a function g" P X I --nonnegtive integers and by g(p, ml ms) h ( mxi). Theorem
1 is unsatisfactory s stated since the "invrint" it mentions depends on the
choice of ordered bsis of G. Suppose y, y is another basis of G, which
induces function f. There is rtionM nonsingulr s X s mtrix B (b.)
such that y bx. If n is the product of the denominators of the
b., then ny (nbi)x, where now M1 coefficients re integers. Hence

f(p, nm ,..., nms)= g(p, E mnb ,..., E mnbs)
g(p, [, ms]nB),

where we consider [m, ms] s row mtrix. It is easy to check that
this relation is n equivalence relation, nd that ny two ordered bses of G
determine the sme equivalence class of functions. Thus this equivalence
class is an invriant of G.

THEOREM 1’. Let G and G’ be torsion-free abelian groups of finite rank s.
Then G is isomorphic to G’ if and only if they have the same equivalence class of
height functions.

Several comments my be mde t this point. Theorem 1 my be proved
for torsion-free modules of any rnk over principal ideal domains, the proof
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being identical to the one given above. Also, if the groups have rank 1,
Theorem 1’ is precisely the usual classification of the additive subgroups of
the rationals by means of "characteristics" or "Steinitz numbers."

There is yet another formulation of this theorem. Instead of considering
ordered bases, one may consider the free subgroups they generate. The
height functions now become functions of only two variables, f(p, a), where p
is a prime, and a varies over a free subgroup of rank s; indeed, this is the ap-
proach of Campbell [1]. (I remark that Campbell’s paper and my own were
done independently.) It is now obvious that the invariants really tell how
the free subgroups of rank s are situated within G. However, I prefer the
functions of several variables (i.e., ordered bases instead of free subgroups)
since the equivalence relation is less cumbersome, thus permitting an applica-
tion (Theorem 3).

In order to prove the existence theorem, we first consider the simpler case
of modules over I.

Let f’I nonnegative integers and . Abbreviate the argument
(rl, ,r) offbyr.

LEMMA. Suppose the function f above satisfies"
(i) f(pr) f(r) - 1, where + 1
(ii) f ur f r where u is a unit in I
(iii) f(r) > f(r’) implies f(r + r’) f(r’).

Then there exists a reduced torsion-free I-module M of rank s containing an
ordered basis xl x such that h( ri xi) f(rl rs), for all r e I

Proof. Let V be an s-dimensional vector space over Q with ordered basis
xl,...,x. LetM [yeV ly= (1/pk)rxi,where/_-< f(r,...,rs)].
Note that M is the set consisting of precisely these elements, and is not, a
priori, the I,-module they generate. In particular, lip) ri x M if
k > f(r, r).
We shall now prove that M is an I-module. Suppose y and yP are nonzero

elements of M. Then y (1/p) r xi and y’ (1/p’) r x, where
k <=f(r),k’ <-f(r’),and/c_-< k’. Alsoy-y’ (1/p) (riWp r)x.

Case 1. f(r) <= f(pk-’r’). Then k <-_ f(r) <= f(r + p-’r’), by (iii)
Hence y y’ e M.

Case 2. f(r) > f(p-k’r’). By (iii), f(r + p-’r’) f(p-’r’). Sup-
pose k > f(pk-’r’) f(r’) + t k’, by (i). Then 0 > f(r’) k’, contra-
dicting k’ <= f r’ Again k <= f r - p-’r’) and y + y’ e M.

Let y M, and let r’ 0 be in I. Then r’ up", where u is a unit in I.
Hencer’y (1/p) rupnx. But k <- f(r) f(ur) <- f(upnr) by (ii)
and (i). Hence r’y e M.
Thus M is an I,-module. By our earlier remark, h( rix)

f(r, r).
THEOREM 2. Let f" P X I ---* nonnegative integers and satisfy the fol-

lowing conditions"
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(i) f(p, pm) f(p, m) - 1, where - 1
(ii) f(p, nm) f(p, m) where (n, p) 1;
(iii) f(p, m) > f(p, m’) implies f(p, m - m’) f(p, m’).

(m denotes an s-tuple of integers.) Then there exists a torsion-free abelian group
G of rank s containing a basis xl,... x8 with h( m xi) f(p, ml,... ms)
for all p and m.

Proof. Let V be an s-dimensional vector space over Q with ordered basis
x, x,. For each prime p, define a new function g’I --.nonnegative
integers and as follows. Let r, r, be elements in I, and let n be
the product of their denominators. Set g(r r) f(p, nr nr).
By the lemma, let G be the I-module with basis xl, x8 having g as its
height function. Repeat this construction for all p using the same x’s in the
same order. Set G G. G is a torsion-free group of rank s containing
xi, x,. Further, in Gp, considered as a group, hq( mi x) for all
primes q p, while h( m xi) f(p, m) by (ii), where the m are integers.
Hence the p-height of m x in G must be precisely f(p, m).
A group is decomposable in case it can be written as a direct sum of two of its

proper subgroups. Theorems 1 and 2 immediately give the following result.

COROLLARY. A torsion-free group G of finite rank is decomposable if and
only if G contains a basis x x, y, y such that

h(Z m x -+- Z m y.) min lh(-’ mi x), h(Z m. y.)}

for all primes p and all integers m and m.
These results are now used to produce new examples of indecomposable

groups of any finite rank.

THEOREM 3. There exist indecomposable groups of any finite rank.

Proof. For simplicity of notation, we shall only give an example of an in-
decomposable group of rank 2, but the generalization to any finite rank is
straightforward from the construction. The basic idea is to define a height
function f such that given any basis and a partition of it into ordered disjoint
subsets, there will be some linear combination of those elements whose height
will not obey the "min rule" for some prime p.

Let p (- (b.) be a one-one correspondence between the primes p and the
2 X 2 nonsingular matrices (b.) over Q. Let n be the product of the de-
nominators of the b., and let/c be the maximal power of p dividing n" b..
Define a function f: P X I X I nonnegative integers and as follows.
Given p, set

f(p, n b n b) f(p, n b n b) k
and set
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For fixed p, f may be extended over all pairs of integers so that (i), (ii), and
(iii) of the existence theorem are satisfied. (Generators and relations seem
to offer the quickest way to see this.) It should be emphasized that the b’s
in the above construction are the entries of the matrix corresponding to the
prime p. Since we have defined f at each prime p, we have constructed
function satisfying the conditions of Theorem 2. Let G be the group deter-
mined by f, with elements xl and x2 such that h(-’ mi xi) f,(p, ml, m.).
Suppose G is decomposable. By the corollary, there is a basis xl and x of G
such that h(’ mi x) mini hp(mi xi) for all primes p and all integers
But there exists a matrix (b.) such that

f’(p, nm nm:)= f(p, E nm b E nmi

(where f’ is the height function determined by x and x., and n is the product
of the denominators of the b.). In particular, f’(p, n, O) f’(p, O, n)
while f’(p, n, n) k -- 1, for the prime p corresponding to (b). This
means h(nx) h,(nx.), but h(nx + nx) > h(nx), and so the min rule
is not obeyed. This contradiction shows that G is indecomposable.

IV. A structure theorem for mixed groups
A KM group is a countable abelian group of rank 1 such that for any prime

p, h(x) is infinite if and only if x has finite order prime to p. In a moment we
shall characterize a KM group in terms of certain modules associated to it.

LEMMA 1. Let G be a group, x e G, and let p be a prime with (m, p) 1,
m an integer. Then h(x) h(mx).

Proof. This is immediate from the existence of integers a and b such that
amx + bpx x.

LEMMA 2. Let G be a group, x G, and p a prime. If h(1 (R) x) >- k in
I (R) G, then h(x) >- k in G.

Proof. 1 (R) x ep(I, (R) G) I, (R) pG. Hence 1 (R) x r (R) g,
gi pG. Let m be the product of the denominators of the r. Then
(re, p) landl(R)mx 1 (R) (mr)g. But. l(R) 0impliesnt O,
where (n, p) 1. Hence nmx (nmri)gi which implies h(nmx) >= k.
But (nm, p) 1, and so our result follows from Lemma 1.

COROLLARY. Let G be a countable group of rank 1. G is a KM group if and
only if each I-module I (R) G has no elements of infinite height, for all primes p.

LEMMn 3. Let M be an I-module of rank 1 with no elements of infinite
height. Let S be a finitely generated submodule, z S. Then the coset z S
contains an element of maximal height.

Proof. This is Lemma 3.8 in [10].

Lemma 3 is false if rank M > 1 [10, Example 5.9].
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LEMMA 4. Let S be a finitely generated subgroup of the KM groep G, x S
and px S for some prime p. Then the coset x - S contains an element of
maximal p-height.

Proof. First we show that 1 (R) x eIp (R) S. Let x* denote x - S.

x* ker (G/S -- Ip (R) G/S)

if and only if x* has finite order prime to p. However x* has order p, and so
it is not in this kernel. Consider the commutative diagram with exact rows:

0 S G ) G/S 0

0 I,(R) S ,I, (R) G .) I,(R) (G/S) ;0,

where the downward maps are y -- 1 (R) y. Then f(1 (R) x) 1 (R) x* which
we have just seen is nonzero. But f(1 (R) x) 1 (R) x I (R) S. Therefore
1 (R) x e I (R) S. By the above Corollary, Ip (R) G has no elements of infinite
height. Hence Lemma 3 implies the coset 1 (R) x - I (R) S contains an ele-
ment of maximal height., and so there are only finitely many different heights
occurring in it. By Lemma 2, there are only finitely many distinct p-heights
occurring in the coset x + S, and so there is an element of maximal p-height
in it.

LEMMA 5. Let G and G’ be KM groups. Let S and S’ be finitely generated
subgroups of G and G’ respectively, and let f be a height-preserving isomorphism
of S onto S’. Let x e G with px e S for some prime p. Then f can be extended
to a height-preserving isomorphism between {x, S} and a suitable subgroup of G’
containing Sr.

Proof. By Lemma 4, we may assume x has maximal p-height in x + S.
Precisely as in [6], one may find an element x’ e G’ such that x S’, px’ e S’,
x’ has maximal p-height in the coset x’ S’, and h(x) h(x’). In order
to complete the proof, one need only verify that if (m, p) 1, then

hq(mx -- s) hq(mx’ -- f(s)

for all primes q and all s e S. If q p, then the fact that x and x’ are ele-
ments of maximal p-height in their cosets modulo S, respectively S’, yields
the desired result. If q p, then, by Lemma 1,

hq(mx - s)= hq(pmx + ps) hq(pmx’ - pf(s) hq(mx’ - f(s)

since f is height-preserving. The lemma now follows.

THEOREM 4. Let G and G’ be KM grovps. G is isomorphic to G’ if and
only if there exist elements of infinite order x G and x’ e G’ such that h,(mx
hp(mx’) for all integers m and primes p, and G and G’ have isomorphic torsion
subgroups.
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Proof. Let A be the subgroup generated by x, A’ the subgroup generated
by x’, and let f’A ---. A’ be defined by f(x) x’. f is height-preserving, by
the choice of x and x’. This isomorphism is now extended stepwise to an
isomorphism of G and G’ by Lemma 5. To ensure catching all of G and G’, we
take fixed lists of elements of each and alternate between adjoining an element
of G and an element of G’. Since the elements of G and G’ have finite order
modulo A and A’ respectively, we can suppose that at each step we are adioin-
ing an element x such that px lies in the preceding subgroup. This is precisely
the situation of Lemma 5.

COROLLARY (Cancellation Theorem). Let T be a countable torsion group
with p-primary components T, and suppose that the Ulm invariants qf each
T, are finite. Let G and G’ be KM groups. If T @ G T @ G’, then G G’.

Proof. Since the groups are isomorphic, there is an x e T @ G and an
x’ e T @ G’, each of infinite order, such that hp(mx) h(mx’) for all primes
p and all integers m. Nowx= t-t- gandx’ t’-f- g’,t,t’ e T,g G, and
g’ e G’. Since and t’ have finite order, we may assume each is zero. Hence
g and g’ satisfy the height equation. By Ulm’s Theorem, we may cancel T
from either side to obtain that the torsion subgroups of G and G’ are iso-
morphic. Therefore G and G’ are isomorphic, by Theorem 4.
One may object to our formulation of Theorem 4 for the same reason as he

objected to Theorem 1; the "invariants" given are not really invariants of the
group G since the collection of heights hv(mx) depends on a choice of element
x. Any x e G of infinite order determines a function f: P )< I -- nonnegative
integers and byf(p, m) hp(mx). ( isavalue only whenm 0,
since G is a KM group.) By Lemma 1, this function is completely deter-
mined if we know f(p, p) for all primes p and integers k >__ 0. In other
words, each x of infinite order determines a family of sequences of integers,
one sequence for each prime p. In examining modules over complete discrete
valuation rings (in which rings there is a unique prime), Kaplansky and
Mackey saw that two modules are isomorphic if and only if they have iso-
morphic torsion submodules and equivalent height sequences. Our theorem
is thus the true analogue of their theorem; we have one sequence for each
prime. To understand this collection of heights even better, recall the
situation in torsion-free groups of rank 1. There each nonzero element
determines a characteristic, i.e., its p-height for each prime p. Thus each
element determines a "horizontal" collection of numbers; in modules, each
element determines a "vertical" collection of numbers. We have seen that
in mixed groups, each element of infinite order determines a "two-dimensional"
array of numbers; call such an array the Ulm tower of x, and denote it Ux.
The problem of dependence on choice of element arose in both the module
and torsion-free group cases; the way to solve it is via an appropriate equiva-
lence relation. We proceed to do this here.

Let {a} and {} be strictly increasing sequences of nonnegative integers.
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{ak} {k} in case there are nonnegative integers m and n such that
a+m t+n for all/c. Let A and B be families of such sequences: A consists
of sequences {} B of sequences {/}. A B in case {a} {} for almost
all p, and last {’1 for the others.

It is easy to check that we have defined an equivalence relation, and that if
x and y are elements of infinite order in a KM group, then they determine
equivalent Ulm towers. Hence the structure theorem can be restated as
follows:

THEOREM 4t. Let G and G be KM groups. G G’ if and only if they hat,e
isomorphic torsion subgroups and the same equivalence class of Ulm towers.

V. An existence theorem and applications
A strictly increasing sequence [} of nonnegative integers has a gap at tc

in case ak+l > k 1.

LEMMA (Kaplansky). Let {a} {hp(px)l, where x eG. {a} has a
gap at lc implies the ath Ulm invariant of the p-primary component of the torsion
subgroup of G is nonzero.

Proof. See [5, page 58].
Motivated by this lemma, we define a notion of compatibility. Let anl

be a strictly increasing sequence of nonnegative integers, and let n} be its
subsequence of gaps (this subsequence may be finite); let T be a primary
abelian group. {an} and T are compatible if the anth Ulm invariant of T is
not zero for each i.

THEOREM 5. For each prime p, let there be given a strictly increasing sequence
of nonnegatie integers al and a countable p-primary group Tp with no elements
of infinite height such that {an} and T are compatible. Then there exists a KM
group G with torsion subgroup T, and which contains an element x with
h(pnx) a all p and n.

Proof. We divide the proof into two steps: The first step constructs certain
"building blocks" whose invariants depend on only one prime; the second
step puts the building blocks together to form the desired group.
Our building block shall have torsion subgroup Tp and shall contain an

if In this step weelement x such that hq(qnx) n if q p, an q p.
omit the superscript p on the a’s.

Let H have generators x, x0, x, and relations p"xn p’x, i.e., F is
free on the x’s, S is the subgroup generated by the relations, and H F/S.
Clearly H is a countable group of rank 1; let x* be the image of x in H.

(i) h(pnx*) an.

By our construction,, h(pnx*) >= an. Suppose this inequality were strict.
For notational convenience, we shall denote p by [k]. In F

(1) [1 - a,]y [nix bk([ak]x [k]x).
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Let y ax - ai xi. Then we have the equations

(2) [1 + an]a b [a] and [1 -t- a]a- In] -b[i].
Since the height of the left side of (1) is n,

hp( b([a,:]x [i]x) min h,(b[a]xi) and h,(’ b[i]x) n.

By (2), h(b[a]x) > n. Hence h,( bi[i]x) n. Now

b,[i]x ,
<=, b,[i]x + Zi>n b,[i]x,

and clearly the height of the second term > n. But if i -< n, ai -< an and so
b ai[1 + a, a]. Hence Zi _n b[i]x _n ai[1 + a, a + i]x.
But an ai --- n i which implies 1 + an a + i > n.
Hence h(<_n b[i]x) > n, a contradiction. Hence hp(pnx*) an.

(ii) If q p, hq(qnx*) n.

If this height > n, we have in F, qn+ly qnx Z bi([ai]x [i]x).
Again y ax + a x and we obtain qn+la q b[i]
and +1 qn+lq ai b[ai]. Since q p, b c for all i, c an integer.
Therefore ’ bi([ai]xi [i]x) c qn+([ai]xi [i]x) which implies the
q-height of the right side of the original equation >- n 1, while the q-height
of the left side n (x being a basis element of the free group F).

(iii) The torsion subgroup of H is p-primary.

Calculations similar to those in (ii) show that if q is a prime p, qy S
implies y e S.

(iv) H has no elements of infinite p-height.

By (i) and (ii), it suffices to look at an element z* of finite order; by (iii)
we may assume the order is p. Lifting to F, pz b([ai]x [i]x) and
z ax ax. Hencepa b[a]. Suppose also that []c]y- z
ci([a]x [i]x), where y mx - mix. Then [/]m a
ci[a]. For large k, ai [k]mi ci[a] [a] di, some integers d, and also
pa b[a]. Hence b e (p) for all i and z e S, since F is torsion-free.

Let L be the torsion subgroup of H. We have almost proved that H is a
building block; we have not yet shown that L is isomorphic to T. Let C
be a cyclic group of order [ani - 1]. It seems reasonable that L C,
but the calculations appear tedious. Therefore we resort to another ap-
proach.

LEMMA. Let {an} be a strictly increasing sequence of nonnegative integers, and
let {ni} be its subsequence of gaps. Let T be the direct sum of cyclic I-modules
of order ([a + 1]). Then there exists a countable I-module M of rank 1 with
no elements of infinite height whose torsion submodule is Tp and which contains
an element x such that h(p’x) an. Further, M is a direct summand of any
other countable I-module of rank 1 with no elements of infinite height which
contains an element whose heights give the sequence {an}.
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Proof. See the corollary to Theorem 6.2 in [10].
Let us return to the building blocks. H is contained in Ip (R) H, and the

torsion submodule of Ip (R) H is still L. By the lemma, L V @ Ci, and
V is a module direct summand of Ip (R) H; afortiori, V is a group direct sum-
mand of H. Hence H V (R),H’, where H’ has torsion ’ C. By com-
patibility, Ci is a direct summand of Tp, i.e., Tp B @ Ci. Hence
H’ @ B is the building block we are seeking.
Now that the first part of the construction is over, we abandon all previous

notation and start afresh. For each prime p, let Gp be a building block with
torsion Tp and which contains an element xp with h(q’xp) n if q p,
if q p. Set G ( G,)/S, where S is generated by the elements xp x,
for all primes p. Clearly G is a countable group of rank 1. Let x* denote
the common image of xp in G.

(i) hp(pix*)

Clearly this height >= a. Set a a. Suppose p+"y* px*. Lifting
this equation to Gq, pl+,y px aq(Xq z), where y yq.
Looking at each coordinate gives pl+,yq aq xq if q p, q 2. Hence

(pl+,)aq e by the height condition on x Further p+y -%x
and so aq(pl+). Hence ap(p+). But p+yp PiXp +
which implies h(p xp) >__ 1 + a > a, a contradiction. Hence h(px*) a
A similar argument, is necessary (and easy) for the case p 2.

(ii) The torsion subgroup of G is

Clearly S is a torsion-free subgroup of Gp. We claim it is a pure sub-
group. Supposepz aq(Xq x), p a prime. Now z Zq There-
fore pZq aqXq if q 2 Hence aqe(p) for q p. Further pZ2

( aq)x implies that aqe (p). Hence ape (p), and so, for all q,
aq pbq for integers bq. Therefore p( bq(xq x)) aq(Xq x.),
and S is pure.

Let r" G (’ G)/S be the natural map. Since S is torsion-free,
r( Tp) 7 T. Suppose nz* O, i.e., nze S. By purity, there
exists an seS such that nz ns. Therefore z s + t, teT
since T is the torsion subgroup of Gp. Hence z* t* r(T), so that
v(T) is the torsion subgroup of G. This completes the proof of Theorem 5.

pLet us now return to Ulm towers {a}. We introduce a partial order
P < for allpandn. Let usamong Ulm towers by {an} --< {B} in case O/n

call an equivalence class of Ulm towers a castle. This partial order on towers
does not in general induce a partial order on castles, as we shall presently see.

THEOREM 6. Let G and H be KM groups. G is almost isomorphic to a sub-
group of H if and only if there exist elements of infinite order x G and y e H
with Ux <= Uy.
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Proof of necessity. We may assume G is a subgroup of H by enlarging the
torsion subgroup of H. The result is now trivial.

Proof of suciency. The inductive construction of Theorem 4 may be
repeated here, with the difference that we do not alternate between the fixed
lists of generators.

COROLLARY. There exist KM groups G and H, each almost isomorphic to a
subgroup of the other, and yet G and H are not almost isomorphic.

Proof. Let G have torsion subgroup T 1C(2) (C(2) is the cyclic
group of order 2i), nd let G contain an element x with h,(pnx) n
if p 2, h2(2nx) 2n; let H have torsion subgroup T and contain an element
y with h,(pny) n if p 2, h2(2y) 2n 1. Ux nd Uy are not equiva-
lent, so that G nd H are not lmost isomorphic. On the other hand,
Ux <- Uy, and Uy <= U2x so that Theorem 6 implies each of G and H is
lmost isomorphic to subgroup of the other.
We remark that if each of G and H is almost isomorphic to pure subgroup

of the other, then G and H are lmost isomorphic.
The example above shows that the partial order on Ulm towers induces

relation among castles which my fail to be antisymmetric. On the other
hnd, if we do have collection C of castles which is prtially ordered under
this relation, we shall call C unrelated. Thus a set C of castles is unrelated
in case the following condition holds" Let c and c be castles in C. If there
are Ulm towers a and in c, a’ and ’ in c’ such that a -< a’ and/’ =< , then
C---Ct.

THEOREM 7. Let G -_G each G a KM group. Suppose the collec-
tion C of all castles arising from elements in G is unrelated. Then any two
decompositions of G into groups of rantc 1 have isomorphic refinements.

Proof. Let [Ux] denote the castle of an element x G. We have the
following arithmetic in C.

I. If x and y are dependent, [Ux] [Uy].
II. [U(x + y)] -> [Ux].

III. If has finite order and. x e G, then [Ut] >= [Ux].
For any castle c C, let G(c) denote all elements of G whose castle -> c,

and let G’(c) denote the subgroup of G generated by ll elements whose
castle > c. Since C is unrelated, these sets are well-defined; further, G(c)
is a subgroup which contains the torsion subgroup of G.

If c e C, let (for notational convenience) G, Gk be those summands
whose castle _>_ c. We claim G(c) =G plus the torsion subgroups of
the other summnds. Clearly G(c) contains this subgroup; we must show it
contains no more. Let x e G have infinite order, and choose xi G of infinite

This example was inspired by correspondence with Ti Yen.
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order. By I, we may assume x _,..1 ai xi. Hence [Ux] <- [Uxi] for all i.
But c <-_ [Ux]. Thus c <- [Uxi] for i > k, a contradiction. In a similar
manner, one may see that G’ (c) consists of those summands whose castle > c
plus the torsion, subgroups of the other summands. Hence the number of
summands with castle c is the rank of G(c)/Gr(c), which is an invariant
of G. Thus, at any rate, the castles occurring in any decomposition of G
into groups of rank 1 are uniquely determined. Suppose Hi is another
decomposition of G into groups of rank 1. We may now assume that the
castle of Gi the castle of Hi for all i. Hence we may find elements of
infinite order x e Gi, y e Hi which have identical Ulm towers. By Theorem
5, there exist groups K of rank 1 such that G K T and Hi K T
and such that all the Ulm invariants of the torsion subgroup of K are finite.
HenceG ZKi ZTi ZKi ’T’i. If Tisthe torsion sub-
group of gi, then T Ti - T T’i. Since there are only
finitely many K’s, all the Ulm invariants of T are finite, and so Ulm’s Theo-
rem allows us to cancel T and conclude ’ Ti ’ T’. Since these groups
are countable with no elements of infinite height, they are the direct sum of
cyclic groups. But it is well known that any two decompositions of such
groups have isomorphic refinements. This completes the proof of the theo-
rem.

Suppose G G, each G a KM group; suppose further that the set of
castles of the G’s is unrelated, i.e., it is not the case that two distinct G’s
are each almost isomorphic to a subgroup of each other. I conjecture that G
satisfies the hypotheses of Theorem 7, but I have been unable to verify this.

THEOREM 8. Let G and H be KM groups such that G G H H. Then
GH.

Proof. Let x e G have infinite order. Then there exists an element
(y, z) e H H which has the same Ulm tower as (x, 0). We may assume
(y, z) (aw, bw), where a and b are nonzero integers. Hence

h(pnx) min Ih,(pnaw), h(p’bw) I.
This second tower is equivalent to the Uim tower of w. Hence G and H have
the same castle. Let T be the torsion subgroup of G, and let V be the torsion
subgroup of H. Then T T V @ V. By Ulm’s Theorem, T V.
Hence G H, by Theorem 4.
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