HOMOTOPICAL NILPOTENCY

BY
I. BerstEIN AND T. GANEA

Introduction

Let X be a topological space with base-point, QX its loop space, 2X its
(reduced) suspension. The ordinary multiplication and inversion of loops
convert QX into an H-space. Eckmann and Hilton [6] have shown that,
dually, the identification map resulting by pinching to a point the equatorial
X C ZX and the reflection of 2X in X may be used to convert the suspen-
sion into an H'-space, the dual of an H-space. Just as in group theory, for
every n = 1 a commutator map of weight n is available in any H-space; ac-
cordingly, we define the nilpotency class of an H-space as the least integer
n = 0 (if any) with the property that the commutator map of weight n + 1
is nullhomotopic. The concepts of a commutator map and of nilpotency class
may readily be dualized to H’-spaces: for every n = 1 there results a co-
commutator map of weight n and the co-nilpotency class of an H’-space is
the least integer n = 0 (if any) with the property that the co-commutator
map of weight » 4 1 is nullhomotopic. We now revert to the topological
space X and introduce two integers, which may be finite or not: the nilpotency
class nil @X and the co-nilpotency class conil £X. They arc uniquely de-
termined by the based homotopy type of X.

The paper is divided into six parts. The first contains basic definitions
concerning H- and H’-spaces, commutator and co-commutator maps,
nilpotency and co-nilpotency classes. In the second part, we present results
relating the nilpotency and co-nilpotency classes of H- and H'-spaces to the
nilpotency class of certain groups of homotopy classes of maps; some of these
results provide further motivation for our concept of co-nilpotency of an
H'-space.

Given a base-points-preserving map f: X — Y, the nilpotency class nil Qf
is the least integer n = 0 for which the composition

§ 9
eeit oy Y, oy

QX X - XX

is nullhomotopic; here, ¢,41 is the commutator map of weight n -+ 1, and
Qf is induced by f in the obvious way. In the third section we prove that
if 7:Q — Y is the inclusion map of the fibre @ in the total space Y, then
nlQQ <1 4 nil Q9. Dually, if »: X — P is the projection of X onto the
“cofibre” P, i.e., g is the identification map resulting by pinching to a point
a subset which is smoothly imbedded in X, then conil 2P < 1 + conil Zy;
the definition we give of conil Zy stands in evident duality to that of nil Qx.
In particular, nil 2Q < 1 + nil QY and conil ZP =< 1 + conil £X. The first
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theorem was suggested to us by a result of E. H. Spanier and J. H. C. White-
head [19] according to which, if 5 is nullhomotopic, then @ is a generalized
H-space, i.e., a space having a continuous multiplication with two-sided
homotopy unit element. The loop space €@ of such a space is well known
to be homotopy-commutative, that is, nilQQ =< 1. However, there are
polyhedra with a homotopy-commutative loop space which fail to be general-
ized H-spaces; such an example is presented at the end of the third section.

The fourth section gives lower and upper bounds for nil X in terms of the
usual homotopy invariants of X. KEvidently, the nilpotency class of the
group m(X) is < nil X ; the inequality becomes an equality if X is a con-
nected aspherical CW-complex. We then prove that nil QX = W-long X,
the latter invariant representing the maximum length of nonvanishing multi-
ple Whitehead products in X. Next, it is shown that, if X is a 1-connected
CW-complex, an upper bound for nil X — 1 is provided by the number of
nontrivial Postnikov invariants of X; in particular, nil X does not exceed
the number of nonvanishing homotopy groups of the 1-connected
CW-complex X.

The fifth section is entirely devoted to proving that, if X is 0-connected,
conil ZX = _-long X. The latter invariant represents the largest number
of singular cohomology classes of positive dimension with nonvanishing cup
product in X; the coefficients are taken in an arbitrary commutative field.
It should be noted that, within the framework of the Eckmann-Hilton duality
theory, W-long and \_-long are dual invariants.

The final section is mainly concerned with some estimations of the nil-
potency class of function spaces. If (G, e) is an H-space, then the function
space (@, e)™ also is an H-space, and the sets =(X; @), =(X, a; G, ¢), of
free, respectively based, homotopy classes of maps X — @ are groups. We
introduce the weak category, w cat X, a based homotopy type invariant re-
cently discovered by Hilton (see also [1]), and prove under very mild as-
sumptions that

conil 2X < sup nil 7(X, a; @, ¢) < supnil (G, ¢)™* = weat X — 1.

The result of the fifth section adds significance to the lower bound obtained.
The upper bound improves a result due to G. W. Whitehead [20] according
to which, for any 0-connected H-space (G, ¢), one has

nilw(X;G) S cat X — 1,

where cat X is the Lusternik-Schnirelmann category of X. For, if ¢ is
0-connected, the groups =(X; G) and 7(X, a; G, e¢) are isomorphic and, if
X is a 0O-connected normal space, w cat X < cat X; as shown by the exam-
ples at the end of the paper, the strict inequality may frequently occur.
Notice that comparison of the first and last member in the string of inequali-
ties above yields an upper bound for the co-nilpotency class of a suspension.
Finally, a further result involving the weak category is provided by the
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inequality
W-long (V, )% < weat X — 1,

which will be proved for a large class of spaces X (see [7] for related results).
In conclusion, the authors wish to express their hearty thanks to P. J.
Hilton for his interest and many valuable suggestions.

1. Nilpotency and co-nilpotency
Let X, and Y, be arbitrary topological spaces with base-points a; € X,
bieYi;let fi: (Xi, a;) — (Y., b;) be continuous maps. The map
HX e Xfat(Xn X oo XXy (@, o0, a0))

‘_>(Y1 X - X Yny(bly e )b"))
sends the point (xy, - -+, x,) into (fi(x1), -+, fu(2x)). We shall frequently
need the “wedge’’, i.e., the subspace
XiveooevXy=Ulim X - Xaa XX Xaia X - Xa,

CII?:lXilex"' X X,
and write
j:Xl V eV Xn“"’Xl X oo XXn,

fl Vo an:(Xl Vo VX")((“’”"(I’”))
'_)(Ylv v Yﬂ’(b1>""bn))y

for the inclusion map and the map defined by f; X «-+ X fu. If (X;,a:) =
(X,a), (Y, 0) = (Y, b),fi =f,wewrite X" = X; X -+ XX,,[" =
fiX oo Xfu, "X = Xy v-e-rvX,,and f = fiv---vf,. The
diagonal map A:X — X" is defined by A(z) = («, -+, «) and the folding
map V:"X - X by V(a, -+, a, 2 a, --,a) = x The composition of
f:X —> Yand g:Y — Z is denoted by gof: X — Z. The identity map of
all spaces involved will consistently be denoted by 8. We consider H-spaces
and H’-spaces in the sense of Iickmann and Hilton:

1.1. DerintTION. A system (Y, b, u, v) consisting of a topological space Y
with base-point b and two base-points-preserving maps

Y XY —Y, Y=Y,
is an H-space if

(i) the composition Y v Y oy x v P vis homotopic rel. base-point
to the folding map;
(i1)  the compositions

Ay xy 22Xy xy By

and

A_)YXY,MVX0—>YXY~——+M Y

are both nullhomotopic rel. base-point;
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(iii)  the compositions

VXV xv-LXE yxy sy
and
YXY XV
are homotopic rel. base-point.
We often abbreviate u(y1 , 42) to 4 42 and »(y) to 3

1.2. DEFINTTION. A system (X, a, o, 1) consisting of a topological space X
with base-point a and two base-points-preserving maps

o X=X v X, 7 X - X,
is an I'-space if

(i) the composition X X X Ao X v X2 X s homotopic rel. base-
point to the diagonal map;
(i1)  the compositions

X Voxvxd¥r xyyxesox
and
XeloxvXxet¥?l xvxeox
are both nullhomotopic rel. base-point;
(iii)  the compositions
XvXvxed¥Yoxyxerx
and
XvXvxelYl xyvxetx
are homotopic rel. base-point.
We now introduce commutator and co-commutator maps.

1.3. DerINtTION. Let (V, b, u, v) be an H-space. The basic commutator
map ¢ 18 the composition

yrO, i v Xy ey BXE y sy Ry

The commutator map ¢; of weight 1 1s the identity map of Y; the commutator
map ¢ of weight n 4 1 4s the composition

vy oy vy e Xy iy ey
in which ¢, is the commutator map of weight n = 1.

1.4. DeriNttioN.  Let (X, a, o, v) be an H'-space.  The basic co-commu-
tator map ¥ is the composition
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iy 2y V2X<~29——\-/—?I—2X viIX VT v v XX

The co-commutator map ¥ of weight 1 is the identity map of X ; the co-commu-
tator map Y. of weight n 4+ 1 s the composition

My oy yx devl v, x ¥y
in which Y. 18 the co-commutator map of weight n = 1.
It is well known [20; 2.4] that

1.5. LemmaA.  In an H-space (V, b, u, v) the composition

YvY-l,yxv-9,v
18 nullhomotopic rel. base-point.
The dual is
1.6. LemMma.  In an H'-space (X, a, o, 7) the composition
Xxxd-xvxdox
s nullhomotopic rel. base-point.

Proof. In the diagram

oy Yorx yix VT ey oy

. . . \

J IV \0\ v

2 2

xteloxtyxt YT ey e B Y By x T X

A SO0 v T

y

X v XvX

the triangle is homotopy-commutative rel. base-point according to 1.2 (i);
the two other parts are strictly commutative. Thercfore, j oy is homotopic
rel. base-point to Ao Vo (8 v 1) oo, Finally, by 1.2 (ii), the composition
\/ o (6 v 7)o is nullhomotopic rel. base-point.

We now introduce the nilpotency elass of an H-space and the co-nilpotency
class of an IH'-space.

1.7. DEwINtrION.  The nilpotency class nil (Y, b, u, v) of an Il-space s the
least integer n = 0 for which the map ¢,.1 1s nullhomotopic rel. base-point; if
no such inleger exists, we put nil (V, b, u, ») = .
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Thus, nil (Y, b, u, ») = 0 if and only if Y is contractible rel. b, and, as
is easily seen, nil (Y, b, u, ») = 1if and only if (¥, b, u, ») is homotopy-
commutative.

1.8. DurFiNtTION. The co-nilpotency class conil (X, a, o, 7) of an H'-space
18 the least integer n = 0 for which the map Y,y is nullhomotopic rel. base-point;
if no such integer exists, we put conil (X, a, o, 7) = .

We shall need homomorphisms in a strict sense of H-spaces and H’-spaces.

1.9. DEFINITION. Let (B, by, u, v) and (Y, yo , u, v) be H-spaces. A func-
tion f:B—Y s an H-homomorphism if: f is continuous, f(by) = 1w,
foulb, by) = pof(by, by) and fov(b) = vof(b) for all by, by, b eB.

1.10. DeriNtTION. Let (A, ao, o, 7) and (X, xy, o, 7) be H'-spaces. A
Sunction g: X — A ¢s an H'-homomorphism if: g is continuous, g(x0) = ao,
cog(z) = *goa(x) and rog(x) = gor(x) for all x € X.

The definitions of nilpotency and co-nilpotency classes may be extended to
homomorphisms.

1.11. DErFiNiTIiON. The nilpotency class nil f of an H-homomorphism
[:B— Y is the least integer n = O for which the map fo ¢u:B"7" — Y is
nullhomotopic rel. base-point; if no such integer exists, we put nil f = .

1.12. DEFINITION. The co-nilpotency class conil g of an H'-homomorphism
g:X — A is the least integer n = 0 for which the map Yni10g:X — "7'A is
nullhomotopic rel. base-point; if no such integer exists, we put conil g = o,

The following propositions are easy to prove:
1.13. If (Y, b, u, v) is an H-space and 6 = id:Y — Y| then
nil (Y, b, u, ») = nil 6.
1.14. If f:B—Q and g:Q — Y are H-homomorphisms, then
nil g o f < min {nil f, nil g}.
1.15. If f:(B, b, u, v) = (Y, y, u, v) is an H-homomorphism, then
nil f < min {nil (B, b, u, ), nil (Y, y, u, »)}.

1.16. If fi:(B, b) — (Y, y) is a homotopy and if fo and fi are H-homo-
morphisms, then nil fo = nil f; .

1.17. If f:(B,b) — (Y, y) and g: (Y, y) — (B, b) are H-homomorphisms
and if g o f is homotopic rel. b (as a map) to the identity map of B, then

nil (B, b, , v) = nil (Y, y, u, v).

The duals are automatic.
Finally, let = be an abstract group. The classical definitions of commu-
tator maps v, of weight n = 1 and of the nilpotency class nil # may be ob-
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tained from those given above upon considering = as an H-space with discrete
topology. We have nil # = 0 if and only if 7 is trivial, and nil # = 1 if and
only if = is a nontrivial Abelian group. We shall also need the concept of
nilpotency class of a homomorphism, which is defined in striet analogy to 1.11.

The set m(Y) of all path-components of an H-space (Y, b, u, v) is known
to be a group. The following result is easy to prove

1.18. LumMA. If the path component of b in Y s contractible rel. b, then
nil w(Y) = nil (Y, b, u, »).

2. Function spaces

Let X and Y be arbitrary topological spaces. We write Y™ for the space
of all continuous maps X --» ¥ taken with the usual compact-open topology;
this is defined by selecting as a subbase the collection of all sets

(C, V) ={feV"[[(C) c W},

where €' is a compact subset of X and V an open subset of V. If A C X
and B C Y, we write (Y, B)™* for the subspace of ¥~ consisting of those
maps which send A into B. For any two continuous maps

al(Z,0) > (X, 4), :(Y,B)— (W,D),
the map
B (Y, B)S — (W, D)

given by B8%(f) = Bofoa is continuous.

The set of all path-components of (¥, B)®* will be denoted by
(X, A; Y, B);if A = B = @, we simply write #(X; Y). The path-com-
ponent of f in (¥, B)** will be denoted by {f}; we have {f} = {1} if and
only if there is a homotopy h;: (X, A) — (Y, B) such that ho = fo, hh = fi.
Composition with either of the previous maps a and 8 induces functions

a*:m(X,A; Y, B) > a(Z,C; Y, B),
Bx:w(X, A; Y, B) - x(X, A; W, D).
2.1. Lemma. Let X, Y, Z be arbitrary topological spaces. Composition with

any homotopy h:X X I — Y induces homotopies s:7° X I —Z* and
d:X* X T—Y"

Proof. Let 6 denote the identity map of Z.

First, consider the sequence

h

ZY L) ZX)(I — (ZX)[

in which the second arrow sends any map f into the map g defined by ¢(¢) (x) =
f(z, t). This arrow is continuous since [ is Hausdorff (see the proof of
Theorem 1 in [14]). The first arrow also is continuous so that the composi-
tion is continuous. Since [ is locally compact Hausdorff, the resulting map s
is continuous.
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Next, notice that the map d equals the composition

(]
zh

X'XI—»(XXDN?Z57”

in which the first arrow sends any pair (f, ¢) into the map ¢ defined by ¢(z) =
(f(z),t). Ige(C, W) with C C Z compact and W € X X I open, then
there exist open subsets U < X and .J C [ such that

g(C) =f(C) Xt UXJCW.

Therefore, (C, U) X J is a neighborhood of (f, ¢) which, clearly, is sent into
(C, W) so that the first arrow is continuous. The second arrow also is con-
tinuous so that the entire composition is continuous.

Tor future purpose we state the easily proved

2.2. ProposiTiON. If X, are Hausdorl] spaces and Y, are arbitrary spaces,
then the function

1):Y1X1 X oo X Ynf"'n__> (Yl X o X Y”)(X|><~-°><«\’n)
defined by P(f1, -+, fu) = [i X+« X [u 18 continuous.
I'rom 2.2 and 2.1 we obtain the well-known

2.3. Cororrary. If (X, a) 4s a Hausdorf] space with diagonal map
AN X > XXX and of (Y, b, u, v) is an H-space, sclling

Sifo=uo(fi X))o and (N '"'=wof

converts Y~ and (Y, b)™ into H-spaces with the constant map X — b as
base-point.

2.4. Remark. Iwvidently, under the assumptions of 2.3, «(X; V) and
w(X, a; Y, b) are groups; however, this holds even if X fails to be a Hausdorff
space.

In the dual case we only state [6] the

2.5. ProrosirioN. If (V, b) s an arbitrary space with folding map
VY vV —-Yandif (X,a,o 1)is an H' -space, setting

U = (Ve (fiv e and {fj7 = {for]

converts m(X, a; Y, D) into a group with the class of the constant map as unit
clement.

In order to avoid complicated formulae, we shall frequently use the ab-
breviations

"o = (a,---,a)e™X and b = (b, ---,b)e¥V"

for any m = 1 and any based topological spaces (X, a) and (V, D).
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2.6. TaEOREM. For any H'-space (X, a, o, 1) one has
conil (X, a, o, r) = sup nil #(X, a; "X, "a) = supnil v(X, a; ¥, 1),
where m ranges over all integers = 1 and Y over all based topological spaces.

Proof. The n-fold commutator of any elements {f;} ew (X, a; Y, b) is
easily seen to equal the based homotopy class of the composition

X "#n 'nX .flv tee an nY V Y

If conil X = n — 1, then ¢, is nullhomotopic rel. a, and the same holds for
the above composition, so that nil (X, a; ¥V, b) = n — 1 forany Y. Sup-
pose now that nil (X, a; "X, "a) £ n — 1foranym = 1,and let j;: X — "X
denote the map which imbeds X as the 7" summand in "X, 1 =7 = n.
With ¥ = "X and f; = j;, the above composition is nullhomotopic rel. a,
and, since

Vo(fi v vy, =id:"X — "X,

s0 is ¢, ; therefore, conil X = n — 1, and 2.6 is proved.

2.7. TuroreM. For any H-space (Y, b, u, v) one has

nil (Y, b, u, ») = supnil#(¥Y™, b™; V¥, b) = supniln(X, a; ¥, b),
where m ranges over all integers = 1 and X over all based topological spaces.

Proof. Replace the composition in the proof of 2.6 by

Y~¢n Yn le"'an Xn A X

)

replace the maps j; by the projections p,: V" — Y, and notice that
(pr X -+ Xpa)o A =id:V"— V"

In the sequel, extensive use will be made of the following well-known [6]
examples:

2.8.  The loop functor Q associates to every space (X, a) its compact-open
topologized loop space (X, @) with the constant loop Qa as base-point. We
often abbreviate (X, a), Qa) to Q(X, a) or simply to @X. The maps

WX X QX - QX and »:QX — QX,
defined by

u(wr, w2)(8) = w(28) for 0 =s =3,
= w(28s — 1) for 3 =s=1,
v(w)(s) = w(l — s) for 0 =s=1,

provide an H-space structure in @X. TFor any continuous map

f:(X!a') — (be);
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the map
(X, a), Q) — (Y, b), Qb),

defined by Qf(w)(s) = fow(s), is an H-homomorphism as in 1.9,

2.9. The suspension functor Z associates to every space (X, a) its sus-
pension Z(X, a) which results from the Cartesian product X X I by pinching
the subset X X 0u X X 1ua X I to a point Za which serves as base-
point in 2(X, a). We often abbreviate (2(X, a), Za) to 2(X, a) or simply
to 2X; the image in ZX of (z, s) ¢ X X [ will be denoted by (x, s). The
maps

6:ZX - 2ZX v 22X and r:ZX — ZX,

defined by
oz, s) = ({x, 28), Za) for 0 <s =1,
= (Za, (x,2s — 1)) for $ s =1,
{x, s) = (x, 1 — 8) for 0 £s=1,

provide an H'-space structure in ZX. For any continuous map

JH(X,a) = (Y, h),
the map
Zf1(2(X, a), Za) — (2(Y, b), Zb),
defined by Zf(z, s) = {(f(x), s), is an H'-homomorphism as in 1.10.
2.10. With any based space (X, a) we associate the integers

nil (X, a) = nil (UX, a), Qa, u, »)
and
conil 2(X, a) = conil (£2(X, a), Za, o, 7)

which are defined according to 2.8, 1.7, and 2.9, 1.8.
211, If (X, a) and (Y, b) have the same based homotopy type, then
nil (X, a) = nil Q(Y,b) and conil Z(X, a) = conil Z(Y, h).

If X is a connected CW-complex, then for any a, b € X, (X, a) and (X, b)
have the same based homotopy type [16; p. 333]. Therefore,

2.12. If X is a connected CW-complex, then nil Q(X, a) and conil Z(X, a)
do not depend on the base-point a ¢ X and will be abbreviated to nil QX and
conil ZX.

2.13. Let (X, a) and (Y, b) be arbitrary topological spaces. According
to 2.4 and 2.5, (X, a; QY, @b) and 7(2X, Za; Y, b) have group structures;
they are related [6] by a natural isomorphism

¢:7(ZX, Za; YV, 0) & w(X,a;QY, Q)
which is defined by



HOMOTOPICAL NILPOTENCY 109

oift = {g}  with  g(2)(s) = f(x, s).

Since "(ZX) and (QY)™ may obviously be identified with Z(™X) and
Q(Y™), from 2.6 and 2.7 we now obtain

2.14. CoroLLARY. For any space (X, a) one has
conil 2(X, a) = sup nil 7(X, a;22("X),22("a)) = sup nil 7(X, a;QY, Qb),
where m ranges over all integers = 1 and Y over all based topological spaces.
2.15. CorOLLARY. For any space (Y, b) one has
nil (Y, b) = sup nil #(ZQ(Y™), ZQ(bH™); ¥, b) = sup nil #(ZX, Za; Y, b),
where m ranges over all integers = 1 and X over all based topological spaces.

2.16. For any (Z, ¢), the natural imbedding e:Z — QZZ is the continuous
and univalent map defined by e(2)(s) = (2, s). The natural projection
p:2QZ — Z is the continuous map defined by p{w, s) = w(s); p is onto if
and only if Z is 0-connected.

The following result will play a fundamental role later.

2.17. ProprosiTioN. Let (X, a) be an arbitrary space and n = 1 an arbi-
trary integer. The co-commutator map

¥n:2(X, a) - "2(X, a)
of weight n wn the H'-space ZX s nullhomotopic rel. base-point if and only if
80 s the composition
X A X" J1 X +e X]n (nX)n € N (QE("X))"—E’L) QE(nX)

in which A s the diagonal map, j;:X — "X imbeds X as the 1™ summand in
"X, e is the natural tmbedding of "X in QZ("X), and ¢, is the commutator map
of weight n in this H-space.

Proof. Let f; = Zj;:£X — Z("X). The natural isomorphism
¢:m(ZX, Za; 2("X), Z("a)) =~ w(X, a; Q2("X), @2("a))

sends {f;} into {g}, where g;(z)(s) = fi(x, s). Clearly, the n-fold com-
mutators

£ = [{fl}’ ) {fn}] and 9 = ¢(§) = [{gl}, R} {gn}]

are simultaneously trivial or not. Asis easily seen, £ is represented by the
composition

sx Yo ey DY o VI eseyy Y, 500x),

in which ¥ is the folding map. Since the composition of the last two arrows
is a homeomorphism, £ is trivial if and only if ¢, is nullhomotopic rel. base-
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point. Also, 7 is represented by the composition

2, xn WX X (g3(x))" E2, 92 ("),
and, as is easily seen, g; = eoj;. Therefore, y is trivial if and only if the
composition in the statement is nullhomotopic rel. a.

Dually, we have

X

2.18. ProposITIiON. Let (Y, b) be an arbitrary space and n = 1 an arbitrary
integer. The commutator map

‘Pn:(ﬂ(y7 b))n - Q(Y> b)

of weight n in the H-space QY 1s nullhomotopic rel. base-point if and only if so
18 the composition

v \V "y pLY e Vo, n(yn) (_ﬁ_n(zﬂ(yn))‘_‘ﬁf}_zg(yn)

in which Y s the folding map, p::Y" -—» Y projects Y" on its " factor, p is
the natural projection of ZQ(Y™) on Y", and ¥» is the co-commutator map of
wetght n in this H'-space.

3. Fibrations and cofibrations
We consider fibrations as given by the

3.1. DEFINITION. A sequence (Q, go) — (¥, yo) -& (B, b) of spaces and
maps 18 a fibration if

(i) 7 defines a homeomorphism of the fibre Q onto the subspace 8 (by) of
Y, and if

(ii) for any space (E, e), any homotopy h:: (E, eo) — (B, by) and any
map k:(E, e) — (Y, yo) satisfying B o k = ho, there is a homotopy
H,:(E, e) — (Y, yo) such that Hy = kand 8o H, = h,.

We do not require that 8 be onto. A familiar example is provided by the

sequence QB RNFY: -é> B in which &B is the space of all paths A in B emanat-

ing from the base-point, » is the inclusion map of the loop space,
and B(A) = A(1).
Fibrations are dual to cofibrations which are given [6] by the

3.2. DEFINITION. A sequence (P, po) L (X, ) & (A, ao) of spaces and
maps 18 a cofibration of

(i) 7 tnduces a homeomorphism of the cofibre P onto the identification space
obtained by pinching the subset a(A) of X to a point, and if

(ii)  for any space (E, e), any homotopy h.: (A, ay) — (E, e) and any
map k:(X, z0) — (E, e) satisfying k o @« = ho, there is a homotopy
H,;: (X, x0) — (E, e) such that Hy = kand Hy o = h, .
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We do not require that « be univalent.
3.3. TuroreM. If (Q, qo) a, (Y, yo) E» (B, by) is a fibration, then
nil 2(Q, qo) = 1 + nil Qq.

Proof. Letw,(D,R) = w(Z.,D, Z,d; R, r), where (D, d) and (R, r) are
arbitrary spaces and Z, denotes n-fold suspension (n = 1). As a generaliza-
tion of the familiar homotopy sequence of a fibration, for any space (X, a)
there is [11; p. 24] an exact sequence of groups and homomorphisms

B nx, B 20 m(x, Q) m(X, V)25 (X, B)

with the property [11; p. 22] that dm(X, B) lies in the center of (X, Q).
As is easily seen, this implies that

nil (X, Q) £ 1 + nil g« .

Since the isomorphism ¢ in 2.13 is natural, we have the commutative diagram

©(ZX, Za; Q, q) LN 7(ZX, Za; Y, y0)

A

(X, a; 2Q, Qq) _ﬁl’)_*__) (X, a; QY, Qo)

so that nil 7%« = nil (Q9)4. Evidently, nil (29)4 = nil Q4. Finally, by 2.15,
nil (Q, g) = sup nil (X, Q)
with X ranging over all based topological spaces, and 3.3 is proved.
Dually, we have
3.4. TurgoreMm. If (P, po) L (X, x) & (A4, ao) s a cofibration, then
conil Z(P, po) =< 1 + conil Zy.
Proof. With the above notations, for any space (Y, b) we now have
[11; p. 25] the exact sequence
* * *
Za* 4, v) L mp, v) B0 x, vy B, 4, v)
with dm:(A4, V) lying in the center of = (P, Y'). Therefore,
nil m(P, ¥) < 1 + nil (In)*.

One has nil (Z9)* < conil 24, and 2.6 yields the desired result.
Application of 1.15 and of its dual now yields

3.5. CoroLLARY. If (Q, @) — (Y, yo) — (B, by) is a fibration, then
nil 2(Q, ) = 1 + nil Q(Y, yo).
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3.6. CoroLLARY. If (P, po) «— (X, @) < (A4, ao) is a cofibration, then
conil Z(P, po) = 1 + conil 2(X, x).

3.7. Now let §:(Q, g) > (Y, yo) 25 (B, b) be a fibration and
f:(C, e) — (B, by) a continuous map. Let

Z ={(c,y) |fle) =By} € C XY and 2z = (¢, yo).

The sequence (Q, ¢) N (Z, 2) 2 (C, ¢o), in which

§(g) = (co,n(g)) and v(c,y) = ¢,

is the well-known fibration induced by F via f.
We shall need the following consequence of 3.5:

3.8. CoroLLARY. Let f:(C, ¢co) — (B, by) be a continuous map and
(2B, Qb)) — (Z, 20) — (C, ¢o) the fibration induced by QB — &B - B via f.
Then nil Q(Z, 20) = 1 + nil Q(C, ¢o).

Proof. Introduce the space
Y = {(¢e,\)[fle) =M1)} € C X B, g =(ca,b).
One has (Z, 20) < (Y, y) and the sequence

(Z, 20) =1 (¥, ) —P (B, bo),

in which 8(c, A) = A(0) and 7 is the inclusion map, is a fibration. The result
now follows from 3.5 upon noticing that (Y, ) has the based homotopy type
of (C, ¢o).

3.9 Remark. Condition 3.1 (ii) is more restrictive than Serre’s classical
definition of a fibre space in which it is required that the covering homotopy
theorem hold only for maps of polyhedra. Nevertheless, there are two im-
portant cases in which 3.1 (ii) is fulfilled: the first is that of a fibre space ob-
tained upon transforming by means of spaces of paths any map into a fibre
map; the second is that of a locally trivial fibre space in which both the base
and the total space are metrizable (the proof given in [4] may readily be ad-
justed so as to provide homotopies keeping base-points fixed ).

3.10. We conclude by giving an example of a space ¥ which fails to be a
generalized H-space although its loop space is homotopy-commutative.

The space Y results by adding cells to the complex projective plane M so
as to kill its homotopy groups in dimensions = 6. Let S° denote the 5-
sphere, and recall that (M) =~ m,(S°) if ¢ = 3. Since 7,(S°) is a finite
group for ¢ = 6, it follows from [18] that ¥ has the rational cohomology
groups of M. Application of the Hopf [2] theorem then implies that ¥ can-
not have a continuous multiplication with two-sided homotopy unit element.

We now prove that nil @Y < 1. Notice first that, without altering the
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homotopy type of ¥, we may assume that there is a fibration

(Q @) 1 (¥, y0) =2 (B, by)

with fibre @ of type (Z, 5) and base B of type (Z, 2); here and below, Z
stands for the integers. Introduce the diagram

0™ . gy 9 9B

oy ~av Loy x o ¥ X% o0 « oB

Ls o/
J

in which ¢ denotes the basic commutator map and j imbeds QF X QY in the
space obtained by attaching to the latter the reduced cone over the subset
QY v QY (see [16; p. 329]). It follows from 1.5 that ¢ may be extended to
QY "A QY yielding a map ¢ for which the lower triangle in the left square is
commutative. Since Q8 is an H-homomorphism, the square on the right
commutes. Evidently, B is an H-space so that the map ¢ on the right is
nullhomotopic rel. base-point. By commutativity, so is also the composition
QB o ¢ o j, and, by [16; Satz 14], it follows that Q8 o ¢ already is nullhomotopic
rel. base-point. Therefore, 3.1 yields a map ¢ for which the upper triangle
in the left is homotopy-commutative rel. base-point.
We have m(QY) =~ Z and 7,(QY) = 0 for ¢ = 2, 3, so that

H(QY;Z) ~ Hy(Z,1;Z) = 0 for ¢ =23,

and the Kiinneth formula now yields H,(2Y ‘A QY; Z) = 0 for ¢ = 3, 4.

As a result,
HYQY A QY;Z) = 0.

Since QQ is of type (Z, 4) and, as is implied by [12; Theorems 3 and 2],
QY "A QY has the based homotopy type of a CW-complex, the map & is null-
homotopic rel. base-point. It follows now easily that the map ¢ in the center
also is nullhomotopic rel. base-point so that nil Q¥ "< 1 as asserted.

Let us finally mention that it is easy to prove that any “M,-Raum”, in
the sense of [5], has a homotopy commutative loop space; however, we ignore
whether such a space necessarily is an H-space.

4. The nilpotency class of a loop space

For any topological spaces (Y, b) and (Z, c¢), let Y AZ and
p:Y X Z — Y A Z denote the identification space and identification map
resulting by pinching the subset Y v Z of ¥ X Z to a point. We write
y A zfor p(y, z) and take b A ¢ as base-point in ¥ A Z.

Let (K, a:), ¢ = 1, be pairs, each consisting of a countable CW-complex
and one of its vertices. Let
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(Wi, di) = (Ki,@m) and py = 0:(Ky, @) > (Wi, d);

also, for every n = 1, define

(Wat1, duga) as (Wo A Kn1, da A Gnya)
and

o1t (K1 X -+ X Kopa, (@1, -+, @ng1)) = (Waga, daga)

as the composition

n X 0
(Ki X -+ X K,) XKn+1‘£_"’ Wa X Kn+1_p_) W,
where 6 stands for the identity map of any space. We write 2 A -+ A &,
for po(x1, -+, x,) sothatd, = ay A --- A a,. Foranyn = 1, W,isa

countable CW-complex having d, as a vertex [16; p. 339].
Let (@, e) be a fixed H-space with commutator maps ¢ and ¢, .

4.1. LemMa. For any n = 1,
P iw(Wa,do;Gre) > a(Ky X -+ X Ku, (a1, -+, aa); G, )
©s @ monomorphism.
Proof. According to [16; p. 300}, a map f: (Y, b) — (Z, ¢) is called mono-
morphic if, whatever be the space (V, v), a map g:(Z, ¢) — (V, v) is null-

homotopic rel. base-point whenever so is g o f.
Now, as is easily seen, p.41 equals the composition

(KiX -+ X Kn) XKn+1_p“" (KiX -+ XK;) AKuoa

n A0
_LA_) (Kl A oo A Kn) AKn+ly
in which p, A 0((21, «* , @n) A Tusa) = (L1 A =<+ A Zn) A Zny forall
z;e K;. According to [16; Sitze 14 and 16], p is monomorphic; according
to [16; Satz 22] so is also p, A 6 provided p, is monomorphie, and 4.1 fol-
lows by induction upon noticing that, anyhow, p,* is a homomorphism.

4.2. LemMma. For any two countable CW-complexes (Y, b) and (Z, ¢), in
which b and ¢ are vertices, there ts a function
T=I0(Y,Z):x(Y,b;G,e) X w(Z,c;G,e) > a(Y A Z,b Ac;G,e)

such that the diagram

yx 23X ax¢

[» K
YAZ——h——> G

is homotopy-commutative rel. base-point for any base-points-preserving maps
f, 9, and ke T({f}, {g}).
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Proof. One has f X g(Y v Z) € G v @ so that, by 1.5, the map
oo (f X ¢9)|Y v Z is nullhomotopic rel. base-point. The CW-pair
(Y X Z,Y v Z) has the homotopy extension property, and there results a
homotopy %::Y X Z — @ such that

ko=9¢o(fXg) and k(Y v Z) = ki(b,c) = e.

Since p is an identification, there is a map h: (Y A Z,b A ¢) — (G, ¢) such
that h o p = k; ; also, {h} is uniquely determined by the pair ({f}, {g}) since,
by 4.1, p* is a monomorphism. The required function T is now defined by

setting T'({f}, {g}) = {Ah}.
Reverting to the countable CW-complexes (K, a;), we define a sequence
of functions

T n(Kiyai 3G e) > (W, , da; G, e)

as follows: T is the identity map and T',4; equals the composition

T, 6 T
I 7 (Ki5 @) =20 2 (W5 6) X 1(Koiss 6) —— #(Wosss B),

in which 6 is the appropriate identity map and I' = T'(W,, K.41) is given
by 4.2; base-points have been discarded to simplify notation.
An immediate induction argument yields

4.3. Lemma. Whatever be n = 1, the diagram

Kix o xEAX X g0 v
[ B
h
W G

is homotopy-commutative rel. base-point for any base-points-preserving maps

fl y T y.fn ) and h e Fn({fl}y R {fn})
Now let (X, o) be an arbitrary space. Evidently,
4.4. TaeoreEM. nil m (X, 2) = nil Q(X, x0).

We shall give an extension of this result involving Whitehead produects,
generally denoted by
[, 2] € g 4q-1(X, o) if a;eme (X, ), ¢i= 1.
We define (n + 1)-fold Whitehead products

[al y Tt an+1] as [[al y Tt a"]a an+l]
agreeing that, for n = 0, [a] = «a.

4.5. DeriNiTION. W-long (X, ) is the least integer n = 0 such that

lar, <+, any1] = 0 for all o; e mq, (X, x0), qi = 1; 4f no such integer exists, we
put W-long (X, o) = .
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Next, consider the natural isomorphism
T:we1(X, 20) = m (X, 20), Q0) (rz0)

arising from the fibration of the space of paths in X emanating from .
Since 87 A 8 = $7™ (8™ = m-sphere), a well-known result by Samelson
[17] may be stated as

T[a1 y az] = eP(Ta1 y Ta2) (8 = :i:].),

where I' = T'(S%7', 8%7') is given by 4.2 with (G, ¢) = (2X, Qx,). Al-
though not explicitly stated in [17], Samelson’s result is also valid if ¢, = 1
or ¢2 = 1 (see [13; Proposition 1]); the actual value of ¢ is irrelevant for the
sequel. The inductive definition of the functions T, , with the K, replaced
by spheres of suitable dimensions, now yields

(1) Tlar, <, an] = eTu(Tar, -+, Tay).

If nil Q(X, x,) = n — 1, then the commutator map ¢, in Q(X, ) is null-
homotopic rel. base-point so that, by 4.3 and 4.1,

Tn(yi, o+ ,v) =0 forall vy, -+, 9..
Since T is an isomorphism, (1) finally implies
4.6. TaEorEM. W-long (X, 20) = nil Q(X, 2).

4.7. Remark. The sequences (K;, a;) and (W, , d.) may also be used to
obtain results similar to 4.6 concerning more general homotopy products

1= 7(24:; X) — [[fm #(4, ; 2X)
—7(4; A Ay ;X)) - 7(B; QX) - 7n(ZB; X)

where, as Hilton suggested, B and A; A 4A; are related by a fixed
map ¢:B — A; A A, ; base-points have been discarded to simplify notation.

Now let P(E) denote the singular polytope of an arbitrary space £, and
let pg: P(E) — E denote the canonical map inducing homotopy isomorphisms
[9]. The following result, which will be used below, may be of independent
interest (compare with [8; 2.4 and 4.7]).

4.8. ProposiTioN. If X s a 0-connected space then, for any xo ¢ X,
nil QP (X) =< nil (X, xo).

Proof. Let P = P(X). Since px is onto, we may select a base-point
a € P with px(a) = @, and, since P is a connected CW-complex, 2.12 yields
nil QP = nil Q(P, a). Suppose nil (X, z,) = n — 1. Then the commutator
map ¢, in X is nullhomotopic rel. base-point so that its values all lie in the
path-component (2X), of the constant loop in QX. Therefore, ¢, defines a
map f as indicated in the diagram
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Qpx X -+ X Qpx

QP X --- X QP QX X -+ X 0X
l 9 l f
(@P)s @p, (2X)o
W
h 0X) o
\\ / Dex)
P((2X)o)

Next, px induces an isomorphism of fundamental groups, and since it is an
H-homomorphism, Qpx commutes with the commutator maps in QP and QX.
Therefore, the commutator map ¢, in QP also has its values in the path-com-
ponent (2P), of the constant loop in QP and, thus, defines a map ¢ as indi-
cated in the diagram. With (2px)o defined by Qpx in the obvious way, the
square commutes. By [12], QP, hence also (QP)., has the based homotopy
type of a CW-complex so that there is a map 4 yielding homotopical com-
mutativity rel. base-point in the triangle. Let A(Qa) serve as base-point in
P((2X)o). Since (2px)o and px), both induce homotopy isomorphisms, so
does also &; since its domain and range have the based homotopy type of
connected CW-complexes, it follows that

(2) h  is a based homotopy equivalence.

Since f is nullhomotopic rel. base-point, homotopical commutativity implies
that so is also the composition pex,°cheog. By [12; Theorem 2],
QP X --- X QP has the based homotopy type of a CW-complex so that the
map h o g already is nullhomotopic rel. base-point, and (2) finally implies the
desired result: g, hence also ¢, in QP, is nullhomotopic rel. base-point.

We now proceed to find upper bounds for nil Q(X, ).

First, let (X, x) be a connected aspherical CW-complex. Then
7 (X, x0), Qxo) = 0 for all ¢ = 1; also, by [12], (X, x,) has the based
homotopy type of a CW-complex. Therefore, the path-component of the
constant loop in Q(X, x9) is contractible rel. Qz, ,-and 1.18 yields

4.9. TaroreM. If X s a connected aspherical CW-complex, then
nil 7 (X) = nil 0X.

For further reference we state the easily proved
4.10. Lemma. nil Q(X X Y, (a, b)) = max {nil (X, a), nil Q(Y, b)}.
We now prove the

4.11. TureoreM. Let X be a 1-connected, i.e., a connected and simply con-
nected, CW-complex. Suppose the invariants k™** of a Postnikov system for X
are trivial for all but r values of n. Then nil QX = r + 1.
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Proof. Select a base-pointa ¢ X andletn, = m,(X,a). Let (X., pat1,fn)
be a Postnikov [15] system for X consisting of spaces (X, , a.), each having
the based homotopy type of a CW-complex, and base-points-preserving maps
Pni1, fn , Such that

(1) pat1:Xny1 — X, is a fibre map in the sense of Serre with fibre 7,4,
of type K (mni1, n + 1) and characteristic class k"**;
(ii)  fu:X — X, induces homotopy isomorphisms in dimensions < n;

(ill)  fu = Pus10fusr;

(IV) Xo = Qo .

Let (Y,.,b,) be of type K(mny1,n -+ 2), and introduce a map
g:(X., an) — (Y., b,) such that g*(¢) = k™, where « is the fundamental
class in H"(Y,; muq1); if £*** = 0, we take for ¢ the constant map. Let
further

(Qyn ’ an) - (Zn+1 5 Cn+l) ﬁ—) (Xny an)

be the fibration induced by @Y, — Y, — Y, viag. Since X, is 1-connected
and F,y; € K(mnta, n + 1), there is a map

hoy1: (Xng1y @nga) = (Zng1, Cog1)

satisfying 8 © hnt1 = Pni1 and inducing homotopy isomorphisms in all dimen-
sions (see for instance [11; Theorem 7.1, p. 43]). As a result, X,,; has the
based homotopy type of the singular polytope of Z,.:. Therefore, con-
secutive application of 4.8 and 3.8 yields

3) il Q( X1, Gng1) S 0l Q(Zny1, Cryr) = 1 + nil Q(X,, an)

for arbitrary k"*2. If k"™ = 0, then g(X,) = b, so that

4) Zny1 = Xn X QY, with projection p,:Z,41 — QY,,

and consecutive application of 4.8 and 4.10 now yields

(5)  nil Q(Xn41, @Gu1) = 0il X(Zny1, Cop1) = max {nil X, , a.), 1} .

Let ¢ be such that k"™ = 0 forn = ¢. An easy computation using (3)
and (5) yields

(6) nil (X,,a,) =7+ 1.

Notice next that (4) certainly holds if » = ¢. We may therefore define a
base-points-preserving map

¢: X — X, X Hn;q QY.
by setting

¢(x) = (fo(@), (pg© hgs10fer1(T), -+, pn o hana o fagr(x), +++)).

The Cartesian product II QY obviously is an H-space so that, according to
4.10,
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(7 nil 2(X, X [ ¥.) £ max {nil X, , 1}.

As is easily seen, ¢ induces homotopy isomorphisms in all dimensions. There
results a based homotopy equivalence of X and the singular polytope of
X, X [] @Y., and the desired result finally follows from 4.8, (7), and (6).

4.12. CoroLLARY. Let X be a l-connected CW-complex. If m,(X) = 0
for all but r values of n, then nil QX = r.

Proof. One has k"™ e H"**(X,, ; ®us1), and if w4y is the first nonvanish-
ing homotopy group of X, then X, still is a point so that k*** = 0.
Next, comparison of 4.6 and 4.11 yields

4.13. CoroLLARY. Let X be a 1-connected CW-complex, If the Postnikov
snvariants k" (X) vanish for all but r values of n, then W-long X < r + 1.

4.14. Remark. According to [21] there exists a connected CW-complex
X such that = (X) is cyelic of order 2, m(X) is cyclic infinite, 7,(X) = 0
for ¢ = 3, and m(X) operates nontrivially on m(X). Since

le, £] = fa — a = —2a

for arbitrary a e 72(X) and nontrivial £ € (X ), X has nonvanishing iterated
‘Whitehead products of arbitrary length so that, by 4.6, nil X = . There-
fore, the restriction that X be simply connected cannot be removed from 4.11
and 4.12. However, if X is n-simple for every n = 2, the relation
nil X = r + max {nil m(X), 1} is a candidate to replace 4.11.

4.15. Remark. For every integer n = 1 there exists a CW-complex X
such that nil @X = n. By 4.9, it suffices to take X in class K(m, 1), where
w is an abstract group with nil # = n. Simply connected CW-complexes
with loop spaces of preassigned nilpotency class are also available. Thus, let
X result by adding cells to S v §° so as to kill its homotopy groups in di-
mensions 2 n + 2. By [10], X will have nonvanishing (n + 1)-fold White-
head products so that, according to 4.6, n < nil @X; also, by 4.12, nil X < n.
This example was kindly communicated to us by P. J. Hilton who used it in
a slightly different situation; also, semisimplicial versions of 4.6 and 4.12 may
be found in his papers [11} and [11a].

5. The co-nilpotency class of a suspension

Let K be a fixed commutative coefficient field whose unit element is de-
noted by 1. We consider singular homology vector spaces over K. For
any space Y we introduce the direct sums

Ho(YV;K) = D020 H(Y; K), H(Y;K) = 200 H,(YV; K).

All tensor products will be taken over K. The following natural isomorph-
isms, of which the second is given by the Kiinneth formula, will always be
regarded as identifications
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H(Y;K)~ K if Y is 0-connected,
H*(Yl X - X Yn,K)%H*(Yl;K) ® --- ®H*(Yn§K)-

The ntt diagonal map A,:Y — V", with A; = identity and A, = A,
induces a homomorphism

Dy:Hy(Y;K) - Hy(Y; K) ® -+- ® Ho(YV; K)
such that, whatever be the “place” of D = D, ,
(8) Dipy=0® - - ®D® - ® 0)oD, ;
here 6 is the identity map of H = H4«(Y; K) and

0@...®D®...®0:H®...®H®...®H
—-H®  ---®H®H® --- ®H.
For any n = 1 we have the direct sum decomposition
Hu(Y;K) ® -+ ® Hu(V;K) = P + Z,

in which, with ¢; - - - ¢. denoting the ordinary product of integers,

Po=2{Hy,® -+ ® Hy|q:iZ0,q - g.> 0},

Zn=2{Hy® - ® Hy|qi2 0,0 g = 0}.
There result homomorphisms

PniHy > Hy ® -+ ® Hy and 2, Hy > Hy ® -+ ® Hy

such that, for any n = 1 and a ¢ Hx

(9) pﬂ(a) éPn, zn(a) ezn , Dn(a) = pn(a) -+ zn(a).
For any n = 1, (8) implies that, whatever be the “place’” of p,
(10) Prt1 = (0® - @pa® -+ ® ) op,.

Finally, an element a ¢ H4«(Y; K) will be called “primitive” if it is homo-
geneous, of positive dimension, and if ps(a) = 0.
Now let (X, xo) be a 0-connected space. Suppose

(11) weH (X; K) is a homogeneous element and n = 1 an integer such that
pa(u) # 0 and paa(u) = 0.
Our main purpose is to prove that (11) implies the nontriviality of the
homology homomorphism induced by the composition

(12) X 22 xr X X ngyn @03 (X)) £ 03 (7X)

in which 7, , e, and ¢, are as in 2.17. We first prove the

5.1. LemMmA. There exist primitive elements u.; e Hy(X; K) such that
Pa(u) = D tun ® -+ ® U e Ho(X;K) ® -+ ® Hu(X; K).
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Proof. Let H; = H.(X; K) and 6; = id:Hx — H,. Since we are deal-
ing with vector spaces, we have a direct sum decomposition

H;, =R; + Q; where @, = H; n Ker p;.

As a result, for any £ with 0 < k¥ < n — 1, we have the direct sum decompo-
sition Tx41 = Sy 4+ T involving the n-fold tensor products

Se=Hi® - ® H, @ Ry 1 ® Q42 ® --- ® Q,,,
Tih=H® - @H ® Qri1 ® Qpi2 ® -+ ® Q.
We have p.(u) e Hy ® -+ ® H, = T,. Suppose p.(u) e Ty for some

kwithO0 =k =n — 1. Then p.(u) = b + ¢, where beS; and ce T'; .
Since p; | Rx+1 is monomorphic and p:(@y41) = 0, the map

o =60® - @G @P® b2 ® - ® 0,
is monomorphic on S; and vanishes on T, . By (10) and (11) we have
#e(b) = du(b) + du(c) = dr o pn(u) = Poya(u) =0
so that b = 0 and p.(u) € Tx. Thus, we finally obtain

Pu(u) eTo=QL ® - ® Q,.

The desired result now follows upon noticing that any a € @, is a finite sum of
homogeneous elements a, satisfying dim ¢, = ¢ > 0 and ps(a,) = 0.

Our next step consists in deriving certain homological properties of
Q = QZ("X) and of ¢, . Since X is 0-connected, ("X ) is 1-connected and
Q is 0-connected ; the identifications introduced at the beginning of the section
are valid and will be used without further reference. Let A = H«(Q; K).
Also, let

W X2—Q and »:Q—Q

be the usual multiplication and inversion of loops which convert @ into an
H-space. The homomorphism

M:A®A—4

induced by u converts the vector space A into the (associative) Pontrjagin
algebra of Q; its unit element is 1 ¢ Ho(2; K). We abbreviate M (a ® ) to
ab. Let

N:A— A

be the vector space homomorphism induced by ».

The Cartesian product @ X @ also is an H-space in the obvious way. Its
Pontrjagin algebra is naturally isomorphic to the skew tensor product 4 ® A4
of the graded algebras 4 and 4, in which the product is defined by setting

(a1 ® a2) (b1 ® b)) = (—=1)"(a1 b1 ® a2 be)
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for any homogeneous elements with dim b = p, dim e, = ¢. Since
A:Q— Q X Qis an H-homomorphism, D:4 — A ® 4 is an algebra homo-
morphism. Notice that

(13) D) =a®14+1®a if aed isprimitive.
5.2. LemMa. If a € A 7s primitive, then N(a) = —
Proof. By (13) and since N(1) = 1, the composition

6 ® N
A———>A ®A-———>A®A~——-+A
sends a into a + N(a). By 1.1 (ii) this composition is trivial so that
a + N(a) = 0.
Evidently, the basic commutator map ¢ equals the composition
6% X »?

QXQ—[Q‘(‘A”Q"XQ — Q' X —‘—'——*’Q X @ "—><—>QXQ—"'>Q
in which the second arrow sends ((w;, w2), (ws, ws)) into the element
((w1, w3), (w2, ws)). Therefore, the vector space homomorphism F in-
duced by ¢ equals the composition

D®D
A®RA—B®B—-B®B

6®60) ® (N®N) M®M

(14) u
BB—— A®A—A4A

in which B stands for 4 ® A and the second arrow is defined by
(al ® a) ® (as ® a4) el (—1)pq(al ® a;) ® (a: ® a)

for any homogeneous elements with dim a; = p, dim @; = ¢. Direct com-
putation using 5.2, (13), and (14) now yields (compare with [17]):

5.3. Lemma. If a, beA are primitive elements with dim a = p and
dim b = ¢, then F(a ® b) = ab — (—1)"ba.

5.4. Lemma. If a, b e A are primitive, then ¢ = F(a ® b) also s a prims-
tive element.

Proof. Direct computation using 5.3, (13), and the fact that D is an
algebra homomorphism yields D(¢c) =c® 1 4+ 1 ® c.
It follows from 1.3 that the vector space homomorphism F,., induced by
the commutator map ¢n41 of weight m 4+ 1 equals the composition
F.®0 F
(15) A® - ®A@A—— A®A— A
An induction argument using 5.4 and 5.3 now yields

5.5. LemmA. If a; ¢ A are primitive elements, then

Fn(ad@ M ®an) =a1"’an+ Zs:&as(l) st Qg(n)
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where the summation subscript s runs through a set of permutations of (1, ++- ,n)
which 1s entirely determined by n and does not contain the identity.

5.6. LemMa. If a; € A are homogeneous elements and if dim a;, = 0 for some
k,then Fr(a; ® -+ @ : ® -+ ® a,) = 0.

Proof. Since F..1 equals the composition (15), it obviously suffices to
prove that F(a ® b) = 0if, say, dim b = 0. We may then also assume that
b = 1. An easy computation now yields

Fla®1) = Mo (8§ ® N)oD(a),
and the right side vanishes according to 1.1 (ii).
After this digression we revert to the consideration of (12). Let
JiitHe(X; K) > Hye("X; K) and E:H4«("X; K) — H«(Q; K)

be the homomorphisms induced by the maps j; and e, where @ = QZ("X).
We identify (7; ® -+ ® ju)sx with J; ® -+ ® J, and (e")x with
E® ---®L.

Let uw e H (X; K) be given by (11). According to (9), there exist homo-
geneous elements v;; e H«(X; K) such that

Zn(u) = Ztvtl ® - ® v
and
dim vy = 0 for some k = k(t).

Clearly, dim E o J;(vs) = 0 so that, according to 5.6,

(16) Foo(E® - @ E)o(J1 ® -+ ® Jn) oz, (u) =0.
Let the primitive u,; correspond to u according to 5.1 and let
(17) cri = Ji(Ung), ari = E(crs).

The naturality of the Kiinneth formula implies that every a,; is primitive
so that, by 5.1 and 5.5,

Foo(E® - @E)o(Ji® -+ ® J,) opalu)

= Erwr“' Zr stn,

where, with the dot representing Pontrjagin multiplication in 4,

(18)

(19) Wy = Qp1 *°° Qrn and Wrs = =£brsq) * * * Grsn) -
Now let C = H, ("X ; K); introduce the direct sum
T(C) = 23 C?
in which
C"=K and C?°=C®---®C if ¢>0.

The natural isomorphisms C” ® C? &~ C**?, where p, ¢ = 0, extend

linearly to a homomorphism 7(C) ® T(C) — T(C) which converts the
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vector space T'(C) into the (associative) tensor algebra of C'; its unit element
is 1eC®. We have the direct sum decomposition

C=C+ -+ 0+ Cun

in which C; = J;,(H.(X; K)) for 1 £ 7 =< n; the presence of an extra term

(.41, which is a direct summand as we work with vector spaces, is due to a
possibly bad behavior of the base-point. As a result, we obtain the direct
sum decomposition

(20) T(C)=C"+ 2200 ® - ®Cy |1t =n+ 1,1k =g

LEvidently, every J; is a monomorphism; working with vector spaces implies
thatsoisalsoJ; ® --- ® J,. Wehave p,(u) £ 0and dim w,; > 0. There-
fore, 5.1 and (17) yield

(21) 0% (J1® -+  ®@Ju)opa(t) =2 1¢n ® ++ ®CrneCi® -+ ® Cr;
also, for any permutation s of (1, ---, n), by (17) we have

(22) Do Gy ® v ® Craem € Cay ® -+ ® Clgy -

If s is not the identity, then the right-hand vector spaces in (22) and (21)
are distinct direct summands in (20). Therefore, adding in T(C) yields
(23) 2, ca® - @ A Do Dor ECu) ® o ® Cram # 0

here, the summation subscripts 7 and s run precisely as in 5.1 and 5.5 respec-
tively, and the signs are taken as in (19). After interchanging, as we may,
summation on r and s in (23), we abbreviate its left member to d.

By the Bott-Samelson theorem ([3)]; see also [13]) applied to the 0-con-
nected space "X, there is a natural algebra isomorphism

¢:T(C)~A suchthat ¢|C® =E|C.
The definition of multiplication in T(C), (17), and (19) now yield
¢(d) = 2rwe + D20 Xu e
Since ¢ is an isomorphism, (23) and (18) yield
(24) Foo(E® -+ ®@E)o (/1 ® - ®Ju)opa(u) # 0.
By (9), (16), and (24) we finally obtain
Fio(E® -+ ®@E)o(J1® --- ® Ju) oDy(u) # 0.

Thus, it follows from (11) that the homology homomorphism induced by (12)
is nontrivial, and 2.17 now implies that the co-commutator map ¥, of weight
n in the H'-space ZX fails to be nullhomotopic rel. base-point.

Recall now the

5.7. DEFINITION. _-long X s the least integer k = 0 such that, for any
commutative coefficient field, the cup product of any k + 1 singular cohomology
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classes of positive dimension vanishes; if no such integer exists, we put
wrlong X = .

Suppose \_-long X = m = 1. Then, the definition of the cup product in
terms of the diagonal map provides a commutative coefficient field K, an ele-
ment u e H,(X; K) and an integer n = m satisfying (11). Therefore,

5.8. THEOREM. If X s a O-connected space, then, for any base-point xo e X,
-long X =< conil 2(X, x).

5.9. An upper bound for conil (X, z,) will be given by Theorem 6.13 in
the next section. Meanwhile, we show that for any n = 1 a space X satisfy-
ing conil ZX = n exists. To this end, let X be the Cartesian product of n
copies of a ¢-sphere, ¢ = 1. With Z; as coefficient field, there are n singular
g-dimensional cohomology classes with nonvanishing cup product in X so
that, by 5.8, we have n = conil ZX. On the other hand, the Lusternik-
Schnirelmann category of X equals n + 1 so that, by 6.13 and 6.8 in the next
section, we have conil X = n.

6. Weak category and nilpotency of function spaces
We first recall [16; Hilfssatz 14] the following

6.1. DEFINITION. The base-point b e Y is nondegenerate if there are a neigh-
borhood U » b which is contractible rel. b in Y, and a continuous function u: Y — I
with uw(b) = land u(Y — U) = 0.

The advantage of this definition lies in the fact that the property of having
a nondegenerate base-point is a based homotopy type invariant [16; p. 333].
We list without proofs some properties of nondegenerate base-points.

6.2. If the base-point b € Y is nondegenerate, then there exist a neighborhood
Vb, a continuous function v:Y — I, and a homotopy p.:Y — Y such that
v(b) = Lo(Y — V) =0, p(y) = y, and p(V) = pi(b) = b.

6.3. If the base-point a € X is nondegenerate and if the map
fi(X,a) = (Y,d)

18 freely homotopic to the constant map X — b, then f also <s homotopic rel. a
to the constant map.

6.4. If the base-point a ¢ X is nondegenerate and if Y is O-connected, then
any map X — Y is freely homotopic to a map (X, a) — (Y, b).

6.5. If the base-point b ¢ Y is nondegenerate, then the base-point Qb is non-
degenerate in the loop space (Y, b).

Now let » = 1. For any space (Y, b) let T(Y, b; n) denote the subset
of the Cartesian product Y™ which consists of all points (y1, - -+, y.) satis-
fying y; = b for some 7. Let
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y™ and p: Y —>y"™

denote the identification space and identification map resulting by pinching
to a point the subset T(Y, b; n) of ¥Y". This construction is related to that
introduced at the beginning of the fourth section, but we shall not need this
fact here. We owe to Hilton the following

6.6. DEFINITION. For any space (X, a), w cat (X, a) s the least integer

n = 1 such that the composition X é) x" B xm s nullhomotopic rel. a; if no
such integer exists, w cat (X, a) = .
As usual, A stands here for the diagonal map. Clearly
6.7. If (X, a) and (Y, b) have the same based homotopy type, then
wecat (X, a) = wecat (Y, b).

Recall that the Lusternik-Schnirelmann category cat X is the least integer
n = 1 such that X may be covered by n open subsets which are contractible
in X; if no such integer exists, cat X = .

6.8. PropositioN. If X ¢s a O-connected normal space with nondegenerate
base-point a ¢ X, then wcat (X, a) < cat X.

Proof. Suppose cat X = n, and let X be covered by n open subsets U, ,
each of which is contractible in X under a homotopy h;: U; X I — X satisfy-
ing hi(x, 0) = z, hy(x, 1) = a;. Since X is O-connected, we may assume
that a; = a for all . The normality of X yields closed subsets 4; of X, open
subsets V; of X, and continuous functions f;: X — I such that

X=4,u---Uvd,, A, cV,cV.cU,
fi(4:) =1, fi (X =V, =0.
For every 7, define a homotopy k;: X X I — X by
kix,t) = if zeX — 7V,
= hi(z, tfi(z)) if zeU,.

Let k(a, t) = (ki(z, t), -+, ka(z, t)) € X"; then k(z, 0) = A(z) and since
every x belongs to some A;, k(x, 1) e T(X, a; n). The composition po A
is now freely homotopic to the constant map X — p(a, -+, a) under the
homotopy peok. Since a ¢ X is nondegenerate, application of 6.3 yields a
homotopy rel. a connecting the map po A and the constant map, so that
weat (X,a) < n.

6.9. Lemma. If (G, e) 7s an H-space with nondegenerate base-point, then,
for any n = 1, there is a homotopy h::G™ — G such that ho = ¢n and

hM(T(G e;n)) = he(e, -+ ,€) = e.



HOMOTOPICAL NILPOTENCY 127

Proof. Let ¢ denote the basic commutator map in (G, ¢). By 1.5, there
is a homotopy ¢;:G@ v G — G such that

¢ =¢|G v G and ¢:(G v G) = ¢:(e,e) = e.

Let the neighborhood V s e, the continuous function »:G — I, and the homo-
topy p::G — G be given by 6.2. Select a continuous function r:I X I — I
such that 7(0,0) = 0and r(s, 1) = r(1,t) = 1. Letd(x,y) = r(v(x),v(y)),
W =G@XVuVXGand M = GXG— W. The map k.:G X G@—G
defined by

ki, y) = o(p2e(), p2e(y)) for 0=t=4%, (2,9)eG@ XG,
= o(m(x), p(y)) for 3=t=<1, (x,y)eM,
= ¢a-naew (p1(2), p(Y)) for $35t=1, (x,y)eW,

satisfies ko = ¢ and k(G v @) = ki(e, ¢) = e. Now, if n = 1, we put
h: = identity. Assume the homotopy A, “of weight n = 1’ has been defined.
The homotopy “of weight n + 17 is then given by k,(h (21, -, Za), Tng1).

Now let G denote the class of all H-spaces with nondegenerate base-point.

6.10. TaeoreM. If (X, a) is a Hausdorff space with nondegenerate base-
point, then sup {nil (G, e)*¥ | (G,e) ¢G} = weat (X,a) — 1.

Proof. Assume that wcat (X, a) = n = 1. Let the neighborhood V5 a
and the homotopy p;:X — X be given by 6.2. With X; = X and V., = V,
the set

W=ULXiX XX XViXXipgX- - XX,
is a neighborhood of 7'(X, a; n) in X" and the homotopy
77t=ptx M xpt:(Xny(a)”'ya))—')(Xn’ (a)“'7a))

satisfies no = identity and 7 (W) < T(X, a; n). Introduce the space X"
and the identification map p: X" — X"; let b = p(a, -+ -, a).

Let (G, e) eG. For every map f: (X", T(X, a; n)) — (G, ¢) there is a
unique continuous map f': (X™, b) — (@, e) satisfying f'op = f. Setting
F(f) = f’ defines a continuous map
(25) F:(G, &)™ — (G, ) ¥

for, if F(f) € (C, U), where C < X' is compact and U C G is open, then
p (C) — W is a compact subset of X", so that

A= (p(C) =W, U)n (G e)™""

is a neighborhood of f in the domain of F and F(A) C (C, U).
Let A:X — X" be the diagonal map. Since w cat (X, a) = n, there is a
homotopy £:X — X such that & = po A and £(X) = &(a) = b. Let

On: (G’ e)(x.a) X X (G7 e)(x.a) - (G’ e)(x,a)
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be the commutator map of weight n in the H-space (G, e)®. Then, for
any f; e (G, e)™, ¢.(fr, -+, f) equals the composition

X A Xn f1X"'an Gn ©n G,

where ¢, is the commutator map of weight n in the H-space (G, ¢). By 6.9,
there is a homotopy h;:G" — G such that

ho = oo and m(T(G,e;n)) = hie, -+ ,e) = e.

Define
B (G, )™ X - X (G, )™ (G, )™
by
ke(fi, oo yfn) = haeo (fi X oo+ X fu) omio A f 0st=s4,
=F(ho (fi X -+ X fa) om) o ba if $§st=<1
That k; actually is a homotopy, i.e., that it depends continuously on
(f1, -, fu,t), s easily checked by expanding it as a composition of maps

and homotopies of function spaces, each of which is continuous by 2.2, 2.1,
and (25). Moreover, ky = ¢,, and, with ¢ denoting the constant map
X—oe kyi(fi, -, fn) = ki(e, ---, &) = ¢e. Thus, nil (G, e)*” =n — 1.

6.11. TueoreM. If (X, a) is an arbitrary space with nondegenerate base-
point, then conil (X, a) < sup {nil7(X, a; G, e) | (G, ¢) €G}.

Proof. Since X has a nondegenerate base-point, so does "X forany m = 1;
it follows from [16; Satz 17 and (33)] that =(™X) also has a nondegenerate
base-point, and 6.5 now implies that @=("X) belongs to G for any m = 1.
The result now follows from 2.14.

6.12. CoroLLARY. If (X, a) 7s a O-connected normal Hausdorff space with
nondegenerate base-point, then, with (G, e) ranging over G,

_-long X < supnil (X, a; G, ¢) < supnil (G, e)*” = cat X — 1.

Proof. The first inequality follows from 5.8 and 6.11, the second is obvious,
and the third follows from 6.10 and 6.8.

As another consequence, we obtain the promised upper bound for the co-
nilpotency class of a suspension:

6.13. TaeoreM. If (X, a) is a Hausdorff space with nondegenerate base-
point, then conil (X, a) < weat (X, a) — 1.

Now let Gy denote the subclass of G consisting of all 0-connected H-spaces
in . Suppose (X, a) is a Hausdorff space with nondegenerate base-point,
and let (G, e) €Go. Then, it follows from 6.3 and 6.4 that the inclusion map
(G, ¢)** — @* induces an isomorphism

(26) (X, a; G, ¢) ~ m(X; ).
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Therefore, by 6.10, we have

6.14. Prorosition. If (X, a) 2s a Hausdorff space with nondegenerate
base-point, then sup {nil 7(X; @) | (G, ¢) €S} = weat (X, a) — 1.

Furthermore, if X is 0-connected, so is also the H-space QZ("X), and, as
shown in the proof of 6.11, its base-point is nondegenerate provided so is
a eX; by 2.14 and (26) we therefore obtain

6.15. ProposiTiOoN. If (X, a) is a O-connected space with mondegenerate
base-point, then conil Z(X, a) =< sup {nil7(X; @) | (G, e) €Go}.

Our last result concerns Whitehead products in function spaces.

6.16. TaEOoREM. Let (X, a) and (Y, b) have nondegenerate base-points. If
X is a Hausdorff space, then the relation

W-long ((¥, 5)%?,b*) < weat (X,a) — 1

holds in each of the following three cases: (i) X s locally compact, (ii) X s
a CW-complex, (iii) X satisfies the first countability axiom.

Proof. By 4.6 we have

(27) W-long ((¥, b)*,5%) = nil @((Y, b)), b¥);
by 6.10 and 6.5 we have
(28) nil (((Y, b), 2b)*?, (2b)*) < weat (X, a) — 1.

According to [14; Theorem 6], in each of the three cases there is an H-strue-
ture-preserving homeomorphism

Q((Y, 5)F2 b%) & (Y, b), ) *?,

and the right-hand member of (27) now equals the left member of (28).
We conclude by giving two examples related to 6.8 (see [1]).

6.17. Let Y be the complex obtained by removing an open 3-cell from a
Poincaré space, i.e., a nonsimply connected closed 3-manifold which is a
homology sphere. Since Y is not contractible, by [8; Theorem 1.1] we have
cat X = n + 1for X = ¥Y". Nevertheless, X® is simply connected and
acyclic, whence contractible, so that wcat X = 2.

6.18. Let ¥ = 8° v 8% and let 41, 4,:8° — ¥ denote the left and right
inclusion maps. Let X result by attaching to Y an 8-cell with characteristic
map in the class [41 , [41 , %2]] € m(Y), where [f, g] denotes the obvious Whitehead
product. Then, X satisfies m(X) = 0, weat X = 2, cat X = 3.
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