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I. INTRODUCTION AND PRELIMINARIES

IA. Introduction

Let R be a ring with radical N and identity element 1. Throughout this
paper, we assume that R satisfies the minimum condition on left ideals.
Furthermore, we assume that R is a cleft ring; that is, as an additive group
R S @ N where S is a semisimple ring isomorphic to R/N. This decom-
position is called a cleaving.
Any cleft ring may be considered to be a direct sum of algebras (Proposition

1.1). We assume, therefore, that R is actually an algebra over a field K.
We associate with cleaving R S @ N a concept called a structure which
determines the "structure" of the ring R in the ordinary sense. The concept
of a structure is developed out of the concept of a structure of an R-module X.

Let F1, F, Fp be a complete set of nonisomorphic irreducible R-mod-
ules. Of course, these are irreducible S-modules as well. Let X be an
R-module. Then X is naturally a completely reducible S-module. To each
pair f*, f where f* is an S-homomorphism of X onto F. and f is an S-isomor-
phism of Fi into X, we will define in the following manner a function k(a),
a in R, whose values are in the module Hom(F, F.) of K-linear transforma-
tions of Fi into Ft. For x in F, we set b(a)x f*aLfx where aL denotes
left multiplication by a in R. The element k(a) is called a structural element
of R; it belongs to the module

H. Homs,s(R, Hom(F, F.)),
which we call a structural module.
A structure of an R-module X is the set of functions which describe the

dependence of the structural elements on the homomorphisms f* and f.
Theorem 1 shows that if the structures of two R-modulesare relatedin a certain
manner, then the modules are isomorphic.
We go on to study the significance of the structural modules themselves.

For this purpose we introduce in Part III the concept of a representation
module. We show that each element of H is a structural element of a par-
ticular R-module which is isomorphic to an indecomposable left ideal of R.
This leads us to introduce the concept of a structure 2;(R, S) of a cleft ring
which is defined from the structures of the indecomposable left ideals.
Our principal theorem (Theorem 3) obtains necessary and sufficient condi-

tions for an isomorphism I0: S -- S’ of the semisimple components S and S
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of cleft rings R and R’, respectively, to be extended to an isomorphism
I:R -- R’. These conditions are given in terms of the structures 2(R, S)
and (R’, S’).

In case R/N is a separable algebra of finite rank over a field, it follows from
the Wedderburn Principal Theorem that R is a cleft ring. Furthermore, if
R S N and R S’ N are any two cleavings for R, it follows from
Malcev’s Theorem [4 or 8] that there is an inner automorphism I:R ---. R
such that I:S S’. In this case, the structures themselves characterize the
rings up to isomorphism. We also study extensions of anti-isomorphisms
and characterize commutative algebras in terms of their structures. In a
subsequent paper, we will investigate an extension of the Malcev theorem
stated above.

Certain authors [2, 9, 10, 11] have developed a theory of nonsemisimple
algebras in which a basis for the algebra is chosen which exhibits the regular
representation in a particularly nice form. Then when the algebra is cleft,
certain additive subgroups of R are distinguished. These additive subgroups,
called elementary modules when the algebra is of finite rank over an alge-
braically closed field, may be identified by means of the structural elements
of R. The structural elements that we introduce can be used to give an
invariant characterization of these modules and enable us to advance the
theory. The concept of a structure provides a more flexible technique for
handling the structural elements than those used to handle the elementary
modules. The concepts of structural modules and representation modules
enable us to obtain a more complete theory in the general case of cleft
rings, and to study the structural elements independently of the structures
and the ring itself.
Our theory extends immediately to rings which are semiprimary in the

sense that R is a ring with nil-radical N such that flr_l N 0 and R/N
is a ring with minimum condition on its set of left (or right) ideals (with
the exception of 4C and 4D). More details on this extension will le given
in a subsequent paper.

lB. Definitions and conventions

A ring R will always be considered as having an identity and as possessing
the minimum condition on its left ideals. We will further assume that R is
cleft with cleaving R S N. We will further assume that R is an algebra
of possibly infinite rank over a field K. Then all R-modules will be K-mod-
ules. We then assume all module and ring homomorphisms are K-homo-
morphisms. This is not an essential restriction for the following reason.

PROPOSITION 1.1. Every. cleft ring is a direct sum of algebras over primefields.
Proof. Let R _1 R be the decomposition of R into indecomposable

ideals. Let S k
--1 S be the decomposition of S into simple ideals. Then

By the term ideal we mean a two-sided ideal.
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the projection p’R R,o is such that pS 0 or p is an isomorphism of S.
In the latter case, S n R 0, 0. On the other hand, 1 ’1 k,
where k R is the identity of R. Since k Si R, k S 0, 0 and
k0Si 0. As 1S S, k0S S. Hence S R0. Thus every
simple ideal S of S is contained in some indecomposable ideal R, of R.
From this one may see that S 1 T, where R T, @ N is a cleaving
for R, with semisimple component T and radical N, and each T is a
sum of some of the ideals Si. On the other hand, S Se where e is an
idempotent in the center of S contained in Si. But Si and Sj are contained
in the same indecomposable ideal of R if and only if Re and Re are con-
tained in the same indecomposable ideal. But if this is the case, e Ne 0
[1, p. 107].
Now if the additive orders p of e and q of e. are finite, they are the char-

acteristics of the fields which are centers of the simple rings S and S inas-
much as e is the identity of S and e is the identity of S.. Thus p and q
are prime integers. Suppose p q. Let a and b be integers such that
1 ap q-- bq. Then eiNe (ap q-- bq)eNe O. Hence Seiand Se
belong to distinct indecomposable ideals. Let the additive order of, say, e.
be infinite, and let the additive order of ei be a prime p o. Then

ei p because e. is contained in a field of eharaegerisgie ero which is ghe

eenger of S. Thus e Nej= pe N( e)= 0, and again Se and Se belong

o disgine indeeomposable ideals of R. Hence all simple ideals S belonging
go an ideal T. of S may be regarded as algebras over isomorphic prime fields.
Then T. may be regarded as an algebra over a prime field D.. Furthermore,
the identity element X, of R, is contained in D,.
We must show that D is in the center of R. If D is finite, it is generated

as an additive group by k. So in this case, the result follows. If D, is
isomorphic to the rational numbers, its elements may be represented in the

a
form X where a and b are integers and b 0. Let a e R set

and suppose 0. Then

Hence b 0. Thus aa aa 0; but then a(k a axe) 0, which is a
contradiction. Thus in this case also D is in the center of R, and R is an
algebra over D.

Actually the result in [1] is stated with primitive idempotents. However, every
central idempotent is a sum of primitive idempotents, so the result applies here also.
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All modules which we consider will be unitary and (except for K-modules)
will have a finite composition series. In general, when we do not otherwise
specify, a module will be a left module for the ring being considered. Let X
and X’ be, respectively, a C-module and a C’-module for rings C and C’. Let
I’C -- C’ be a homomorphism. A homomorphism ’X --, X’ of additive
groups such that e(ax) aIe(x) will be called an I-homomorphism. If
C C’ and I is the identity, then we say that is a C-homomorphism or iust
a homomorphism.
A double module X over rings C and D will be an additive group X which

is a left C-module and right D-module such that (,x) ,(x) for x e X,
C, and D. Let X be a (C, D)-module and X’ a (C’, D’)-module, and

let I’C, -- C’ and J’D -- D’ be ring homomorphisms. A homomorphism
’X X’ of additive groups such that (/x) I(x)J is called an (I, J)-
homomorphism. Again if C C’, D D’, and I J 1, we say that is
a (C, D)-homomorphism. We denote the group of such homomorphisms by
HomC.D) (X, X’ ).
A left bimodule X over rings C and D will be an additive group X which

is both a left C-module and left D-module such that ,(x) (,x) for e C,
e D, and x e X. We designate homomorphisms in the usual manner.
We will make use of the concept of a projective module [3] as well as of the

elementary properties of the functor Homs(X, Y) [3, Chapter II]. A homo-
morphism ’X -- Y of modules X and Y over a ring C will be called a mono-
morphism if it is one-to-one and an epimorphism ifX Y.

Let S --1 S, where S is a simple ideal. Let F1, F2, F be a
complete set of irreducible R-modules; that is, we take this set of modules so
that no two are isomorphic and such that every irreducible R-module is iso-
morphic to one of them. They also form a complete set of irreducible S-mod-
ules. Let K, i 1, 2, / denote the endomorphism fields of F, i
1, 2, k. By U, i 1, 2, ,/, we mean left principal indecomposable
modules of R. By definition, U is isomorphic to an indecomposable left
ideal of R. It is well known [1, pp. 98-99] that U/NU is irreducible, that a
principal indecomposable module U is determined up to isomorphism by its
irreducible factors, and that every irreducible module F is isomorphic to an
irreducible factor of some principal indecomposable module. Thus we may
and will assume that the modules U are chosen so that U/NU is isomorphic
to F.
As in the proof of Proposition 1.1, let el, e,..., e denote the

central idempotents of S which are contained in the respective simple ideals
$1, $2,..., S. Then set eRe R, i,j 1, 2,..., k. We have

R (,=I Ri
because 1 =1 e and the idempotents e belong to an orthogonal family.
The modules R are (S, S)-modules, of course. Since S R. 0 and
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Ri S, 0 for i or j, R is isomorphic to Ri as an (S, S.)-module.
We will call these modules Cartan submodules.

1C. Direct families of homomorphisms
Of fundamental importance in what follows is the representation of a direct

decomposition of an S-module by means of homomorphisms. We will review
this in order to establish our terminology and to adapt the concept to our
needs.
We form the right K-modules Homs(F, X) and the left Ki-modules

Hom(X,F), i 1,2, ,. Becausef ---. f*f is, foreachf* eHoms(X, Fi),
an element of the dual module Homs*(F, X) of Homs(F, X), we identify
Homs*(F, X) and Horns(X, F). The elements f e H0ms(F, X) are
monomorphisms, which we call injections, and the elementsf* e Homs*(F, X)
are epimorphisms, which we call projections.
A direct family of homomorphisms representing X as the S-direct sum of the

modules F1, F2, Fk is a family of homomorphisms {f,*, fl 1, 2,
t} with f* e Homs*(F, X), f e Homs(Fi, X), and

(1.1) *.f, 0, z v; A*f, 1,, =ff* 1

where 1 is the identity endomorphism of the corresponding module M.
If {f,*lt 1, 2, ..-, t} is a family of projections belonging to a direct

family, we say that {f,*} is a direct family of projections. Similarly, we define
a direct family of injections. The direct family of injections and the direct
family of projections which belong to a given direct family of homomorphisms
will be said to be complementary. Of course, given any direct family of homo-
morphisms {f*, f} representing a module as the S-direct sum of the modules
F1, F., Fk, we have the direct decomposition X @,=1 f F.
PROPOSITION 1.2. Let {]1 1, 2,..., t} be a family of injections with

f, e Homs(F, X). Then f is a direct family of injections if, and only if,
those elements f, which are in a given module Homs(F, X) form a K-basis for
Homs(F, X).

Proposition 1.2’ is the dual proposition which may be stated for families of
proiections. We will prove only Proposition 1.2.

Proo]. Necessity. Letf, f,, f,. be the elements of a direct family of
iniections which belong to Homs(F, X) for some arbitrary i 1, 2, k.
Let {f* 1, 2, t} be the complementary direct family of projections.
Suppose f e Homs(Fi, X). Then f ’=lf(f*f), and

f*fe Homs(F, Fi) K.

So a, f,*f = O, unless Fi F then a e K and e IIoms(F, X).
Hence f ’_-lf, a, where f,. e Homs(Fi, X). If _-f, a. 0,
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multiplying by any projection f* of the complementary family, we obtain
that a 0. This proves the necessity.

Suciency. Let {f,1, f, "", f,} be a Ki-basis for Homs(Fi, X).
Then the modules fl Fi, f Fi, ..., f, Fi are S-irreducible, and we may
suppose that f F, f, F, f, F, r s, form a maximal independent
set of irreducible modules.
Should r < s and x e Fi, f,,+ x =J,i xi where x e F is uniquely

determined by x. Then zi:x xi aix may be verified to be in K. This
means that f,,+ =f,i ai, which is a contradiction. Thus

Now X is the homogeneous component of X corresponding to F. Further-
more, one may find a complementary family {f,+* [j 1, 2, s} of projec-
tions to f+}. Then from all the homogeneous components of X, we may
obtain direct families of homomorphisms which together yield a direct family
{f,*,f,I 1, 2, -.., t} for X.

II. STRUCTURES OF MODULES

2A. Isomorphisms of modules

Let X be a given left R-module. Then if f* Hom*(F., X) and
f e Homs(F, X), i, j 1, 2, k, we define the function

h[f*, f] R -+ Home(F/,

by

(2.1) elf*, f](-) f

forf*eHoms*(Fs, X),feHoms(Fi, X), i,j 1, 2,..., It, and eR;
aL designates left multiplication by a e R. We will call these the structural
elements of the module X. Of course, similar definitions hold for right
modules.
The modules Fi are (Ki Si)-modules as well as (Ki S)-modules.

Hence Home(F/, Fs) is a (Ks Ss, Ki Si)-module as well as a

(Ks S, K S)-module. But then

(2.2)

is a (Ks,.K)-module. But as S, Hom(F, Fs) Hom(F, Fs)S 0
for j and i, Hom(s.s)(R, Hom(F, Fs)) 0 for j or i.
Hence we may identify Hs with

Hi Hom(s..s)(Ri, Hom(F, Fs)).

By an independent set of modules, we mean a set of submodules X, X., X, of
a module X such that if X’ is generated by the elements of all the modules X, i 1,
2, s, X’ -_ X.

Cf. [7, p. 63].
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The (Ks, K)-module Hi will be called a structural module for R and will be
studied in Part III. The structural elements b[f*, f], f* Homs*(F, X),
and f e Homs(F, X) all belong to Hi.
A structure Ibl is the set of bilinear mappings defined for each pair of

indices i, j 1, 2, ..., k

’Homs*(F, X) Homs(Fi, X) -- Hidefined by (f*, f) ---> b[f*, f]. Actually the bilinear mappings should be
indexed by the indices i and j, but no confusion will result from our dropping
these indices, for we may make the necessary distinction by designating the
modules Homs*(F., X) and Homs(F, X) to which f* and f belong.

THEOREM 1. A necessary and sucient condition for two R-modules X and
X’ with structures b and b’ I, respectively, to be isomorphic is that there exist
K-isomorphisms and *, which are contragredient to each other, such that for
i= 1,2,...,k

(2.3)
q’Homs(F, X) ---. Homs(F, X’),
q*:Homs*(F, X) Homs*(F, X’),

such that

(2.4) k[f*, .f] k’[q*f*, f]

for f* Homs*(F, X), f Hom(F, X), i, j 1, 2, k.

Remark. Again we shall suppress the subscripts on the isomorphisms
and *.

Proof. Necessity. Let O:X -- X be an R-isomorphism. Then for each
index i 1, 2, k, induces a Ki-isomorphism of (2.3), and -1 induces
the contragredient Ki-isomorphism * given by f Of and q*f* f*O- for
f Homs(F, X) and f* e Homs*(Fi, X). Now we have

&If*, f](a) f*z,f f*o-iaz, Of b’[p*f*, f](a)

for f* e Horns*(F., X), f e Homs(F, X), and a e R. Thus (2.4) is valid.
Suciency. Let and * be given as in the hypothesis. Let

{]*, f, lt 1, 2, t} be a direct family of homomorphisms representing
X as the S-direct sum of the modules Fx, F, F. Let g,* *f,* and
g, ],. Since and * are eontragredient, {g*, g, l# 1, 2, t} is an
orthogonal family for X. Since is an isomorphism, one may obtain from
Proposition 1.2 that {g t 1, 2, t} is a direct family of injections.
Hence {g,*, g,} is a direct family of homomorl)hisms.

Define O’X X by setting

(2.5) (R)(x)

Here, of course, we need only to assume the existence of one isomorphism or *and specify the other to be its contragredient. However, it is slightly more convenient
to assume that both exist.
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for x e X. Then for x’ e X’, we set

’(x’)

Since 4 and 4’ are inverse to each other, 4 is an S-isomorphism. Now, if a e R,

Using (2.4), we obtain

This proves the theorem.
We note here an important formula for a structure of a module.

PnOeOSITION 2.1. If a, eR and f*, f 1, 2, t} is a direct
family representing X as the S-direct sum of the modules F F F then

for f* Homs*(F, X) and f e Homs(Fi, X).

The proof is immediate from the definion of structures and direct families.

2B. Homomorphisms of modules
Let X and X’ be R-modules, and let 4 :X - X’ be an R-homomorphism.

Then 4 induces a K-homomorphism ’:Homs*(Fi, X’) -- Homs(F, X)
where ’g g4 for g e Homs*(Fi, X) Horns(X, F). The kernel of ’ is
the Ki-module Homs*(F, X’/4X) Homs(X’/4X, Fi) consisting of those
homomorphisms which vanish on 4X. We remark that if 4 is an epimorphism
[monomorphism], then ’ is monomorphism [epimorphism].

Similarly, 4 induces a K-homomorphism :Homs(F, X) -- Homs(F, X)
defined by f 4f forf e Homs(F, X). The kernel of is the K-submodule
Homs(F, X") of Homs(F, X) where X" is the kernel of 4. Again if 4 is
an epimorphism [monomorphism], q is an epimorphism [monomorphism].

PROPOSITION 2.2. Let X and X be R-modules, and let 4:X -- X be an
R-homomorphism. Let b and b be the structures of X and X, respectively. If
q and ’ are the homomorphisms induced by 4 as above,

(2.7) ’[g*, ,pf] [’g*, f]

for g* e Hom*(F, X) and f e Homs(F, X), i, j 1, 2, k.

Proof. The proof is immediate from the equation

/[g*, q](a) g*aL 4f g*4aLf h[q’g*, f](a)

for a e R.
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III. REPRESENTATION MODULES
3A. Isomorphisms of double modules

We introduced the structural modules

(3.1) H- Hom(s+..s)(R, Hom++(F, F)).

Now we propose to study the (K-, K)-modules

(3.2) M(T) Hom(si.s,)(T, Hom++(F, F.))

associated with a given (S-, S)-module T. We shall call M(T) the repre-
sentation module for the S., Si)-module T.
The following properties give the principal properties of representation

modules.

PROPOSITION 3.1. Let Xo be an arbitrary nonzero element o] Fi, and let
be a primitive idempotent of S such that rXo Xo. Let b e M( T). Then the
mapping :M(T) --+ Homsi(Tv, F) defined by +b() b()Xo b()Xo
is a K-isomorphism. In particular, dims+. Tr dim+++. M(T).

Proo]. By definition, M(T) Homs.s(T, Hom++(F, F.)). Using
the associativity isomorphism of functors [3], we obtain that M(T) is iso-
morphic to Homs.++(T (R)s F, F.) Homsi(T (R)s F, F) where to
b e M(T) corresponds the homomorphism defined by a (R) x --+ b()x for

e T, x e Fi.
Let x0 and be given as in the hypothesis of the theorem. Then form the

sfield Ki* rS r, which is anti-isomorphic to K+. We may identify the
S.-modules T (R) s F+ and Tr (R)++. K*xo because for e T and x, e F,

1, 2, n, we have

where x, x0 /+ rx0 for/+ + S+. Furthermore,

determines an S.-isomorphism of Te (R)+:+, Ki*xo and Te. Then we obtain
the isomorphisms

Homsj(Te (R) s+ El, F+) --> Homs+(Te (R)+++, Ki*Xo F+) --> Homs+(Te, F).

Composing these with the associativity isomorphism, we obtain the desired
isomorphism.
The remainder of the proposition is immediate.

PROPOSIT+ON 3.2. Let M(T) be a representation module of an (S+, Si)-
module T. Then given any K+-basis ] . ] for M(T), any Ki-basis
xt, x., ..., x,++ for Fi, and yt, y., ..., y,++ arbitrary in F+, there exists an
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element a T such that for each ) 1, 2, c.
(3.3) b(a)x y, b()x O, ).

Proo]. Corresponding to the basis Xl, x2, xn forF is a set of orthog-
onal primitive idempotents el, 2, en from Ssuch that e, x x,,

1, 2, hi. By Proposition 3.1,

is in Homs(Te,, F.) Homs*(F, Te,), and {f,* 1, 2, ,ci} is
a K.-basis for Homs*(F., Ts,). Then by Proposition 1.2’, {f,* 1, 2,
-., c} is a direct family of projections representing Te as the S-direct

sum of copies of F. Hence we may choose ax, a, in Te such that
f*(a) O, , andf*(a) y’ 0 where y’ F But y y’
where , e S. Hence replacing ax by ax,, we obtain that f*(a,) y,.
Thus (a)x O, k, (a,)x y, and (a)x, O, for
and all as e x, O. We thus obtain the desired element by setting

PROPOSITION 3.3. Let M(T) be a representative module for an (S, S)-
module T. Let be a set o] indices, and let {Y, Y } be a K-basis for F.
Let xl x2 x, be a K-basis for F and let bl b. b be a K-
basis for M T). Then there is a K-basisfor T uniquely determined by choosing
elements a,, T for each triple , ,, )) of the set A , ,, fl ’ 1, 2,

n ;) 1, 2, c} such that

(3.4) b,(a)x t,x y,

where , and are Kronecker deltas.

Proo]. That such elements a exist follows from Proposition 3.2. For
eT, leth,()x 0for 1, 2,.-.,c.and 1, 2,..-,n. This im-
plies (a)x 0 for all in M(T) and 1, 2, hi. Hence b(a) 0
for each e M(T). By Proposition 3.1, ae 0 for all primitive idempotents
e e S. Hence a 0. Thus the elements a are uniquely determined by
(3.4). We wish to show that they form a basis for T. Suppose that

Z k, 0 for a finite number of nonzero elements ] in K. Then for
each ), 1, 2, c.

0,

where the summation is over all possible values of and . Hence by (3.4)

0.

Since {y, I e 2} is a K-basis for F., we have that k 0 for e 2. Hence
k 0 for (, , k) e A.
Next letaeT. Then for each 1, 2,...,c.; 1, 2,...,n,
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where k e K. Set ’ A ]. Then one may verify that for) 1, 2,
-’,csi, 1, 2,..., n, bx()x x(a’)x. Hence( ’) 0

for all b e M(T). Thus a’. This shows that the set of elements , form
a K-basis for T as we desired.

Proposition 3.2 shows that if e M(T), the set (T) has some of the prop-
erties of a complete module of endomorphisms in that one may always find
an element e T such that ()x takes on arbitrary values in Fs for each
element x, of a K-basis for F. However, the linearity condition is lacking
for the elements (a). But because M(T) is a double (Ks, K)-module, we
have that 1 ax,(),, k 1, 2, cs, ax,() e Ks. Thus the
mapping (ax()) is a matrix representation of K on the left Ks-module,
M(T). As is well known, this representation is determined by the double
(K., K)-module M(T), in the sense that isomorphic modules give rise to
similar representations.
The theory of double modules over division algebras of finite rank over K

is treated in Hochschild [6] and Jacobson [7, p. 173]. They restrict themselves
to the case thatK maybe identified with Ks or a division subalgebra of
In this case if Ks is separable over K, then M is a completely reducible double
(Ks, K)-module. If Ks is a galois extension of K, then these irreducible
modules have Ks-dimension 1. This means that if generates such an ir-
reducible module, there exists an isomorphism 0"K--* K. such that
b 0(.) for e K, and is semilinear. If K is the center of Ks, is
induced by an inner automorphism. If K K. K, then must be the
identity, and h is linear. This condition will always hold if K is algebraically
closed.

Let S, S, S., and S. be simple rings with minimum condition. Let
I" S -- Si and Is" S. -- St be ring isomorphisms. Let F be an irreducible
S-module, FP an irreducible S-module, etc. Let 0’F-- F be an I-iso-
morphism. Then induces an isomorphism of K onto K’, which we again
denote by I, that is defined by

I -I(3.5) oi

for e Ki.

THEOnEM 2. Let I: S -- S’ and Is" S --. S be given isomorphisms of simple
rings. Let oi:F -- F be an I-isomorphism of the irreducible modules of Si and
S. Similarly let s’Fs --) F be an Is-isomorphism of irreducible modules.

Let there be given an (St, S)-module T and an (S, S)-module T with
representation modules

M(T) Hom(s..s)(T, Hom(Fi, F)),

M(T’) Hom(s.,.s,)(T’, Hom(F, F)).

For a given (I, Ii)-isomorphism O"M(T) M(T’), there is induced an
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I1, I- )-isomorphism J" T’ -- T satisfying
J\ --1(3.6) 0(’)

Jot ’ e T’ and M(T); conversely, an isomorphism J’T’ T induces an
isomorphism O"M(T) M T’ satisfying (3.6).

Proof. Let 0 be given. As in Proposition 3.3, choose
for F, choose a K-basis {x, x,..., Xn} for F, and choose a K-basis
{, ,’", c,} forM(T). Then{wix, wix,.., wix,} is a K-basis
for F as is a /0-isomorphism. Likewise { y ]# e } is K-basis for

i’F. The set {0, 0, 0} isaK-bass for (T’). Then by means
of Proposition 3.3,_ehoose a K-basis {a, J(u, v, X) e} for T and a K-basis
a,. (u, v, X) e } for T’. Define J" T’ T by setting a,, a, and extend-

ing J to T’ by requiring it to be K-linear. Then O,(a) x ,x & y,
w ,(a, )x. From this and the K-linearity of J, 0, and follows

0.(t) (i X) j .(tJ)i--i(, X)
for all (u, u, ), 1, 2, c, 1, 2, n, and a’ e T’.

Letx’ 2arx. Then

(o.(’))(, x) (o.(’) , x (#.(,’)), x
a.()’o(’)(, x)

where a,( r) e K Thus

(0.(.’))(, x) " a,()’o(a’) x
a.(),(,),-1, x

a.(
, -1

Thus

(3.7)

for all x’ . F

-1. .(a’)r x

O,(,’)x’ ,,, (-’)7’x’
Let b =] a, k,. Then because 0 and are I-imorph-

isms, (3.6) follows from (3.7).

’ T’. M(T). We computeNow let ’ S and S and a’ Let

((’’’))7’ ()(’’’) ’0(’)’,

) ( ),.

(3.8) ((’.’’)). (e"’.’%’"’)7’.

Since (3.8) holds for all e M(T), (O’a’’) 7’’ ’7’p a ,and J is an
(I7, I7 )-isomorphism.
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One may verify that (3.6) defines an (15, I)-isomorphism of M(T) onto
M(Tr) to prove the converse statement and the theorem.

COROLLARY 3.4. With the same notation as Theorem 2, let Gr and G be ir-
reducible Sr and Sj-modules, respectively, and form the representation module

Mr(Tr) Hom(s.s)(Tr, HomK(Gr, G-)).
Let Or’M(T) --> Mr(Tr) be an (15, I)-isomorphism. Then a necessary and
sucient condition for O’ to induce the same (I-1, I1)-isomorphism J" T -- T
as that induced by O:M( T) --. M( Tr) (0 F -- i, and (0 F --. F5 is that there

such that

(3.9) 0’ #5 Ob#7.
,Proof. Suciency. Let (3.9) hold. Let Jr’Tr --) T be determined by

(0 #i (0i, (05 #5 (05, and 0r. Then for a e Tr, we have from (3.7),
rJ --1 --1 rJ r--1

arJ and JHence (arJ’) (ar) for all e M(T). Thus ar’ jr.

Necessity. If Ob(ar) (05b(ar)(071 and Orh(ar) (0’b(ar)(0r, set
-1 -1 and verify(3.9)

3B. Structural modules as representation modules
We have seen that the structural elements of a given module X belong to a

structural module H. (cf. (3.1)), and this module is a representation module
for the Cartan submodule R). of R. What we next wish to show is that every
element ofH is a structural element derived from the structure of a principul
indecomposable module.

Let U be a principal indecomposable module. Then U is isomorphic to
a left ideal R of R, where r is a primitive idempotent of R. Thus U is a cyclic
left R-module with generator x0. As an S-module, U is the direct sum of its
homogeneous components" Ui --1 Ui5 where each U5 is a direct sum
of copies of Fs. Since U/NU is isomorphic to F, NU, considered as an
S-module, contains U, j i. But if x0 is a generator for U, so is x0 W n,
wheren isanyelement of themaximal submoduleNU. Butalso, x0 _-1 x5
wherex e U. Consequently, xi is also a generator for U. Asx is contained
in a homogeneous S-submodule U of U, Sx A is irreducible, and RA
Rx U. If B isanotherirreduciblesubmoduleofU such thatB n NU =0,
then B NU U, and there exists in B an element x x (rood NUi).
Hence also x s a generator for U. As before, B Sx and U RB. We
have, therefore, proved

PROPOSITION 3.5. Letf Homs(F, U) be such that fFi NUi 0 and
f 0; then RfF U.
We shall call such an element f e Homs(F, U) a generating element of U

in Homs(F, U).
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PROPOSITION 3.6. Let fo be a generating element of Ui in Homs(Fi, Ui).
Let bi be the structure of Ui. Then the K-homomorphism of Homs*(F,
into Hi defined by f* --+ bi[f*, f0] is an isomorphism.

Proof. It is clear that the mapping is a homomorphism. If /[f*, f0] 0
for f* e Homs*(F., Ui), then (f*Rfo)Fi f*Ui O. Hencef* 0, and the
mapping is a monomorphism.
Now let e be a primitive idempotent in Si such that Re is isomorphic to Ui.

k kBut Re Rei e and Rei e =1 e, Rei e -1 Ri e. Since S Ri
S e e, Ri 0 when # v,

kHoms(Ri e, F.) @=1Homs(R e, F.) Homs(R. e, F.).

Hence dim,: Homs(R. e, F.) dim,: Homs*(F., U). By Proposition
3.1, dim,: Homs*(F., U) dim,:. Hi
L f*et Hi {b[f*, f0]] e Homs*(F., "Ui)}. Then Hi is a K.-submodule

of Hi which is isomorphic to Homs*(F., Ui). Thus dim Hi dim. H.
and H. H.. Thus the given mapping is an epimorphism and hence an
isomorphism.

IV. CHARACTERIZATION OF CLEFT RINGS

4A. Isomorphisms of cleft rings
Let R and R’ be rings with minimum condition and identity elements which

possess cleavings

(4.1) R S N, R’ S’ @ N’,
where S and S’ are semisimple rings and N and N’ are the radicals of R and
R’, respectively. Let Io’S -+ S’ be a given isomorphism. We are interested
in determining when one can extend the isomorphism I0 to an isomorphism
I:R R’.
We follow our previous convention in designating the modules and rings

F, Ki, S, U, and H, i, j 1, 2, ,/, which are associated with the
rings R and S. Because of the isomorphism I0, the corresponding objects as-
socmted wth R nd S’ cn and will be designated by F, K, S, U, and
H, , 3 1, 2,..., k. We will assume thut Io:Si S. Then there
are I0-isomorphisms i’F--* F; furthermore, induces un isomorphism
I0:K -- K defined by (3.5).
We will first derive necessary conditions by assuming that the extension I

of I0 exists. Let J I-. Now I induces an/-isomorphism m" U -- U,i 1, 2, k, because Ui/NU is isomorphic by an/0-isomorphism to
Ui/NUi
Furthermore, o-1 and t induce an/0-isomorphism

9;Homs(F, Ui)-- Homs’(F, U)
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for , i 1, 2, k, given by

(4.2)

for ] e Homs(F, U). Likewise, , and vl induce the/0-isomorphism

*’Homs*(F, U) --, Homs,*(F, U),

for , i 1, 2, ,/, given by

(4.3) *f* f*l
where]* e Homs*(F, U). Thus

(4.4) (q./.)(f) o f.f- (f,f) ,o.

Two I0-isomorphisms such as and * which satisfy (4.4) will be said to be
contragredient.

Also w, -, and J induce (I0, I0)-isomorphisms 0"H --, H, defined for
each pair , n 1, 2, k by

(4.5)

where b e H; and a’ e R. Let f* e Homs*(F, U), f e Homs(F, Ui), and
a’ e R’. Using (4.2) and (4.3) we obtain

(4.6) w]*a’f; wf*a’,fw; (*]*)a’(f) h,[ f, f](a’).

Therefore, from (4.5) and (4.6)

[, 1].(4.7) bi[f*, ]] * *

A (le]t) structure 2(R, S) for a cleft ring R with cleaving R S N is
the set {I 1 i 1, 2, k} of structures of the principal indecomposable
modules U, i 1, 2, ,/, respectively. The structures are called the
principal structures of R.
As above, let R and

be an isomorphism. Let 2:(R, S) and Z(R’, S’) be the left structures of R and
R’. Then 2:(R, S) and Z(R’, S’) are said to be Io-conformal if there exist con-
tragredient

’Homs(F, U) --. Homs,(F’, UPs),
(4.8)

*" Hom*(F, U)

and (I0, I0)-isomorphisms

(4.9) 0"H



460 ZOHN I-I. WALTER

such that

(4.10) ek,[f*, f] ff’[o*f*, of], i 1, 2, --., k,

where Ikl is the principal structure of R and is the corresponding prin-
cipal structure of R’, f* e Homs*(F, Ui), and f e Horns(F,, Ui), 1i, q

1,2,...,k.

THEOREM 3. Let R and R’ be cleft rings with clearings (4.1). A necessary
and sujcient condition for an isomorphism I0: S ---> S’ to be extendable to an iso-
morphism I:R R’ is that the left structures Z(R, S) and Z(R’, S’) of R and
R’, respectively, be Io-conformal.

Proof. We have proved the necessity. We now prove the sufficiency. Ac-
cording to Theorem 2 there exist (St, S,)-isomorphisms Jt,’Rt, - R, in-
duced by the isomorphism 0 of (4.9). Clearly the homomorphism Jr, deter-
mines an (S, S)-isomorphism J:R’ -- R. We wish to show that J is a ring
isomorphism.
Again by Theorem 2, Og,(a’) ot (a’J’)o- for a’ R’t. Thus,

(4.11) Ob[f*, f](a’) o ki[f*, f](a") -1

for f* e Homs*(F}, U), f e Homs(F,, Ui), and a’ e R’.
Let .{f*, flg 1, 2, t} be a direct family representing U as the S-

directsum of the modulesFx, F., F. Then {*f,*, Cf[ 1, 2, t}
represent V as the S’-direct sum of the modules F’x, F’., ..., F by virtue
of the fact and* are contragredient isomorphisms. Now for a’ and ’ e R’,
]* e Homs*(Ft, U), and f e Homs(F,, U), we have, using (2.6), (4.10),
and (4.11),

cot k[f*, f]( (a’/’))o- [*f*, f](a’’)

Therefore

(4.13)

But (4.13) holds for a generating element f of U in Homs(F, U) and
any ]* . Homs*(Ft, Ui). Hence by Proposition 3.6,

for all k e Hti. Thus et((a’#’))e et a’#’e, and this must hold for all
,i 1,2,...,k. Hence

as 1 _- et. Then I J- is the desired extension of I0.
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We note that if R/N is a separable algebra, and if R S N and
R S’ N are two cleavings of R, then there exists an inner automorph-
ism of R mapping S onto S’ by Malcev’s Theorem [4 or 8]. Thus the struc-
tures of R given by any two cleavings are conformal.

4B. Anti-isomorphisms
We here treat the problem of extending an anti-isomorphism of the semi-

simple components of two cleft rings. Commutative algebras will afford an
interesting interpretation of this theory.
We will adopt the convention of denoting homomorphisms of right modules

as left operators. Also we introduce the opposite ring R to a ring R. Then
every right R-module X is a left R-module, and we have a standard anti-
isomorphism such that to a e R corresponds a Re given by ax xa for
a e R. Similarly a left R-module is a right R module, and we have that
R R and a -- a is the identity mapping.
We let h :X -- X’ be a homomorphism of right R-modules. Then for x e X

anda e R, h(xa) h(x)a andh(ax) a(hx). Henceh isa homomorphism
of left R-modules, and conversely. That is, Hom(X, X’) Hom0(X, X’).
Let I:R R’ be an anti-isomorphism. Then the composite mapping t is an
isomorphism I’R ---. R’. An I-homomorphism h:X -- X’ of a left R-module
X into a right R’-module X’ defined by h(ax) (hx)a is also an/-homo-
morphism of the left R-module X into the left R’-module X’ defined by
h(ax a hx). Conversely, everyI-homomorphismisanI-homomorphism.

Let F be a left [right] irreducible R-module; then F is a right [left] irreducible
R-module. Let U be a left [right] principal indecomposable R-module; then
U is a right [left] principal indecomposable R-module because U is easily
seen to be both an indecomposable R-module and a proiective R-module.

Let R be a cleft ring with cleaving R S @ N as before. Let X be a right
R-module. A structure I1 for X is now defined by means of the homo-
morphisms

(4.14) [g*, g](a) .=gag

for g*eHoms*(Fi, X) and geHoms(F, X), i, j 1, 2,..., k. Thus
[1 is also a structure of the left R-module; because of the above remarks,
we have Hom*(F, X) Homs0*(F., X) and Homs(F, X)
Homs0(Fi, X).

Likewise, Hom(F’, F’) is an (S’, S)-module where S’i Si and
S. S-. But then it is also an (S’., S’)-module. For this reason we
shall equate

(4.15)

with

(4.16)

H’ Hom(s,,s.,)(R’, Hom(F’, F’)

H’ Hom(s,0.si,0)(R’, Hom(F’i, F’).
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A right structure Z’(R, S) for a cleft ring R with minimum condition with
cleaving R S N is the set of structures Ik I, i 1, 2, k, of a com-
plete set of right indecomposable modules. Thus a right structure is also
left structure 2;(R, S) for the opposite ring R with cleaving R S N.

Let R and R’ be rings with minimum condition which have cleavings

(4.17) R S N and R’ S’ N’.

Let Io:S ---. S’ be an anti-isomorphism. We say that the left structure
2;(R, S) is Io-conformal to the right structure 2V(R’, S’) if 2:(R, S) is (Io)-conformal to the left structure 2:(R’, S’) of R’.

COROLLARY 4.1. Let R and R’ be cleft rings with minimum condition with
clearings (4.17). Then a necessary and sucient condition for an anti-iso-
morphism Io: S S’ to be extendable to R is that the left structure E(R, S) be
Io-conformal to the right structure E’ R’, S’)..

Proof. A necessary and sufficient condition for I0: S --. S’ to be extendable
is that (Io) o: S --* S’ be extendable. But this is equivalent to having 2; (R, S)
and 2: (R’, S’) (Io)-conformal. By definition, this is equivalent to having
2;(R, S) and E’(R’, S’) Io-conformal.
We remark that the extension I of Io is characterized by

(4.18) 9,(a’) oa (a’)71,

where J 1-1, 0 is given by (4.5), ’F --+ F, and oa,’F, F, are I0-iso-
morphisms and k e H,.

(2. Doal module and mti-isomorphims

Let X be a left R-module. We form the dual module X* Hom(X, K).
In case [X:K] < , a satisfactory duality theory exists because X** may and
will be identified with X. Therefore, to assure this, we assume that
[R: K] < . Hence [X: K] < as X is assumed to have a finite composition
series.
As usual, we denote the value of x* e X* at x e X by (x*, x }. Then X* is

a right R-module where

x*, x} x) (x*, (x*, x).

Let f Hom(X, X’), where X and X’ are, say, left R-modules. Denote by
t: Hom(X, X’) ---> Hom(X*, X*) the transpose mapping defined by
(tfx*, x} (x*, fx } for x e X and x* X’*. Thus ta a and
Let F be an irreducible left [right] R-module. Then F* must be an irreduci-

ble right [left] module, for otherwise F F** would be reducible. Let L be
the endomorphism sfield for F. Then F is a left L-module and a right L-module. We identify the endomorphism sfield L* of F* with L so that F*
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is a right L-module and a left L-module. We have for x* e F*, x e. F, and

x) x) x)

where a is in L, the opposite sfield to L. Thus the transpose mapping may
be considered as the anti-isomorphism a a of L onto L.

Consider now F to be a left irreducible R-module and X to be an arbitrary
R-module. Assume R to be a cleft algebra with cleavingR S N. Form
the module Homs(F, X) Homs0(F, X). This is a (K, K)-module,
where K is the endomorphism sfield of F. Then the transpose mapping
t:Homs(F, X) Horns(X*, F*) Homs*(F*, X*) Homs0*(Fi*, X*)
is an isomorphism of additive groups. But also Homs*(F*, X*) is a
(K, Ki)-module just as is Fi*. Thus if f e Homs(Fi, X), a e K, and
r K, (rfa) (t)(?)(r) a(?)r r(?). Thus we say that
t’Homs(F, X) Homs*(F*, X*) is a (K, Ki)-isomorphism of modules
or, sometimes, a K-isomorphism, or a K-somorphsm.

Likewise, if F and F are irreducible left R-modules, Hom(F, F) is a
(K, K)-module and Hom(F*, F*) is a (K, K)-module and, therefore,
also a (K, K)-module. Then t:Hom(F, F) Hom(F*, F*) may
be verified to be a (K, K)-isomorphism as well as a (K, K)-somorphsm.
Now we suppose that R and R’ are cleft algebras with cleavings (4.17).

As before, associate the left modules F, U, and the left structural modules
H, i, j 1, 2, ;.. , with R. Also associate F, U, and the right struc-

0rural modules H with R’. Of course, F, U are rght R -modules, and
H is a left R’-module. Since Hom(F, F) s a (K, K)-module, the
same is true for

H’ Hom(s,.s,)(R’, Hom(F’, F)) Hom(s,,s,)(R, Hom(F’, F)).

Then the transpose isomorphism t:Hom(Fi, F’) Hom(F*, F?) induces
a (K’, K)-somorphsm, which we again denote by t, such that

t’Ui F?)
F’,*)).

Now let I0: S S’ be an anti-isomorphism. Then if

’Homs(F, U) Homs(F, U’)
is an/0-isomorphism, of a right K-module onto a left K-module,

Hom(, ) Hom*(

is alo an o4somorphism of a right -module onto a ]eft K-module. on-
versely, f ’:Hom( ) Hom*(*, ’*) a iven 0-isomorphism,
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also*:Homs*(F, U) -- Horns (F, U) is contragredient to ’ if, and only
if, t*’Homs*(F, U) -- Homs(F’*, U*) is contragredient to t’.

Likewise, if 0"H.-H’ is an (I0, I0 -isomorphism, then 0* tO"H. --. H’.*
is also an (I0, I0)-isomorphism, and conversely.

Therefore, the conditions of Corollary 4.1 translate into the following
proposition.

PROPOSITION 4.2.
with clearings

Let R and R’ be cleft algebras of finite rank over a field K

R S@N, R’ S’@N’

as above. Then a necessary and sucient condition for an anti-isomorphism
I0: S ---> S’ to be extendable to an anti-isomorphism I R R’ is that there exist
contragredient Io-isomorphisms q’ and q’* for , i 1, 2, t such that

"Homs(F, Ui)-- Homs*(F’e*, U’*),
(4.19)

’*" Homs(F, U) Homs(F U ),

and an (Io, Io)-isomorphism, for , 1, 2, ]c

(4.20) 0*" H, ---. H,
such that

(4.21) 0*bi[]*, f] ’*, [], ’*]*],

where Ibl is the structure of U, and Ib’*l is the structure of U’*,
f* e Homs*(F, Ui) andf Horns(F,, Ui).

Proof. We need only show that (4.21) is equivalent to (4.10). Hence
suppose that (4.10) holds. Then for a’ e R’, f* Homs*(F, U) and
] e Homs(F,, Ui), we have that

OCt,[f*, f](P) h’[*f*, ,pf](’) (*f*)()(/).
Thus

o*jf*. :](.’) ’[(V*) (.)(f)] ’(f)’(-.)
[:. ,’V*I(’).(Pf)(L)(’*f*) ’*

The argument may be reversed to show also that (4.21) implies (4.10). This
completes the proof.
We remark that if R’ R and S’ S, we may obtain a condition for

extending an anti-automorphism. Then also F* is a left R-module. Hence
there exists an R-isomorphism ,’F* -- F and (1’, 2’,..., kp) will be a
permuta.tion of the sequence (1, 2,

Furthermore, V, U s an injective R-module [3] with unique minimal
irreducible submodule (U’/NU)*. This is an irreducible module isomorphic
to F* and hence is isomorphic to F. We may then reinterpret the conditions- * by )* *,(4.19), (4.20), and (4.21) by replacing by ) q - and
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0* by 7, where k ’(0*k)’-1 for k e H,. Then we obtain that

(4.19a)
k:Homs(F, Ui) - Homs*(F,, Vi,)

)*:Homs(F, Ui) -- Homs*(F,, V,)

are contragredient I0-isomorphisms. Furthermore,

is an (I0, I0)-isomorphism. One may verify that (4.21) is equivalent to

(4.21a) b[/*, f] ki [f, *f*].

4D. Characterization of commutative algebras
THEOREM 4. Let R be a cleft algebra with [R:K] < ,7 and with cleaving

R S N. Suppose that S is contained in the center of R. Let UI,
U2 Uk be the leJt principal indecomposable R-modules, and let V U’*,

1, 2, ...,/c. Then a necessary and sufficient condition for R to be com-
mutative is that

the structural module H, 0 for 7
(ii) there exist contragredient Ki-isomorphisms ) and )* for i 1, 2, Ic

such that

(4.22)

and
(iii)

k:Homs(Fi, Ui) Homs*(Fi, Vi),

h*:Homs*(Fi, Ui) Homs(Fi Vi)

(4.23) i[]*, ]] i’[,], )*f*], i 1, 2, ..., lc,

where is the structure of Ui and 1 is the structure of Vi.

Proof. First, we note that H, Hom(s.s,)(R,, Hom(F, F,)). Hence
H, 0 if and only if R, O. But then R Ri where Ri Rii
eiRe is a subideal of R. Thus R S, i 1, 2,... k. Hence
R Si N where N ei Ne is the radical of R. Thus (i) is equivalent
to hving R be the direct sum of primary rings Ri. Since every commutative
ring is a direct sum of primary rings, we need only show that (ii) and (iii)
are equivalent to having each R a commutative ring.

Let now R be a primary cleft ring R S @ N where S is a field in the
center of R. Thus R is an algebra over S as well as over K. Furthermore, if
A is a left R-module, it is also a right S-module, and we have that [5, p. 6]

A* Hom(A, K) Hom(A (R) s S, K) Homs(A, Hom,:(S, K));

A* --- Homs(A, S).
Of course, if R is indecomposable so that R S (9 N where S is a subfield of R con-

tained in the center of R, then we can take K S, and the assumption that [R:K] <
will follow from the fact that R possesses the minimum condition.
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In this case there is one simple ideal component $1 S of S, one irreducible
module F F1, one principal indecomposable module U U and one
structural module H H. We have the dimension [F: S] 1. Hence
we may identify F and S as (S, S)-modules. Also since S is commutative,
we may identify S and S. Thus F F’ where F’ is the irreducible S-module defined from F.

Let :S --, F* be defined by () x0 where x0 is a fixed vector of S.
Now is a correlation. Because S is commutative, i is an S-isomorphism.
Thus defines a bilinear function f:F X F --* S by setting f(x, y) (x, y)
for x, y e F. Then we have, for h e Homs(F, F) S,

f(-l(th)x, y) f(x, hy) hf(x, y) f(hx, y).

Thus th h-1.
Now we refer to formulas (4.19a), (4.20a), and (4.21a). Observe that

in our present case, H HI H,,. Hence by setting 1, the identity
isomorphism, we immediately obtain (4.19a), (4.20a), (4.21a) from (4.22)
and (4.23). Thus we see that (4.22) and (4.23) imply that the identity
automorphism can be extended to an anti-automorphism of R. We wish to
see that this anti-automorphism is the identity automorphism. Using the
S-isomorphism / ti- where ,:F* -- F, we obtain the isomorphisms q’ and

’* of Proposition 4.2 by setting q’ , and ’* ,-lh.. Likewise, induces
the (K, K)-isomorphism 0*b of (4.20) when we set 0* -(),
() t. But t* (th) where t is the (K, K)-isomorphism of (4.18).
Thus t(Ob) t or t 1. Hence (4.18) becomes

(4.24) b(a’) ob(a’J)-
where ’F -- F’ is a K-isomorphism of F onto F F. But by Corollary 3.4,
we may assume that 0 1. Hence (a’) (a’J) and a’ a’. Thus J
is the identity automorphism. This means that R must be commutative.

Conversely, if R is commutative, the identity automorphism of R is an
anti-automorphism. This means that (4.18) may be replaced by

(4.25) h(a’) (a’)

with 0 1. But then we may establish (4.19), (4.20), and (4.21) with
0* t. Again choosing i-, we obtain (4.19a), (4.20a), and (4.21a)
with 1. From this, (4.22) and (4.23) follow directly. This completes
the proof.
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