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Throughout this note G will denote a finite group, and a fixed homomor-
phism of G into itself. may be an automorphism of G. Two elements a
and b in G will be called -conjugate if there exists an element x in G such that
a x bx. This is an equivalence relation, and all elements in G are par-
titioned into -classes. If is the identity automorphism, then -conjugacy
reduces to the "ordinary" coniugacy in groups. A subset S of G will be
called -invariant if x e S implies x e S. In this note we shall prove the fol-
lowing"

THEOREM 1. The number of -classes equals the number of -invariant classes
of conjugate elements in G.

An interesting feature of the above theorem is that, although the theorem
itself does not involve group characters, it does not seem to be proved easily
without using group characters. The author has been unable to obtain such a
proof. Actually Theorem 1 is an immediate consequence of the following two
theorems.

THEOREM 2. The number o] -classes in G is equal to the number o] -in-
variant irreducible ordinary characters of G.

THEOREM 3. Let p be an arbitrary prime number. Then the number of -invariant irreducible modular characters (with respect to p) is equal to the num-
ber o] -invariant p-regular classes o] conjugate elements in G. In particular,
the number o] -invariant ordinary characters is equal to the number of -invariant
classes o] conjugate elements in G.

Here, a function (x) defined on a -invariant subset S of G is called -in-
variant if (x) (x) for all x e S; a class of conjugate elements is called
p-regular if it consists of elements of order prime to p.
Theorem 2 above is a generalization of a result of Ado [1], who proved

Theorem 2 for the case where is an automorphism. In his proof Ado made
use of the inverse mapping -1. The method we use here to prove Theorem 2
is a rather trivial modification of Ado’s.

Proof of Theorem 2. Let xl, x be all irreducible ordinary characters
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of G. For each i take an arbitrary element a in G, and define a function
fi(x) fi(x, ai) by

fi(x, ai) 8a Xi(8-lxsai).
It is clear that fi(x, a) f(y, a) whenever x and y are a-conjugate.
we may consider fi(x, ai) as a function defined on a-classes of G.
the theorem will be proved if we can show (A) and (B) below:

Thus
Hence

(A) If i j, then for any ai, at G we have

afi(x, ai)f(x, at) O,

where fj(x, as) denotes the complex conjugate of f(x,

(B) For each a-invariant xi we can choose a such that the function
f(x, a) is not identically zero. With such choice of a, if xl, xn is a
complete system of representatives of all a-classes of G, and if ,1, ,n are
complex numbers such that

(1) =fi(xp, ai) 0

holds whenever x is a-invariant, then all , 0.

Before proving (A) and (B) above, we shall show

(C) If x is not a-invariant, then the function f(x, a) is identically zero
for any a e G.

We need the following well known lemma of Schur: Let X and X
be two nonequivalent irreducible ordinary representations of G. Let
Xi(x) (ap(x) ), X(x) (,(x) ). Then

(2) ’ o/tr(x)gh(x-1) 0,

(3)
for all , , , ), where g denotes the order of G, d the degree of X, and i,,
Kronecker deltas.
We shall prove (C). Let X be the irreducible representation which gives

rise to x If x is not a-invariant, then the representation X:. of G defined by
X(x) Xi(x) is not equivalent to Xi. Moreover X cannot appear as an
irreducible constituent of X:., since the degree of X and X:. coincide. Hence

f(x, ai) 8,a tr(X(s-)X(x)X(s)X(ai)
is a linear combination of sums of the form aa(s-)x(s). Then by
(2) we have f(x, ai) 0 for all x e G. Thus (C) is proved.
We shall prove (A). For any fixed elements a, b, c, d in G, x(axb) is a

linear combination of a,(x), and x(cxd) x’(d-lx-ic-1) is a linear combina-
tion of t,x(x-). Hence (2) implies that

’,a xi(axb) x(cxd) O.

From this (A) follows immediately.
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We shall prove (B). Since is a-invariant, X and X- are equivalent.
Hence there exists a nonsingular matrix U such that X(s) UX(s)U-1

for allseG. By (3) we have

(4)
f(x, ai) -8,a tr(X(s-1)Xi(x) UX(s) U-1Xi(ai)

U X(a))/d.g tr(X(x)U) tr -1

Since X is irreducible, any x X x matrix (with complex entries), and in
particular U, can be written as a linear combination of the matrices X(a),
a e G. Hence it follows that there exists an element a e G such that

(5) U X(a)) O.

Similarly there exists x e G such that tr(X(x)U) O. Now the first half
of (B) is clear from (4) and (5). To prove the second half, suppose that
the function f(x, a) is not identically zero when x is a-invariant. Then we
have (5), as is seen from (4). Also from (4) it follows that for any fixed a e G
there exists a complex number for each a-invariant x such that

Hence if (1) is true, then

(6)

]i(x, a) if(x, ai)

1 /]i(x, a) 0

(xG).

holds for all a e G and i for which x is a-invariant. If x is not a-invariant,
then by (C) we have f(x, a) 0 for all x. Thus (6) holds for all irre-
ducible characters x of G. Let

Then (6) implies that x(ya-1) 0 for all aeG andi. Let y =att
with complex coefficients . Then

0 -1 X(Ya-1) g,
far all a e G. Thus y 0. Denote by z the sum of elements in the a-class
represented by x. Then y 0 implies 3’ k z 0 with certain positive
integers k. Hence 3’ k 0, 3’ 0 for all . Thus the second half of (B)
is also proved. This completes the proof of Theorem 2.

Proof of Theorem 3. Let 1, be all irreducible modular characters
of G, and d decomposition numbers. Set as usual

(i Z--I dli XI (i 1, 2, "", 1),

where Xl, x are ordinary irreducible characters of G. It is easy to see
that (x) is the modular character of the modular representation F:. which
is defined by F(x) F(x), where Fi is the irreducible modular representa-
tion which gives rise to . Hence is a-invariant if and only if F. is equiva-
lent to F, and if F:. is not equivalent to F, then F cannot appear as an irre-
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ducible constituent in F:.. Therefore if we set

(7)

where the summation runs over all p-regular elements x in G, then by the or-
thogonality relation for modular characters [2, p. 561], ai is 1 or 0 according
as i is a-invariant or not. Let {xl, x} be a complete set of represent-
atives of the p-regular classes K1, ..., Ks. Let g denote the number of
elements in K. Then, denoting by n the number of a-invariant , we have
from (7)

(8) gn

where
b gv_.. (x:)(x)/g

is 1 or 0 according as x and x are conjugate or not (orthogonality relation
for modular characters). Hence our theorem follows immediately from (8).
We shall now derive a few consequences of Theorem 2. Let a be an auto-

morphism of a finite group G which leaves invariant all classes of conjugate
elements in G. By Theorem 2 all irreducible ordinary characters of G are
-invariant. This implies that for every simple ideal A of the group algebra
A of G over the complex number field 2 we have A:. A, where a denotes
the automorphism of A induced naturally by the automorphism a of G.
Since every A is a full matrix algebra, a induces an inner automorphism in
every A. From this it follows that a is an inner automorphism of A. Thus
any automorphism of a finite group G which leaves invariant all classes of conju-
gate elements in G is induced by an inner automorphism of the group algebra of
G over . It is known [3, p. 181] that such an automorphism of G is not
necessarily an inner automorphism of G.
Now let the automorphism a of G be as above, and consider the group G

obtained by extending G by a. If m is the order of a, then G is characterized
by the following properties" ( contains G as a normal subgroup of index m;
( is generated by G and an element a of order m su.ch that a-lxa x for all
x in G. It is easy to see that a is an inner automorphism of G if and only if
G is a direct factor of (. We shall show that the group algebra , of over
is isomorphic to the group algebra over of the direct product of G and a cyclic
group of order m. Let A be the subalgebra of spanned by elements in G.
It is shown above that there exists an invertible element u e A such that
u-xu x a-lxa for all x G. Let ua-1 v. Then v commutes with
every element in A and v e A. Thus v is an invertible element belonging
to the center of A. Now, since A is a direct sum of full matrix algebras,
every invertible element in the center of A can be written as z, where z is an
invertible element in the center of A. Let v= z, w vz-. Then w
generates a cyclic group of order m; w commutes with every element in A;
2: A X B, where B is the subalgebra of 2: spanned by powers of w. Hence
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A is isomorphic to the group algebra of the direct product of G and a cyclic
group of order m.
Added in proof. Recently, Dr. Hirosi Nagao succeeded in giving a simple

direct proof of Theorem 1, which, with his permission, we shall outline here.
Consider the number n of solutions (x, y) of the equation x-yx y. The

number of solutions with y in any fixed z-class is easily seen to be g, the order
of G. Hence n gs, where s is the number of z-classes. On the other hand,
the number of solutions (x, y) of y-xy x with x in any fixed z-invariant
coniugate class is again g, and hence n gr, where r is the number of z-invar-
iant coniugate classes. Therefore gs gr, s r.
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