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Notations and terminology
The letters X and Y denote sets or topological spaces. We consider a

topology r of X as a family of subsets of X. With this in mind, set-theoretic
notations should cause no confusion. For instance, U e r means "U is r-

open". If Z1 and Z. are families of subsets of X, Z1 ^ Z is defined as the
family {B B A1 n A, A e 2 and A. e 2:.}. Somewhat inaccurately, if
K c X, ^ K stands for ^ {K}, the relative topology of K induced by the
topology r of X.
The symbol R denotes the field of real numbers. The term vector space,

except for an explicit statement to the contrary, should be interpreted to mean
real vector space. The letters E and F denote vector spaces or topological

vector spaces; t.v.s, and 1.c.t.v.s. abbreviate topological vector space and locally
convex t.v.s., respectively.

Introduction

The derivative of a mapping f of a subset H of a 1.c.t.v.s. E into an-
other 1.c.t.v.s. F at hoeH is defined by regarding the expression
[f(h0 q-x) -f(ho)]/h, where ) e R and x ranges over E, as a mapping
xf(ho) :E ---> F. In case h0 q- hx e H, wedefine {x, itxf(h0)}, the image of x
under xf(ho), as 0. Now xf(ho) f(E, F), the space of all (not necessarily
continuous) mappings of E into F. Suppose, for some topology r of if(E, F),
limx0 8xf(ho) f’(ho) f(E, F); then wecallf’(ho) the r-derivative off ath0.
Most of the terminology and notations connected with differentiation of
functions of one real variable can now be introduced naturally. Among them
is the derivative function f’:H -- f(E, F).

Of interest are the 2-derivatives, each defined as the r-derivative, where
r is the topology of uniform convergence over the sets of a family 2 of subsets
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of E. Among these are the point-open (2 consists of all finite sets), and the
bounded-open (2 consists of all bounded sets) derivatives.
For E R, f is the ordinary derivative, if 2 covers E and consists of

bounded sets and F is identified naturally with 2(R, F), the space of
continuous linear transformations of R into F. For general E, it is customury
in the classical scheme of things to talk about the differential of f, referred
to as the variation if it is not linear in the increment variable. The Z-vuriution
df H X E ---> F off is defined as dr(h, x) x, f’ h The point-open wria-
tion is the classical Gteaux variution, nd the bounded-open variation is
the classical Frdchet variation in normed spces (Theorem 13). In analogy
to the fundamental theorem of integral cMculus, but without any assumption
of integrability, Theorem 14 states thut the increment f(h + x) f(h) is the
limit of Riemunn-type sums of df(h ,x, x), where is a real parameter.
Now we turn to the relution between compactness of the mapping f and

the continuity properties of f. We generalize to mappings f:H -- F, with
f(H) (E, F), the work of E. H. Rothe [17] for the case F R and
f’(H) E’, where E’ is the dual of E. Rothe proved that compactness
of f’ imposes two conditions on f. One is continuity in the weak bounded
topology, the strongest topology of E coinciding with the weak topology of
E on every bounded set. This is an example of a general topology (Z
associated with a topology of E and a family 2 of subsets of E, defined
as the strongest topology that induces the topology ^ A on every element
A e Z, (see Section 1). This topology is, in general, not linear. The other
condition on f is roughly that the increment ratio is near zero along directions
in the vicinity of the polar of a suitable finite-dimensional subspace of E’
(see condition a’ and Theorem 11 below).
In the general situation (see Sections 4 and 6) the weak topology of E

is replaced by a point-open topology of E considered as a subspace of
2[2(E, F), F]. It was discovered that, by slightly strengthening the formula-
tion of the second condition above (or, rather, its generalization) in a natural
way, a condition (condition a) was obtained that also includes the generaliza-
tion of the first one. In a similar manner, a condition b is defined for mappings
g:H ---) 2 (E, F). Our goal is to show that compactness of f’ implies condition
a on f. This is done in two steps. One consists in proving that compactness
of g:H -- 2(E, F) implies condition b on g (Theorem 12). The second step
consists in showing that condition a on f is equivalent to condition b on f
(Theorem 15). A special case of this last result is contained implicitly in
the work of Rothe.
Somewhat off the main stream, the following mterial is presented. Since

in differentiating f we place the emphasis on f’ . [H, (E, F)], rather than on

df (H X E, F) as is done elsewhere, it would appeur interesting to give an
algebraic characterization of the passage from one to the other. This is done
in more general setting in Theorem 4. Theorem 6 states that, if F is com-
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plete, the spce of compact transformations of H into F is closed in $(H, F)
under the bounded-open topology. From this it follows (Theorem 8) that
if H is bounded nd F complete, mpping of H into F is compact if nd
only if it cn be pproximated rbitrarily closely nd uniformly by finite-
dimensional compact mppings.

PR I
1. The topologies (: r) and (:

Let 2 be fmily of subsets of X nd r topology of X. The topology
(2 r) is defined s the strongest topology of X coinciding with r ^ A for
every Ae2. A set Ue(2 r) if and only if U Aer ^ A for every
Ae2. If r nd r re topologies of X,nd r r,then (2 r)
(Z r). If every set of 2 is contained in set of 2, then (2 r)
(Z r). Let r be topology of E. r is sid to be semilinear if x W y and
,x ( e R, x nd y e E) re continuous in ech Triable separately; linear
if x - y nd x re continuous in both vribles iointly. Let r denote the
topology of E with bse consisting of ll convex sets of r. Then, if r is
semiliner, r is linear. If r is semiliner, (2 r) is semiliner provided
(i) every translate of every element of 2 is contained in some element of
(ii) every sclr multiple of set of 2 is contained in some element of
(iii) every x e E is bsorbed ([4], p. 6, Definition 3) by some element of
The details of this mteril re given by Collins in [7], Prt II.

THEOREM 1. Let r be a topology of X, a family of subsets of X, and Y a
topological space. () Iffor every A e , the r-closure of A is contained in some
elemen of Z, then, for every A e , we have cA e ( r) if and only if cA e r.

(b) A mapping f:x Y is ( r)-coninuous if and only if, for every A
f A (the restriction off to A is r ^ A-continuous.

Proof. () LetAe2ndcAe(Z- r). Denote byAther-closureof
A. There exists B e 2 such that A B. Then there exists K X, with
cKer, suchthtA A A A B KB KA. Hence cA
c(E ). The converse is obvious.

(b) f is (2 r)-continuous if nd only if, for every open set U of Y nd
every A e 2, A f-(U) e r ^ A. But this is equiwlent to r ^ A-continuity
of f] A for every A e 2.

Let r be linear topology of vector spce E, 2 the fmily of ll n-dimen-
sional linear vrieties of E, nd 2 [J 2. Clearly 2 stisfies conditions
(i) through (iii) bove if the dimension of E is t least n, nd so does 2 if
E is infinite-dimensional, so that for the corresponding dimensions (2
nd (2 r) re semilinear. (2 r) is clled the n-dimensional topology
of E. Since every linear topology of E induces the sme topology on every
finite-dimensional subspce of E, (2 r) is independent of the choice of
and so is (Z r) because (2 r) J (2- r). Consequently, we
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denote these topologies respectively by (2n) and (2). Let n > m. Since
every m-dimensional variety is contained in an n-dimensional variety,
(2n) C (2m). This inclusion is actually strict. (2) consists of all sets
that are finitely open in the sense of E. Hille ([12], p. 71; see also [15]). (21)
is the radial or core topology of V. L. Klee ([14], p. 446).

Let K c E; let r be a locally convex linear topology of E, and 2; the family
of all bounded subsets of K. Then (r ^ K)’ ( r ^ K) is called the
r-bounded topology of K. In case K E we have r’ (r ^ E)’. rc is
called the r-bounded locally convex topology of E.

If is the weak topology of a 1.c.t.v.s. E, (r ^ K)’ is called the bounded
weak topology of K. If E’ is the dual of E, 3’ the weak* topology of E’, and
H E’, (3" ^ H)’ is called the bounded weak* topology of H. The bounded
weak* topology of E’ was introduced by Alaoglu [1] for normed spaces, and
proved by Dieudonn! and Schwartz ([9], Theorem 5, p. 84) to be the compact
open topology of E’, provided E is an if-space.

2. Spaces of mappings
Let X1, X2, .-., Xn be arbitrary sets and X+I a uniform space. We

denote by ff(X, Xn+) the space of all mappings f:X ---. Xn+l, and define
(X, X2, Xn, Xn+) recursively as if[X1, if(X2, Xa, Xn, X+)].
If XI X. X, X, and X+ Y, we denote this space by
n(Z, Y).

Let E and F be t.v.s.’s. The space fin(E, F) is of particular interest in
connection with differentiation of a mappingf:E -- F. In Section 5 we define
the derivative off as an element fr of ff.(E, F). In general, the nt derivative
.f(’> ff,+ (E, F).

Let Z be a family of subsets of X, i 1, 2 n. We refer to the uni-
form structure of ff(Xn, X+) of uniform convergence over the sets of
Zn ([3], p. 2) as the 2,-uniform structure of ff(X,, X+) and define
the 2h Z2 Zn-uniform structure of ff(X, X Xn, Xn+) recursively
as the Z-uniform structure of ff[X, ff(X, Xa, ..., X,, Xn+)] if we
give if(X:, X, X,, X+I) its Z 2 2;n-uniform structure. The
Z Z:-.. Zn-topology is the corresponding topology.
For any mapping f we may use the notation {x, f} in the place of f(x). For

instance, if f ff(X, X., Xa) and x X, x. X., then f(x):X -- Xa, and
{x, f(x)} is the image of x underf(x). We now define MI:ff(X, Xn+i) --fi;(X1, X,+) as the identity mapping and M,:ff(X, X., Xn, Xn+i)
fi;(X X X2 X X X,, X,+) byrecursionas{(x, x., Xn), Mnf}
(x_, x, x,), i_[f(x)]}.
If X and Y are uniform spaces, we say f:X -- Y is a uniform mapping if

f is one-to-one and onto, and both f and f- are uniformly continuous. If
2; is a family of subsets of X for i 1, 2,-.., n, we denote by
E1 X 2 n the family of subsets of X1 X X X of the
form A
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Theorem 2, given without proof, will permit the passage from f) to the
nth differential d, f by d, f Mn+lfn).

THEOREM 2. Mn is a uniform mapping of (X1, X2, X., X+) with
its 1 "" n-uniform structure onto (X X X X X Xn, X,+I) with
its Z1 X 2 X X Z-uniform structure. If Xn+ is a vector space, so are the
range and domain of M, and M, is linear.

3. Vector spaces of mappings

Let r be a topology of E. We say that E and r form a topological vector
group (t.v.g.) if x y is jointly continuous for x and y e E, and },0 x is con-
tinuous in x e X for every fixed 0 e R. If E is a t.v.g, and Z a family of
subsets of X, then (X, E) is also t.v.g, under the 2-topology, but not
necessarily a t.v.s. If E is a t.v.s., (X, E) is as t.v.s, if and only if f(A) is
bounded for A e 2 and f e (X, E).

If E and F are two t.v.g.’s, we denote by (E, F) the vector space of all
linear continuous mappings of E into F. The point-open topology of (E, F)
is its 2;1 2...- 2-topology, where each 2 is the family of all finite subsets
of E. (E, F) denotes (E, F) with this topology, and similarly for
2e (E, F).
We now define the mappings N:E -- 2[e(E, F), F] and S: (E) --P2[ff(E, F), F] as follows" {u, N(x)} u(x) for x e E and u e2(E, F);

fie(E, F) and xeE. For n > 1 we define{f, Sl(x)} f(x) for f e

Pn: (E) -- 2[V’( (E)’, F),F] as {g,P(xl ,x ,... ,x)l g(x ,x. ,... ,x),
for g e ffe[(E) , El. Then we set

If, S(x, x ,..., x.)} {Mf, Yn(Xi, X2 ,’’’, Xn)l for fe (E, F).

Theorem 3 is stated without proof.

THEOREM 3. If the dimension of F is at least one, N is an algebraic embedding,
and S, is a set-theoretic embedding.

Let Z be a family of subsets of 2(E, F). Under the embedding N, the
Z-topology of 2[2e(E, F), F] induces a relative topology on E, which we
call the F-Z-topology of E. In particular we will use the F-point-open topology
of E, obtained by letting Z be the family of all finite subsets of (E, F).

Let now E and F be two 1.c.t.v.s’s and the topology of E. The bounded-
open topology of (E, F) is defined to be the 2-topology, when Z is the family
of all bounded subsets of E. We denote 2(E, F) with this topology by

"(E, F). The F-bounded-open topology of E is the relative topology induced
on E, under the embedding N, by the bounded-open topology of
[2"(E, F), F].

THEOREM 4. The F-point-open topology of E is weaer than its original
topology . If both E and F are 1.c.t.v.s’s, then r is weaker than the F-bounded-
open topology, and r-bounded sets coincide with F-point-open-bounded sets.
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We conclude this section by describing certain closed (under various topolo-
gies) vector subgroups of (H, F), where H c E and E and F are t.v.g.’s.
Let 2 be a family of subsets of H and r the original topology of E. Denote
by ((H, F) the vector space of all (2 r ^ H)-continuous mappings of
H into F. If A c H and V F, we denote by T(A, V) the set of all map-
pings f:H---> F such that f(A) c V. Theorem 5 is given without proof.

THEOREM 5. (M, F) is a closed vector subgroup of (H, F) under the
Z-topology.

Let f:H -- E; then f(2;) denotes the family of all f(A for A e Z, and if I"
is a family of subsets of F, f-l(F) is defined similarly, f is said to be Z-com-
pact, or Z-finite-dimensional if for every A e Z, f(A) is, respectively, relatively
compact or finite-dimensional (is contained in a finite-dimensional vector sub-
space of F). f is Z-completely continuous if it is 2;-compact and (Z r ^ H)-
continuous. If H e 2, we simply say f is H-compact, finite-dimensional, or
H-completely continuous, as the case may be. If, on the other hand, E and
F are 1.c.t.v.s.’s and 2; is the family of all bounded subsets of H, we withhold
Z from the terms compact and completely continuous.

LEMMA 1. Let X be a regular topological space and let H c X. A necessary
and sucient condition that H be relatively compact is that every filter of H be
contained in a filter of H which converges to a point of X.

We denote by z(H, F) the vector space of all Z-compact mappings of
H into F.

THEOREM 6. If F is complete, (H, F) is a closed subgroup of (H, F)
under the Z-topology.

Proof. Let f0 be in the Z-topology-closure of ,z(H, F), A e 2;, B fo(A),
a filter of B, and g folA, the restriction of f0 to A. g-l() is a base of

filter of A, which is contained in a maximal filter of A. g() is a base of
a filter of B finer than . is a Cauchy (and therefore convergent)
filter. To see this, let V and U be neighborhoods of 0 eF, such that
U -t- U -t- U V, and let f e ,(H, F) be such that f fo T(A, U). Now
f() is a convergent (and therefore Cauchy) filter. Let P e be such that
f(P) f(P) U. Then ifxandyeP,

fo(x) fo(y) fo(x) f(x) -t- f(x) f(y) + f(y) fo(y) e V,

so that f0(P) f0(P) V. Thus . is a Cauchy filter. By Lemma 1, B is
relatively compact and f0 is compact.

A special case of Theorem 6 was given independently by J. W. Brace ([6],
p. 172].
We denote by (H, F) the vector space of H-compact finite-dimensional

mappings of H into F, and by ,(H, F) the vector space of H-compact map-
pings. The uniform topology of if(H, F) is the 2;-topology where 2; consists
of H alone.
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THEOREM 7. Let E be a t.v.g., H c E, and F a l.c.t.v.s.
is dense in (H, F) under the uniform topology.

Then 8(H, F)

Proof. Let f0 e (H, F), B f0(H), and V a neighborhood of 0 e F.
/ is compact, and by a theorem of Nagumo ([16], p. 500, Theorem 2) there
is a completely continuous finite-dimensional mapping :/ --* F, such that
fo fo T(H, V), where o f0 is the composed mapping. Our theorem
follows from the fact that o f0 e 8(H, F) and that V is arbitrary.

From Theorem 7 a slightly stronger result (Theorem 8) can be proved,
with the help of Theorem 6.

THEOREM 8. Let H E, E a.t.v.g., Z afamily of subsets of H, and F a 1.c.t.v.s.
Then a mapping f:H ---, F is Z-compact (Z-completely continuous) if and only
if for every A Z, f A can be approximated arbitrarily closely, and uniformly
over A, by finite-dimensional A-compact (finite-dimensional A-completely con-
tinuous) mappings of A into F.

4. Conditions a and b

In this section we let E and F be two t.v.g.’s, H a subset of E which is
radially open (i.e., (2;1)-open), and 2 a family of subsets of E satisfying con-
ditions (i) through (iii) (see Section 1), and the additional condition that
for every A e 2;, A A e 2; also. Several notions will be defined relative
to this family, which is considered fixed, and in applications is often taken to
be the family of all bounded subsets of E. Unlike in previous sections, the
symbol 2; is not included as part of the term defined. We denote M. (Section
2) byM.

Let f (H, F) and 0 < -< 1. We define f e (H, E, F), by defining
Mf(Theorem 8) as{ (h,x),Mf} (1/)[f(h - x) f(h)],forh - hx ell,
and (h, x), Mf} 0 otherwise. Let A H. f(A) denotes the union
of all the sets of the form xf(A) for 0 < Xl -< 1. Let r be the family of
all subsets of if(E, F) of the form f(A) for A e 2: ^ H. The f-topology
of E is defined as the relative topology induced on E by the F-topology of
2[if(E, F), F] under the embedding $1 (Section 3). If g:H 2(E, F) and
II g(2; ^ H), we define the g-topology of E as the relative topology induced
on E by the H-topology of 2[2P(E, F), F] under the embedding N. Through-
out this section co denotes the F-point-open topology of E, co/the fir-topology,
and cos the g-topology.

For every A e 2: ^ H, f A is uniformly continuous with respect to cor ^ A
(more accurately, with respect to the underlying uniform structure), for if
h h2 e A, V is a neighborhood of 0 e F, and S(h h2) T[f(A), V],
then {(h, h h), Mf} f(hl) -f(h.) eV. It follows thatfis
(2; ^ H o ^ H)-continuous.
We say f:H ---. F satisfies condition a if for every co]-neighborhood W of

0 e E and B e 2, there exists an co-neighborhood Z of 0 e E, so that B a Z W;
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and that g:H --. 2(E, F) satisfies condition b if the same statement holds if
we replace cos by cog. Condition a implies (2: co) (2: cos), and condi-
tion b implies (2: co) (2: cog).

TEOREM 9. If f:H ---> F satisfies condition a, then for every A 2: ^ H,
f lA is uniformly co ^ A-continuous. Hence f is (Z ^ H co ^ H)-con-
tinuous.

Proof. Let A A1 n H, A1 e 2:, and V a neighborhood of 0 e F. Since f
is uniformly co ^ A-continuous, there is an 0-neighborhood W of 0 e E
so that hi- h.e(A A) nWimpliesf(hl) -f(h) eV. ButA A c
A A, and, since (2: co) (2: 0), there is an co-neighborhood Z of
0eEsothat (A A) n Z c (A1 A) W. From this the theorem
follows.

THEOnEM 10. If g:H --* 2(E, F) is 2: ^ H-compact when we give 2(E, F)
the Z-topology, then g satisfies condition b.

Proof. We may take an cog-neighborhood of 0 e E to be of the
form N-IT[g(A), V], where A e 2: ^ H and V isa neighborhood of 0 e F. Let
B e 2:, and U a neighborhood of 0 e F, such that U W U c V. Since g(A)
is relatively compact with respect to the Z-topology, there is a finite subset
Q of 2(E, F) so that for every h eA, g(h) u T(B, U) for some u e Q.
N-[T(Q, U)] is an c0-neighborhood of 0 e E. If x B [ N-[T(Q, U)], then
{x, g(h)} Ix, g(h) u} - (x, u} U - U V, where u is some element
of Q. This completes the proof.

We say B E is bounded away from zero if there is a neighborhood of 0 e E
disjoint from B. Then f’H --. F is said to satisfy condition a if for every
co-neighborhood W of 0 e E and every B e 2:, which is bounded away from
zero, there is an co-neighborhood Z of 0 e E, such that B Z W. Condition
b’, for g:H -- 2.(E, F) is obtained similarly by again restricting B to be
bounded away from zero. We conclude this section by studying the form
that these two weaker conditions assume in the case E is a 1.c.t.v.s. (in par-
ticular a normed space) and F R. The polar C of a subset C of E’ is
the subset of E consisting of every x for which (x, x’) --< 1 for every x e C,
([8], p. 499). It can be easily verified that f:H -- R satisfies condition a if
and only if for every , > 0, B e 2:, B bounded away from zero, and A e 2: ^ H,
there is a finite subset Q E’, so that S(B QO) T[f(A ), I], where I
is the interval [-% /]; and that g:H -- E’ satisfies condition b’ if for every
set B e 2:, B bounded away from 0, and A e 2: ^ H, there is a finite set Q E’,
so that N(B [ QO) [g(A)]0. Let A H and B E. We denote by A(B)
the intersection of H with the convex hull of A (A - B). Clearly, if A and
B are bounded, so is A (B).

THEOREM 11. Let E be a normed space and 2: the family of all bounded sub-
sets of E. A mapping f:H -- R satisfies condition a if and only if for every
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bounded subset D of H and > 0, there exists a finite set Q1 c Er, so that
x eE, h and h + leD, and I(x, x’)l <- vllxll for every x eQ imply
f(h + x) -f(h) <- e x [[.

Proof of necessity. Let D be a bounded subset of H, and > 0. Since
D Disbounded, let sup IlYll for yeD D. Let Qbethefinite
subset provided by condition a’ for A D, /, and B the set of all y e E
such that Y , which is bounded away from zero. Then Q1 sQ is
the required set.

Proof of suciency. Suppose f satisfies the condition of the theorem. Let
> 0, A e 2; ^ H, B e 2; bounded away from zero, and respectively

sup Y and inf Y for y e B, Q1 the finite subset of E’ given by the con-
dition of the theorem for D A(B), ,y/, Q (/,.y)Q, x B n QO,
hA, and 0 < IX] -< 1. If h - xA(B), then {x, if(h)} 0I.
Ifh + xeA(B),lety x. Then I(Y,X’l _-< (’/)llxll (/)IlYlI.
Then f(h - ),x) f(h)l =< (1/)( x II) <- )’, from which follows
{x, f(h) e Iv, and from this, sufficiency.

A similar, but simpler, argument establishes Theorem 12 which follows.

THEOREM 12. If E is a normed space and 2; is the family of all bounded
subsets of E, g:H E’ satisfies condition b’ if and only if for every bounded
subset D of H, and > 0 there exists a finite subset Q of E’ such that h e D and
I(x, x’)l <= x for every x’ Q, imply I(x, g(h) )l <= x II.
Remarks. The converse of Theorem 10 can be deduced from the proof of

Theorem 3.3, p. 428 of [17], in the special case in which E is a Hilbert space,
2; is the family of all bounded subsets of E, and F R. Again condition a
implies condition a’ and (2 ^ H- w ^ H)-continuity (Theorem 9). The
converse is an open question. If F R, we see from Theorem 9 that con-
dition a implies continuity in the bounded weak topology of H.

PART II
5. Derivatives

In this section we assume both E and F are 1.c.t.v.s.’s, H a radially open
subset of E, and 2 an arbitrary family of subsets of E. Let h0 e H, and
if(E, F) be given the Z-topology. If limx0 xf(ho) exists in this topology, we
denote it by f’(ho) and call it the 2-derivative of f at h0. If f is derivable
(has a derivative) everywhere in H, f’ is a mapping of H into if(E, F). The
2;-variation of f is defined as Mf’ and denoted by df:H X E --. F. In a
similar way higher 2-derivatives are defined, and f() H -- F(E, F). The
n Z-variation d f is defined as d f Mn+f(’).

Of particular interest are the point-open and the bounded-open derivatives
and variations. These occur when 2] is assumed to be, respectively, the family
of all finite subsets and the family of all bounded subsets of E.
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We now define the Gteaux and the Frichet variations along classical
lines.

DEFINITION 1. The mapping df:H X E F is called the Gteaux vari-
ation of f:H -- F if, for every h e H and x e E,

df(h, x) lim0 [f(h + x) -f(h)]/.

This limit is called the directional derivative of f at h along x, and denoted by
fx(h).

DEFINITION 2. If E is a normed space and H is open, df is called the
Frchet variation of f if (i) df(h, x) is homogeneous in x, i.e., dr(h, kx)
k df(h, x) for h e H, x e E and k e R; and (ii) for every h e H and every neigh-
borhood V of 0 e F, there exists an v > 0 such that

[f(h -- x) f(h) df(h, x)] x V,

for every x eE for which 0 x -< e, and h --/cell.

It follows from the definition of the Gteaux variation that it is homogeneous
in the sense of Definition 2.
We now give different (but equivalent) definitions of the Gteaux and

Frt!chet writions.

DEfINITiON 3. The point-open variation of f is called its Gdteaux vari-

ation, and the bounded-open variation of f is called its Frchet variation.

It is easy to see that the Fr!chet variation of f is its Gteaux variation,
both in the sense of Definition 3. It can be verified that df is the Gteaux
variation of f in the sense of Definition 1 if and only if it is its Gteaux wri-
ation in the sense of Definition 3; i.e., our definition agrees with the classical
one. We will use both definitions in the sequel. They are both applicable
to general 1.c.t.v.s.’s. The classical Frt!chet variation, on the other hand,
is defined only for E normed (Definition 2). For this case, the classical
definition agrees with ours, as seen from Theorem 13.

THEOnEM 13. If E is a normed space and H is open, then df:H X E F
is the Fr$chet variation of f H ---> F in the sense of Definition 3 if and only if it
is the Frchet variation off in the sense of Definition 2.

Proof of suigiciency. Let df be the Frchet variation of f in the sense of
Definition 2, f’ M-(df), A bounded, h e H, >= 1, and _-> x for every
x e A. Further, let U be a neighborhood of 0 e F. There exists an > 0
such that, for x =< ’, we have h + x H, and

[f(h + x) f(h) df(h, x)]e (11 x

Let e’/. Then, for 0 < Xl -< , [xf(h) -/’(h)] e T(A, U).
Proof of necessity. Let df Mf’ be the Frtichet variation of f in the sense
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of Definition 3. It is also the GAteaux variation of f and is, therefore,
homogeneous in the sense of Definition 2. Let U be a neighborhood of
0 e F and h e H. The unit solid sphere S is bounded, and there exists e > 0
such that, for0 < hl -< e,f(h) -f’(h) T(S, U). Then, ifxEand
h IIx[I --< e, we havez x/heS;andf(h + x) f(h)- df(h, x)
A[{z, xf(h)} {z, f’(h)}] e x U.

Another generalization of the Fr6chet variation to arbitrary 1.c.t.v.s.’s is
due to D. H. Hyers [13]. The relation between his and our variation is still
an open question. In the sequel we use the terms Gdteaux and Frchet deriva-
tives to refer to the point-open and the bounded-open derivatives, respectively.

In a sense, the derivative coincides with the classical one for E R.
Classically, the derivative f’(ho) of f:H F is defined as

f’(,0) limxx0 [f(h) f(,0)]/(X ,0) e F.

Now, we cn identify F with 2(R, F) c (R, F) by means of nturM em-
bedding G:F -- 2(R, F) defined by {h, Gy} hy, for every , e R and y e F.
It cn be shown that f is differentiable (clssicMly) if and only if it is GAteux
derivable nd if and only if it is Fr6chet derivable, and that the Fr6chet
(and, therefore, the Gtteux) derivative of f at 0 is Gf’ (o).

6. Applications
In this section we study the connection between derivability nd conditions

a nd b discussed in Section 4. We assume H to be a radially open convex
subset of E. This makes H finitely open. E and F are still 1.c.t.v.s.’s. Let
r denote a subset of I, the unit intervM, consisting of points 0 p0 < pl <

< pn 1, and points , such that p_l -< ’ =< pi, for 1, 2, n.
For x e E, h nd h + x e H, and f GAteux derivable, we define the symbol
Jr(f, h, x) as .-_df(h + x, x)(p pi_) and J(f, h, x) as the set
{Jr(f, h, x)}. Theorem 14 is an analogue of the fundmentM theorem of
integral clculus (see also [10], p. 171, Theorem 4].

THEOREM 14. IfH is convex, f Gdteaux derivable, x e E, and h and h + x e H,
then x, f h is in the closure of J f h, x

Proof. Let V be a symmetric convex neighborhood of 0 e F nd a e I.
There is an open interwl N(a) about a, such that

{[f(h + )x) -f(h + ax)/(X a)] df(h + ax, x)} e V

for every , e N(a). A finite number of these interwls N(a), corresponding
to points 0 a < a < < an 1, coverI. Let t eN(a)nN(a+),
nda < i < a+. We denote by0 p0 < p < < p 1 thea’s
and the ’s arranged in ascending order. For every i, either p or p+l is n
a. We denote by ’ the one that is. Then if consists of the o’s and the
’s, [{x, f(h)} Jr(f, h, x)] e V, and therefore, {x, f(h)} e J(f, h, x).
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THEOREM 15. Let f:H --, F be Gdteaux derivable, H convex, and f’ :H ---.
2(E, F). Then, for the family of all bounded sets of E, f satisfies condition a
if and only if f’ satisfies condition b (Section 4).

Proof of necessity. Let f satisfy condition a; let B be a bounded subset of
E, and W1 an os,-neighborhood of 0 e E. We show that there is an w-neigh-
borhood Z of 0 e E, so that B n Z c W1. We may assume without loss of
generality that W is determined by a bounded set A c H and a closed sym-
metric neighborhood U of 0 e F (Section 4). Let W2 be the 0f-neighborhood
defined by A and U. Then there is an w-neighborhood Z of 0 e E, so that
B n Z c W2, since f satisfies condition a. Let x e B Z, and h e A. Then
for 0 < I1 _-< 1, {x, f(h)} U, and, since {x, f’(h)} lim0 {x, f(h)},
and U is closed, we have {x, f’(h)} e U, and B Z W1.

Proofofsufficiency. Let f’ satisfy condition b, and letW be an s-neighbor-
hood of 0 e E determined by a bounded set A H and a neighborhood U
of 0 e F. We again assume without loss of generality that U is symmetric,
convex, and closed. Let As A(B); let W be the 0],-neighborhood of
0 e E defined by A and U, and Z an w-neighborhood of 0 e E such that
BZ c W. ThenBaZ W1.

A similar proof yields Theorem 16, connecting conditions a’ and b’.

THEOREM 16. Under the hypothesis of Theorem 15, f satisfies condition
a’ if and only if f’ satisfies condigon b’.

E. H. Rothe has shown ([17], p. 427, Theorem 3.2) that if f is a Frchet
differentiable real valued function defined on a normed space, having a com-
pact Frchet derivative, then f is continuous in the bounded weak topology.
The following generalization, which follows from Theorems 15, 10, and 9,
assumes only Gteaux derivability and that f’:H ---, 2(E, F). By the
bounded F-point-open topology of H we mean the bounded topology of H,
when we give E the F-point-open topology as original topology.

THEOREM 17. Under the hypothesis of Theorem 15, if f’ is compact, then f is
continuous, if we give H its bounded F-point-open topology.
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