
A KUNNETH FORMULA FOR COHERENT ALGEBRAIC
SHEAVES

introduction

Let X nd Y be vrieties over n lgebriclly closed ground field K, nd
let , denote coherent sheves on X resp. Y. Our min result (mentioned
erlier in less general form, in [3]) states that H(X Y, * (R)* *) nd
H(X, ) (R) x H( Y, _) re cnoniclly isomorphic, where *, * denote the
reciprocal images of , on the product, 9" being the shef of local rings on
X X Y (Section 6, Theorem 1). We first establish local form of this re-
sult for ffine vrieties (Proposition 8, Section 3), then derive the global
form by homologicl rgument of type fmilir in lgebric topology.
That rgument is presented in some detail, since the setting is somewhat dif-
ferent from the usual one. We hve been informed that P. Crtier nd
J-P. Serre hve independently obtained results similar to ours (oral commu-
nication from P. Crtier).

1. Some remarks on tensor products
We require series of elementary results concerning tensor products nd

product vrieties. They re presented in Propositions 1-7 below. Proofs
re omitted where the statements lone suffice to mke the ssertions evident.

PROPOSITION 1. Let R and S be subrings of a commutative ring , and
suppose that R and S contain a common subfield K. Then the natural ring
homomorphism of the Kronecker product R (R)K S into (defined by

a (R)K b "--> a b,

where a R and b e S) is an injection if and only if R and S are linearly dis-
joint over K.

The following proposition is proved in [4], No. 48"

PROPOSITION 2. Let Q be a commutative ring with unit, and let 0 -- A ---.
B --. C 0 be an exact sequence of Q-modules. Let Q* be a ring of quotients
of Q. Then the sequence O -- A (R) o Q* ----> B (R) q Q* ----> C (R) o Q* O is
exact.

Received April 5, 1958.
The uthors were supported in prt by National Science Foundation Grnt.
This means that if b, b re linearly independent elements of S over K, then

they re linearly independent over R. From this it follows that if a, a,, re lin-
early independent elements of R over K, then they re linearly independent over S
(cf. Weil [6], Chapter 1, Proposition 3). The proposition is easily verified by tking
K-bse for R nd S.

I.e., with respect to some multiplictively stable subset of Q not containing zero.
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PROPOSITION 3. Let R and S be commutative rings containing a common
subfield K. Let 0-- A--, B-- C-- 0 be an exact sequence of R-modules,
and let G be an S-module. Put Q R (R)K S, A’ A (R) Q, B B (R) Q,

GC’ C (R) Q, and G Q (R) s G. Then the sequence O --, A’ (R) --G’ C’ G’B’ (R) ----> @ ---, 0 is exact.

Proof. We have only to show that the first homomorphism is injective,
since (R) is a right-exact functor. We have

A’ (R)’ (A (R),Q) (R)(Q(R))A (R),Q(R)G

(using the natural identification of Q (R) Q with Q), and the last expression is
by definition equal to A @ (R (R) S) (R) s G. From the canonical isomor-
phisms A (R) R A and S @ s G G it follows that A’ @ G’ is canoni-

G’ G. The asser-cally isomorphic to A @K G. Similarly, B’ @ B @K
tion follows at once, since K is a field.

PROeOSTION 4. Let the rings and modules be as in Proposition 3, and let
Q* be a ring of quotients of Q. Put A* A (R)Q*, B* B (R)Q*, C*
C (R)Q*, and G* Q* (R)sG. Then the sequence

0 ----) A* @ , G* ---* B* @ , G* -- C* @ . G* 0
is exact.

Q* A’Proof. We have A* A (R) A (R) (Q (R) Q*) (R) Q*, etc.,
A’ being as in Proposition 3. Thus

A* (R) , G* (A’ (R) Q*) (R) , (Q* (R) G’)

A’ (R) Q* (R) (A’ (R) (R)Q*,

and similarly for the other two terms of the sequence in question. It follows
at once that this sequence is naturally isomorphic to the tensor product with
Q* of the sequence considered in Proposition 3. The assertion then follows
from Propositions 2 and 3 above.

2. Products of afFine varieties

Henceforward K will denote an algebraically closed ground field. In this
section and in Section 3 below, U and V will denote affine varieties over K
(cf. Serre [4], No. 30 et seq.). The projections U X V --. U and U X V - V
are regular mappings which induce injections of the rings of regular functions
F(U, 0)--, F(U X V, 0x) and F(V, 0)-- F(U X V, Ox). We
shall thus regard F(U, 0), F(V, 0) as subrings of F(U V, 0x). Fur-
ther, at points u e U, v e V and the corresponding point (u, v) e U X V
the projections induce injections of the local rings 0,--+ (,.,) resp. 0,--

0(,.,), where for simplicity of notation we write 0, for Serre’s 0,.v, etc.
-We shall regard (9, and as subrings of 0(,.). The facts just mentioned
are immediate consequences of N0s. 30-33 of [4].
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PROPOSITION 5. The rings r(U, 0v) and I’(V, 0v) are linearly disjoint
subrings of F(U X V, 0vv) over K, and they generate F(U X V, 0vv).
The local rings 0,, O are linearly disjoint subrings of 0(,.) over K.

The fact that F( U, 0v) and F(V, 0,) generate the ring of regular functions
on the product U X V is easily seen by first embedding U and V as closed
subsets of suitable affine spaces and then applying Corollaire 3, No. 44 of
[4] to the product of the affine spaces and the closed subset U X V. Linear
disjointness is trivial. From Proposition 1 we have the

COROLLARY. The natural ring homomorphism

r(u, r(v,  r(u v,
is an isomorphism.

PROPOSITION 6. The local ring 0(,.) at a point (u, v) on the product U X V
is a ring of quotients of the subring Q ). generated by 0, and

In fact, if m denotes the maximal prime ideal of 0(,,), then 0(u,v) is pre-
cisely the ring of quotients of Q relative to the prime ideal Q n m.

3. A local KiJnneth formula
We require now the notion of the reciprocal image on U X V of an algebraic

sheaf on U or V (relative to the projections of U X V onto U, V). For
details we refer to [3], 1. To recall the definition summarily, let ff be an
algebraic sheaf on U. Then its reciprocal image if* on U X V is the sheaf
0v (R)or fi;. Similarly, if 9 is an algebraic sheaf on V, then its reciprocal
image on the product is *= Ov (R)Or 9. In particular, both 0 and
can be identified with Orv, which we shall sometimes denote by 0". Our
Ktinneth formula is concerned with the cohomology of a sheaf of the type
fi;* (R) o. * ff (R)o 0x. (R) Ov 9, where fi; and 9 are coherent sheaves on U
resp. V. Asterisks will be used consistently below to denote reciprocal
images.

PROPOSITION 7. Let 0 --> ( ---> ( --) --> 0 be an exact sequence of alge-
braic sheaves on U, and let 9 be an algebraic sheaf on V. Then the sequence
0 -- (* (R) o. 9* --> 5* (R) o. 9* ’-> * (R) o. 9* -> 0 on U X V is exact.

Proof. Consider the stalks at a point (u, v) U X V: From Proposition
1 and Proposition 5 the natural homomorphism of the ring Ou (R)K % onto
the subring (9.(% of (9(.) is an isomorphism. Then, by Proposition 6, the
local ring 0(.) can be identified with a ring of quotients of (R)K 0. The
assertion follows at once from Proposition 4.
We have thus a somewhat simpler proof of the main result of 2 of [3],

without the restrictions imposed there.
It is scarcely necessary to point out that Proposition 7 holds equally well

for an exact sequence on V rather than on U.
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PROPOSITION 8. Let be a coherent sheaf on U, and let 9 be a coherent sheaf
on V. Then the natural homomorphism

(1) F(U, ) (R) r(V, ) - r(u V, * (R). *)
is an isomorphism.

Proof. Let us first point out explicitly how (1) is defined. If f e r U, if)
and g e F (V, 9), then with the pair (f, g) we associate the function s* on
U X V given by

where ff is the stalk of ff at u, etc. From the definition of if*, 9" and if* @ o* *as sheaves, it follows that the function s* is a section of if* @o* 9*. It is
very easily seen that the mapping (f, g) s* thus defined induces (1).
Now for the special case ff Ov und 9 O it is clear from the corollary to

Proposition 5 that (1) is an isomorphism. Hence the proposition holds for
free sheaves.
Under the hypothesis that und 9 are coherent, we cun find exuct sequences

of sheaves
0 off0

()
090

where is coherent and is free on U, and where is coherent and is
free on V (Serre [4], No. 45, Corollaire 1 and No. 13, Thorme 1). Con-
sider first the exact sequences ff 0, 0 and the associated
(exact) sequence * @o.*ff* @’9"0 on U X V. Since Uand
V, hence also U X V, are affine, the induced sequences of modules of sections
are exact ([4], No. 45, Corollaire 2), and we obtain the diagram

r(* @o,*) r(* @o,9") o

r() e r() r()e r() 0

in which he rows .are exaeg; we have wrigen r(* No, *) for

and r() for r U, ), ege. he homomorphisms and B in (a) are of
course insganees of (1). Ig is clear ghag ghe diagram is eommugagive. Since

and are free, ig follows from ghe remarks above gha is an isomorphism.
herefore i.e., ghe homomorphism (1)is sureegive.
Consider now 0 N 0 and ghe corresponding sequence
0N* o,** o,** o,*0 on UN V. By Proposi-
tion 7 ghis sequence is also exact. aking he induced sequences of modules
of sections we obgain an exaeg, eommugagive diagram (again omitting ghe

names of ghe spaces)
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o + r(x* (R)o,6") - r(* (R)o, *) r(* (R)o, 9*)- o
(4) aT l

0 - r() (R)r() - r() (R) r() -- r()(R) r() - 0

where a, t, " are the appropriate homomorphisms (1). As we have iust
shown, they are all surjective. Suppose first that
isomorphism, and from exactness it follows that is also an isomorphism.
We conclude that (1) is an isomorphism if either or is free. But then,
since is free, it follows that/ in (4) is an .isomorphism for any coherent, and again it follows that , is an isomorphism, Q.E.D.

4. Double complexes

In order to extend the local version of the Kilnneth formula (Proposition 8)
to products of arbitrary varieties, we shall first establish some properties of
complexes associated with three open coverings
and if9 {Wk}k of a topological space M, generalizing the results of Chapi-
ire I, 4 of [4]. will denote a sheaf of abelian groups on M. By S(I)
we denote the set of all ordered (p + 1)-tuples s (i0 i) with i I
(p 0, 1, 2,...) such that U0 Ui is not empty; s is called a p-
simplex, and the open set U0 U is its support, also denoted by U or

U0 . Similar conventions apply to J and K.
Let us first recall briefly the definition of the double complex C( 11,. C’(II, !; ) associated with the coverings 1I and and the sheaf
(Serre [4], No. 28): The elements of C’(II, ; ) are functions f which

assign to each p-simplex s S(I) and each q-simplex s’ S(J), such that
UoV, 0, an element f,, of F(UV, ;). If s (i0-..i) and
s’= (jo ""j), we also write f,,--fio...,o...’. C’(1I, !8; ) has
an evident structure as abelian group. Homomorphisms

and
d" C’q lI, --) cp+l,q , , ,

..,=o (-- 1) res fio’""’i+l, Yo’"Y

-’+ +(d"f)o..., o...+1 =o (- 1) res Ao..,, o......+
We hve hen d’d’= d’d"+ d"d’= d"d"= O. If we define

c"(, ; ) +=. c’(, ; )
By "res" we always mean restrietion o the open set indicated by the left member

of the equation.

are defined by

(d’f.) o"" iP+l $’0""" Jq
and
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and d d’ -+-d", then d is a homomorphism of C"(I1, !8; 2) into
C"+1(11, ; o) satisfying dd O. The cohomology groups of this single
complex are denoted by Hn(ll, ; 2).

LEMMA. Suppose that M occurs among the open sets Ui, and suppose that
Hn(, 2) 0 for n> O. Then H"(ll,!8; ) 0 for n > 0. (Cf. [4],
No. 29, Lemma 1.)

Proof. Let M U,, where a is a fixed element of I, and let

f fo.+. fl.+. .q_ f,

be a cocycle in C(R, ;), where ff e CP’-(, ;2). If n > 0, define
g e C’--(, ; 2) for p 0, 1, n 1 by

(g)o .., 0 ..-- )0.-., 0...--

(noting that U... Uo...). Put g go gW W g,-; it is a
cochain in C-(, ; 2), and we have dg f , where e ’"(, ; 2)
is defined by 0,o..., res f,0...,. Clearly d]= O, and therefore
d" 0. Consequently the element ]0 can be considered as a cocycle in
C(, 2). By assumption it is the coboundary of an element h e C-(, 2).
Define e’-(, ; 2) by o,o...- res h0...,_ Then d=
d,,o ]o, and t-hus f d(g + o), Q.E.D.

5. Triple complexes
We must now consider the triple complex

C(tt, , ; e) 2,,,. C’’(U,
associated with the three coverings 11, , !, of M. It is quite analogous to
the double complex just discussed, viz., the group C’q’r(ll, , !9;2), which
for brevity we call A’q’r, consists of functions f which assign to every triple
of simplices s S(I), s’ S(J), s" S(K), of dimensions p, q, r respectively,
an element f,,,,, in r(U n V, n W,, ). Three homomorphisms
d’ :A’’ A+’’, d" :A’’ A’+’, and d’" :A’’ A’’+ are defined
by the formulas

(d’f)0...+,,,,,, (- 1) res fo...,...+,’,",
q+l p+(d"f),o...+,,,
_

(- 1) res f,io..-i,...+."
r+l(d"’f),,,o...,+ ,=0 (-1 res f,,,o...,...,+,

in which s, s’, and s" have the same significance as above.
morphisms satisfy d’d’ d"d" d’"d"’ 0 and

The three homo-

d’d" + d"d’ d’d’" + d’"d’ d"d’" + d’"d" O.

We now regard the triple complex A -’,q,r as a double com-
plex A* , A’r, where A"’ +q_, A’q’, with the two dif-
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ferentials d d’+ d" and d2 d’". The bigraded cohomology groups
of A* with respect to the two differentials dl and d. will be called H"r(A*)
resp. H (A*).
With the triple complex A we can also associate a single complex . A

where A --- ’p++r= A’q’, the differential being d’ - d" - d"--
d -d2. The cohomology groups of this complex will be called
H’(II, , f; ). They are manifestly the same as the cohomology groups
of the single complex associated with the double complex A* and the to-
tal differential d d2.
Now let s" be any simplex in S(K). Then 1I and induce open coverings

118,, and 8,, of the support Ws,,, and with these coverings we can associate
a double complex C(118,,, 8,, ;), as in Section 4 above. If s e S(I) and
s’ e S(J) are any two simplices, then induces an open covering
of U8 R Vs,, and with this covering is associated the usual single complex
C(8,8,, 2). From the definitions of dl and d above, it follows by in-
spection that there is an isomorphism

(5) H’(A*) , I8,, H’(II8 38,, ;),

the product being over all r-simplices s" S(K) (cf. [4], No. 28, Proposition
2). Similarly there is an isomorphism

(6) H,(A*) II8,8, H(,,8 2),

the product extended over all pairs of simplices s e S(I) and s’ S(J) the
sum of whose dimensions is equal to n.
Of particular interest in the sequel is the special case -- 1I R , by

which we mean that K I X J and that if k (i, j), then W, U R V

PROPOSITION 9. Let the covering of M be a common refinement of
Hand . Then the canonical homomorphism . (, 2) ----> H" 1I, , ; 2)

is an isomorphism for all n >- O. If H’( 8,8, 2) 0 for all n > 0 and for
every s e S(I), s’ e S J ), then the canonical homomorphism

H, (11, ; 2) --, H(tl, , ; )

is an isomorphism for all n >- O. The hypotheses are automatically fulfilled if= n;.
is defined as follows (see [4], Nos. 27, 28): Let Az be the subgroup of A,

C,.(I1, 3, f; ) consisting of all f such that df---O, and put Azr Ar.
This is a subcomplex of A*, and the total differential d -b d coincides on it with d
d"’. Let C(,) Ar be the canonical isomorphism defined by (f)o,lo,o...k
res fko...k, for f, C*(, ). This isomorphism followed by the injection Art-- A*
then induces H"(,2) H’(A *) H’(II, 3, ;). In an analogous way there is
defined a canonical isomorphism of C (1I, ;) onto a subcomplex Ar of A*, with a
resulting homomorphism " H(I1, ; ) --, H’*(A*). Similar homomorphisms will
occur below for other complexes; they will be denoted by , resp. , as above, with
primes when it is necessary to distinguish different occurrences.
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Proof. Let s"e S(K). If !fi) refines , then the covering 38,, of the
support Ws,, induced by contains Ws,, among its open sets. Then

Hn(38,,, 2) 0

for n > 0, by Lemma 1, No. 29, [4]. If also ! refines 1I, then 118,, contains
Ws,, among its open sets. Then from the lemma of Section 4 above, we have
Hn(1L,,, 38,, ;2) 0 for n > 0, whence H’ r(A*) 0 for r => 0, n > 0,

H
__

*)by (5) Consequently (!, 2) H(A is an isomorphism for
n _-> 0, by Proposition 1, No. 27 of [4]. As we have already pointed out,
H’(A*) Ha(l, , ;2). If now Hr(!,,8,, 2) 0 for r > 0 und ull
s, s’, then n,rHI(A*) 0 for r > 0, n > 0, by (6). It follows, again by
Proposition 1, No. 27 of [4], that 1" Hn(12, 3;. 2) -- H(A*) is an isomor-
phism for n ->- 0. Finally, if !fi) 11 n 3, then the set U8 n V,, is among
the open sets of the covering !8,,, so that Hr(28.8,, 2) 0 for r > 0, by
Lemme 1, No. 29, [4], Q.E.D.
Remark 1. Proposition 9 is analogous to Propositions 4 and 5, No. 29 of [4].

--1Remark 2. If !3 is a refinement of 1I and 3, then 1 defines a canonical
homomorphism H (1I, 3 2) ---+ H , 2). We shall show presently how
this can be obtained from a cochain mapping.

The question of stability of this homomorphism vis-a-vis refinement of
coverings naturally arises. Let us then consider three new open coverings
1I’= {V,}i,,, 3’ {Y,},,, and !fi)’= {W,},, of M which are re-
finements of II, , !3 respectively. Let : I’ --* I, r: J’ J, and :K’ ---. K
be maps of the index sets such that U, c U,, V, c V.,, W, c W,.
The maps , r resp. , , determine cochain mappings

resp.

defined for an element f by

resp.

These homomorphisms clearly commute with the differentials and therefore
induce homomorphisms

"H H 1I’, 3’;(tt, )- ;)

In like manner the map ’K’-- K induces a homomorphism

H H 23’,(, ) - )

which is well known to be independent of the choice of ([4], No. 21, Propo-
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sition 3). It is easily verified in a similar manner that a and are independent
of the particular choice of , r resp. z, r, . For example, a can be decom-
posed in an obvious way into H (LI, ; ) -- H (11’, iS; ) -- H (1I’, ’; ),
the first homomorphism induced by z alone, the second by r alone. A
rather trivial modification of the proof of the proposition iust cited shows
that each homomorphism is independent of the choice of resp. r. We
omit the verification here. Similar remarks apply to the triple complexes.
From the cochain mappings iust described and from the canonical injections

,1 and ,2, we obtain a diagram

c(u’,’;)
which is clearly commutative. The induced cohomology diagram is then also
commutative, and all the homomorphisms are canonical. Thus we have

PROPOSITION 10. Let 1I, 3, and 1Y, !3’, 3’ be two sets of open coverings
ofM such that 3 refines 1I and , such that 3’ refines 11’ and ’, and such
that 1I’, ’, 3’ are refinements of 1I, !3, 3, respectively. Then the diagram

induced by these refinements is commutative for all n >= O.

From this fact we can easily calculate ,Y1,1 explicitly. First take 1I !It).
The hypotheses of Proposition 9 are fulfilled, and we obtain isomorphisms ,."

H(, ) -- H(![B, !, ; ) and H(, ; ) H(, , ; ).
There is also a canonical isomorphism (, 2) H (, ; 2) We
claim that . To show this, let f e (, 2) be a cocycle (n > 0)

cO,q,n-q-1For each q 0, 1 n 1 define g e (, , ; ) b
g0, --(1)q

ko .kq, kttq .ktn_ res A’o. "kqkttq "ktn-l"

Clearly d’gq O. One easily finds that for the (n- 1)-cochain

g g0+gl+ +gn-
we have (d’ + d" + d’")g f’ f", where f’, f" are homogeneous of de-
grees (0, 0, n) resp. (0, n, 0), and where fk’0,k’0, "0-" ""n res fk"0..."n and

The definition of , is analogous to the definition of ,, as explained in the preceding
footnote.

Here and below, k, k’, and k" denote elements of K.
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f"o, k,o...k,, ,, res f’0.-.’. I.e., f’ f and f"-- 1 f; This
proves the assertion for n > 0; it is trivial for n 0.
We now calculate explicitly" Let f fo + f W ff be a cocycle

of Cn(, ; 2), whereff is in C’-(, ; 2) and n > 0. For each
p 0, 1, n- 1 define g e C’--(, ; 2) by the formula

b ’ "’,- (- 1) rp k ...kpkp .kr, kr .kn_l

From a straightforward calculation it is easily seen that for the (n 1)-
cochain g g0+g + +g-: we have dg (d’ + d")g =i-f,

C0,(where ] e , ; 2) and

Z res f,o...,, ,...,,.
Since d’] O, this n-cocycle lies in the image of

2) 2).

The map f f clearly induces the canonical isomorphism
t--1-U’(,;) (,)

for n > O, If f is a cocycle of degree zero, then we must have d’f d"f O,
and in this case we simply take ] f. Thus we conclude that for n >= 0
the canonical isomorphism Hn , 2.) --> H" , 2 is induced by the co-
chain mapping x: C’’- , 2 -- C !, 2) defined by

(7’)

Now assume again that ! is a refinement of 1I and , and choose maps
a:K-I, r:K--+J such that Wc U and Wkc V,. Then from
what we have established above and from Proposition 10 we obtain a com-
mutative diagram

H(U, ; 2)

Hn(!, !; 2)
--1from which we can express . 1 in terms of the cochain mappings (at) and

x. We state the result in

PROPOSiTiON 11. Let be a refinement of 11 and !. Then the canonical
:H"homomorphism (1I, ; 2) -- H’(, 2) is induced by the cochain

mapping " C’q(11, ; 2) ---> C’+q(!, 2 defined by
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where (r’K --. I, r’K --) J are any maps such that Wk c Uk and W V,.
In particular, if 1I n !, then (8) can be put in the form
(8’) (f)(i0’0)...(i.q+q) res fi0..., i...+q,

where io jo (i+qj+q is a (p "F q)-simplex of K I X J.

6. A KOnneth formula for coherent algebraic sheaves
Let X and Y be algebraic varieties (in the sense of Serre [4]) over an al-

gebraically closed ground field K; let 11 {U} resp. IVy} ’a be finite
coverings of X resp. Y by open affine subsets. Put U Ui X Y, V
X X V-, and W*. Un V U X Vs. We obtain then three open
coverings 11" {U*}, * {V}, and * W,*’} of the product variety
X X Y. By Proposition 9 there is a canonical isomorphism

(9) H’(11*, 3"; *) H"(ifi)*, *)

for any sheaf * on X X Y (n >_- 0).
Now let fi; be a coherent sheaf on X, let 9 be a coherent sheaf on Y, and

denote their reciprocal images on X X Y by if*, 9*. Further, let (9" denote
the sheaf of local rings on X X Y. We now apply (9) to the sheaf 2"
if* (R)o* 9*. Consider the double cochain complex

c(tl*, *; * (R)o, 9*) , c’(tl*, *; * (R)o, 9*)"

The natural homomorphism

" r(Uo...,, ) (R) r(Vo...,, 9) - r(Uo..., Vo..., * (R). 9*)

(cf. Proposition 8) induces a homomorphism

C c’q( * * 9"’c(u,) (,) u*, o,
defined by

(’q(f (R) g))io.... o...+ k(fio...i (R) go’.’q)
for f C(1I, if) and g Cq(3, 9). By Proposition 8, ’q is an isomorphism.
It follows readily that the kp’q define a natural isomorphism of the two com-
plexes C(I1, if) (R) C(8, 9) and C(II*, 8"; if* (R). 9*). From (9) and he
Ktinneth formula (Cartan-Eilenberg [2], Chapter VI, Theorem 3.1), we
have a natural isomorphism H(ll, ) (R)K H(!8, 9) H(*, if* (R). 9").
From the canonical isomorphismsH 11, ) H(X, ), H(!8, ) H Y, ),
and H(*, if* (R). 9") H(X Y, if* (R). 9") ([4], No. 47, Thiorme
4) we obtain finally an isomorphism

H(X, ) (R) H(Y, 9) H(X )< Y, if* (R)o. 9*).

From Proposition 10 it is easily seen that this isomorphism is independent
of the choice of coverings 11 and . Therefore we have



400 $. I-Io SAMPSON AND G. WASttNITZER

THEOREM 1. Let denote a coherent sheaf on a variety X, and let 9 denote
a coherent sheaf on a variety Y. Then the projections X >< Y X resp. Y
induce a canonical isomorphism

(10) H(X, ) (R)K H(Y, ) H(X X Y, * (R)o, 9"),

where *, * are the reciprocal images of , on X X Y, and (o* is the sheaf
of local rings on X X Y. In particular we have

(11) H(X, (ox) (R)K H(Y, (Or) H(X X Y, (o*).

If one of the varieties, say X, is arlene, then (10) reduces to

(12) F(X, i) (R)K Hn(y, ) Hn(Z X Y, * (R)o. 9") (n -> 0).

Remark. In virtue of results of Serre ([5], No. 12, Thormes 1, 2, and
3) the isomorphism (10) remains valid if X and Y are projective varieties
over the field of complex numbers and if ff and are coherent ana-
lytic sheaves, (o* being interpreted as the sheaf of germs of holomorphic
functions on X X Y. A similar remark holds for (11). However, (12) is
not valid for analytic sheaves.

Let 11 and 3 be the affine coverings used above, let f e C(II, fi;), and let
g Cq(3, 9). Then, from the definitions, the isomorphism

c(11, ) (R) c(, ) -+ C(ll*, 3"; * (R)o, 9*)

maps f (R)K g into the (p, q)-cochain whose value for simplices (i0 i),
(j0 jq) is equal to

fo..., (R) 1 (R) gio...iq e r(U...q >< Vi,...iq if* (R). 9*).

From Proposition 11 we have at once

PROPOSITION 12. The canonical isomorphism

H(II, if) (R)K H(Y3, ) H(![9*, if* (R). 9"),

and hence also the isomorphism (10), are induced by the cochain mapping

:c(11, ) (R) c(?, 9) --+ c(*, * (R). *)

defined for an element f (R) K g with f e C 1I, if) and g C’-’(, 9) by

(13) ((f (R)K g))(0’0)"’(i) res (f0...i (R) 1 (8) gi...i),

where io jo i, j, denotes an n-simplex of I X J.

7. An application
Let U be an affine variety, and let I) be a projective space of positive

dimension. Let O,(h) be Serre’s sheaf ([4], No. 54) on P, and let O*(h)
be its reciprocal image on U >< P. Then the Kiinneth formula (12) gives
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US at once Hn(V X 1:), 9"(h)) I’(U, 0v) (R) Hn(I, O,(h)) for all n => 0.
In particular, Hn(U X 1),0*(h)) 0 forn > 0and h ->- -1 ([4],No. 65,
Proposition 8). This is the main result (Proposition 2) of 4 of [3].

8. The cohomology ring
Let X be any variety, and let A be the diagonal in X X. Then there

is a canonical homomorphism * - 0a (0" 0xx, 0a being extended by
zero outside of A). Because of the isomorphism X A, we obtain a natural
mapping H(X X X, 0") - H(X, 0x). From the Kiinneth formula (11)
there results a canonical homomorphism

(14) H(X, Ox) (DE H(X, Ox) H(X, Ox)

(of degree zero). This homomorphism endows H(X, c0x) with a structure
of graded, associative K-algebra, i.e., the cohomology ring of X.
We can express the multiplication in H(X, Ox) by a formula analogous

to the ordinary cup-product (cf. [1], Expos 4.8). The result is of course a
special case of (13). Take two finite coverings 1I and of X by open af-
fine subsets. We use the notation of Section 6 with X Y. The covering
!* is then a covering of X X X, and the covering induced by !* on A
(= X) is simply the intersection 11 n . Consider the diagram below:

H(ll, 0x) (R)K H(, Ox)
a * * 0*H(!*, Ox (R)o, 0x) H(!*,

’ H( ![9", 0a) i H(II n , 0x).

The maps are as follows: a is the natural isomorphism described in Section
6; is the map induced by identification of 9"x (R) o. 0x* with 0";, is induced
by 0* -- (% i is induced by the identification of X with A and the result-
ing identification of res a ![9" with 11 a . The composite homomorphism
is of course (14). Now take 1I . The index mapI--I X Idefined
by i -- (i, i) induces the canonical isomorphism H 1I 11, 0x) --, H 11, 0x).
From this, from the sequence above, and from (13), it is then easily seen that
the homomorphism (14) is induced by the cochain mapping

CP( U, OX) tK cn-P( U, OX) --’> cn( u,
defined by f (R) K g "-> f g, where

(15) (f - g)0.... resf0....g...,.
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