
X. On Semi-Proper Forcing

§0. Introduction

We weaken the notion of proper to semiproper, so that some important prop-

erties (the most important is not collapsing NI, being preserved by some itera-

tions) still hold for this weaker notion. But the class of semiproper forcing will

also include some forcings which change the cofinality of a regular cardinal > NI

to NO- We will also describe how to iterate such forcings preserving semiproper-

ness. So, using the right iterations, we can iterate such forcings without col-

lapsing NI. As a result, we solve the following problems of Friedman, Magidor

and Abraham respectively, by proving (modulo suitable large cardinals) the

consistency of the following with G.C.H.:

(1) for every 5 C N2, 5 or N2 \ S contains a closed copy of α i,

(2) there is a normal precipitous filter D on ^2, {S < ^2 : cf(<5) = #0} G £>,

(3) for every A C N2 ί {^ < ^2 : cf (ί) = K0, δ is regular in L[£n^4]} is stationary.

However, the countable support iteration does not work, so we introduce the

revised countable support. Though it is harder to define, it satisfies more of

the properties we intuitively assume iterations satisfy and is applicable for the

purpose of this chapter.
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Notation.

Ord is the class of ordinals, Car the class of cardinals, ICar the class of

infinite cardinals, UCar = ICar \ {No} and RCar the class of infinite regular

cardinals, SCar = RCar U {2}, RUCar = RCar Π UCar, and we let

« = {δ < Kα : cfί -

§1. Iterated Forcing with RCS
(Revised Countable Support)

Iterated forcing with countable support is widely used since Laver [LI]. One of

its definitions is that at the limit stage with cofinality N0 we take the inverse

limit, and at the limit stage with cofinality > NO we take the direct limit.

Another formulation is given in Definition III 3.1. However, the applications,

as far as we remember, are for forcing notions which preserve the property "the

cofinality of δ is uncountable" , and in fact are E-proper, for some E which is

a stationary subset of «S<N0(L)£7).

However, in our case we are interested just in forcing notions which do

change some cofinality to NQ. In these cases, we cannot break the iterated

forcing into an initial segment and the rest (i.e., break (Pi,Qι : i < a) into

(Pi,Qi : i < β)) and (Pi/Pp,Qi : β < i < a)). The reason is that maybe

the first forcing changes the cofinality of some 5, β < δ < a to N0; but then

Pδ/Pβ is not the inverse limit of (Pi/Pβ, Qi'.β<i<δ), and lhPβ "(Pi/Pβ, , Q» :

β < i < α) is not a CS iteration" . In fact, as every p G P§ has domain a bounded

subset of 5, if Ihp^ "αn E (/?,δ),cun < αn+ι,ί = \J αn, and (pn^ : i < λ) is a
n<ω

sequence of pairwise incompatible conditions in Q^n or just in Pan+l/Pan i e

Pαrι-names of members of Pan+ι/Qpan"
 an<^ we let r : α; -̂  λ be τ(n) — i if

Pn,i[Qpδ n Pβ] belongs to Gpδ or there is no such i and we let r(n) — 0, then

\\-pδ "τ is a function from ω onto λ -f 1". So if each Qi has two incompatible

members and δ is divisible by cj2, then P§ will collapse KI and even ^°v β

for β<δ.
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Hence we suggest another iteration, RCS (revised countable support),

which seems to be the reasonable solution to this dilemma.

The essence of the solution is that a name of a condition is really a

condition. More exactly, in countable support iteration a condition may be

{(/?, q)} such that q is a P^-name of a member of Qβ, so q is a name but β is

a "real" ordinal. But now we allow β to be a name. But a name with respect

to which forcing notion? We would like to use Pα-names, but then we get a

vicious circle, defining what is a condition of Pa using P^-names. So we can

allow P7-names β for some 7 < α, such that Ihp^ "7 < β < α", and then allow

a Pγ-name of condition as above etc (this is the successor case in clause (B) of

Definition 1.2(1), and shall use it freely in later sections). The exact definition

appears below; though it has a somewhat cumbersome definition, it seems to

conform better to our intuitive idea of iteration. A first version of it can found in

[Sh:119]. For other realizations of this (and alternatives to §1 here) see [Sh:250],

which is redone here in Chapter XIV. In XIV §1 we deal with /ς-RS. There, all

the induction on 7 disappears as K, > NI makes it unavailable. An alternative

way is XIV 2.6=[Sh:250, 2.6] where we simplify matters by demanding, e.g., for

Q-named ordinal ζ that: q lh"C = ξ" => q\ξ Ih "ζ = f", the price is the loss of the

associativity law (see 1.1A(1)), this makes the treatment later less elegant, but

does not cause real damage as far as we know: i.e. we cannot restrict inductive

proofs to the cases the length δ of the iteration being 1, 2, ω, ωi, K inaccessible,

but rather have 1, successor, for some a < δ, p\a Ih cf(ί) = K0 (where we are

interested in the forcing above p) etc. As things are, we need to consider in e.g.

l.l(B), not only r G Pξ but also r e P^+i except when £ -f 1 = α (to avoid

vicious circle), hence we have 7 = /3 +1 <aoi'j = β = a — 1 there. Compared

to the previous (i.e. [Sh:b]) version, for smoothness we essentially complete the

Qi's and we also give (for completeness) the equivalent outside definition of

Q-named ordinals (and conditions (1.3(2))).
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1.0 Remark.

(1) If PI = PO * Qo, x a Pi-name, G0 C P0 generic, then in V[Go], x can

be naturally interpreted as a Q0-name, called x/Go, which has a P0-name

x/Go or X/PO; but usually we do not care to make those fine distinctions.

(2) Using Q — (Pi,Qί : i < α), Pα will mean Rlim Q (see Definition 1.1).

(3) If D is a filter on a set J,£> G V, V C T/t (e.g., yt = y[G]) then in an

abuse of notation, D will denote also the filter it generates (on J) in V^.

(4) Formally, if Ihp0 "Qo is a forcing notion " then PO *Qo is a class, but this is

for superficial reasons. We can demand that the set of members of Q0 (in

Vp°) is a cardinal, and use only "canonical" P0-names (as in 1.1 (B)), or

restrict ourselves to members of some H(χ). In the iteration in this section

(see 1.1), writing |P|, we mean |P/ « | (see I 5.5). We may use instead

d(P), the density character, which is defined as Min{|P'| : P' C P, Vp G

P 3p' G P'\p < p'}} or the essential density d!(P) = Min{|P'| : for some

P", P <> P", P dense in P" and P' C P" and (Vp G P)(3p; G P')^ ll-p-

"p G Gp//"]} (we say P1 is essentially dense in P; this means it is dense in

the Boolean completion of P). The change does not make much difference.

(5) T>κ is the closed unbounded filter on K.

(6) For a forcing notion Q, an almost member q of Q is {(p^, qι) : i < i*}

such that [pi, ^ G Q] &[pi,pj compatible => <fo = <£,], and for r G Q, q < r

means r \\-Q "for every i < i* if pi G GQ then ^ G GQ"; if q', q" are

almost members of Q we define: g' < q" iff (Vr G Q}[q" < r => g' < r]. If,

as we normally agree, 0g G Q is minimal in Q then we can identify r G Q

and the almost member {(0q, r)}. The set of almost members of Q will

be denoted by Q (this is in fact just the completion of Q but if p, q G Q

are equivalent (i.e. Ih "p G GQ <-* q G GQ" then in Q, p < <? < p so they

can be identified).

(7) Note that an almost member of Q is equivalent to a member of Q, but is

not a real almost member, but we usually ignore the distinction.

(8) See more on why the iteration is good in XI §1.



§1. Iterated Forcing with RCS 471

1.1 Definition. We define and prove the following (A), (B), (C), (D), Def.

1.2 and claims 1.3(1), 1.4, by simultaneous induction on a (also for generic

extensions of V):

(A) Q — (Pi, Qi : i < a) is an RCS iteration (RCS stands for revised countable

support).

(B) a Q-named ordinal (or [7, α)-ordinal), (above a condition r).

(C) a Q-named condition (or [7, α)-condition), and we define gf£, q\{ξ} for a

<5-named [7, α)-condition q and ordinal ξ and they are a member of Pξ

and a Pξ-name of a member of Qξ respectively; of course ξ G [7, a] (and

ξ G \j, OL) respectively).

(D) the RCS-limit of Q,RJimQ which satisfies PI <£ RlimQ for every i < a

and p\ξ, p\{ξ} for ξ < α, p e RlimQ.

(A) We define "Q is an RCS iteration"

a = 0 : no condition.

a is limit: Q = (Pi, Qi : i < a) is an RCS iteration iff for every β < α, Q\β is

one.

a = β 4-1 : Q is an RCS iteration iff Q\β is one, Pβ = Rlim (Q\β) and Qβ is

a Pβ-name of a forcing notion.

(B) We define "ζ is a Q-named [7, α:)-ordinal of depth T above r" by

induction on the ordinal T (and α = £gQ).

The intended meaning is an (RlimQ)-name of an ordinal of a special kind,

however Rlim Q is still not defined. So we use the part already known.

For T = 0 : "£ is a Q-named [7, α)-ordinal of depth T above r" means ζ

is a (plain) ordinal in [j, α), i.e., j < ζ < α,r G P£+I; but if £ + 1 =0: then

r GPC .

For T > 0 : "C is a Q-named [j, α)-ordinal of depth T above r" means that

for some β < α, (letting 7 = /3 + l i f / 3 - h l < α : and 7 = /? otherwise) r G P7,

and for some antichain J of P7, pre-dense above r, I = {pi : i < IQ} C P7,

{Ti : i < i0} and {Ci : i < io}, we have P7 N "(rf7) < p^" (for simplicity), ft is

a Q-named [ max{j, /?}, α)-ordinal of depth Ύ; above p<, T^ < T, and C is C< if
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Pi and r (i.e., if p^r will be in the generic set then ζ will be £$; this is informal

but clear, see formal version in 1.2(1)).

Without T : We say ζ is a Q-named [j, a)-ordinal above r, if it is such for

some depth.

Without r : r = 0.

Similarly, we omit "[j, α) — " when j — 0.

(C) We define "<? is a Q-named [j, α)-condition of depth T above r" and

also q\{ξ},q\ξ and the Q-named [j, α)-ordinal ζ(q) associated with q.

The definition is similar to (B).

For T = 0 : We say "# is a Q-named [j, α)-condition of depth T above r"

if for some ordinal ζ", j ' < ζ < a and q is a P^-name of a member of Qζ (see

1.0(6)), r G PC+I but if ζ -f 1 = α then r G PC and for simplicity q is above

r \{ζ} i.e. if C + K α then r \ζ lhPζ « in Qc, r\{ζ} < f (note: r f C € PC, r KC}

is a member of Qζ). We let

9 if ί > C + 1

notes: 0 G PQ and remember 1.0(7). Finally we let ζ(q) = ζ. [What if we

wave "q above rf{C}"? Then ξ — ζ 4- 1 need special attention as in Qf£, r

may not be in Pζ so we have to transfer the information of q to "allowable"

form, so q\ξ depend also on r; so q should also tell us who is r or require

r\ζ !h [Qc N rKC} < f or we should write q\rξ, q\r{ξ}.}

For T > 0: We say q is a Q-named [j, α)-condition of depth T above r,

if for some β < a (letting 7 = / ? - t - l i f / 3 f l < α and 7 = β otherwise) for

some Q-named [j, α)-ordinal of depth T above r, ζ, defined by /3, 7, {pi : i <

io} ζ Pγ,{T^ : i < ZQ}, {ζi ' i < io}, we have for each i < i0 a Q-named

[ max{/3, j},α)-condition g^ of depth T^ above r\Jpi (see clause (c) in (D)
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below), so informally ζ(qi) = G, and q is qi if Pi and r are in the generic set of

P7).

We then let ζ(q) = ζ.

Now we define q\ξ and <?ί{ξ}; [really, we can just replace ̂  by qi \ξ, q^ \{ξ}

respectively. In order to be pedantic, we need the following]. We define q\ξ as

follows (below we ask r G \J£<ξ ^ε+i, because if ξ is a successor, r G Pξ is a

reasonable situation, if ξ a limit ordinal - not). Ifr G \Jε<ξ Pε+ι and β + 1 < ξ,

then q\ξ is defined like q replacing qi by qi \ξ. If r G \Jε<ξ Pε+ι, β + 1 = ξ = α,

then #Γ£ is g. If r G Uε<£ ^e+ι> /? + ! = £ < α then q\ξ is the following P^-name

of a member of Qβ'>

if r\β G GP/3 then ? fξ is {(p<r{)9},g<) : Pi\β eGPβ,i< iG} G Q.

If r G Uε<ξ pε+ι> /? + !>£ or r < £ Uε<ξ Pε+i then: gίξ is 0 (or not defined).

Similarly for q\{ξ} If r G Pξ+i (or r G Pξ), Ί < ξ then ςf{£} is defined like

q replacing qi by qi\{ξ} If r G Pξ+i, β < 7 = ξ 4- 1 (hence /? = ξ < α) then

gf{^} is the following P^-name of a member of Qp' {(r\{β} ^Pi\{β},qi\{β}) :

Pzf/? ^ Gp/3 and r\β G P/? and i < i0}. If r G P^+i, /? = 7 = f + 1 (actually

is ruled out) or 7 > ξ -f 1 then q\{ξ} is 0. If r φ Pξ+i, then q\{ξ} is 0 (or not

defined).

[The definitions of C(tf ΓO» C(^Γ{^}) are left to the reader].

We omit T and/or "[7, α) -" if this holds for some ordinal T and /or j = 0.

We omit r when r — 0(= 0p0) We leave the definition of q\[ζ, ξ) to the reader.

(D) We define RlimQ as follows:

if a = 0 : RlimQ is trivial forcing with just one condition: 0 = 0p0

if a > 0 : we call q an atomic condition of /ftimQ, if it is a Q-named

condition.

The set of conditions in Pα = RlimQ is

{p : p a countable set of atomic conditions; and for every β < α, p\β =

{r\β :r G p} G P/j, and p\β \\-Pβ "p\{β} d= {r\{β} : r G p} has an upper

bound in "}-
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The order is inclusion, (but in later sections we sometimes ignore the

difference between p < q and p\\- "q G G")

Now we have to show:

(a) Pβ <£ RlimQ (for β<ά). [By 1.4(1) below.]

(b) For β < α, any (Q f/3)-named [j, /3)-ordinal (or condition) above r is a Q-

named [j, α)-ordinal (or condition) above r. [Why? Obvious.]

(c) If ξ < α, q is a Q-named (atomic) condition above r, r G Uε<£ ̂ ' t^ιen #tf

is a (Qfξ)-named (atomic) condition above r. [Why? Obvious.]

(d) If βι < βz < α, p G Pβ2 \ Pβί, p < q in P 2̂ then 4 £ P/?1 (though it may

be equivalent to one).

(e) If ξ < α, q a Q-named atomic condition above r, r G |J P£ ίfoen Ihp "ς ί{ξ}
ε<C

is a member of Q ".
~ t

1.1A Explanation. l)What will occur if we simplify by letting in l.l(B),

for T > 0, 7 = β always? Nothing happens, except that 1.5(3) is no longer

true; though this is used later, we can manage without it too, though less

esthetically; for variety, XIV 2.6 = [Sh:250, 2.6] is developed in this way (for a

generalization called tt-RS, our case is K = NI). For the case which interests us

the two definitions are equivalent - by the proof of 2.6 (here).

2) So why in l.l(B), for T > 0, we do not let 7 = β +1 always? If β +1 = α, we

fall into a vicious circle; defining P/3+ι using conditions in P0+ι; alternatively

see XIV §1.

LIB Remark. We can obviously define Q-named sets; but for conditions (and

ordinals for them) we want to avoid the vicious circle of using names which are

interpreted only after forcing with them below.

1.2 Definition.

(1) Suppose C is a Q-named [j, α)-ordinal above r, r G G C \Ji<a Pi and GπP^

generic over V (whenever i < a) (say G is in some generic extension of V).
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We define ζ[G] by induction on the depth: if the depth of ζ is 0, it is ζ", if

the depth of ζ is > 0, and it is defined by β, 7, {pi : i < ΐ0}, {ζi : i < z0},

{Ύi : i < IQ} as in Definition 1.1 (B) then for a unique i < i0,pi G G and

we let ζ[G] = ζi[G] (remember Ύ^ < T). (If there is no such i, it is not

defined but as we demand {pi : i < IQ} is a predense above r\Ί in PΊ above

r and 7 < a and r G G, it will be defined).

If r $ G then ζ[G] is undefined, or we can give it a default value, like oo.

For a Q-named [7, α)-condition q above r, we define q[G] similarly (with

default value 0).

(2) For ζ a Q-n&med [j, α)-ordinal above r, and q G \Ji<a Pi let q Ihg "C = ξ"

if for every G C [ji<a PI, such that each G Π P^ (i < α) is generic over V,

g G G =» ζ[G] = ξ, (similarly q \\-Q "ζ undefined".)

1.3 Claim.

(1) Suppose ζ is a Q-named ordinal [above r], (Q an RCS iteration, a =

ίg(Q)). If G C |J.<α Pi [and r G G] and each G Π P» (where i < α) is a

generic subset of Pi over V, then for some ξ, C[G] = ξ,j < ξ < &• Moreover

for some q G Pξ+i Π G we have q \\~Q "ζ = ξ" and [ξ + 1 = α =» g G Pξ].

(2) Suppose Q is an RCS iteration of length α, j < α, </?(x, y) a definition

with parameters in V and r e (Ji<a Pi such that:

(i) // G* is generic over V for some forcing notion, in V[G*] we have G C

Ui<α ̂  ^s directed, for each i < a the set G Π P$ is generic over V and

r G G then V[G] \= (3\x)φ(x, G) and we call this unique x, xφ[G\.

Suppose further that for such G*, G we have xφ[G] is an ordinal ζφ =

ζφ[G] e [j,α) (or it is a pair (C*,?*) = (ζφ[G\,qφ[G\), with CV[G] an

ordinal G [j, α), ^[G] G Q [G Π PC¥,[G]]) and r G P^tGl-f i
~C<,[^1

(ii) If G*, G,x = xφ[G] are as in (i), then for some q G GnPCv>[G]+ι Π(|Jί<α P<)

we have:

(*)? ϊ/G**, G' G y[G**] satisfy the requirements on G*, G and q G G'

then xφ[G'} = x(= xφ[G\)\ note ζx = a - 1 ̂  q G Pα_ι follows,
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(iii) if δ < a is limit, r G Pβ, β < δ, and G* generic over V and G G V [G*] and

r G G C \Jε<δ Pε and G Π Pε generic over V for ε < 5, ίften

either for some q G G, and x, (*)£ above holds, (so ζx < δ)

or for some βι G (/?, δ) and r*, r < r* G P/^ Π G we have:

for any β' G (βι,δ) for any r7, #':

r* < r' G P/3/&(*)ϊ/ =» C*' > δ

Then there is a Q-named [j, α)-ordinal above r, £ [or Q-named [j, α)-condition

q] such that:

If G* is generic over V" for some forcing notion, in V[G*], G C \Ji<oePi

directed, for each i < a the set G Π Pi is generic over V and r G G ίften

x^[G] = ζ[G] [or xφ[G] — q[G] (i.e. equivalent members of Qζ[q][G][G ^

1.3 A Remark. 1) Concerning 1.3(2), of course every Q-named ordinal (or

condition) [above r] satisfies these conditions.

Proof. (1) The proof is by induction on the depth of ζ.

(2) The proof is straightforward. For notational simplicity we deal with the

case of Q-named [j, α)-ordinals only; but for easing the induction we define in

Definition 1.1 clause (B) also "extended Q-named ordinals" by just allowing ζ

also values > α (but still j < a. and now in (*)| we have ζx > a — 1 =$> q e Pa-ι

(and we stipulate for α not successor, α — 1 = α)), and so similarly in 1.3(2)(i);

clearly it suffices to prove 1.3(2). for this extension. Let β* be minimal such

that r G Pβ- we know β* < α. Let I be the set of r* G \Ji<a Pi such that:

(*)[r*] for some /3,7 we have: r < r* G PΊ,j < β < a, β < 7 < α,7 < β + 1 and

there is an extended Q-named [/?, oo)-ordinal ζ such that:

if G* is generic over V for some forcing notion, G G V[G*], G C

\Ji<a PI, G Π PΪ is generic over V for i < a and r, r* G G

thenxφ[G] = ζ[G\.
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Let J = {p G I : for some 7 < a we have p G PΊ \ Ue<7 ̂ ε and for no

T', j < 7' < 7 is there p' € J Π P7/, p7 compatible with p (say, in P7)}. It is

enough to prove r G J, so assume that this fails. Choose χ large enough such

that Q G H(χ), G* be such that in V[G*] the cardinal 2X becomes a countable

ordinal.

Now

(*)o If /?, 7, r* are as in (*)[r*j and r* < r** G P7 then r** € I

[this is trivial].

(*)ι If r < r* G P/?, β* <β < α, JΠ P^ \ (J7</3 P7 is pre-dense above r* in Pβ

then r* G I.

[Why? Straightforward by the inductive step in (B) of Definition 1.1].

For /?' < α, r G G C Pβ>, G generic over V, we define j!Gl = {p €

U<α P^ : P G U/3'<e<α ̂ /G aϊld f°Γ SOΠle Γ/ G G Wβ haVΘ P U Γ/ G T)'

(*)2 Assume r G G C P^/, G is generic over V, p G \Jp<e<aPe/G and for

some extended Q-named [j, cx>)-ordinal ζ' above p we have: G C G' C

\Jε<a Pε &p G G' & [for ε < α, G;ΠPε is generic over F] => x^fC?7] = C'fG7].

Then p G J'G1 . [Why? Check, using the successor case in clause (B) of Def-

inition 1.1.

We shall prove by induction on β G [/?*, Uε<α εl

<8) if /3* < /3(0) < /3, G0(o) C P/3(0) is generic over V, r G G^(0), G^JQ) Π J - 0

ίften there is Gβ such that [/? < α => Gβ C P^ is generic over V],

[β = a^Gp C \Ji<a P^& Λi<« ^/3 Π Pi is generic over V], G/3(0) C G^

and GβΓ] J = 0.

It suffice to prove (8), as from ® for /3 = Ue<α ε we βe^ 1-3(2); why? there

is Gβ* C P^* generic over V, such that r G G^* and Z Π G^* = 0 (otherwise

by (*)ι applied to r* = r, /3* = /? we get r G T). Now use 0 with /3(0) = /?*,

/3 = Ue<α ε' and ^/9(o) — G^* and get G^; contradiction to the assumption (ii)
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of 1.3(2), thus finishing the proof of 1.3(2).

Note that as G 0 Π X = 0 also G Π 1^ = 0.

First case: β = β* . Empty.

Second case: β — βι + 1 > β*. So by the induction hypothesis without loss of

generality β(0) = β\. Clearly, β < a (otherwise we are done). As G^(o) £ Pβ(Q)

is generic over V (and r G G^(o)), there is r* G G^(o) such that r < r* and r* Ih

"JΠ (7/3(0) = 0" So there is no r7, r* < r' G P^Q) Π J. Is there r' G Q0(o)[G/3(o)]

incompatible with every {p\{β\} : p G P/j(o)+ι Πl, pf/3ι G G^o))}? (Note (*)0

and remember β\ = /3(0).) If so, no problem to find G^ as required; otherwise,

without loss of generality, r* forces this and by (*)ι, r* G T, contradiction.

Third case: β — a is limit. Without loss of generality in V[G*], Pα (and α) are

countable. Let in V[G*], (βn : n < ω) be increasing with limit /?, /3o = /5(0). We

define by induction on m < ω, G/3m C Pβm generic over V, increasing in n such

that: Gβm Π J = 0. Let n(0) = 0, G/30 = G0(0). For m + 1, use the induction

hypothesis. Now Um<ω Gβm is as required.

Fourth case: β — δ < a is limit. Let α* > α be an ordinal never of the form

ζφ[G\ We shall define φ'(x,y) such that for Qf = Q\δ, r' = r,j' = j the

assumption of 1.3(2) holds: if r G G C \Jε<δ Pε and G Π Pε is generic over V

for ε < δ then:

(a) if for some q G G, q > r and x, the statement (*)£ holds then xφ[G] = x.

(b) otherwise, x^[G] = α*.

Now to see that assumption (i) of 1.3(2) holds we use assumption (iii) of

1.3(2) and also the other assumption holds. So by the induction hypothesis on

α, an extended Q'-named [j, oo)-ordinal ζf exists, say of depth Ύ. Looking at

1.1 (B) there is a set T of strictly decreasing finite sequences of ordinals closed

under initial segments and (ζη,Ύη,pη,βη '• η G T), where

(α) £<> = £'' PO = r' τo the dePth of £ < > > r G p(/3<>-M)
(/?) if η is maximal in T then T^ = 0, βη < 5, ζ^ an ordinal ζη > βη,

Pri £ p(/3,+i)

(7) if 77 G T is not maximal in T then z/ G Suc^(?7) => p^ < p^ G P(^ +χ) &> βη <
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A/, (PV - v G Sucτ(ry)) is a maximal antichain in P(/3r?+1) above pη, ζη is the

following extended Q-named [βη, oo)-ordinal above pη: if pv then it is ζy.

Suppose first: [77 maximal in T & pη \β(Q) G G/3(o) & ζη = of =ϊ pη £

j[G/3(o)]]. Let T1 = {η G T : Pt,|7?(0) G G/3(o)}; we define ζ. Just for every

maximal η G T' such that ζη = α*, "plant" a witness to p^ G J^0)!. In

details, we prove that for every 77 G T, there is a Q-named [7, α:)-ordinal £*

above p^ such that: if Gβ(Q} C G' C (J Pε & p^ G Gx & (Vε < α) (Pε Π G" is
ε<α

generic over V) then xv?[G?/] = Ql^Ί This is shown by <-downward induction

on η G T. In the case 77 is maximal in T, then: if pη \β(Q) $. Gβ^ the demand is

quite vacuous, if ζη ^ α* we can use a Q-name of depth 0 and in the remaining

case we know that pη G Z'^0)' and this give the required conclusion. The

remaining (=second) case is 77 G Γ not O-maximal, and so use the induction

hypothesis (and as in (*)1? the successor case of clause (B), Definition 1.1).

So we have gotten a name of the right kind in V[Gβ^]^ so by (*)2 we get

a contradiction. So for some maximal η G Γ, pη\β(ύ) G Gβ^^ζη = α* and

pη φ I^Gβ(°^. If for any such 77, {q G P§ : pη < q G 2} is pre-dense in P§/Gβ^

above pη, we again can get a witness to pη G T^Gβ(Q^ (reread clause (iii) of

1.3(2)), again contradiction. So some q* G P§ is > pη and is incompatible

with any q G T Π PS in Ps/Gβ^. Any G^ C P5 generic over V which include

Gβ(o) U {g*} is as required. DI.S

1.4 Claim. Let Q = (Pi? Q^ : z < α) be an RCS iteration, Pα = RlimQ.

(1) If β < α, then not only Pβ <> P«, but if ^ G P/3, p G PQ,, then q,p are

compatible in Pa iff ^,pf/J are compatible in Pβ. Moreover if q G Pβ,p G

P&,Pβ \= "p\β < ^" then p U ^ is a common upper bound of p,q in Pα

(even a lub, and in particular Pβ N "q\a <q").

(2) If /?, 7 are Q-named [7, £g(<5))-ordinals, then Max{/?, 7} (defined naturally)

is a Q-named [j,£g((5))-ordinal.

(3) If α = /?o 4-1, in Definition 1.1, part (D), in defining the set of elements of

Pα we can restrict ourselves to β = β$. Also in such a case, Pa = Pβ0 * Q 0̂

(essentially). More exactly, {pU{<?} : P ̂  Pβo> Q a P/30-
name °f a member
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of Qβ0} is a dense subset of Pα, and the order pi \J{qι}<ιp2 U{^2J iff

[pi < P2 (in Pβo) and P2 '^PPO "QI < Qi m Qβo"} is equivalent to that of

Pα, i.e., we get the same completion to a Boolean Algebra.

(4) The following set is dense in Pa : P^ = {p G Pα: for every β < α, if

Π, r2 G p, then \\-Pβ "if n \{β} / 0, r2 ί{/3} ± 0 then they are equal"}.

(5) |Pα| < (Σi<α2lP ίl)lQ !l, for limit α (i.e. we count conditions only up to

equivalence) .

(6) If Ihp. "|Qi| < « " , « a cardinal, then |Pi+ι| < 2'Pil + /c (i.e. identifying

equivalent names).

(7) If Ihp. "d(Qi) < AC" then d(Pi+ι) < d(Pi) -h « (where d is density).

(8) For a limit d(Pα) < 2Σί<«^Pί).

Proof. Easy.

1.5 The Iteration Lemma.

(1) Suppose F is a function, then for every ordinal a there is RCS-iteration

Q = (Pi, Qi\i< αΐ), such that:

(a) for every ΐ,^ = F(Q\ί),

(b) at < a,

(c) either a^ = a or F(Q) is n°t an (Rlim Q)-name of a forcing notion.

(2) Suppose β < a, Gβ C Pβ is generic over V, ί/ien in V[G0], Q/G/? =

(Pi/Gβ,Qi : /? < i < α) is an RCS-iteration and Rlim (Q) = P^ *

(Rlim Q/Gβ) (essentially) .

(3) The Associative Law.

If Qξ(ξ < £(0)) is increasing and continuous, CUQ = 0, Q — (Pi,Qi : i <

is an RCS-iteration, Pξ(0) = RlimQ, then so are

and (Pi/Pa(ξ},Qi : a(ξ) < i < α(£ + 1));

and vice versa.
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(4) If Q is an RCS iteration, p e RlimQ, P( = {q e Pi : q > p\i},Q'i =

{p£Qi'.p> P\{i}} then Q = (P ,Q( : i < igQ} is (essentially) an RCS

iteration (and RlimQ' is P't ^).

Proof. (1) Easy.

(2) Pedantically, we should formalize the assertion as follows:

(*) There is a function F = F0 (= a definable class), such that for every RCS-

iteration <2, and £g(Q) = α, and β < α, FQ(Q, β) is a P^-name of Qt such

that:

a) \\-Pβ "Qt is a RCS-iteration of length a - β" .

b) P^*(RlimQt) is equivalent to Pα = RlimQ, by Fι(Q,/3) (i.e., Fι(Q,β)

is an isomorphism between the corresponding completions to Boolean

algebras) .

c) if β < 7 < α \\-Pβ «F0(QΓ7,)3) = ^(Q^)K7 ~ /^)" and Fι(Q,^)

extends F\(Q\Ί,β) and Fι(Qf7,/?) transfer the P7-name QΊ to a

P/3-narne of a (Rlim(Qt f(7 _ /3))-name of Q\_β (when Qf = (Q\ •

i<Ί-β}}

The proof is by induction on α, and there are no special problems.

(3) Again, pedantically the formulation is

(**) For Q is an RCS-iteration, ίg(Q) = a$(o)j & — (&ξ '• ζ < ίW) increasing

continuous, Fs(Q,α) is an RCS-iteration Q^ of length a^0) such that:

a) F±(Q, δί) is an equivalence of the forcing notions RlimQ, RlimQt.

b) F3(Q\aζ,ά\(ζ + I)) = F3(Q,a)\ζ.

c) Q^ is the image by F4(<3fαξ,αΓ(£ + 1)) of the Paζ = Rlim(Qta^)-name

The proof again poses no special problems.

(4) Left to the reader.

1.6 Claim. If K is regular, and \Pi\ < K (or just d(Pi) < K) for every i < /

and Q — (P^, Qi : i < K) is an RCS-iteration, then:

(1) every Q-na,med ordinal is in fact a (Q |^)-named ordinal for some i < α,
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(2) like (1) for Q-named conditions,

(3) P« = \Ji<KP*.

Proof. Easy.

1.7 Claim. Suppose Q — (Pi,Qi : i < δ) is an RCS-iteration, δ limit and

p € PS, and ζ is a Q-named ordinal. Then there are i < ί, and p^ G Pi+\,p\(i -f

1) < pt such that pt |h0 "ζ = i" (or pt Ih "([G] undefined " if we allow this).

The same holds for Q-named conditions (if Qi C V).

Proof. Easy. By 1.3(1).

§2. Proper Forcing Revisited

2.1 Discussion. Properness is a property of forcing notions which implies that

HI is not collapsed by forcing with P, and is preserved by countable-support

iteration (and also Hi-free iteration, see IX.). This property was introduced

in chapter III, and (see VII §3,4) many examples of forcing not collapsing

HI were shown to be proper (Hi-complete, c.c.c., Sacks forcing, Laver forcing

and more). It was argued that proper forcing is essentially the most general

property implying HI is not collapsed and preserved under iteration. So the

forcing of shooting a closed unbounded set through a stationary subset S of HI

(see Baumgartner, Harrington and Kleinberg [BHK], and III 4.4), though not

collapsing HI, is excluded as if HI = \Jn<ωSn,Sn pairwise disjoint stationary

subsets of HI and we shoot a closed unbounded subset through each ωι\Sn,

in the limit HI is collapsed. Of course we can "kill" stationary sets in a fixed

normal ideal of HI (see e.g. [JMMP]) and properness really demands somewhat

more than not destroying stationary subsets of HI (also stationary subsets of

£<N0(λ) = {A C λ : m<H0 should not be destroyed); but those seemed

technical points.

However, in Chapters III-IX we were mainly interested in forcings of

cardinality HI, so another restriction of properness was ignored: if P is proper,
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any countable set of ordinals in Vp is included in a countable set of V. So

forcing changing the cofinality of some λ, cfλ > NI, to NO, are not included.

In fact, there are such forcings which do not collapse NI, and moreover, do

not add reals: Prikry forcing [Pr] (which changes the cofinality of a measurable

cardinal to NO) an(3 Namba [Nm] which changes the cofinality of N2 to NO (and

do not add reals when CH holds).

We suggest here a property of forcing, called semiproperness, such that

most theorems proved for proper forcing hold (when we use RCS-iteration)

and it includes Prikry forcing. We did not know whether there is a forcing

changing the cofinality of N2 to NO which is semiproper (i.e., provably from

ZFC), but we shall have an approximation to this, (but see XII §2).

So in this section we introduce the notion, and prove the preservation

under RCS-iteration. In this we weaken a little the assumptions: for limit J,

Qs is not necessarily semiproper, only P§+ι/Pi+ι(i < δ) is semiproper. This

change does not influence the proof, but is useful, as we can exploit the fact

that δ was a large cardinal in V. Note that the useful result is Corollary 2.8.

2.2 Definition. A forcing notion P is 5-semiproper (S a P-name of a class of

uncountable cardinals of V) if for any large enough regular λ, and well-ordering

<* of £Γ(λ), and countable TV -< (H(X), G, <*), such that P G TV, S G TV, and

for every p G P Π TV there is ς, p < q G P such that: for every cardinal K G TV

and P-name β G TV of an element of AC,

q \\-P "if « G 5 then there is A G TV, | A\v < K, β G A"

Equivalently, if S consists of regular cardinals of V, q \\~p "if K G S then

Sup(TV n Λ) = Sup(TV[G] Π AC)" or even q II- " if cf (K)v G 5, then Sup(TV Π AC) =

Sup(TV[<7] Π AC)"; the case "S = {Ni} is the main case.

(Note that we write A and not A, i.e., A is in V; also when K is regular in V,

without loss of generality A = 7 for some 7 < ft; this is the main case.)

We call q, under such circumstances, 5-semi-(TV, P)-generic. "Semiproper"

means "{Nι}-semiproper", and "semi-generic" means "{Nι}-semi-generic" (we
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change the conventions of [Sh:b] where they mean URCarv - semiproper,

URCary -semi-generic respectively (see below)).

2.2 A Remark. We could here change the definition to:

q Ihp " if K e S Π N[G\ then, letting Nf = the Skolem Hull of TV U {^}, we

have Sup(W n «) = Sup(W[G] Π «)"

(in this case every K e S is regular > N0) We have not looked into this variant.

2.2B Remark. When we write "P is UCar-semiproper" or "P is UCar-

semiproper", UCar means {δ : δ = $% or cfy (δ) > N0} so it is a P-name.

Similarly for SCar, RUCar instead of RCar (and also NI) etc. But e.g. RUCarv-

semiproper means the regular uncountable cardinals of V.

2.3 Claim.

(1) If P is UCarv-semiproper, or even S-semiproper, 5 = {λ : cfλ > H0 and λ

a cardinal, in V}, or even RUCarv-semiproper, then P is proper, and vice

versa. Moreover, in this case, q in Definition 2.2 is (A7", P)-generic which

means: if β £ N is a P-name of an ordinal then q Ihp "/? £ AT".

(2) P is 5-semiproper iff the condition of Definition 2.2 holds for some λ > 2'p',

and well-ordering <* iff it holds for λ = (2lpl)+ (provided that P G H(X)).

Also, the well ordering <* is convenient but not really necessary.

(3) P is .S-semiproper iff (Bp \ {0}, >) is, where Bp is the complete Boolean

algebra corresponding to P.

(4) In Definition 2.2, for K > N0, and κ> |P|, the condition is trivially satisfied

by any <?, so only 5 Π {AV : K0 < K < \P\} is relevant.

(5) If P <> Q, S a P-name and Q is 5-semiproper Λen P is S'-semiproper.

(6) If P is 5-semiproper, lhP

 uκ e 5", cf(/c) > N0, ΐften lhP "cf(«) > K0". In

particular, if K^ G S then K]7 - N^P.

(7) If Ihp "51 C 52", P is ^-semiproper then P is S ̂ semiproper (similarly

for semi generic).

Proof. Easy. Cb.s
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2.4 Definition.

(1) A property is preserved by RCS-iteration, provided that for any RCS-

iteration Q = (Pi,Qi : i < α), if Qi has the property (in VPi) for each i,

then Rlim Q has the property.

(2) A property is strongly preserved by RCS-iteration provided that, for Q —

(Pi, Qi : i < a) an RCS-iteration, we have

(a) if for every 7 < β < a such that 7 not a limit ordinal, Pβ+ι/PΊ has

the property then RlimQ has the property and

(b) if a = β + 1 > 7, Pβ/PΊ and Qβ have the property, then Pa/PΊ has

the property.

(3) We can replace RCS-iteration by any other kind of iteration in this defi-

nition.

2.4A Remark. In VI 1.6, 1.7, many properties were shown to be preserved

by CS iteration. In fact we have proved they are strongly preserved for CS

iteration - see VI 0.1 (B) and even RCS iterations.

2.5 Claim.

(1) In Definition 2.4(1), (2) it suffices to consider the two-step iteration and

the case where a is a regular cardinal and: 7 < β < a implies Pβ/PΊ has

the property (where for 2.4(2) 7 is zero or a successor ordinal).

(2) If a property is strongly preserved by RCS-iteration then the property is

preserved by RCS-iteration.

(3) In (1), for a regular, we can add: \β < a ^\\-pβ "α is a regular cardinal"]

provided that: Pa has the property iff {p G Pa : Pa \{q : q > p} has the

property } is dense.

Proof. Easy, by induction on α; for (1) use the associative law 1.5(3). For (3)

use 1.5(4). Π2.5

2.6 The Semi-Properness Iteration Lemma.

(1) "Q is S^-semiproper" is strongly preserved by RCS-iteration for
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S® = {^} U {K : in VQ we have "« = cf/c > H0"},

so it is a Q-name.

(2) Suppose Q = (Pi,Qi : i < a) is an RCS-iteration, for successor j < a

for arbitrarily large non limit i < j, Pj/Pi is 5^-semiproper (and 5^ is

defined, §ij is a P^-name). Let (5 is a Pα-name):

5 = {λ : λ an uncountable regular cardinal, and for every i non-limit we

have: cί(X)v * G Sij for every j G [i,α), for which 5̂ - is well defined }.

Then Pa = RlimQ is 5-semiproper provided that:

(Cl) for every limit δ < a there is ξ < <5, such that

lhpξ "[cf(ί) = HO or for every ξ <i < j < δ : if 5*j is defined

then Ihp./Pί "cf(£)vPί eSij}".

(3) In (2) we can weaken (Cl) by replacing ξ by a (Qfί)- named [0,5)-ordinal

ξ i.e. if p G Pξ+i, p ll~ "̂  = ξ" then, for ξ < i < j < 5, i non-limit we have,

p\ξ lhPξ « [cfί - Ho o r p f K . J ) »-p,/p, u(cfδ)yPi G 5,,/']", and replace S

by 5 = {λ: for every non-limit i < α and j G [i,α) (such that Sij[Gij]

well defined), the cofinality of λ as computed in VPi is > HO and belongs

to5< f J [Gp.]}.

(4) In part (2) we can omit the condition (Cl) and replace "for arbitrarily large

non-limit ί < j" by "for every i$ < j there is a Q-named [i0, j)-ordinal i

forced to satisfy the demand on i".

Remark.

(1) For i < a non-limit clearly 5i,ΐ+ι is defined, so Qi is 5^_|_ι-semiproper.

(2) In 2.6(2) and (3), in (Cl) we can replace "for every" by "for arbitrarily

large" assuming Sij decreases with j.

(3) See XII§1 for an alternative proof, using games.
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Proof. (I) Follows from (2).

(2) We prove the theorem by induction on α, for all Q's and even for Q's in

forcing extensions of V.

Let T = { ( i , j ) : S^ is defined } (here T G V).

Note that for any β < 7 < aβ non-limit, Q\[β^) = (Pi/Pβ,Qi : β <

ί < 7) satisfies the hypothesis on Q. Let λ be big enough, <* a well-ordering

of #(λ), Q G #(λ), N X (#(λ), G, <*), N countable, 5 G N, Pa G N hence

w.l.o.g. Q G N [because (ίf(λ),G,<*) t= "there is Q, an RCS-iteration as in

2.6(2) such that Pa = RlimQ", as Pa G N -< (#(λ),G,<*) there is such a

Q in N]. Similarly w.l.o.g. (Sij : ( i , j ) G T) belongs to N. Furthermore, let

p G Pα Π N.

Case A. a non-limit.

The cases α = 0, α = 1 are too trivial to consider. For α > 1 by the

induction hypothesis on a and 1.5(3) we can assume a = 2.

So by 2.3(3)+1.4(3) w.l.o.g. P2 = <2o * Qi, and let p = (p0,Pι) G PI Π TV.

As clearly Qo ^ N, there is #o G Qo> Po < ^o, which is SΌ,ι-semi (A/", P)-generic.

To help us in understanding let GO C QQ be generic, QQ G GQ. As <* is a well-

ordering of -ff(λ), (ίf(λ)[Go], -ff(λ), G, <*) has definable Skolem functions, and

a definable well-ordering (and note: H(X)[Go\ is -ff(λ) of the universe V[Go] as

we know that any member of H(\)[GQ] has a name in -ff(λ)).

Now 7V[G0] is the Skolem Hull of N in (ff(λ)[G0], G, <*). So: as pι[G0] G

7V[G0] (because pi, GO G N[GQ]), Qι = Pι/G0 is SΊ,2-semiproper (i.e. SΊ,2[G0]-

semiproper), and Qι,pι[G0] G A^[G0] -< (ίf(λ)[G0], G, <*), there is qι G Qi

which is 5ι,2-semi (JV[G0],Oι)-generic and qι > pι[G0}. Let GI C Qι be

generic, gi G GI. Note that 5 C 5Ό,ι Π SΊ^

So if K G JV and cf(κ ) G 50,ι[G0] then as qQ is 50,ι-semi (TV, Q0)-gβneric

and go € Qo clearly Sup(7V Π K) = Sup(N[Go] Π K); and similarly if K e N and

cfv[Gol(κ) G 5ι>2[G0,Gι] then Sup(7V[G0] n«) = Sup(7V[G0,Gι] n«). We have

described #1 knowing GO, hence there is an appropriate Qo- name ql such that

#0 I^ "^i is a8 described above".
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As S C 5o,ι Π 5ι,2 and as Go,Gι were arbitrary except that QQ G GO,

qι G GI, clearly (qo,qι) is 5-semi (Af, P2)-generic.

Case B. a a limit ordinal and there are β < a and p^ such that p\β < p^ G

Pβ andpt \\-Pβ "cf(α) = N0"

As AT -x (ίf(λ),€>, Q e N and β e N, p e N, we can assume /3 is

a successor ordinal and pt G JV, hence by 1.4(1) without loss of generality

Pfβ = ί̂  Moreover by Case A it suffices to prove that Pa/Pβ,Pβ are S-

semiproper (for P/?, more exactly {K, : for no q G Gpβ,q lhpα "« ^ 5}|. By the

induction hypothesis this holds for P^; for Pa/Pβ (we are working in V[G0],

Gβ C Pβ generic over V, p^ G G/? by 1.5(1)) w.l.o.g. /3 — 0 so cfα = N 0> and as

Q G AT, α G ΛΓ, clearly there are αn < α, αn < αn+ι, α = Un<^ αn, and w.l.o.g.

each αn is a successor ordinal or 0 and αn G AT, QQ = β and (αn,αn+ι) G T.

Now let {(βn-, R n) : n < ω} be a list of the pairs (β,«), where K G AT and /?

a Pα-name of an ordinal < K, /? G N. We define by induction on n < ω pn, qn

such that:

(1) pn is a Pατι-name of a member of AT Π Pα,Po = P^

(2) qn G Pttn, ςn-hifαn - ^n,ςn is (Πfe<n ^«fc,αfc+1) -semi (JV,Pατι)-generic,

(3) pnfαn < ςfn, (i.e. this is forced)

(4) pn+ι lhPα " n̂ < 7n for some 7n a Pατι-name of an ordinal < «n, 7n G ΛΓ".

(5) gn I^Pαn "Pn < Pn+1 (in Pα)w

This is easy (ςn+ι ί[αn,αn+ι) can be constructed like qι in case A). Of

course the point is that a Pατι-name of a condition in Pαrι+ι/Pατι is essentially

a condition in PQτι+1 Now Un<α; ̂  *s as reφiired.

Case C. a a limit ordinal and for no β < α, pΐ G Pβ, p\β < p^ does

ptihp, «cf(α) = »0".

Let ξ = ξ* be as guaranteed by condition (Cl) from the hypothesis. By

case A without loss of generality ξ — 0. Let αn G AT, αn < αn+ι, (Jn<u;α™ =

Sup(AΓ Π α) (exists, as α G AT), and α0 = 0, αn non-limit; and repeat the

previous proof getting (qn : n < ω), adding
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(6) if r G Pn (so r is a Q-named atomic condition) then for some ra and

Pατι-name ξm < a we have

in other words for n, k < ω for some m > n and Pαm-name £m we have:

for every Gατrι C Parn generic over V to which <7m belongs, letting r be the A -th

member of pn in the canonical well ordering of pn of order type ω, we have:

either for ξ = £m[GαJ < αn , and some p1 G GαmnPξrrι+ι,p'lhPί+1 £(r) = f" or

for some f G [αn,α)(rW[Gαn]), we havepm[Gajr(£ + 1) lhPa/Gan "C(r) - Γ

By condition (Cl) from the hypothesis and as ξ* — 0, we have qn \\-pan

 uNΓia

is unbounded in N[Gan] Π α, i.e. {αn : m < ω} is an unbounded subset of

N[Gan] Π α". Let ςf G PSup(JVnα)> ^Γ<^n = 9n Tne new Point is tnat condition

(3) above does not immediately give pn < q, only yields (*) Pn\((Ji<ω&i) <

(Ji<ω qi But if q G G C Pα, G generic over V, then p^ = pn[G Π PΛn] is a

member of N[Gan] Π Pα, and for every Q-named condition r G p'n we know by

(6) above that for some m, ξm is a Pαm-name and letting ξ = ξm[G Π P«m]

we have p^+1 rξ lhP, «C(r) - £"- But C(r) G 7V[GαJ C 7V[G] and gn is {cfα}-

semi (7V[Gan],Pα/Pαn)-generic hence ξn[G] < sup(7V Π α) hence by (*) we

know {r} G G. This insures that: if q G G C PSup(Λrnα:)5 G generic over V and

f € Pn[Gaτι] (n < ω) (so r is a Q-named condition) then ζ(r)[G] < sup(NΓ\a).

As this holds for every r G p'n we necessarily have p'n G G [as some </* G G

forces (Vr)(r G p^ =Φ r G G). Why? As this hold; assume toward contradiction

that g* I/ "/4 G G" so, w.l.o.g. it force the negation, but you can check that

p'n U #* G Pa/Gan, contradiction].

As this holds for every appropriate G, we have q \\-pa "pn G GPo" which is

enough.

(3) A similar proof ( only we increase p to determine ξ).
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(4) The proof is like the proof of part (2), but in the case α is a limit ordinal

(i.e. cases B, C), we use an a Q-named ordinal, so conditions (l)-(5) (see case

B) should be revised accordingly and if n < ω, ξ is a Q-named ordinal in the

Skolem-hull of N U {pn} then for some ra, \\-Pa "ξ < gm". D2.6

As we do not actually need 2.6(4) we have not elaborate. In fact, essentially

we have proved above also the following, which will be useful e.g. for chain

conditions:

2.7 Lemma. If Q = (P<,<2t : i < $) is an RCS-iteration as in 2.6(2) or 2.6(3),

δ a limit ordinal, and 0 lhP. "cfί > N0" ( and of course Ih "Ni G S", really

(Cl) of 2.6(2) is needed for δ only), for every i < δ, then 0 Ihp6 "cf(5) > K0".

Moreover, in this case, (Ji<δ Pi i§ a dense subset of P§ more exactly essentially

dense (i.e. for every p G P$ for some q G \Ji<δ Pi we have q Ih "p G Gp6").

Proof. Let p G P$. Let χ be large enough, <* a well ordering of £Γ(χ), N -<

( j f f(χ),€,<*) is countable, {Q,5,p} C N. In the proof of 2.6, for α = <J,

necessarily case C occurs. Now g G PSup(Nnα) ^ U/3<α ̂  ̂ s at>ove po which is

p. Now in (Cl) the second possibility always holds, so if τ : ω —> δ is a P^-name

from AT, then q forces each τ(n) to be equal to some Pαfc(τι)-name of an ordinal

< δ from N, which q forces to be < sup(7V Π δ). Together we finish. D2.τ

Also note that the most useful case of 2.6 is

2.8 Corollary. Suppose (Pi,Qi : i < δ) is an RCS-iteration, and for every

j < δ for arbitrarily large non-limit i < j +1, Pj +i/Pi is {Nι}-semiproper, and

for every i < 5, lhpί+τι " the power of Pi is NI" for some n < ω. Then P$ is {Ni}-

semiproper. If in addition |P^| < |ί|, for i < δ and 5 is inaccessible then P§ is

S'-semiproper, for 5 = {K^} U {K :\\-pδ "K is a cardinal, K, — cf(κ) > H0"} If in

addition cf (δ) = KI then [_)i<δ PΪ is a dense subset of PS more exactly essentially

dense (i.e. for every p G P<s for some # G \Ji<δ P% we have q Ih "p G Qpδ").

2.9 Remark. For iteration of proper forcings, there is really no difference

between CS and RCS-iterations (see III 1.16), i.e. for Q an RCS iteration of
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proper forcing, {p G RLimQ: the set {α: for some r € p and q G Pβ+i we

have q \\-pβ+l "ζ(r) = /?"} is countable} is a dense subset (in a weak sense) of

RlimQ In fact J5-properness (for some stationary E C <S<κ0(U£?)) suffices.

2.10 Conclusion. Suppose K is supercompact (without loss of generality,

with Laver indestructibility). Then for some κ-c.c. semiproper forcing notion

P of power *;, lhP "SPFA" and even lhP "SPFAα" for all α < ωi, where

SPFA = SPFA0 and SPFAα is the assertion Axa [semiproper], i.e.:

IfQisa, semiproper forcing notion, (TI : i < ωι) a sequence of Q-names of

members of V, (Sβ : β < a) a sequence of Q-names of stationary subsets of

α i, then for some directed G C Q:

(a) for every i < ωi, for some q € G, # forces a value to r^.

(b) for every β < α, {ζ < ω\ : 3<? € G, # Ih "ζ € 50} is a stationary subset of

Proof. Same as PFA-see VII, 2.7(2) or VII 2.9. We use iteration as in 2.8, e.g.

require Q2i+ι is Levy(Nι, 2lp2i+1'). D2.ιo

§3. Pseudo-Completeness

A widely used family (or property) of forcing is NI-completeness, i.e., if pn <

Pn+i G P, then there is p G P, pn < P for every n. This is the simplest family

of forcing which does not add reals, nor new cj-sequences of ordinals. In our

perspective we want a condition parallel to this, including, e.g., Prikry forcing.

3.1 Definition. For a forcing notion P, a P-name S of a set of cardinals of F,

an ordinal δ (always a limit ordinal) and condition p we define a game US(P, P)'

in the i-ih move, player I chooses a cardinal (in V) \i and a P-name βi of an

ordinal < λi, and player II has to find a condition ,̂ and a set Ai C λ^,

|A;| < λi? Ai^V such that:

(A) P ί lh "^G^orλ^5";

(B) pi >p,pi> PJ for j < i.
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The play continues for δ moves.

In a specific play, player II wins iff {p} \J{pi : ί < δ} has an upper bound

(and loses otherwise). If a player has no legal move (this can occur to player II

only) then he loses instantly.

We say that a player wins the game if he has a winning strategy.

3.2 Claim.

(1) At most one player can win the game c)|(p, P).

(2) If for every A^ G 5 and μ G SCar, μ < \i =$> μ G 5, then in the definition

of the game, it does not matter if we demand \Ai\ = 1 (i.e., if one side has

a winning strategy iff he has a winning strategy in the revised game).

(3) If μι is regular, μ\ < μ0, δ divisible by μi (and if μi = μj "ί divisible

by (μ2)2" suffice) and for every cardinal μ, [μi < cfμ < μ < μ0 => μ G 5]

then in the definition of the game, it does not matter if we demand, when

λ; — μo, that \Ai\ < μ\.

(4) Also we can replace \i by any set B G V, |J3| = λ;. If λ^ is regular (even

if only in V) we can demand Ai G λ^ (i.e., it is a proper initial segment).

(5) If for every regular μ satisfying KQ < μ < λ we have μ G 5 and there is

n G 5, 1 < n < HO and for every p G P, player II does not lose in the game

D|(p, P), then forcing by P does not introduce new 5-sequences from λ.

(Usually n = 2; for n > 2 we have to work somewhat more in the proof.)

(6) If n G 5, n < ω, adding {m : n < m < NO} to 5 does not change anything;

also if cf (λ) G S adding λ does not change anything.

(7) In Definition 3.1, if cfv(λ) G 5 we can add λ to S with nothing being

changed.

Proof. E.g. (3), player II can find a response in the revised game by playing

< μi many moves in the original game, each time having a family P of < μi

candidates, and for each A G "P, if cf(|-A|) G [μi, μo] we replace it by a subset of

smaller cardinal by one more, and if cf(|A|) < μi, we represent it as the union

of < μi sets each of cardinality < \A\. In (6) (as well as in (2), (5)) just let
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player II use several moves to "answer" one question (if ra = ω it is still finitely

many though without an a priory bound). U3.2

3.3 Definition. The forcing P is (5, $)-complete if player II wins in the game

D|(p,P) for every pe P.

We define "P is (5, < /:?)-complete" similarly. P is pseudo /^-complete if it

is (tt+ Π SCarv^)-complete for every (cardinal) μ < K.

3.4 Lemma.

(1) If P is |5|+-complete then it is (Carv, 5)-complete.

(2) If P is (λ+ ΠSCarv, incomplete, δ < λ, then forcing by P does not change

the cofinality of any μ, NO < μ < |ί|, and forcing by P does not add new

5-sequences from λ .

(3) In particular if P is ({2},α;)-complete (or even ({n},u;)-complete) then

forcing by P does not add reals.

(4) If P is (5,α;)-complete then P is 5-semiproper.

(5) If P is (SΊ, incomplete, then it is (£2, £2)-complete provided that (77 e

S2)(3/3 € Si) [cf(7) = β or 7 - β] and δ2 < SL

(6) P is (S, 5)-complete implies (Bp \ {0},>) is (S, 5)-complete, (Bp is the

complete Boolean algebra corresponding to P). (See also 3.8.)

Proof. Easy. U3.4

3.5 Theorem.

(1) RCS-iteration strongly preserves (SCar,α;)-completeness, and (RCar,α;)—

completeness and (RUCar,ω) -completeness. Moreover, if the assumption

holds for the iteration Q, Q has limit length, and λ is in the sets of cardinals

mentioned above in each VPί, i < IgQ, then it is so in VPδ.

(2) RCS-iteration strongly preserves (5,^-completeness for 5 C {2,K0,Nι},

if we restrict ourselves to <2's satisfying (Vz < ίg(Q))[(3n) \^pi+n "|Pi| <

»l"].

(3) The strong preservation in (2) holds even without the extra assumption.
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3.5A Remark. Actually, we demanded in 3.1 that S is a set of cardinals but,

for example, SCar is essentially |P|+ Π SCar.

3.5B Remark.

We can also imitate 2.6, and vice versa.

Proof. (1) We use Claim 2.5(1), so have to deal only with iteration Q = (P^, Qi \

i < α) where α = 2 o r α = λa regular cardinal.

Let 5 be any one of those three classes of cardinals, (remember, the

meaning of our S depends on which forcing it applies to say 5 = 5P, which we

know by the game we are using) so 0)5(7?, P) means d^P(p, P).

Case A. a = 2.

Let p = (PQ,PI) £ QQ * Qi, and let FQ,FI be the winning strategies of

player II in ό)s(po>Qo)j ^(piiQi) respectively. By 3.2(4), we can assume F\

gives us an ordinal or a member of {0,1} if the corresponding λ is regular or 2

respectively. The idea of the proof is that the output F\ gives us, a Qo-name

for an ordinal, can be used as input for FQ.

Let in the i-th move player I choose λ^ and a P2-name β% of an ordinal

< \i, and player II choose (po,i»Pι,i) € P2> a Pi-name A\j, and a set AQ^ C A;

(Officially player II plays (PO,I»PM)» ^o,i? and chooses Aιti for himself). Player

II preserves the following property:

(*)(a) po,t Ί~Qo "tne following is an initial segment of the play of S|(pι,Qι) in

which player II uses the strategy F\ : ( . . . , ( λ j , β j ) , (pij,Aij),.. )j<i"

(b) Po,ΐ Ί~Qo "^ι,ί ^s an ordinal α^ < λ^ if λ^ > NO and a singleton {α^} C λ^

if λ< = 2 and Aι f < C Λ/

(c) Ao,i is an ordinal < λ^ if λ^ > NO and a singleton C 2 if λ^ = 2.

(d) The following is an initial segment of a play of the game 0)5 (po»Qo) in which

player II uses his winning strategy F0: in the j-th move player I chooses
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λ, , OLj such that: [λ» > K0 => AM = α;] and [λ< = 2 =» AM = {a<}] and

player II chooses p0,j, A),j

It is easy to see that player II can do this and that it is a winning strategy.

Case B. a = X a regular cardinal and p G Pχ and there are β < λ,pt € Pβ,

P\β<P] such that pt |hP/3 «cf(λ) - K0".

By the previous case, it suffices to prove that Pα/P0+ι is (5, u>)-complete,

so w.l.o.g. cf(λ) = NO and in fact λ = N0» and there are no problems. We leave

the details as an exercise to the reader.

Case C. a = X is regular and for every β <a, p\β \\-pβ "cf(λ) > NO".

We will first give an informal sketch of IPs strategy. We will also choose

ζn, 0 = £o < fi < < ζn < λ. After each move (λn,αn) of player I, player

II starts a new game Dn = D| bnΓ[ξn,&ι+ι),^n+1/^J, where pnΓ[ξn,cO is

chosen such that it decides an up to a P^-name gn,n. He then plays one step

in each of the games Dm (m — n — 1,. . . , 0), simulating for Im (i.e. first player

in Dm) the move (λn,gn,m+ι) and Πm answer (pnf[im^m+i),an,m> (where

gn?m is a Pξm-name) where we choose a constant winning strategy for Πm (it

is a Pξ^-name) and player II answers in the true game in αnjo The £/s must

be big enough such that all the pn's are eventually forced to be essentially in

(Jt<ω P& (i.e. equivalent to a member). We only have to deal with countably

many Q-named ordinals, so we can take care of finitely many at each step n.

We now describe more formally the winning strategy of player II. By a

hypothesis, for every non-limit β < 7 < α, and r G Pβ,Ί(— P-γ/Pβ) player II

has a winning strategy FβίΊ(r) (a P^-name) for winning the game D^r, PΊ/Pβ).

We can change a little the rules of the game D|(r,P7/P/3), letting in stage n

player I choose k < ω and a finite sequence (λy, /?J , . . . , λ£, β%) (β™ a PΊ/Pβ-

name of an ordinal < λ™) and player II will choose α^,..., αjϊ € Fp^, and a

condition pn G PΊ/Pβ satisfying Vpe \= "a? < λ?", pn I^P^/P^ "*/λ? G 5 ίΛen

β% <a'% < λ^ when λ^ > α; and /?£ = α^ when λ^ = 2" and pn > p,pn > pn-ι,
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(remember here S is really a P7-name). Note: if player II wins the usual game

he will win also the revised one.

Let for every p G Pα, p = {p^ £ < ω},p^ a Q-named condition.

Now player IΓs winning strategy uses some auxiliary games which he plays

on the side. In stage n, player I chooses λn, gn (a P^-name of an ordinal < λn),

but player II chooses not only pn, An, but also a non-limit ordinal ζn < λ, and

for I < n Pξ£-names an^ of ordinals < λn and for k < n also /?J? which is a

Pξfc-name of ordinal < λ such that:

a) P < Pn,Pn-ι < Pn, £o = 0, fn+ι = Max{£n + I,β$ + l:e<n}

b) Pn\[ζn,&) II~P« "gn = gn,n> C(pi ) is ^ ^n < ^(= Oί) (or undefined) for

£, fc < n such that I = n — \\/ k = n — 1" where gn,n? /?5J are P^-names.

c) for each ra < n, the following is an initial segment of a play in the

game G|(pmϊ[ξm,ξm+ι), ^ξm+ι/P£rJ in whicn PlaYer π uses hίs winning

strategy Fξm)ξm+1 (Pm\[ξm,ξm+ι))'

;
/ \ λ /O?7l-|-l\ / h[£ ^ \ /O77l-(-l\

\ Λ m+l5 gra+l,ra+l} Aι Pm+ln \Pm+l I [sm> sm+lj j gm+l,m» Pm / ' '~ ' ~

/ \ \ /-?^ \ / !*[£ (̂  \ /-? '̂ '
\ TL 5 ;™7l,77l-|-1 ? ^5 '771-1-1 / ' \*Ή I LζϊTT' 5 ζ?7l>-|-l / ) χ^7T,Tl 7 r^TΓL ι

i.e.

1< i < n — m

d) Player II choice of An, is An — an$ if λn > ω and An — {αn)0} if λn = 2.

Player II can carry out his strategy easily, defining in stage n, first fn,

second Pn\[ζm&)ι Qn,n and /3JJ, third he defined by downward induction on

m<n, pnΓtξmjξm+i], ^n,m,^m5

 and fourth play as in d).

2) The proof is left to the reader. (Compare 2.8).

3) Combining the proofs of 2.6(4) and part (1). Ds.5

3.6 Definition.

For a forcing notion P, a P-name S of a set of cardinals, an ordinal δ and

a condition p we define the games ED|(p, P), R£)|(p, P)

(or ED5(p,P, 5),RD5(p,P, 5) respectively; £? stands for essentially, R for re-

ally).



§3. Pseudo-Completeness 497

(1) In a play of the game ED|(p,P) in the ϊ-th move, player I chooses a

cardinal λ^ and a P-name βi of an ordinal < λ^ and player II has to find

aset A eλi, IA<| <λi, ( A < € V).

The play continues for δ moves. In the end player II wins if he can find a

condition pΐ G P, p < p^ such that for every i < δ, pΐ Ihp "/?» 6 A*, or

XiφS".

(2) In a play of the game RZ)|(p, P) in the ί-th move, player I chooses a

condition q^ qi > PJ for every j < i and ̂  > p, and a cardinal λ^ and a

P-name βi of an ordinal < λ^ and player II has to find a condition p^ and

a set At C λi, |Ai| < A», (A» G V) such that

(A) p< Ihp " / 3 i E A < o r λ i £ 5 " ,

(B) p, > qi.

The play continues for δ moves, and player II wins if {p} \J{pi : i < δ} has

an upper bound.

Note: 3.6(1) is close to 3.1, 3.6(2) is stronger. Comparing Definition 3.6(2) with

XIV Definition 2.1, the definition here is stronger when δ > ω.

3.7 Definition. The forcing P is essentially (5, incomplete [really (5,α)-

complete] if player II wins in the game ED|(p, P) [Rϋ)|(p, P)] for every p e P.

3.8 Lemma.

(1) The parallels of 3.2, 3.4 hold.

(2) Let P be a forcing, B the corresponding Boolean algebra. Then P is

essentially (5, α)-complete iff (Bp \ {0}, >) is (5, α)-complete; and if α >

ω, this implies P is 5-semiproper. If P is complete (i.e. for any TCP

there is p such that every G C P generic over V Γ : p G G i ί f J π G ^ 0

and (Vg e i)(^ < p)) then P is (5, α:)-complete iff P is essentially (5, α)-

complete. If P is really (5, α)-complete then P is (5, α)-complete which

implies essentially (5, α)-complete.

Proof. Easy. DS.S
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3.9 Theorem. (1) RCS-iteration strongly preserves the notions "essential

(S, ̂ -completeness" for S G {SCar,RCar,RUCar}. Similarly for "real (S»-

completeness.

(2) Moreover, if the assumption holds for the iteration Q, Q has limit length,

and the cofinality of λ is in the set of cardinals mentioned above in each V Pί ,

i <£gQ, then it is in VPδ.

(3) RCS-iteration strongly preserves essential (5,α;)-completeness for S C

{2, HO 5 NI}, if we restrict ourselves to Q's satisfying

(or even without it).

Proof. Similar to previous ones. Ds.g

3.10 Definition. For W C ω\ we call a forcing notion pseudo (*, W)-complete

if for each p 6 P in the following game player I has a winning strategy. The

play lasts ω moves. In the n'th move: player I chooses an ordinal αn < ω\ such

that l\£<n βι < an and a -P-name τn of a countable ordinal. Player II chooses

ordinals /3n,7n < ^i such that αn < /3n, /\ί<nβι < βn In the end player II

wins the play iff (a) or (b) where

(b) there is q G P satisfying: p < q and q Ihp "rn = 7n for n < ωn .

3. 10 A Remark. We can define games and completeness variations of the

earlier notions in this section with length of game ω with a stationary W C ω\

as a parameter as we have done to ({2},(j) -completeness in 3.10 and the

parallel theorems hold.

3.11 Claim. (1) Pseudo (*, W)-completeness is strongly preserved by RCS-

iteration.

(2) If W is stationary (subset of ω\) and P is (*, W)-complete then forcing with

P preserves stationarity of subsets of W and adds no real.
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3) If ω\ \ W is not stationary, P is pseudo (*, W)-complete then P is essentially

({Nι},u;)-complete.

Proof. Left to the reader. Πs.n

§4. Specific Forcings

We prove here for various forcings that they are semiproper and even (5, δ)-

complete; of course, otherwise our previous framework will be empty. See [J],

chapters 5-6, for a discussion of some of the large cardinals we use (which are

standard).

Prikry forcing (adding an unbounded α -sequence to a measurable cardi-

nal without adding bounded subsets) satisfies all we can expect. But for our

purposes, more important are forcings which change the cofinality of ^2 to NO,

without adding reals (or at least not collapsing NI). Namba [Nm] has found

such a forcing, when CH holds.

However we do not know the answer to:

Problem. Is Namba forcing {Nι}-semiproper? (But see XII §2).

However, Namba forcing is not necessarily ({2},ω)-complete; this is equiv-

alent to "Ί>$>2 is Galvin" (see below).

We deal with a variant of Namba forcing, (for the original see XI 4.1),

Nm'(2)) (2) a system of filters on sets of power ^2? see below), and prove

the relevant assertion (4.7). Then we prove that if each filter in 2) has the

({2,N0,Nι,},u;)-Galvin property (see 4.9, 4.9A), then Nm'(2>) is semiproper,

moreover is ({K0, NI, 2}, α;)-complete. The point is that when a large cardinal is

collapsed to ^2, if D was originally a normal ultrafilter, then after the collapse

it may well have some largeness property like the Galvin property.

4.1 Definition. If D is a complete normal ultrafilter on K, then the D-Pήkry

forcing, PF(D), is:
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{(/, A) : f a function, with domain n < ω, f is increasing, (\/i < n ) f ( ϊ ) <

ft, and A belongs to D}.

(/i, Ai) < (/2, A2) i f f/i C /2, A! 2 42, and for i G Dom(/2)\Dom(/ι),/2(i) €

Ai.

Prikry defined this notion and proved [Pr] in fact that:

4.2 Theorem. For any normal ultrafilter D over ft, P = PF(D) is (RCarp, λ)-

complete for every λ < ft, and changes the cofinality of only one cardinal, ft (to

NQ) (So remembering the notation introduced before 3.2, (RCarp, λ)-complete

really means (Car \ {ft}, λ)-complete).

4.3 Definition. (1) A filter-tagged tree is a pair (T,S)) such that:

(a) T is a nonempty set of finite sequences of ordinals, closed under taking

initial segments, and there is some maximal 770 G T for which [z/ G T,

tg(v) < Ig(η0) =>v = ηo \ίg(v)]', we call r?0 the trunk of T, ηQ = tr(T).

(b) 2) is a function such that for every η G T, 2)^ = !Σ) (77) is a filter on some

set C {ryΛ (α) : α an ordinal} and if tr(Γ) < η G Γ ί/ien Sucτ(?7) = {i/ G

Γ : €g(ι/) - £g(η} + 1, ι/f£g(ry) - η} ^ 0mod2)r/.

(2) We call (Γ, 2)) normal if Dom(2>) = {η G T : tr(Γ) < η} and for every such

η, Or) is a filter over Sucτ(η) (see below). For η <E Γ, (T,2>)w = (Tw,2>) d=

({i/ e T : i/ < ry or r/ < z/}, 2>).

(3) We call (T,Σ>) λ-complete if each Όη(η G Γ) is λ -complete.

4.4 Definition. For filter-tagged trees (ϊι,5>ι), (Γ2,2)2):

(1) We define: (Tι,S>ι) < (Γ2,352) iff

(a) Γ 2 CΓι,

(b) For every r/ G T2, if r/ > tr(T2) then Sucτ2(ry) ^ 0modϊ>ι(r/) and

^lί7?) ίSucτ 2(^) — 2>2(^)fSucj'2(
77) where for a filter D over /, and

J C /, J ^ 0 m o d D we let:

D\J = {^Π J : A G D}.
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(2) We define: (Γι,Dι) <pr (Γ2,2>2) ( "pure extension") if in addition tr(Γι) =

tr(Γ2).

(3) We define: (Tι,35ι) <n (T2,352) if in addition (to (2)) for η of length < n,

η G Ti Φ> 77 G Γ2.

(4) Nm'(T*,2>*) d= {(T,S>) : (T*,S>*) < (Γ,S>)} ordered by <. We write

η G (Γ,2>) for 77 G T. If p = (T*,Σ>*) we write Tp for Γ*, 35P for 35*.

Instead of Tp, Γp/, ΓP1, Tpfc, etc, we usually write just Γ, Γ', TI, Tfc, etc.

4.4A Remark. For every filter-tagged tree (T, Σ>) for a unique normal (T,

we have (T,35) < (T,35t) < (τ,»).

2)So we can restrict ourselves to normal members of Nm'(T*,2)*).

4.5 Claim. 1) If η G Γ => |Sucτ(r/)| < K2 then Nm'(T,2>) is ({λ : λ = cfλ >

K2},α;)-complete.

2) Moreover, in the cases where we shall prove that Nm' is (5, ω)-complete,

S C {2, HO, HI}, we could prove it is (5 U {λ : λ = cfλ > N2},u;)-complete (see

4.12).

Proof of 1). It is enough to prove:

(*) if p G P = Nm^T, 2>), n < ω, r a P-name of an ordinal, then there is

q € P, p <n q and a set ^4 of ordinals, \A\ < K2, ς' Ih αr G A".

Proof of (*): Let

^o ~ ί7/ ^ P ' ^βC7?) ^ n5 tr(p) < r/, and (p)^] has a pure extension deciding the

value of r},

T* - {r/ G Γ0*: there is no v < η, v G T0*}.

4. 5 A Subfact. TJ" is a front of r for some r satisfying p <n r; i.e every ω-branch

of r contains one and only one element of Tf.

Proof of the Subfact. Clearly without loss of generality tr(p) has the length > n.

By a partition theorem in [RuSh:117] (or see here XI 3.5 or XV 2.6B(2), and

if CH see 4.6 below) there is r G Nm'(Γ, 55), p <pr r, such that:



502 X. On Semi-Proper Forcing

either (a) for every η G lim(r), (3n) [77 fn G Γf]

or (b) for no 77 G lim(r), (3n) [ryfn G 7\*].

If (b) holds, then we can find p' and 7 such that: r < p' and p' Ih "r = 7" .

But then let v G p', ίgz/ > n, £g(tr(p')). Then i/ G T0* (witnessed by (p')[ι/j)

hence for some k < n, ι/\k G Γj". But this is a contradiction to (b), as v G r.

Hence (a) holds, hence Tj" is a front of r, and p <n r because p <pr r and

*g(tr(p))>n. Π4.5Λ

Continuation of the proof of 4-5: Let, for v G T j*, q" be a pure extension of

(r)[z/] satisfying

^ Ih "r = 7™.

Then ρ = U{g^ : i/ G Tf} is a condition (i.e. Γς = (J Γς. and S)g - 2)p) such
ι.eτ;

that p <n r <n ς and

q\\- C ί r G { 7 I / : ι / G Γ * } .

So (*) is proved.

2) Check the proof of part (1). U4.5

4.5B Remark.l) In 4.5(1), (2) we can replace ^2 by any μ > N2

2) As in the proof of 4.5(1) we prove (*) we can (e.g. in 5.5) use the preservation

of RUCar-properness (3.5(1)) instead of 3.5(2).

4.6 Lemma. If (T,2>) is a filter-tagged tree, which is λ+-complete (i.e., each

5)η is a λ+-complete filter) and H : T -> λ and λH° = λ, then there is (T* , S)t),

(T,S>) <pr (Tf,2>) such that ff(ry) depends only on £g(r?), for 77 G T f.

Remark. See Rubin and Shelah [RuSh:117] p. 47 - 48 on the history of this and

such theorems there.

Proof. For any sequence α = (αn : n < ω), αn < λ, we define a game D«:

Let r/o be the trunk of Γ.

In move 0 player I chooses A\ C Sucτ(^o)?^4ι = 0mod2)T7o, and player II

chooses 771 G
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In move n, player I chooses An+ι C Sucτ(ηn), ^4n+ι = 0mod!Σ)77τι and

player II chooses ηn+l € Sucτ(ηn) \ An+l.

In the end, player II wins the play if for every n we have H(ηn) = an.

Now we prove:

(*) For some ά = (αn : n < ω), an < λ, player II wins the game (i.e., has a

winning strategy).

Clearly the game is closed, hence it suffices to prove that for some α, player

I does not have a winning strategy. So assume that for every α player I has

a winning strategy F& in the game ό)ώ, and we shall get a contradiction. A

winning strategy is a function which, given the previous moves of the opponent

(771? j^n-i m °ur case), gives a move to the player, so that in any play in

which he uses the strategy he wins the play.

Now define by induction on n, ηn G T such that £g(ηn) = ίg(tτT) + n and

ηn+ι\n = ηn'

ηo is the trunk of T

ηn+l G Sucτ(^n) \ Uα F<*((ni> '"> Vn))-

Why does ηn+ι exist? For every α, Fa((ηι, - - , ηn)) = 0modΣ)77τι, Όηn is λ"1"-

complete and the number of α's is λ^° = λ < λ+. So Uά^Mfaij ?^n)) =

0mod2)r?τι, and so ηn+ι exists as Sucτ(^n) 7^ ϊ110^®^ by Definition 4.3(1)

clause (b).

But let α£ = H(ηn) and α* = (α£ : n < α;}, so

Fa* (<>), r / i , . . , Fa* ( ( r / i , . . . , ηn)), ηn+ι,...

is a play of Dδ* in which player I uses his strategy Fώ*, but he lost: contradic-

tion, hence (*) holds.

Proof of the Lemma from (*). Let (an : n < ω) be as in (*), and W be the

winning strategy of player II.
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Let TO = {77 G T : for some n, we have: ig(η) = ^g(^o) + ft, and for some

AI, . . . , An, for every 0 < £ < n we have η\(tgηo + ί) = W((Aι, . . . , A*))} U

It is clear that TO is closed under initial segments. Now if η G TO, 770 < η G

TO then Sucτo(^) 7^ mod 3?^, for otherwise if n = £g(η)-£g(ηo), and AI, . . . , An

are "witnesses for η G TO", then player I could have chosen An+1 = Sucτ0(^),

and then by definition W(Aι, . . . , An+ι) G TO and also W(Aι, . . . , An+ι) ^

SucTo(τ7) = An+1 but W(Aι,. . . ,A n +ι) G Sucτ(?7) and SucTo(r?) = T0 Π

Suc^(?7), contradiction.

So (T0, 2)) <pr (T,S>) and (Γ,3>) is as required. D4.6

4.7 Theorem. Suppose (T*,2)*) is an ^-complete filter-tagged tree. Let

P = Nm'(T*,Σ>*) then

(1) (CH) P does not add reals.

(2) If for every (T,2)*) G P for some 77 G T,tr(T) < η and for some A C

Suc^iT) and function F : A -> λ we have (Vα < A^F"1^ : i < α}) =

0modΣ>;] and A ̂  0 mod D* ΐften lhp "cf(λ) - K0".

(3) P does not collapse NI (and if Σ>* is A+-complete, cf(λ) > KQ then

Ihp «cf(λ) > Ho").

4.7A Remark. If we waive CH, P may add reals but it does not collapse HI;

sometimes it satisfies the fr^-c.c. even though 2**1 > ^4 (see XI 4.3).

4.7B Notation. If Dom(2)*) - T let Nmr(2)*) - Nrn^T,®*), and if T =
ω>(cj2), 2>*(r?) - {{r/Λ < a >: α G A} : A G £>}, we let Nm'(T,£>) -

=Nm/(3)*).

4.7C Remark. So if P - Nm'(L>*), D* 2 2>&(d= {A C H2 : A co -

bounded}), G C P is generic, Λen |J{^ : r/ G (T,£>*) for every (Γ,D*) G G}

is a member of ω(ωz) (in V[G]) and as D* 2 ^δo' ^ ^s unbounded in ^2 so
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Proof of 4.7.

(1) Now suppose r is a name of an ω-sequence from ωi, and let (T, 2)*) G P.

It is easy to define by induction (Tn,£>*) such that:

(a) (Γ0,2>*) = (T,2>*),

(b) (Tn,2>*) <n (Tn+ι,2>*) and (Tn,2>*) <pr (Γn+1,2>*),

(c) for every η G Tn+ι, if ίg(η) = n + 1, then for some ά^ and £ < n

we have: (Tn+1,2)*)^] Ihp "τ\l — ά^", and £ is maximal, i.e.,

either ^ = n, or there are no T ,̂ α such that a < ω\ and (T ,̂ 2)*) Ih

«τ(*) - α" and (Tn+1,2>*)w <pr (Γt,S>*).

Clearly (O^Γ^S)*) G P and (Γn,2>*) < (Πn<^n,S>*).

Now use Lemma 4.6 on (Πn<ω^n»®*)» an(^ H,H(η) = aη and get

(Tt,2)*), (Πn<ωTn,2)*) <pr (Tt,»*), H(r/) - άn for r/ G Γ*, lg(η) = n + 1.

Now for each ^ there is (T/7,2)*), (^,2)*) < (Γr/,2)*) and α such that

(T",2>*) Ihp "rί^ - α", and let ry0 G Γ" be the trunk of T"; w.l.o.g.

f + 1 < ^g(r/o) By the choice of aηo,l < £g(aηo) hence a = άk\l for

* = ^g(^o), hence for every 77 G Γ f, ^g(ry) = ^g(r/0) implies α^ff = άηo \l,

hence (Γt,»*)w Ih uτ\l = άηo\l = a1". But (Tt,3)*) Ih " for some 77 G Γ f,

ig(η) = i and (Γ^Σ)*)^] belongs to GP (the generic subset of P)." So

clearly (Tt,2>*) Ih "rf£ = α^^^ίf, and as this holds for every t we have

(Tt,2)*) Ih "r = (αm^n^(n) : n < ω}" when we choose the numbers ra(ra) large

enough, i.e., such that n < £g(άm(n)).

(2) Clearly the following is a dense open subset of P, J0 = {(ϊ1,2)) : (T, 2)) G P

and for every η G T, z/ there are ^ C Sucτ(^/), for z < λ, (Jj^Aj —

0 mod 2)7,, Ui<λ^* ^ ^ moc^ ̂ ^ ^en ^here is F^ : Sucτ(η) —* λ such that

Λα<λ{^ : ^ G Sucτ(r/),F(^) < α} = 0 mod 2)^}. Now for each (Γ,2>) G J0

let S(Γ,2>) = {η G Γ : there is Fη as above}. Note: (Γι,2>) < (T2,2>) =»

β(Γι,2>) Π Γ2 - B(Γ2,2)); by [RuSh:117] or XI 3.5 or XV 2.6B(2) here, for

every (Γ,2>) G IQ there is (Γ',2)), (T,2>) <pr (Γ7,®) such that:

(a) (\/η G limΓOP^nJ^rn € B(T,2>)], or

(b) (Vη G limT/)(3<H°n)[77rn G
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In the second case, applying again the partition theorem mentioned above

we get a constant bound n to {ig(rf) : η G B(T, Σ))}, and increasing the trunk

contradict the hypothesis (of 4.7(2)). So Iι = {(T,S)) G J0 and (a) holds} is

dense open subset of P. Fix (T, 2)) e Ii- For ry G B(T, 2>), let F^ be as required

above; and let r be the unique ω-sequence such that for every p G Gp, and

n < ω, τ\n £ p. Then λ Π {Fτ^n(τ(n)) : n < ω ( and F rfn is well defined) } is

a countable unbounded subset of λ.

3) Similar to part (1) using XI 3.7 instead of 4.6 (but not used here). U4.7

4.8 Problem. Is the forcing semiproper? (See XII.)

4.9 Definition. For a filter D on a set /, and a set 5 of cardinals, we call

D an (5, α)-Galvin filter (and the dual ideal a Galvin ideal) if player II has a

winning strategy in the following game, for every J C /, J φ 0 mod D (we call

the game the (5, α)-Galvin game for (£>, J)):

In the ith move player I chooses a function F$ from / to some λ G S and

player II chooses Ai C J n p| Aj such that |Fi(A^)| < λ. Player II wins if
j<i

p| Ai / 0modZλ For simplicity we can say J was chosen by player I in his
i<OL

first move.

4.9A Remark. Galvin suggests this game for D^2 = the co-bounded subset of

K for a cardinal K, a = ω and 5 = {2}. So for a = ω, S — {2} we omit (5, α).

Note that only S Π (|/| 4-1) is relevant for the game.

4.10 Definition. A filter D on K has the Laver (or Ni-Laver) property, if there

is a family W of subsets of ft, A ζW =ϊ A ^ f y mod D, W is dense [i.e. VA C /ς,

A ^ 0mod£> -» (35 G W)(B C AmodD)], and W is closed with respect to

countable intersections of descending chains.

Related to this property is the following game:

In the n'th move, player I chooses a set An and player II chooses a set Bn, such

that for all n An D Bn D An+ι ^ 0mod£>, II wins iff [}n<ωAn ^ 0modZλ
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Clearly, if D has the Laver property, then player II wins.

Galvin, Jech and Magidor [GJM] and Laver independently proved the following.

4.11 Theorem. If we start with a universe V, V N "G.C.H. + K is measurable"

and use Levy collapsing of K to N2 (so every λ, KI < λ < K now will have

cardinality HI) then in the new universe F[G], T>^ is a Galvin filter, in fact

(Car \ {N2},u;)-Galvin filter. Moreover if D 6 V was a normal ultrafilter on ft,

then in V[G] the filter D has the Laver property. [We identify here D with the

filter it generates in V[G] which is normal.]

More exactly, [GJM] proved that player II has a winning strategy in the

play above for D a normal filter on λ, Laver proved the Ki-Laver property in

that context, but the difference is not essential in our context.

(We shall not prove it here.)

The relevance of this is:

4.12 Theorem. Let 5 C SCar.

(1) If P is Nm'(Γt, S>*) (see 4.4(4)), each S>* is an (S,ώ)-Galvin, N2-complete

filter then P is S'-semiproper and even (5, ω)-complete (and we can add

allλ, cf(λ) >|Γt| to 5).

(2) We can strengthen the hypothesis in (1) by "Σ>* is |α|+-Laver" and then

get even "(5, α)-complete for pure extensions" (see XIV).

Proof. (1) Also easy, but we shall do it. By 3.4(4) it suffices to prove (5,α;)-

completeness. Let p* £ P and we shall prove that the second player wins in

ds(P>p}- For every V € T* \ {v : v < tr(Γ*)}, let Hη be a winning strategy of

player II in the (S',α;)-Galvin game for (2>η,Sucτ*(^)).

We first prove

4.13 Fact. Suppose p <E P, (P = Nm7(Tt,£>*),£>* is K2-complete), λ G 5,

and a is a P-name of an ordinal, p Ih "α < λ" and
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(*) X G 35+, F : X -> λ =» (3α)[{ι/ G X : F(ι/) < α} ^ 0 mod 2)] (this

follows from 2)^ being (5,ω)-Galvin).

ΓΛen there are pt and α < λ such that p <pr p^ G P and pMh "[λ > NO =Φ α <

α] and [λ = 2 => a = α]".

4.13A Remark. In the proof of the fact we do not use the Galvin property

assumption; also the ^-completeness can be waived, see 4.14 below.

Proof of the fact 4-13- For notational simplicity only we assume, 2^5. Easily

we can find p\ = (TΊ,2>*), p <pr pi, such that for every η G TI, if there are

β < λ, and <?, (Γι,D%] <pr <7, 9 Ih "α < /3", then (Γι,»*)w Ih "α < /3"

for some /?. For each 77 G TI, let /J^ be such that (pi)^] If- "α < βη", βη may

be undefined for some η but if η < z/ € TI, ̂  defined, then ̂  is defined and

equal to βη. So for every 77 € limΓi, {̂  : ̂ ^ no^ defined} is an initial segment

of ω. By the K2-completeness and 4.6 if CH and XI 3.5 in general, there is T2,

(ϊι,S)*) <pr (T2,2>*) and a set A C ω such that Vr? G Γ2 ̂  is defined iff

ig(η) e A (A is an endsegment or the empty set (so there are only countably

many possibilities, this is why XI 3.5 can be applied)). But A — 0 is impossible

by density. So for some n βη is defined for every η G T2, £g(η) = n. We can (by

induction on n using (*) in the assumption, see below for a similar argument or

again by XI 3.5) define p3, (T2,2)*) <pr ps, and β < X such that [η G pa & ̂

defined => /?,, < /?] this implies p% Ih "α < /?", so the Fact holds. ^4.13

Continuation of the proof of 4-12(1): Remember p* = (T*,2)*) is given;

w.l.o.g. the trunk of T* is <>.

In the first move player I chooses λo G 5 and a P-name /?o of an ordinal

<λ.

Player II chooses βQ < λ and po G P such that p* <pr p0» Po ll~p "/?o < ^"

(possible by the Fact 4.13 above).

However if player II continues to play like this, he may loose as maybe

n (where pn = (Tn,2>*)) will be {<>}.
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So he is thinking how to make SUCQ ττ,(
<>) ^ 0niod2><>. If he, on

the other hand, will demand PQ <ι pn+ι> he wϋl nave SUCQ τ^(<>) φ
I m <u;

0mod2)*, but it will be hard (and in fact impossible) to do what is required

when, e.g., λn = NI. So what he will do is to decrease Sucτn(<>), but do it

using his winning strategy H<> for the (5, ω)-Galvin game for Σ><>. So in the

second move player I chooses a cardinal \ι £ S and P-name β\ of an ordinal

< λi. Player II, first for each η e Po, ίg(η) = 1, chooses p[ = (Γ^Σ)*) such

that (po)fo] <pr Pi and pj lhP "/?ι < AΛ this is possible by 4.13. This defines

a function from Sucτ0(<>) to λi, so player II consults the winning strategy

ff<>, gets A° > C λi, \A*<:>\ < λi, and lets TI - |JW : A? € A° >}. Now at

last player II actually plays: the condition (Γι,2)*) and the ordinal sup^49v.

In the third move, player II tries also to insure that {η G ̂ \Tn : tg(η) — 2}
n

will be as required. Now player I chooses \2 G S and a P-name /32. Player II

chooses for every η G TI, ^g(ry) = 2 a condition p^ such that (pi)^] <pr ί>2

and p*2 Ihp "/?2 < /?r/" So for every 77 G TI, ^g(τy) = 1, we have a function

from Sucr?(Tι) to A 2, so consulting the strategy Hη, player II chooses A^ C λ2,

|A^| < λ. We can assume that each A^ is a proper initial segment (i.e., an

ordinal) and for λ = 2, a singleton. So the number of possible A^ is λ. So

now the function η ι—> Aη (η 6 Sucτj(θ)) is a function whose domain is

SucTiίo). So player II can consult again the strategy #<>, and find >!<>,

and let T2 - U{^ W = 2, 17 € TI, βη G Aj f l and Al

η^ C A2

ηlo = A^}.

Now at last player II plays: the condition (T2,£)*) and the ordinal supA?x.

The rest should be clear (compare with the proof of 6.2).

(2) By 4.13 it should be clear D4.ι2

4.14 Remark. Really in 4.12(1) we can replace ^-completeness by KI-

completeness by using XI 3.5 instead of 4.6. In fact even this can be waived.

We use K2-completeness only in the proof of Fact 4.13; but we now give a

proof which eliminate it. Instead of choosing T2, we let H : limT^ —> 2 be

defined by H(η) — 0 iff (3n)[βη\n is defined], and so there is T' such that

(Tf,2>*) <pr (T',55*) and H is constant on lirnT7 (by XI 3.5 which does not
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need any completeness). Now on B — {77 G T" : (W < lg(η}) [βη\e is not

defined]}, we can define a rank:

ΐk(η) = (J{7 + 1 : {v : v G B Π SucT'(ry) and rk(ι/) > 0} ^ 0modΣ>rJ.

If for some 77, rk(r^) = oo we let T" = \y G T' : v < η or η <

"fc/W/^AMO = oo}; we get T", (T',Σ>) < (Γ",Σ)),T" C T', con-

tradiction to the choice of T". Otherwise (i.e. η G T' => rk(r/) < oo) we can

prove by induction on its rk(trT') that we can find pΐ as required.

(Note we are not assuming CH).

§5. Chain Conditions and Abraham's Problem

Chain conditions are very essential for iterated forcing. In Solovay and Tannen-

baum [ST] this is the point, but even when other conditions are involved, we

have to finish the iteration and exhaust all possibilities, so some chain condition

is necessary to "catch our tail." In our main line we want to collapse some large

ft to ^2? in an iterated forcing of length (and power) ft, each Pi of power < K,.

So we want that ft stays a regular cardinal, and the obvious way to do this is by

the ft-chain condition. We prove it by the traditional method of the Δ-system.

For general RCS iteration, we have to assume ft is Mahlo (i.e., {λ < ft strongly

inaccessible} is stationary) and for iteration of semiproper forcing we ask for

less.

Now we are able to answer the following problem of U. Abraham:

Problem. Suppose G.C.H. holds in V. Is there a set A C NI so that every

α -sequence from ^2> belongs to L[A]?

To construct a model where the answer is "no" we shall collapse some inac-

cessible ft, which is the limit of measurable cardinals, changing the cofinalities

of arbitrarily large measurables < ft to NO-
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5.1 Definition.

(1) For any iteration Q = (Pi, Qi : i < α) and a set S C α we call p — (pi :

i G S) a Δ-system if, for i < j in S,pι \i — PJ \j and pi G Pj. We call pi \i

the heart of the Δ-system, hr(p).

(2) For a forcing P, we call p = (pi : i G S) a //-weak Δ-system if />i G P,

Uies i is a regular cardinal tt, and there is a condition # = hr(p) (the

heart of p) such that for every r, q < r G P there is α: < ft satisfying : if

a < Oίi G 5 for i < μ\ < μ then {r} \J{pai '• i < P>ι} has an upper bound

in P.

5.2 Claim. Any Δ-system in an RCS iteration as in Definition 5.1 (1), with

a = supS and Pa = \Ji<a PΪ is an Ni-weak Δ-system.

Proof. Easy. D5.2

5.3 The Chain Condition Lemma.

(1) Suppose Q = (Pi,Qi : i < ft) is an RCS iteration, K regular, |P^| < K

for i < K and let A = {X < K : λ strongly inaccessible}. Then for every

sequence p = (PJ : j G B C A), we can find a closed unbounded C C K,

and a pressing down function h on CΓ}B (i.e., h(j) < j) such that for any

α> (Pj : j G S Π C, /ι(j) — α) is a Δ-system. (So in the non trivial case AV

is strongly inaccessible Mahlo cardinal.)

(2) Assume A^ — K and: Qi is RUCar-semiproper (for all i) or semiproper,

lhp.+n. " (2lpί')v has cardinality HI" (for all i) or even Q as in 2.6(3), Q

as in 2.6(4) and A* = {i : 0 lhPi "Uj<ip j is dense in P^} Then in ί1)*

we can replace A by A^ (We know that if each Qi is semiproper (or just

Pj/P<+ι) then [cfV(^) = Ni =» i G Al] and also:[i limit, 2.6(2) or 2.6(3)

apply to Q\i and Ihp. "cfz > HO" for every j < i} => i G A^]).

(3) If we agree to weaken the conclusion to "Ki-weak Δ-system", we can

replace "|P^| < K for i < /ί" by ud(Pi) < « for i < «" or even, for any

A C /ς, "each P î < /ς) satisfies the conclusion of (1) for A". In (2) we can

assume just each Qi is semiproper.

Before we prove the lemma note:
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5.4 Corollary.

(1) If in 5.3(1), A is stationary or in 5.3(2), A^ is stationary, then PΛ = RlimQ

satisfies the ft-chain condition.

(2) If D is a normal ultrafilter on ft, B G £>, B C A then (in 5.3(1)) for some

£f G D, (PJ : j G βt) is a Δ-system.

Proof o/5.3. (1) If 5 is not stationary (as a subset of ft), the conclusion is

trivial, so suppose B is stationary. Necessarily ft is strongly inaccessible (as ft

is regular, every member of A is strongly inaccessible and B C A), hence by

1.6, Pκ = Rlim<5 = \Ji<κ PΪ As |Pj| < ft for every i < ft, there is a one to one

function H from Pκ onto ft. Again as \Pi\ < ft for i < ft, clearly

C = {i : ίί maps U?<i ^j onto * an^ f°r J < ^ if j G B then p^ G P^}.

is a closed unbounded subset of ft. We now define the function h with domain

BΠC: h(ί) = H(pi\i).

We first prove that h is pressing down. Clearly pi \i G P^, and if i G 5 Π C

then i is strongly inaccessible and (Vj < ϊ)[\Pj\ < i] hence by 1.6, Pi = U?<i Pji

hence pi\i G Uj<i Pj> so ^(0 ^ *• Now looking at the definitions of h and C

we see that (PJ : j G B Π C, /ι(j) = α) is a Δ-system, for any α.

(2) The proof is similar, using 2.7 instead of 1.6.

(3) Left to the reader. D5.3

5.5 Theorem. Suppose Con (ZFC + "there is an inaccessible cardinal ft which

is the limit of measurable cardinals"). Then the following theory is consistent:

ZFC + G.C.H. +(VA C Nι)(3ά) (α an ω-sequence of ordinals < N2, a £ L[A]).

Proof. We start with a model V of ZFC + G.C.H + "ft is strongly inaccessible,

and limit of measurables" . We define an RCS iterated forcing (P^Qi : i < ft),

such that \Pi\ < ft. We do it by induction on i, and clearly (see 1.4(6) for i limit)

the induction hypothesis |P4| < ft continues to hold. If Ql = (Pj,Qj j < i) is

defined, let ft^ be the first measurable cardinal > |P^|, where Pi = RlimQi- It is

known (see e.g. [J]) that ft j is measurable in VPi , and any normal ultrafilter on

it from V is an ultrafilter (and normal) in VPί, too. As |Pj| < ft, by hypothesis



§6. Reflection Properties of S$ 513

κ,i < AC. So let Qiβ be PF(Dι) (see 4.1) where Di G V is any normal ultrafilter

on /Ci, and let <2i,ι be PI * Q^0-name of the Levy collapse of κ+ to KI (i.e.

Qi,ι — {/ '• Dom(/) is an ordinal < NI, and Rang(/) C κ+}, with inclusion as

order). We let Qi = Q<|0 * Qi.i

Now by 4.2, Qi>0 = PF(Di) is (Cary \{^},cj)-complete, QM is (Carv,α;)-

complete trivially (by 3.4(1)) hence by 3.5 Qi is (Carv \ {^},α;)-complete.

Hence by 3.5(2), Pκ = Rlim(Pi,Qt : i < «) is ({2,N0,Nι},ω)-complete,

hence it does not add reals and does not change the cofinality of NI. By 3.4(4)

Pκ is semiproper. By 5.3(2) Pκ satisfies the tt-chain condition, so clearly if

G« C Pκ is generic then ^[Gκ] = ti% ,ti%[Gκ] = AC, V[GK] have the same reals

as V, and V[GK] satisfies the G.C.H.

Now if A C ωi , then as PΛ satisfies the K-chain condition, A is determined

by d = GκnPi for some i < «. By l.l(D), Gi is generic for Pi? so L[A] C V[G»],

but in V[Gi] an α -sequence from N2

 Λ is missing: the Prikry sequence we shot

through Ki+ι which was measurable in V[G$]. Ds.5

§6. Reflection Properties of
Refining Abraham's Problem and Precipitous
Ideals

In the previous section we have collapsed a large cardinal K to H2, such that to

"many" measurable cardinals < K we add an unbounded ω-sequence. However,

"many" was interpreted as "unbounded set" . This is very weak and we often

desire for more, e.g. in 6.4, we would like to change cofinalities on a stationary

set.

Notice that it is known that if we collapse a large cardinal by Ni-complete

forcing then 5^ = {δ < ^2 : cf(^) — ^1} nas reflection and bigness properties,

e.g., those from Definition 4.10. However, for SQ, we get nothing as it is equal

to {δ < ^2 : in the universe before the collapse, cf(δ) = HO} and it is known,

e.g., that on such a set there was no normal ultrafilter.
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So we can ask whether S$ can have some "large cardinal properties". The

natural property to consider is precipitous normal filters D on N2 such that

SQ G D. Such filters were introduced in Jech and Prikry [JP1] and studied in

Jech and Prikry [JP2], Jech, Magidor, Mitchell and Prikry [JMMP].

Their important property is that if we force by PP(D) (which is {A C /ς :

A ^ 0modD} ordered by an inverse inclusion), G is generic, the domain of D

is /, and in V[G], E D D is the ultrafilter G generates (on old sets) then V1 /E

(taking only old / : / -> V) is well-founded. Jech, Magidor, Mitchell and Prikry

[JMMP] proved that the existence of a precipitous filter on HI is equiconsistent

with the existence of a measurable cardinal, and also proved the consistency of

"l>Kι (= the filter of closed unbounded sets) is precipitous". (Notice that the

Laver property is stronger). Magidor asked:

Problem I. Is ZFC 4- G.C.H.-I- there is a normal precipitous filter D on ^2,

SQ e D consistent?

We answer positively, by collapsing suitably some K to ^2- Letting D be

a normal ultrafilter on K in V, provided that A = {X < K: in the old universe

λ is measurable } G D. We will force that in the new universe, D generates a

normal precipitous filter (which we also call D) such that 5o belongs to it.

This was proved previously and independently, using supercompact cardi-

nals, by Gitik.

We can also consider the following strengthening of Abraham's problem:

Problem II. If V satisfies G.C.H., does there exist A C N2 such that, for every

δ < ^2? every ω-sequence from δ belongs to L[A Π δ]?

Again we have to change the cofinality on a stationary set, and to iterate

forcing such that stationarily often we change the cofinality of ^2 to NQ.

When we do this the first time, in stage λ for example, the forcing so far P\

is just Levy's collapse Levy(Nι, < λ) so by 4.11, 4.12 we have a (Carv\{N2},u;)-

complete forcing Qχ doing this; but later the collapse Pχ is not even HI-

complete. We have two ways to cope with this. One way is to look again at

theorem 3.5 on iterated (5, ω)-complete forcing (for various 5), from which we
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see that less is needed. If P\ = Rlim ζ), Q — (Pi, Qi ' i < λ) collapses λ to N2, it

suffices that (RlimQ/Pz+i) * Q\ is ({2, K0, KI},CJ)-complete. We will show that

we can achieve this by using Namba forcing as Qi and our induction hypothesis

there. The second possibility is to demand e.g. each Qi is quite pseudo-complete

and prove that in VPλ we get a large ideal in λ. We use the first approach (but

see 6.1 A). For clarity of exposition, we first prove a weaker lemma.

6.1 Lemma. Suppose D is a normal ultrafilter on λ, Q = (Pi,Qi : i < λ)

an RCS iteration and for all i < λ, \Pi\ < λ. Suppose further Pχ = RlimQ

is ({2,K0,Kι},α;)-conιplete and collapses λ to K2. Consider the following game

D(po, AQ) — ̂ (POJ AQ, P\,D], fc>r Po £ -Pλ> AQ a P\-name of a subset of λ such

that PQ lhPλ "AQ ^ 0mod£>". (The game is played in V.)

In the first move:

Player I chooses P\~names βι (°f an ordinal < KI) and F\ (a function

from λ to NI).

Player II has to choose pi £ P\, Po < Pi and 71 < cji and /3χ < α i such

that pi lhPλ "Ai = AQ ΠF]~1({7ι}) ^ 0modD, and ^i - /?ι".

In the n-th move, player I chooses P\-names βn < ωι,Fn : X —> KI,

and player II chooses pn, pn-ι < pn and 7n < ω\ and /3n < ω\ such that

Pn I^PA "An = An^ Π F'^ίTn}) φ 0modD, and ^n - βn».

In the end, player II wins if {pn : n < ω} has an upper bound p G P\ such

thatplh P λ " Π An ^ 0mod D".
n<ω

Our conclusion is that player II wins the game.

6.1A Remark. If{i : Pχ/Pi is {({2, H0, Nι},u;)-complete } € D (i.e. for almost

all i, for every G< C P4 generic over V, in yfGJ, Pλ/Gi is ({2,N0,«ι},ω)-

complete) then in VPλ, D is a {2,tto>Nι}-Galvin filter. Similarly for 6.2 (see

XIII 1.9).

Proof. Let PQ G PA, ^4o a Pλ-name, po "~pλ "^o ^ 0modD". We shall describe

the winning strategy of player II in the game D(po> AQ). Let the winning strategy
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of player II in S^NO.NI}^' Pχ"> be H \P\ By 3 2(2)> we can assume tnat player II

really determined the value of the P\-names of countable ordinals given to him.

We can also assume player II is given by player I a pair of names of countable

ordinals (instead of one).

Let B0 = {i < λ: there is p > p0, P ^pχ "i £ ^o"} Now B0 G D

because otherwise, as D is an ultrafilter in V we have BQ — 0mod D, but since

Po lί-pλ "AQ C BO" (by BO'S definition) we have p0 l^pλ "4o = 0mod£>",

contradiction.

Now for every i G BQ, there is po,i £ -Pλ> Po < Po,ί such that po,i "~pλ "^ £

AO".

So let player Γs first move in D(p0,^o) be choosing β\ (a P\-name of an

ordinal < HI), and F\ : X —> HI, FI a P\-name. Now for each z G B0, player

II simulates a play of the game D< = U^.NO.NI}^'*'^)' He plays (^lϊί'iW)

(i.e., a pair of names of ordinals < HI) for player /^, and by the strategy iΓ[po,ϊ]

gets a move for player 11 :̂ p\^ e P\? Po,i < Pi,i» and αi^ < HI, 61,1 < HI such

that pι,i lhPλ

 α/3ι = αM and Fι(i) = εi/'. Now for some BI C B0, BI e D,

and (pi^i : i G BI) is a Δ-system with heart pi (see 5.4(2)), and we can also

make (αi^εi^ € BI) constantly (αι,ει) (for i G BI) since there are only HI

many possibilities.

Now player II can make his move in D(po? AQ): he chooses pi, 0:1 and εi. It is

easy to check that this is a legitimate move. (Use 5.2 to show pi Ih "βi = c*ι".)

So player II continues to play such that after the n-th move:

(*)n there are Bn C Bn_ι C . . . C Bx C B0 all in D, pΛi G Pλ, for 0 < I < n,

i G B^, p0,i < Pι,ΐ < < P^,ΐ, (Pi,i '• i £ BI) is a Δ-system with heart pi (for

0 < ^ < n) po < Pi < < Pn, and at the ^-th move player I chooses βι, FZ,

and player II chooses p^, α^, ε^ and (for 1 < £ < n and i G B^) p^ Ih "α^ = ̂

and Fι(i) = ε/'. Also for each ί < n, ί > 0 and each i G B^, the following is

an initial segment of a play of a game D^2 > K θ j N l}(po,tj Pλ), in which player II;

uses the winning strategy
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It is easy to check that player II can use this strategy; moreover, by the

choice of /f[po,t], f°r every i G ^\Bn the set {pn^ : n < ω] C Pχ has an
n

upper bound, say <^; as Bn G £>, nn<ω£n G £> and clearly, by 5.4(2), for some

Bω G D, Bω C Πn<ω ̂ n and fa* : * G Π Bn) is a Δ-system with heart p, clearly
n

pn < p for each n, and so by 5.2 p lhpλ " {i G Π^n: & ^ (?PA hence for every
n

£ β£ = at & Fι(i) = εt} ^ 0modD". So clearly player II has won the play,

hence the game.

Π6.ι

6.IB Remark. We could have used any S, S C {2, H0, HI} instead of {2, H0, HI}

and would have obtained a parallel result. The same holds for 6.2 and 7.2 . Also

in both we can replace completeness by essential completeness.

6.2 Lemma. Suppose λ is measurable, D a normal ultrafilter over λ, Q —

(Pi,Qi : i < X) an RCS iteration, each Pj, Pj/Pi+ι is ({2,tto,Nι},ω)-complete

and |P;| < λ for i < j < λ.
pλ*9

T/ien, letting Q\ — Nm (D) in the universe V ~ the forcing notion P\ * Q\

is ({2,Ho,Hι},ct;)-complete.

Proof. Just combine the proofs of 6.1 and 4.12(1) (so now we will have a

tree of conditions instead pt^i G Be)) Let us give the details. We will only

prove essential ({2, KQ, KI},C<;)- completeness (which is enough for all practical

purposes) and indicate modifications for ({2, ^o?Nι}5 ̂ -completeness (if we

like to use only the essential version, naturally we should then also assume

only that P$, Pj/Pi+ι are essentially ({2,N0,Nι},ω)-complete; remember the

implications from 3.8(2)). So let S = {2, N0, NI}, r* = (p*, q*) G Pλ * Qx and

we shall describe a winning strategy for player II in the game ED^r*, Pχ*Q\)

(see 3.6). As S = {2, HO, HI}, by 3.2(2) without loss of generality player II has

to give actual values.

Without loss of generality p* IHPλ "tr(ςf) = 17*", η* G ω>\. For notational

convenience only (or considering Q'x = {T G Qχ : tr(Γ) > 77*} ^ Qχ) we may

assume η* =<>. In the n'th move (n > 0) player I will choose a Pχ * Qx-name
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βn of a countable ordinal, and player II will choose a countable ordinal 7n [and

a condition for the "real" game ^^(r*, P\ * Qχ)}

To make his choice, player II plays on the side also trees Tn C n-λ,

ordinals (iη : η G Tn Π
 nλ), and Pλ-names of Qλ-conditions (q^ :η eTnΓ] n\)

and conditions (p™ : 77 G Tn) in certain forcings appearing in the iteration Q

and names of ordinals (β™ : η G Tn U {{)"}), preserving the following:

(A)(l) Tn C n^λ, each r? G Tn is strictly increasing.

(2) If η E Tn, * < *g(τ/), then η\t G Tn.

(3) If η G Γn, ^g(η) < n, then {z > λ : rf (i) G Tn} G Zλ

(4)τn + 1n ^λcτn.
(B)(l) If n > 1, η G nλ, then we let η~ =η\(n~ I).

(2) If η G Tn Π
 nλ, then i^ < λ, iη a successor ordinal > η(n — 1).

(3) If η G Γn Π nλ, n > 1 then z,, > i^-

(4) <>~ is not really defined, but we let ί<>- = 0,

soP^/Pi^, =Pi<>/PG = Pi<>.

(C)(l) For η G Tn, p» G P^/P^ . (So for η =<>, p»> G P^J.

(2) For 77 G Tn Π Tn+ι we have p™ < p^1 (this is actually implied by (3)

below).

(3) For η G Tn, {/3*, pξ, ^_ : £g(τj) < f < n) is an initial segment of a play

of ΰ^b^7^, Piη/Pi -} in which player II uses his winning strategy. So /?* is a

Pΐτ7-name for a countable ordinal and /?<>- is a real ordinal. Player II lets (in

the actual play) 7^ = /^> (for the "purely" essential version we should just

have Pη be in the completion of P^/Pi _ ).

(4) For p G Pα, p/ G P\/Pa, p(Jp/ is the element of P\ corresponding to

(p,p/) e Pα * (Pλ/Pα) We let p^ d^ U,<ίg(ί?) P r̂, € P«, (see Cl).

(D)(l) q™ is a P\-name for an element of Qχ — Nm'(D) with trunk η

(remember η € Tn Π nλ).

(2) (0, Q") lhPλ,9λ "̂ " = ̂ " when η € Tn Π "λ.

(3) For r? € Tnn"λ, p^ lhPλ «[Qλ μ c Γ 1 < ̂  and Qλ h [^Γ1]^ <pr ς^"].
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For the following, note that lhpλ "D is an K2-complete filter", so by 4.13

we have lhpλ " for every q G Q\, every Qχ-name β of an ordinal < ωι, there

is 7 < ωi, and q1 ', </ <pr </', # Ih β = 7". In move number 0, player I plays β°.

Player II finds #<> G <2λ and a P\-name /?<> such that:

lhpλ V <pr g° >, so tr(g° >) =<>, and g° > lhQ λ "£° - /3° >'»'.

But as P\ H λ-c.c., /?<> is really a Pί<:>-name (for some successor ordinal

i<> < λ)> so player II can find p^> G P;<:> such that Pλ |= V < P^" and

P<> "~ "/?<> = To", for some 70 < ω\. Then player II lets Γ0 = {<>} and play

7o

In move n -f 1, player I plays a P\ * ζ?λ-name /?n+1. For each η G Tn Π
 nλ,

let (in y):

Bη = {a<X:W< tg(η)[a > η(f)} and 3p € Pλ/Pi,,, ̂  U p lhPλ «ηΛ(a) G

6.2A Claim. Bη G D.

Proo/ of the Claim. For each α < λ let t% be the following P^-name:

t% = 0 if I^PΛ/GP. "r/Λ(α) ^ ̂ " and t° = 1 otherwise.

As there are (essentially) < λ many possible such P/l+1-names [as \Pir)\ < λ,

so 2|Pί^ < λ], for some Aη G D and t, Vα G ̂  : ί̂  = ί. If p^ Ih "ί - 1", then

Aη C Bη and we are done. Otherwise, there is pr > p%, p' G P^, pf Ih "ί = 0".

But p% Ih "{α < λ : rf (α) G q%} ^ 0mod J9" and p7 Ih "Vα G Aη, η"(a) φ ς£",

a contradiction (as Aη e D). This ends the proof of the claim. Πe.2A

Continuation of the proof of 6. 2: For a G β^ , let pj\ / α v be a p as in the definition

of Bη. Then let <7nΐ^\ De (a P\-name of a member of Qλ) such that:

pr
— /ί71^-1 "1"
~ £v<a) J '

where /3n^/a\ is a P\-name. Again by λ-c.c., for some large enough successor

ordinal iηΊa} < λ, ffi\a) is a Pίτ7.(Q)-name and pffia) G Pirj.(a}/Pirj (and

^ < i » 7 Λ < α > ) and α < iη» (α). We can increase P^^ and ^-{a) such that
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, II-P,,.^,/^ T^M = &1"" for some ^

As there are only < λ many such names of countable ordinals, we can find

G D, S%+1 C Bη, and a name /3%+l such that for all a G S£+1,

= /?2+1. Now we can, for each η = v" (a) G Tn n nλ, play a step

, P?+1, ^J m the game D^,P,r//Pv], to get P^.-name ̂

(i.e. we play for player 1̂  the name /?™+1, and the winning strategy of player

llη gives us Pη~*~l,β™-l

a', & was the last element in 77). Again, for each v G Tn

of length n - I there is a set S?+l G D, 5£+1 C {α : ι/Λ{α) G Tn}, and for all

r\ CL Qn+1 /3n+! — ftn+1
<2 G ̂  5 PV Λ (α) - Pi/

We continue by downward induction (in each step fc, n > k > 0 defining P^-

names /S^1 ^or v~ (a) £ TnΓ\ feλ, satisfying demand (C3) and then "uniformiz-

ing" using a set 5JJ+1 G D as before). Finally, player II plays 7n+ι = β<ί>lι arιd

define Tn+1C
 n+^λ by:

(l)Γn + 1Π °λ = {<>}

(2) for η G Tn+1 Π kλ, SucTn+l(η) = {η~(ά) : a G 5^+1}, for k < n.

This completes the description of player IΓs strategy. Finally, define T as

T = U<ω Πn>X^n Π ^λ). Clearly (->λ,S) <pr (T,£>) (where 2), - D). For

each η G T let pη G P^/Pi _ be > p^ for every n > ig(η) (i.e. this is lhp. _ );

(exists as we have used a winning strategy in %, ̂ 0,^1}^ ' ^»,/^\-])

Let p^ = U*<*g(τ7)ϊM* e P»»ι ^y repeated use of 5.4(2) we can find Γ',

(Γ,3D) <pΓ (Γ',^) and (p+ : r? G Γ) such that for each η G T' we have

OV(α) : α < λ,τΓ(α) ^ Γ) is a Δ-system with heart p+ G P\/Pir]. Note:

η- =v,ηeT'=*p+ <pη.

It is easy to see that if (pα : a < X) is a Δ-system with heart p+, then

p+ lhpλ "{α : pα G Gpx} ^ 0mod.D in VPλ". Using this fact we can show that

Po Up^> Ih «?

 d- {ry € Γ7 : ft, Up+ e GPJ G Qλ - Nm'(D) and g* <pr f .

To finish the proof it is enough to show that (p<> Up<>, q) Ih "(Vn)/3n =

7n". Assume that this is false, then there is a witness, i.e. (p',qf) > (p<> U

P<»9), n G cj and α* < ωi, such that (p',^7) Ih "^n = α*", but α* ^ jn.

Without loss of generality q1 has a trunk of length > n, and also there is 77 G
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ω>λ such that p' Ih "tr(ς') = η" and ίg(η) = m > n. As p1 Ih "77 € q", without

loss of generality Ml < ίg(η) : pnte (Jp+te < p'. By (D), p' Ih V > 9 > q^t" for

all £ < ίg(η). So for ί = n we get (p',q') > (^n,q^n), so (p',q') Ih "/Γ = 7n"

and we are done.

If we want to play D^ NO ^\ anc^ n°t only ^{2, KO , K I } > we a^so have to

give conditions rn forcing βn = 7n at each step n.

Without loss of generality we may assume that for each η € Tn, of length

< n we have (pn~/a\ ' rl^(Oί) € Tn) forms a Δ-system with heart p™. Let

Pn = P5> UP<» 9n = {»? € ω>λ : ̂ (ί?) < n => i% Up^j € GPχ, lg(η) >n^

η e ?»rn}.
Then as above we can prove (pn,qn) II- "/?n = 7n"5 then we have to

show (pn,?n) < (Pn+i^n+i), and finally that (p<> Up£>,g) (from the end

of the proof for ED^2) ^O j NI}) ^s ^ (Pnj^n) f°r all n (in P\ * Qλ, or at least in

P\ * Qλ/ — )• These details are left to the reader. U6.2

6.3 Definition. A filter D on a set / (in a universe V) is called precipitous if

the following holds:

H~pp(D) "there are no fn : I —> ordinals, fn G V, such that /n+ι <E fn for

each n", where

(i) PP(D) = {A C / : A ^ 0modD} ordered by reverse inclusion.

(ii) E is the filter generated by the generic set of PP(D),

(iii) f <E 9 means {a G / : /(α) < ^(α)} G E.

6. 3 A Remark. The following is an equivalent definition: a filter D over / is

precipitous if player I does not have a winning strategy in the following game

First move

player I chooses A\ C /, AI ^ 0mod £>,

player II chooses BI C Aι,Bι ^ 0mod£>;

n-Λ
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player I chooses An C Bn-ι, An ^ 0modD,

player II chooses Bn C An,Bn ^ 0mod£>.

Player II wins if p| An (which is = p| Bn) is nonempty (not necessarily
n<ω n<ω

See Jech and Prikry [JP2], and Jech, Magidor, Mitchell and Prikry

[JMMP].

6.4 Theorem. Suppose "ZFC -f G.C.H. + K is strongly inaccessible and

A ~ {λ < K : X measurable } is stationary" is consistent. Then:

(1) The following statement is consistent with ZFC + G.C.H.: for every B C N2

for some δ < N2 (in fact for some club C of λ for every δ G AnCn(5^)yIGl),

cf(5) = NO, but in L[B n<J], δ is a regular cardinal > NI (in V[G], X = N2).

(2) If in the hypothesis A G D, D is a normal ultrafilter on ft, then there is a

normal precipitous filter on N2 to which 5$ belongs.

Proof. So let V be a model of ZFC +G.C.H., and let ft be a strongly inaccessible

cardinal, such that A = {X < ft : λ measurable} is stationary.

We now define by induction in i < ft forcing notions Pi G V, Qi G V Pί ,

such that \Pi\ < ft, (Pj,Qj : j ' < ft) is an RCS iteration. So by 1.5(1) it suffices

to define Qi for a given (Pj,Qj : j <i).

Case A. i = X is a measurable cardinal, such that for every j < λ, \Pj\ < X.

In this case let D\ be a normal ultrafilter over λ (in V), and Qλ = Nm'(Dλ)

(In VPλ, D\ is not an ultrafilter any more, since we may have lhpλ λ = N 2 > but

it will still be "large", see 6.1, 6.2).

Case B. Not case A.

In this case let Qi be the Levy collapse of (2'Pil + \ί\+)v to NI, i.e.,

{/ G yPί : / a countable function from ωi to 2'Pil -f |t|+}

Now by 3.5 and 6.2 it is easy to see that Pκ — Rlim(Pi>Qi : i < K) is

({2,N0,Nι},u;)-complete (note: if for i Case A occurs, then for every j < i,
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in VPJ'+1, D is still a normal ultrafilter), and by 5.4 it satisfies the /ς-chain

condition.

So clearly in VPκ G.C.H. holds, every real is from V, and NI = N^, N2 — ft.

Also if λ G A, then (Vz < λ) \Pi\ < X (prove by induction on i for each λ). Let

G C Pλ, be generic, and we shall prove that V[G] satisfies the requirements.

Part 1. So let B C N2, and let B G V be a P^-name for it. Then C0 = {δ : for

every i < δ we have ^Π{i} has a P^-name for some j < 6} is a closed unbounded

subset of ft, because Pκ satisfies the /ς-chain condition (and Pj <§ Pκ = \Ji<κ Pi

for j < K) and obviously CO G V.

Now if λ G CO Π A, then we can check that |P$| < λ for i < λ, so case

A holds hence Qχ = Nm'(Dχ), hence in V[G\, cf(λ) = K0 by 4.7(2). On the

other hand, clearly G Π Pλ is a generic subset of Pλ (as Pχ <> PΛ), by 5.4 Pλ

satisfies the λ-chain condition, so lhpλ "cf(λ) = λ". Hence in V[G Π Pλ], A Π λ

is present, but λ is a regular cardinal > KI. So also in L[A Π λ], λ is a regular

cardinal > KI. Lastly as Pκ satisfies the κ-c.c. also in FPλ, A is a stationary

subset of K = Nrf *. Together we finish.

Part 2. The following implies the desired conclusion; it is essentially the same

proof as [JMMP] who do it for the Levy collapse; and it suffices for (2) of

the theorem. It follows from Magidor [Mg80] Theorem 2.1, and is included for

completeness only. (By construction, Vp \= "A C S% and A G D").

6.5 Lemma. Suppose K is measurable, D a normal ultrafilter over ft, Q =

(Pi,Qi\i< K) an RCS iteration, |P^| < AC for i < «, P = Pκ = RlimQ.

Then in Fp, D is a precipitous filter.

Proof. If not, in Vp there is A0 G PP(£>), A) ll-pp(D) "</n : n < ω) is an ω-

sequence of functions from K to ordinals which belong to Vp which is decreasing

mod.E, fn G Fp" where £" is as in clause (ii) of Definition 6.3.
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So there is p G P, a P-name AQ, and P * PP(D)-names /£ of the fn such

that p lhpλ "^4o> /n are as above".

Let BQ — {λ < K : λ is strongly inaccessible and for some pΐ > p, pΐ G P,

andpt lhPλ "λ € A0"}.

Because D is normal, K measurable, {λ < K : λ strongly inaccessible} G Z),

hence BQ G D. For each λ G B0 choose pλ,o, P < Pλ,o G P, Pλ,o ll~ "λ G A0".

By 5.3 there is B^ C B0, B\ £ D such that (pΛ,o : λ G β^} is a Δ-system with

heart pt .

Now we define by induction on n < ω, p\,n,pn,ph Bn,B^n, An, A^ gn, αλ,n

(for λ G B^) (An, A^gn are P-names) such that:

(1) (pλ,n : λ G B^) is a Δ-system of members of P with heart p^.

(2) £n+1 C βt ς βn, £n+1 G D,

(3) Pn+i > P*n > Pn all in P,

(4) Pλ,n+ι ^ Pλ,n both in P, ^n a P-name of a function from K, to Ord,

(5) Pλ,n ll-p "A G An and ρn-ι(λ) = «λ,n-ι", o;λ,n < ^λ,n-ι for n > 0,

(6) A^ — {λ G -B^ : pλ,n is in the generic set of P},

(7) Pn+i lh> "^n+i € PP(D) and An+1 C ̂  and [An+l lhPP(D) "/n/B =

pn/E"] and An+i C (i < « : flfn(i) < 5fn_ι(i)}",

(8) βn+ι = {λ G Bit : tnere is Pf ^ PA,n,P f > Pn+ι? such that for some α,

The definition is easy: for n > 0, we first we define pn, An and ^n_ι (by 7),

then Bn and pλ,n (by 5 and 8), then B^ and p^ (by (1), using 5.4), finally A^n

by (6).

Now as B^ G D, f] B^ ^ 0, and if λ belongs to the intersection, (αλ,n ' n < ω)
n<ω

is strictly decreasing sequence of ordinals, contradiction. Πβ.5,6.4

§7. Friedman's Problem

Friedman [Fr] asked the following.
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7.0 Problem. Is there for every S C S£ (= {i < ttα : c f ( i ) = N0}), a closed

set of order type α i, included in S or in Sff \ S? We call this statement Fr(Kα).

Let Fr+(Nα) means that every stationary S C SQ includes a closed set of order

type ω\.

Van Liere proved that Fr(N2) implies N2 is a Mahlo strongly inaccessible

cardinal in L; and Fr(Nα)+ not Fr(N2) (Nα regular > N2) implies 0# exists

(using squares). We prove the consistency of Fr(N2)+G.C.H. with ZFC, modulo

the consistency of a measurable cardinal of order 1 . We recall the well known:

7.1 Definition. We define by induction on n what are a measurable cardinal of

order n and a normal ultrafilter of order n. For n = 0 those are just a measurable

cardinal and a normal ultrafilter. For n + 1, D is a normal ultrafilter of order

n - h l o n / ^ i f { λ < A v : λ i s measurable of order n} G D and it is a normal

ultrafilter. We call K measurable of order n -h 1 if there is an ultrafilter of order

n + 1 on it.

7.2 Lemma. Suppose D is a normal ultrafilter on ft, Q = (Pi,Qi : i < «} an

RCS iteration and |P^| < K for every i < K.

Suppose further that G CPκis generic, 5 C (Sξ)vW,S G V[G] stationary

and even ^ 0 mod jD, and (in V[G]) let

Qκ — {/ : the domain of / is some successor ordinal α < KI, / is into S and

it is increasing and continuous }

So let 5, Qκ be Pκ-names for them and \\-Pκ "5 ^ 0mod D and 5 C Sff". We

then conclude:

(1) If Pκ is {Kι}-semiproper, then so is Pκ * Q^,

(2) If Pκ is essentially ({2, N0, Nι},ω)-complete, then so is PΛ * Q^.

Proof. (1) The problem is that Q/ς may destroy a stationary subset (of α^), so

it is not proper, though it obviously does not add ω-sequences. So let 5, Qκ be

P^-names for 5, Qκ. Let A — {a < K : α a strongly inaccessible cardinal and

(Vt < α)(|Pi| < α).
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Let λ be regular, big enough, Q,QK, S G H(X), let <* be a well ordering

of H(X) and let N -< (#(λ),G,<*) be countable, p,q,Q,S,QK G TV, (p,q) G

PK, * QK, and we shall prove the existence of an {Nι}-semi (TV, Pκ * Qκ)- generic

condition > (p,q). In V (hence in ίf(λ)), we let

S0 = {λ G A : there is p] G PΛ such that p < p1" and pf Ih "λ G 5"}.

As in previous proofs So G D, and for each λ G So let p\$ G Pκ, pλ,o > P,

Pλ,o II- "A G 5" and for some 5ι C S0, Si G D, and (pλ,o : λ G Si) is

a Δ-system (see 5.4(2)). As N was an elementary submodel we can assume

So, Si, (Pλ,o : λ G Si) and its heart po belongs to N (but of course not all

included in N). Let S2 = Si Π f}{S^ : Sf G D and S1" G TV}, so clearly

S2 = {pίi : i < AV} C Si is an indiscernible sequence over T V j J α i in the

model (ff(λ),E,<*) (but does not belong to TV). Note that for a formulae

<£> = </?(#!,... ,x«;ί/ι, . . . ,2/n) with n parameters y ι , . . . , 2 / n froni α i, and fe

parameters xi < .. . < £&> from /ς, the corresponding function / : [κ]k ->

{true, false}**™ is in TV and it is constant on 82- (The function / is: for

αi < ... < aκ < K let /(αi,.. . ,α«) - {(/?ι,... ,/3n,t) : /3ι, . . . ,/? n < ^i the t

is the truth value of y?(αι, . . . , α«, /? ι , . . . , βn)}) Clearly p < po

Let NΓ\PKC Pμ, S3 = S2 \ (μ + 1) ( with μ < «, of course).

Clearly S3 G D hence S3 ̂  0. Let χ G S3 be such that χ = sup(S3 Π χ),

and TV* be the Skolem Hull (in (#(λ), G, <*)) of TV|J{χ}, by the choice of S2

(and Rowbotton theorem), clearly δ = TV* Π ωι = TV Π ωι and /ςΠ(Skolem hull

of TV U x) = x (or you can choose such χ).

Also Px G TV* (as (PiΊQi : i < κ> G TV*,χ G TV*) and clearly Pχ <$ PΛ.

Now Pκ is {^i}-semiproper and (PA,O : λ G Si) G TV* and χ G TV*, hence

pX)o G TV* and po < Pχ,o and there is pi G P«,pι > px,o> which is {Kι}-semi

(TV*, P^)-generic. As TV* Π ωι = TV Π α i, pi is also {Nι}-semi (TV, Pκ)-generic.

Let G C PΛ be generic, pi G G, and we shall find / G QK[G] which is {Ni}-

semi (TV[G],Q«[G])-generic, this obviously suffices. We have δ = TV*[G] ΠtJi .

In V[G\, x has cofinality N0, (as px,0 11- "x G S" and S C (Sζ)yPχ). So
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there are α0 < . . . < αn < αn+ι < , Un<α; an = X> αn G W*[G], and let

{7n : n < u;} be a list of all Qκ[C?]-names of countable ordinals which belong

to N[O\ (not N*[G\\). We let /0 - q[G\ G JV[<3], 7Vn be the Skolem Hull of

N\J{<*o, - ,θίn} in (#(λ),G,<*) and define by induction fn G Nn[G] such

that QK[G\ \= Vn+i > /n", X > SupRang(/n) > αn and fn \^QK[G] «yn = βn

n

for some βn. This will suffice because \Jn<ω fn U{(*> x)} ^ Qκ[G] and is {Ni}-

semi (7V[G?],Q/ΐ[Gr])-generic because Nn Π ωi C A/'* Π ω\ = N Π ωi. Defining

/n+i, the only nontrivial point is x > SupRang(/n+ι), but /n+ι G JVn+ι[G],

and 7Vn_|_ι[G] Π K C χ, (as by a version of Rowbottom's partition theorem on

normal ultrafilters 53 \ x is indiscernible, in (-ff(λ), G, <*), over 7V|Jx) Now,

for every PΛ-name β G Nn of an ordinal < AC, for some /? G Nn Π AC, lhpκ "/? < /?"

(as PΛ satisfies the K-C.C., see 5.3) hence Sup(7Vn[G] Π AC) = Sup(Nn Π K) < χf

So we can define /n+ι, hence all the /n's hence, as said above, we finish.

(2) By 3.8(2) the complete Boolean algebra P = RO(Pχ) is (S, ω)-complete,

where S will be {2, N0, NI}; let Q - RO(QK).

Let (p, g) G P * Q. Clearly it is enough to describe the winning strategy of

player II in ED£ ((p, q), P * Q\.

Suppose in the n-th move, player I chooses the P*Q-name βn of an ordinal

< NI, and player II will choose βn. Player II will do the following: after the

n-th move he will have (p, qη) G P * Q and β'η,βη for every increasing sequence

η of ordinals < AC of length < n such that:

(1) (

(2) (

(3) (p,qη) Ih α^g(r?) - ̂ ", /?; a P-name (of an ordinal < ^).

(4) for some An G D, for every increasing 77 C An of length < n we have

A? =/?/g(τ;)»

(5) p l h p "SupRang(^) > MaxRang(τy)",

(6) For 77 G nAc increasing, {^Q,/^ro,^!,/?^!, - - - >βη\n>βrι\n) is an initial

segment of a play of ED^(p, P) in which player II uses his winning strategy.
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Clearly Player II can do the above and it gives him a strategy, (i.e. the

zero-th move is easy. In the (n-hl)'th move; first for every increasing v G nκ for

every 77 = v~ (α) first choose qη to satisfy (2), (5) and force βιg(η) to be equal

to a P-name β'η; then choose βη to satisfy (6). Finally he chooses An and βn to

satisfy (4) ). We have to prove that he wins by this strategy. So let A = p| An,
n

and for 77 G ω A increasing, we know that for some (by clause 6) pη G PΛ, pη Ih

Let K = {T : T a tree of finite increasing sequences from A, closed under

initial segments, {) G T and for every 77 G T, {ί G A : 77Λ (i) G Γ} G D}

(we can replace D by T>κ -f A or Pjf -f A in this context since we only need

/^-completeness). Remember limΓ = {77 : £g(η) — ω, η\k G Γ for every k < ω}.

So K is closed under intersection of < K elements. For each T G K, 77 G T, let

x^ be, in ΛO(P), Suppjp^ : z/ G limT and v > 77} (Remember, we replaced

Pκ by a complete Boolean algebra Bp or see 1.4(9)). Clearly x^ decreases

with T, so as P satisfies the ft-chain condition, for some T,xΐ, is minimal (i.e.,

Tt C T, T"t G K implies x£ = xTj), and similarly for every 77 G Γ.

Obviously,

(1) x^ = Sup{x^ ̂  : 77Λ < ί >G Γ}: (this holds for any tree),

(2) RO(P) \= 0 < b < x? implies {i : ΛO(P) |= b Π x^ <i:> ^ 0} ^ 0mod£>

(by T's minimality).

Let T* = {77 : x^ belongs to the generic set of P}. Hence xT^ Ihp "T* ^ 0, in

fact (} GΓ*", and

(3) x?5 Ihp " for any 77 G T* for K many i's we have 77Λ (i) G Γ*".

Now if G C P is generic, xT\ G G then ^[G] is a stationary subset of 5o, and

C — {δ: if 77 G ω>δ, then Rang(^[G]) C δ} is closed unbounded. Hence for

some 77, δ with 77 G ωδ the following holds: δ G ̂ [G] Π G, (Vk)η\k G T*[G], and

= δ Let ^* = U<ω ςft,^ U{(Sup U/<ω Dom(^r,), 5)} G Q. Let g* be

the P-name of such a ς*. It is easy to check (xT^q*) is as required. Dγ.2
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7.2A Remark. In 7.2, we can weaken the assumption allowing S = 0 mod D

when e.g. Pj,Pj/Pi+ι are semiproper. (A complete proof of a better theorem

appeared in XL)

7.3 Theorem. If "ZFC + G.C.H. 4- there is a measurable of order 1" is

consistent, then so is "ZFC 4- G.C.H.+ for every subset of SQ, either it or its

complement, contains a closed copy of ω\".

Remark. We do not try to get the weakest hypothesis. It will be interesting to

find an equi-consistency result. (See XL)

Proof. So let V satisfy G.C.H., B C K the set of measurables of order 0,

not 1, and for every μ G 5, let Dμ be a normal ultrafilter on μ; we know

(see below why) that Oβ holds, and let S = (Sμ : Sμ C H(μ),μ £ B),

exemplify it. Moreover, if 5 C H(κ), φ a Π} sentence, (//"(AC), G,5) N φ then

{μ € B : SΓ\H(μ) — 5μ, (if (μ), G, 5μ) N 9?} is a stationary subset of K. It is well

known that there are such Sμ. [Why S exists? Choose inductively Sμ C #(μ)

for μ G B such that if possible {μ' : μ' G μ Π J3 and 5μ Π //"(μ') ^ 5μ/} is not a

stationary subset of μ].

We define an RCS iterated forcing (P^, Qi : i < K) by induction on i, such

that IPΪ I < κ;, and for every measurable μ < A V , z < μ => |P^| < μ.

When we have defined Q? for j < i then Pj(j < i) are defined. If i G /c\ J5,

Qi is {/ : / a countable function from KI to |P;|+ + 2H2} (2^2 of VPί).

If i G J5, Si = (p, 5),p € P^ 5 a Prname, p lhP. "5 is a subset of 5^ and

5^0 mod D for some normal ultrafilter D G V on i", then we let ft be as in

7.2 if p is in the generic set, and trivial otherwise. We can finish as in previous

proofs. Π7.3

7.3A Remark. 1) We leave the checking that the forcing works, to the reader.

For the normal ultrafilters £)', D" on K if, for B' C K, we have B1 G D' Φ> {λ G

B : J3' Π λ G £>λ} G D", then we can get in VPκ every A' G (£>')+ contains a

closed copy of ω\.
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2) Note that Pκ will be {Nι}-semiproper and even {2, NO, NI }-complete (see

3.5).

3) In fact we could have gotten that every stationary S C SQ contains a closed

copy of ωi, i.e. Fr"l"(^2) if we use 7.2A.

4) The forcing in the proof of 7.3 preserve "cf(ί) > N0" [Why? Use 2.7 and

simple properties of the Q^s.]

is7.4 Theorem. Suppose "ZFC + there are two supercompact cardinals

consistent. Then so is ZFC + G.C.H. + "Fr+(Nα) for every regular Nα(α > 1)".

Remark. Slightly better is XI 7.6. We can also get result like XI 7.2(c) i.e.

(*) for every θ = cf(θ) > ^4 and stationary W* C {δ < θ : cf(δ) = NO} we can

find an increasing continuous h : ω\ —> S such that h(ϊ) G Wί

Proof. Let V \= "2μ = μ+ for μ > λ" and K < X and «, λ are supercompact.

By a theorem of Laver [L] we can assume no ^-complete forcing will destroy

the supercompactness of K. The following is known:

(*)o If Hα > λ is regular, S C Sft is stationary, then for some μ, ft < μ < X and

δ < NQ, we have cf (δ) = μ and S Π <5 is stationary.

Let P be the Levy collapse of λ to /ς+. By Baumgartner [B2], in Vp,

(*)ι for every stationary S C λ Π S£°, for some 5 < λ, cf (ί) = K (in Vp), S Π 5

is stationary.

Moreover,

(*)2 If in yp, H/5 > λ, #β regular, S C SQ stationary, then for some δ < N0,

cf (δ) = /ί, and S Π 5 is stationary in δ.

(why? as |P| = λ < N/j = cf (N/j), 5 is the union of λ sets from V, so at least one

of them is stationary (subset of λ in V), so without loss of generality S € V.

Now by (*)o above we can find δ as there. But P is /ς-complete and collapses

δ to size ft, so cf (5)v = «, and 5 Π 5 is stationary in Fp. We want to deduce

Ihp "5 Π δ is stationary in 5", as δ G 5 => cf(<5) = N0 this is easy).

We can conclude
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(*) in Vp, if μ > K is regular, S C μ Π 5*0° is stationary then for some

δ < μ, cf(δ) = K and S Π δ is stationary.

Let Q be the forcing from 7.3 A(3) (or the proof of XI 7.1), we shall show that
P*Q

V is as required.

Note: #Y *" = Nj", N^ *~ = « , * # * " = λ and every cardinal μ > λ of V
P*Q

remains a cardinal in V ~ and the properties "δ a limit ordinal" "cf (ί) = NO" ,

cf(ί) > NO are preserved by P (being Ki-complete) and Q (by 7.3A(4)) so S£°
p*9

has the same interpretation in V, V^ and V " .
P*Q

Let, in V " , μ be a regular cardinal > HI and S C μ Π 5̂ ° be stationary.

If μ < /c, apply the proof of 7.3, 7.3A(3). If μ > K then, as Fp 1= "|Q| = /ς", S

is the union of K subsets which belong to Vp, so at least one is stationary, so

w.l.o.g. 5 G Fp.

So in Vp, for some ί, cf(5) = /ς, ί Π 5 is stationary; as Q satisfies the
p*9

tt-chain condition, 5 Π δ is still stationary in V " , as required. D7.4




