X. On Semi-Proper Forcing

§0. Introduction

We weaken the notion of proper to semiproper, so that some important prop-
erties (the most important is not collapsing Ry, being preserved by some itera-
tions) still hold for this weaker notion. But the class of semiproper forcing will
also include some forcings which change the cofinality of a regular cardinal > N;
to No. We will also describe how to iterate such forcings preserving semiproper-
ness. So, using the right iterations, we can iterate such forcings without col-
lapsing R;. As a result, we solve the following problems of Friedman, Magidor
and Abraham respectively, by proving (modulo suitable large cardinals) the

consistency of the following with G.C.H.:

(1) for every S C Ng,S or Na \ S contains a closed copy of wy,
(2) there is a normal precipitous filter D on Rp, {§ < N : cf(d) =No} € D,
(3) forevery A C g, {§ < Ny : cf(d) = Ng, d is regular in L[6NA]} is stationary.

However, the countable support iteration does not work, so we introduce the
revised countable support. Though it is harder to define, it satisfies more of

the properties we intuitively assume iterations satisfy and is applicable for the

purpose of this chapter.
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Notation.

Ord is the class of ordinals, Car the class of cardinals, ICar the class of
infinite cardinals, UCar = ICar \ {Ro} and RCar the class of infinite regular
cardinals, SCar = RCar U {2}, RUCar = RCar N UCar, and we let

S5 = {6 < R : cf6 = Rg}.

§1. Iterated Forcing with RCS
(Revised Countable Support)

Iterated forcing with countable support is widely used since Laver [L1]. One of
its definitions is that at the limit stage with cofinality Ry we take the inverse
limit, and at the limit stage with cofinality > Ny we take the direct limit.
Another formulation is given in Definition IIT 3.1. However, the applications,
as far as we remember, are for forcing notions which preserve the property “the
cofinality of ¢ is uncountable”, and in fact are E-proper, for some E which is
a stationary subset of S<y,(UE).

However, in our case we are interested just in forcing notions which do
change some cofinality to Ny. In these cases, we cannot break the iterated
forcing into an initial segment and the rest (i.e., break (P;,@; : 1 < ) into
(Pi,Qi i < B)) and (P;/Pp,Q; : B < i < a)). The reason is that maybe
the first forcing changes the cofinality of some 6,5 < § < a to Np; but then
Ps/ Pg is not the inverse limit of (P;/P3, Qi : 8 < i < 4), and Itp, “(P;/Pg, ,Q; :
B <1 < a) is not a CS iteration”. In fact, as every p € Ps has domain a bounded
subset of 4, if IFp, “an € (B,0),an < @ny1,6 = U an, and (pni:i <) isa
sequence of pairwise incompatible conditions in nQ<:n or just in P, ,,/P,, ie
Py, -names of members of P, ,/Gp, " and we let 7 : w — X be 7(n) = i if
Pn,ilGp; N Pp) belongs to Gp, or there is no such i and we let 7(n) = 0, then

IFp, “rT is a function from w onto A + 1”. So if each Qi has two incompatible

members and § is divisible by w?, then Ps will collapse R; and even (2N°)VPB

for 8 < 6.
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Hence we suggest another iteration, RCS (revised countable support),
which seems to be the reasonable solution to this dilemma.

The essence of the solution is that a name of a condition is really a
condition. More exactly, in countable support iteration a condition may be
{(B, @)} such that ¢ is a Pg-name of a member of Qg, so ¢ is a name but 3 is
a “real” ordinal. But now we allow 3 to be a name. But a name with respect
to which forcing notion? We would like to use P,-names, but then we get a
vicious circle, defining what is a condition of P, using P,-names. So we can
allow P,-names [ for some v < e, such that IFp, “y < 8 < a”, and then allow
a Py-name of condition as above etc (this is the successor case in clause (B) of
Definition 1.2(1), and shall use it freely in later sections). The exact definition
appears below; though it has a somewhat cumbersome definition, it seems to
conform better to our intuitive idea of iteration. A first version of it can found in
[Sh:119]. For other realizations of this (and alternatives to §1 here) see [Sh:250],
which is redone here in Chapter XIV. In XIV §1 we deal with x-RS. There, all
the induction on v disappears as & > N; makes it unavailable. An alternative
way is XIV 2.6=[Sh:250, 2.6] where we simplify matters by demanding, e.g., for
Q-named ordinal ¢ that: ¢ IF4¢ =& = ql¢ IF “¢ = €7, the price is the loss of the
associativity law (see 1.1A(1)), this makes the treatment later less elegant, but
does not cause real damage as far as we know: i.e. we cannot restrict inductive
proofs to the cases the length § of the iteration being 1, 2, w, w1, K inaccessible,
but rather have 1, successor, for some a < §, pla I+ c¢f(§) = No (where we are
interested in the forcing above p) etc. As things are, we need to consider in e.g.
1.1(B), not only 7 € P but also 7 € P¢y1 except when { + 1 = o (to avoid
vicious circle), hence we have y = 8+1 < a or v = § = a — 1 there. Compared
to the previous (i.e. [Sh:b]) version, for smoothness we essentially complete the
Q:’s and we also give (for completeness) the equivalent outside definition of

Q-named ordinals (and conditions (1.3(2))).
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1.0 Remark.

1)

(2)

(4)

(6)

(7)

(8)

If P, = Py x Qo, £ a Pr-name, Gy C P, generic, then in V[Gq], z can
be naturally interpreted as a Qo-name, called /Gy, which has a Py-name
z/Go or z/Py; but usually we do not care to make those fine distinctions.
Using Q = (P;, Qi< a), P, will mean Rlim @ (see Definition 1.1).

If D is a filter on aset J,D € V, V C VI (e.g., V! = V[G]) then in an

abuse of notation, D will denote also the filter it generates (on J) in V7.

Formally, if I p, “Qo is a forcing notion ” then Py * Qo is a class, but this is
for superficial reasons. We can demand that the set of members of Qo (in

Vo) is a cardinal, and use only “canonical” Py-names (as in 1.1 (B)), or
restrict ourselves to members of some H (x). In the iteration in this section
(see 1.1), writing |P|, we mean |P/ =~ | (see I 5.5). We may use instead
d(P), the density character, which is defined as Min{|P’| : P C P, Vp €
P 3p’ € P'[p < p']} or the essential density d'(P) = Min{|P’| : for some
P", P < P", P dense in P and P’ C P” and (Vp € P)(3p' € P')[p' Fp~
“p € Gpn"]} (we say P’ is essentially dense in P; this means it is dense in
the Boolean completion of P). The change does not make much difference.

D, is the closed unbounded filter on x.

For a forcing notion @, an almost member q of @ is {(p;, ) : 1 < i*}
such that [p;, ¢; € Q] &[p;, p; compatible = ¢; = ¢;|, andforr € Q,q <r
means 7 kg “for every i < i* if p;, € Gg then ¢; € Gg”; if ¢/, ¢" are
almost members of Q we define: ¢’ < ¢” iff (Vr € Q)[¢" <r = ¢ <r]. If,
as we normally agree, 0o € @ is minimal in Q then we can identify r € Q
and the almost member {(0g, 7)}. The set of almost members of Q will
be denoted by Q (this is in fact just the completion of @ but if p, ¢ € Q
are equivalent (i.e. - “p € Gg « q € Gg” then in Q, p < ¢ < p so they
can be identified).

Note that an almost member of Q is equivalent to a member of Q, but is
not a real almost member, but we usually ignore the distinction.

See more on why the iteration is good in XI §1.
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1.1 Definition. We define and prove the following (A), (B), (C), (D), Def.

1.2 and claims 1.3(1), 1.4, by simultaneous induction on a (also for generic

extensions of V'):

(A) Q =(P;,Q: : i < a) is an RCS iteration (RCS stands for revised countable
support).

(B) a @-named ordinal (or [j, a)-ordinal), (above a condition r).

(C) a Q-named condition (or [j, a)-condition), and we define qlé, gI{&} for a

@-named [j, @)-condition ¢ and ordinal { and they are a member of P

and a P;-name of a member of Q¢ respectively; of course £ € [j,a] (and
€ € |4, a) respectively).

(D) the RCS-limit of @, Rlim Q which satisfies P, < RlimQ for every i <
and pl¢, p[{¢} for ¢ <a, p € RlimQ.

(A) We define “Q is an RCS iteration”
a = 0 : no condition.
o is limit: Q = (P;,Q; : i < a) is an RCS iteration iff for every 8 < a, QI8 is
one.
a=f+1:Q is an RCS iteration iff QI is one, Ps = Rlim (Q13) and Qg is
a Pg-name of a forcing notion.

(B) We define “¢ is a @-named [j, @)-ordinal of depth Y above r” by
induction on the ordinal ¥ (and a = £9Q).

The intended meaning is an (Rlim Q)-name of an ordinal of a special kind,
however Rlim Q is still not defined. So we use the part already known.

For ¥ =0:“%isa Q-named [j, @)-ordinal of depth Y above r” means ¢
is a (plain) ordinal in [j,a), ie,, j < ¢ < a,r € Pryy; but if ( +1 = o then
re P

ForY>0:“isa Q-named [j, a)-ordinal of depth Y above r” means that
for some 8 < a, (letting vy =+ 1if 8+ 1 < o and v = B otherwise) r € Py,
and for some antichain Z of P,, pre-dense above r, T = {p; : i < ip} C P,,
{¥i:i<io} and {{; : i <io}, we have Py F “(r1v) < p;” (for simplicity), ¢; is
a Q-named [ max{j, 8}, a)-ordinal of depth Y; above p;,Y; <Y, and ¢ is (; if
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p; and 7 (i.e., if p;,r will be in the generic set then ¢ will be Cis this is informal
but clear, see formal version in 1.2(1)).

Without Y : We say (isa Q-named [j, a)-ordinal above r, if it is such for
some depth.

Without r : r = 0.

Similarly, we omit “[j,a) —

(C) We define “q is a Q-named [j, @)-condition of depth ¥ above r” and

” when j = 0.
also ¢{¢}, ¢[€ and the Q-named [j, @)-ordinal ¢ (¢) associated with g.

The definition is similar to (B).

For ¥ =0: Wesay “gisa Q-named [}, a)-condition of depth Y above 7”
if for some ordinal ¢,j < ¢( < @ and ¢ is a P;-name of a member of QC (see
1.0(6)), 7 € P¢41 but if ( +1 = a then 7 € P; and for simplicity g is above
r[{¢}ie. if (+1 < athen r[¢IFp, “in QC, r[{¢} < ¢” (note: 7[¢ € P, r[{C}

is a member of Q). We let

q if €>(¢+1
qreE=<q if&E=¢+1
Pp, if £€<¢
g &=
aie) = {(2)9€ if € # ¢
notes: § € Pp and remember 1.0(7). Finally we let ((q) = (. [What if we

wave “q above r[{¢}"? Then & = ¢ + 1 need special attention as in Q[¢, r
may not be in P so we have to transfer the information of g to “allowable”

form, so ¢[¢§ depend also on 7; so ¢ should also tell us who is 7 or require
I [Qe Er{¢) < q” or we should write ¢[,&, ¢[,{¢}]
For ¥ > 0: We say ¢ is a Q-named [}, @)-condition of depth Y above r,

if for some § < a (letting v = B+ 1if 8+ 1 < a and v = 3 otherwise) for
some Q-named [j, a)-ordinal of depth Y above r,¢, defined by B, v, {p;i : i <

io} C Py, {Yi 14 <o}, {¢i : @ < io}, we have for each i < ip a Q-named

[ max{8,j},a)-condition g; of depth ¥; above r|Jp; (see clause (c) in (D)
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below), so informally ((g;) = ¢i, and ¢ is g; if p; and 7 are in the generic set of
P,).

We then let ((g) = ¢.

Now we define ¢[¢ and g[{£}; [really, we can just replace g; by ¢; 1€, ¢:[{¢}
respectively. In order to be pedantic, we need the following]. We define gl as
follows (below we ask r € UE <€ P11, because if { is a successor, € P is a
reasonable situation, if £ a limit ordinal - not). Ifr € U, ¢ Pet1 and 841 <,
then g[¢ is defined like g replacing ¢; by ¢;[€. If r € Ue<§ P, 8+1=¢€=aq,
then ¢g[€isq. Ifr € UE<§ Pey1, B+1 = € < a then ¢[¢ is the following Pg-name

of a member of Qﬂ:

if r[B € Gp, then ¢[¢ is {(p:1{8}, q,) pi[B € Gpyyi <ig} € Q
Ifr € Uecg Pet1, B+1 > Eorr & U o Pes1 then: gl 1€ is @ (or not defined).

Similarly for g[{}. If r € Peyq (or 7 € Pe), v < € then g[{{} is defined like
q replacing ¢; by ¢;[{¢}. If r € Pey1, B <7y =&+ 1 (hence 8 = £ < ) then
q[{&} is the following Ps-name of a member of Qﬂ: {(rH{BYUpil{B},¢:1{B}) :
pilB € Gp, and r[B € Pgand i < ig}. If r € Pgyq, B =7 = £+ 1 (actually
is ruled out) or v > & + 1 then ¢[{£} is 0. If 7 ¢ P4y, then ¢[{¢} is @ (or not
defined).

[The definitions of {(g[€),{(q[{£}) are left to the reader].

We omit Y and/or “[4, ) —" if this holds for some ordinal ¥ and/or j = 0.
We omit r when 7 = @(= @p,). We leave the definition of ¢[[(,£) to the reader.

(D) We define RlimQ as follows:

if @ = 0 : RlimQ is trivial forcing with just one condition: § = @p,;

if @ > 0 : we call ¢ an atomic condition of REmQ, if it is a @-named
condition.

The set of conditions in P, = RlimQ is
def

{p : p a countable set of atomic conditions; and for every 8 < «, p[8 =
{r1B : v € p} € Pg, and p|B IFp, “p[{B} def {r!{B} : r € p} has an upper
bound in Qg”}.
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The order is inclusion, (but in later sections we sometimes ignore the
difference between p < q and p I+ “g € G”)
Now we have to show:
(a) P < RlimQ (for 8 < a). [By 1.4(1) below.]
(b) For B8 < a, any (Q[B)-named [j, 8)-ordinal (or condition) above r is a Q-
named [j, a)-ordinal (or condition) above r. [Why? Obvious.]
() If € < @, gisa Q@-named (atomic) condition above 7, r € U. <€ P, then g[¢
is a (Q€)-named (atomic) condition above r. [Why? Obvious.]
(d) If By < B2 < a,p € Pg, \ Pg,, p < qin Pg, then ¢ ¢ Ps, (though it may
be equivalent to one).

(e) If¢ < a, g a Q-named atomic condition above r,r € |J P thenlkp “qI{¢}
e<§ -

is a member of Q ”,
3

1.1A Explanation. 1)What will occur if we simplify by letting in 1.1(B),
for Y > 0, v = @ always? Nothing happens, except that 1.5(3) is no longer
true; though this is used later, we can manage without it too, though less
esthetically; for variety, XIV 2.6 = [Sh:250, 2.6] is developed in this way (for a
generalization called x-RS, our case is kK = N;). For the case which interests us
the two definitions are equivalent - by the proof of 2.6 (here).

2) So why in 1.1(B), for Y > 0, we do not let v = f+1 always? If +1 = a, we
fall into a vicious circle; defining Pg41 using conditions in Pg.1; alternatively

see XIV §1.

1.1B Remark. We can obviously define Q-named sets; but for conditions (and
ordinals for them) we want to avoid the vicious circle of using names which are

interpreted only after forcing with them below.

1.2 Definition.

(1) Suppose ¢ isa Q-named [j, a)-ordinal above r, 7 € G C |J,_, P; and GNP,

i<a

generic over V (whenever i < a) (say G is in some generic extension of V).
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We define ¢ [G] by induction on the depth: if the depth of ¢is0,itis ¢, if
the depth of ¢ is > 0, and it is defined by 8, v, {p; : i < io}, {¢i i <o},
{Yi : i <o} as in Definition 1.1(B) then for a unique i < ip,p; € G and
we let ([G] = (;[G] (remember Y; < Y). (If there is no such i, it is not
defined but as we demand {p; : i < 4o} is a predense above 7|y in P, above
r and v < o and 7 € G, it will be defined).
If r ¢ G then ([G] is undefined, or we can give it a default value, like co.
For a Q-named [j, &)-condition ¢ above r, we define q[G] similarly (with
default value ().
(2) For ¢ a @-named [}, a)-ordinal above r, and ¢ € Uica Pi let glFg “¢ =¢"
if for every G C (J,; ., Pi, such that each GN P; (i < a) is generic over V/,
q € G = ([G] =&, (similarly ¢ IFg “¢ undefined”.)

1.3 Claim.

(1) Suppose ¢ is a Q-named ordinal [above 7], (Q an RCS iteration, a =
£g(Q)). If G C ;<o P [and 7 € G] and each GN P; (where i < a) is a
generic subset of P; over V, then for some §, ¢ [G] =¢&,5 < € < a. Moreover
for some q € Pey1 NG we have g kg “¢=¢” and E+l=a=qc P

(2) Suppose Q is an RCS iteration of length o, j < a, ¢(z, y) a definition
with parameters in V and r € {J, ., P; such that:

(i) If G* is generic over V for some forcing notion, in V[G*] we have G C
Ui<q P is directed, for each i < a the set G N P; is generic over V and
r € G then V[G] = (3'z)p(z, G) and we call this unique z, z,[G].
Suppose further that for such G*, G we have z,[G] is an ordinal {, =
¢,[G] € [4,a) (or it is a pair ((s,¢z) = (Go[G],4,[G]), with (,[G] an
ordinal € [j, @), ¢,[G] € @ (GNP i) and 1 € P, (q)+1-

(ii) G*, G,z = z,[G] are as frt[g]), then for some ¢ € GNP 0 +1 N(U;<o Pi)
we have:

(¥)2 if G**, G' € V[G**] satisfy the requirements on G*, G and g € G’
then 1,[G'] = z(= z,[G]); note (z = a — 1= q € Po—1 follows,
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(iii) if & < o is limit, 7 € Pg, B < §, and G* generic over V and G € V[G*] and
r € G C .5 P- and G N P. generic over V for € < 4, then
either for some ¢ € G, and z, (*)? above holds, (so {; < d)
or for some B € (6,4) and r*, r < r* € Pg, NG we have:
for any 8’ € (64, 6) for any r’,z':

r* <1’ € Pp&e(x) = (o > 6

Then there is a Q-named [j, a)-ordinal above r, ¢ [or Q-named [, @)-condition
q] such that:
If G* is generic over V for some forcing notion, in V[(G*], G C U, P:
directed, for each i < a the set G N P; is generic over V and 7 € G then
To[G] = ([G] [or z,[G] = ¢[G] (i.e. equivalent members of Qg[g][G] [Gn

Peiglia)]-

1.3A Remark. 1) Concerning 1.3(2), of course every Q-named ordinal (or

condition) [above 7] satisfies these conditions.

Proof. (1) The proof is by induction on the depth of ¢.

(2) The proof is straightforward. For notational simplicity we deal with the
case of Q-named [}, @)-ordinals only; but for easing the induction we define in
Definition 1.1 clause (B) also “extended Q-named ordinals” by just allowing ¢
also values > o (but still j < o and now in ()2 we have (; > a—1 =g € Py
(and we stipulate for a not successor, « — 1 = «)), and so similarly in 1.3(2)(i);
clearly it suffices to prove 1.3(2) for this extension. Let 8* be minimal such
that r € Pg-; we know 3* < o. Let Z be the set of 7* € | J,_,, P such that:
(*)[r*] for some 8,y we have: r <r* € P,,j <fB<a,B<y<a,v<B+1and

there is an extended Q-named [, 00)-ordinal ¢ such that:
if G* is generic over V for some forcing notion, G € V[G*], G C
Uica Pi» GN P; is generic over V for i < o and r,7* € G
then z,[G] = ¢[G].
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Let J = {p € T: for some v < a we have p € P, \ ... P- and for no

€<y
v, j <7 < ~isthere p’ € TN Py, p’ compatible with p (say, in P,)}. It is
enough to prove r € Z, so assume that this fails. Choose x large enough such
that Q € H(x), G* be such that in V[G*] the cardinal 2X becomes a countable
ordinal.

Now
(¥)o If B8, v, r* are as in (%)[r*] and r* < r** € P, then r** € T

[this is trivial].
(#)1 Ifr <r* € Pg, p* <B <a,INPsg\,.pPy is pre-dense above r* in Pg

then r* € 7.

[Why? Straightforward by the inductive step in (B) of Definition 1.1].

For f/ < a, 7 € G C Py, G generic over V, we define ZI¢! = {p ¢

Uica Pi 1P € Upcccq Pe/G and for some r' € G we have pUr’ € I},

(*)2 Assume r € G C Pg/, G is generic over V, p € Uﬂ'§e<a P./G and for
some extended (-named [j, co)-ordinal ¢’ above p we have: G C G’ C
Ucca Pe&p € G" & [for e < a, G'N P, is generic over V] = 1,[G'] = {'[G].
Then p € TI6l. [Why? Check, using the successor case in clause (B) of Def-

inition 1.1.]

We shall prove by induction on § € [3*,, ., €] that

® if B* < B(0) < B, Gy € Pp(o) is generic over V, r € Gy, Gpo)NZ =0
then there is Gpg such that [ < a = Gg C Pg is generic over V|,
B=0a=GsC Ui P& A
and GgNZ =0.

<o i<

Gg N P; is generic over V], Gy C Gg

It suffice to prove ®, as from ® for 8 = |J,_, ¢ we get 1.3(2); why? there

e<a
is Gg« C Pg- generic over V, such that r € Gg. and Z N Gg- = @ (otherwise
by (%), applied to r* = r, 5* = 3 we get r € T). Now use ® with 3(0) = 8*,

B =U,.cq & and Gy = Gp- and get G; contradiction to the assumption (ii)
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of 1.3(2), thus finishing the proof of 1.3(2).
Note that as GgyNZ =0 also G NZG = .

First case: 8 = *. Empty.

Second case: B = (1 +1 > (*. So by the induction hypothesis without loss of
generality 3(0) = f;. Clearly, 3 < a (otherwise we are done). As Gg(o) C Pg(o)
is generic over V' (and r € Gp()), there is 7* € Gg(g) such that r < r* and r* IF
“INGp) = 0. So there is no ', r* <1’ € Pp(o)NZT. Is there r’ € Qp(0)[G(0)]
incompatible with every {p[{B1} : p € P(0)+1NZ, pIB1 € G(a(0))}? (Note (*)o
and remember 3; = ((0).) If so, no problem to find G as required; otherwise,

without loss of generality, 7* forces this and by (*)1, 7* € Z, contradiction.

Third case: 8 = « is limit. Without loss of generality in V[G*], P, (and a) are
countable. Let in V[G*], (B, : n < w) be increasing with limit 3, 8o = 5(0). We
define by induction on m < w, Gg,, C Pg,_, generic over V, increasing in n such
that: Gg,, NZ = 0. Let n(0) = 0, Gg, = Gg(o). For m + 1, use the induction
hypothesis. Now {J,, .., Gg.. is as required.

Fourth case: B =6 < ais limit. Let a* > a be an ordinal never of the form

¢o[G]. We shall define ¢'(z,y) such that for Q' = QI[6, r' = r,j' = j the
assumption of 1.3(2) holds: if r € G C |J, 4 P- and G N P, is generic over V
for e < § then:

(a) if for some ¢q € G, ¢ > r and z, the statement ()2 holds then z,[G] = z.
(b) otherwise, z,[G] = a*.

Now to see that assumption (i) of 1.3(2) holds we use assumption (iii) of
1.3(2) and also the other assumption holds. So by the induction hypothesis on
@, an extended @Q’-named [j, 00)-ordinal ¢’ exists, say of depth Y. Looking at
1.1(B) there is a set T of strictly decreasing finite sequences of ordinals closed
under initial segments and ((y, Yy, Py, By : 1 € T'), Where
(@) ¢y =¢', py =7, Yy the depth of ((y, r € P, +1)

(B) if n is maximal in T then Y, = 0, 8, < 4, (; an ordinal (; > B,
Pn € Pg,+1)
(7) if n € T is not maximal in 7" then v € Sucr(n) = p, < p, € Pg,+1) & By <
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By, (pv : v € Sucr(n)) is a maximal antichain in Pg, 41y above py, (n is the
following extended Q-named [3,, 00)-ordinal above py: if p, then it is Cu-
Suppose first: [ maximal in T & p,[B(0) € Ggo) & ¢ = o* = p, €
I[GNO)]]. Let T" = {n € T : p,[B(0) € Gg)}; we define ¢. Just for every
maximal 7 € T’ such that {, = o*, “plant” a witness to p, € ZlGs], In
details, we prove that for every € T, there is a Q-named [j, a)-ordinal ¢n
above p, such that: if Gy € G’ C U P.&p,ecG & (Ve<a) (P-NG is
generic over V) then z,[G'] = (;[G']. ThlS is shown by <-downward induction
on 7 € T. In the case 7 is maximal in T, then: if p,[3(0) ¢ G (o) the demand is
quite vacuous, if ¢, # a* we can use a @-name of depth 0 and in the remaining
case we know that p, € 7G5! and this give the required conclusion. The
remaining (=second) case is n € T not <-maximal, and so use the induction
hypothesis (and as in (*)1, the successor case of clause (B), Definition 1.1).
So we have gotten a name of the right kind in V[Gpg()], so by (*)2 we get
a contradiction. So for some maximal n € T, p,[B(0) € Gg(),¢n = a* and
Py & Z1Gsol. If for any such n, {g € P : p, < q € I} is pre-dense in P5/Gp(0)
above p,, we again can get a witness to p, € TIGso] (reread clause (iii) of
1.3(2)), again contradiction. So some ¢* € Pj; is > p, and is incompatible
with any ¢ € ZN Ps in P5/Gp). Any G5 C Ps generic over V which include
Gp) U {q*} is as required. Ois

1.4 Claim. Let Q = (P;, Q; : i < a) be an RCS iteration, P, = RlimQ.

(1) If B < a, then not only Pg < P,, but if ¢ € Pg, p € P,, then q,p are
compatible in P, iff ¢, p[B are compatible in Pg. Moreover if ¢ € Pg,p €
P,,Ps = “pIB < ¢” then pU ¢ is a common upper bound of p,q in P,
(even a lub, and in particular Pg F “gla < ¢”).

(2) If B,y are Q-named [j, £g(Q))-ordinals, then Max{, 7} (defined naturally)
is a Q-named [, £g(Q))-ordinal.

(3) If @ = By + 1, in Definition 1.1, part (D), in defining the set of elements of
P, we can restrict ourselves to 8 = . Also in such a case, P, = Pg, * ng

(essentially). More exactly, {p{U{q} : p € Ps,, ¢ a Pp,-name of a member
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of Qp,} is a dense subset of P,, and the order p1 U{g1}<1p2 U{g2} iff
[p1 < p2 (in Pg,) and pp IFp, “g1 < q1 in Q,go”] is equivalent to that of
P,, i.e., we get the same completion to a Boolean Algebra.

(4) The following set is dense in P, : P, e {p € P,: for every 8 < a, if
1,72 € p, then IFp, “if ri [{B8} # 0, r21{B8} # 0 then they are equal”}.

(5) |Pal < (Xicq2P)lel, for limit o (i.e. we count conditions only up to
equivalence).

(6) If IFp, “|Qs] < K7, k a cardinal, then |Piyq| < 2P0 4 k (i.e. identifying
equivalent names).

(7) If IFp, “d(Qi) < K” then d(P;41) < d(P;) + k (where d is density).

(8) For a limit d(P,) < 2%i<ad(Pi),

Proof. Easy.

1.5 The Iteration Lemma.
(1) Suppose F' is a function, then for every ordinal  there is RCS-iteration
Q=(P,Qi:i< at), such that:
(a) for every i,Q; = F(QI1),
(b) af <a,
(c) either af = a or F(Q) is not an (Rlim Q)-name of a forcing notion.

(2) Suppose 8 < a, Gg C Pg is generic over V, then in V[Gg], Q/Gs =
(P;/Gp,Qi : B < i < a) is an RCS-iteration and Rlim (Q) = P *
(Rlim Q/Gp) (essentially).

(3) The Associative Law.

If ag(€ < £(0)) is increasing and continuous, ap = 0, Q = (Pi,Qi : i <

ag(0)) is an RCS-iteration, Pg(g) = Rlim Q, then so are

(Pa(e), Pa(e+1)/ Pae) : § < €(0)) and (P;/Pye), Qi : a(§) < i < € +1));

and vice versa.
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(4) If Q is an RCS iteration, p € RlimQ, P! = {¢ € P, : ¢ > pli}, Q; =
{reQi:p> pl{i}} then Q = (P!, Q) : i < £gQ) is (essentially) an RCS

iteration (and Rlim@Q’ is Plng).

Proof. (1) Easy.

(2) Pedantically, we should formalize the assertion as follows:

(*) There is a function F' = Fy (= a definable class), such that for every RCS-
iteration @, and £g(Q) = e, and B < «, Fy(Q, B) is a Pg-name of Q' such
that:

a) Ikp, “Q' is a RCS-iteration of length a — 3”.

b) Ps*(RImQ') is equivalent to P, = RimQ, by F1(Q, B) (i.e., F1(Q, 8)
is an isomorphism between the corresponding completions to Boolean
algebras).

¢)if 8 < v < alp, “Fo(Ql,P) = F(Q Ay - ) and Fi(Q,H)
extends F1(Qlv,3) and Fi(Qlv,8) transfer the P,-name Qv to a
Pg-name of a (Rlim(Q'[(y — f))-name of Qiy—ﬂ (when Qt = (Q]
i<y -pB).

The proof is by induction on «, and there are no special problems.

(3) Again, pedantically the formulation is

(*x) For @ is an RCS-iteration, £g(Q) = ag(), & = (ae : £ < £(0)) increasing
continuous, F3(Q,&) is an RCS-iteration Q' of length ag (o) such that:

a) Fy(Q,a) is an equivalence of the forcing notions Rlim@, RlimQ'.

b) Fa(Qla,G1(¢ +1)) = F3(Q,)IC.

c) 92 is the image by Fy(Qlag,al(¢ + 1)) of the Py, = Rlim(Qlag)-name

Fo(Qlag+1, o)
The proof again poses no special problems.

(4) Left to the reader. Uis

1.6 Claim. If « is regular, and |P;| < & (or just d(P;) < k) for every i < &,
and Q = (P;, Qi1 < k) is an RCS-iteration, then:

(1) every @-named ordinal is in fact a (Q[4)-named ordinal for some i < «,



482 X. On Semi-Proper Forcing

(2) like (1) for @-named conditions,
(3) Pn = Ui<n Pl

Proof. Easy.

1.7 Claim. Suppose Q = (Pi,gi : 4 < &) is an RCS-iteration, § limit and
p€ Ps,and (isa Q-named ordinal. Then there are i < §, and p' € P11, p[(i +
1) < p' such that p' g “¢ =14 (or p! I+ “¢[G] undefined ” if we allow this).
The same holds for @-named conditions (if Q:CV).

Proof. Easy. By 1.3(1).

82. Proper Forcing Revisited

2.1 Discussion. Properness is a property of forcing notions which implies that
R; is not collapsed by forcing with P, and is preserved by countable-support
iteration (and also R;-free iteration, see IX.). This property was introduced
in chapter III, and (see VII §3,4) many examples of forcing not collapsing
R; were shown to be proper (X;-complete, c.c.c., Sacks forcing, Laver forcing
and more). It was argued that proper forcing is essentially the most general
property implying R; is not collapsed and preserved under iteration. So the
forcing of shooting a closed unbounded set through a stationary subset S of R
(see Baumgartner, Harrington and Kleinberg [BHK], and III 4.4), though not
collapsing Xj, is excluded as if ®; = |J,,.,, Sn,Sn pairwise disjoint stationary
subsets of N; and we shoot a closed unbounded subset through each w; \ Sy,
in the limit N; is collapsed. Of course we can “kill” stationary sets in a fixed
normal ideal of X; (see e.g. [J]MMP]) and properness really demands somewhat
more than not destroying stationary subsets of N; (also stationary subsets of
S<ro(A) = {A C X : |A]<Rg should not be destroyed); but those seemed
technical points.

However, in Chapters III-IX we were mainly interested in forcings of

cardinality R;, so another restriction of properness was ignored: if P is proper,
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any countable set of ordinals in V¥ is included in a countable set of V. So
forcing changing the cofinality of some A, cfA > Rj, to Ng, are not included.
In fact, there are such forcings which do not collapse R;, and moreover, do
not add reals: Prikry forcing [Pr] (which changes the cofinality of a measurable
cardinal to Xg) and Namba [Nm| which changes the cofinality of R, to Ro (and
do not add reals when CH holds).

We suggest here a property of forcing, called semiproperness, such that
most theorems proved for proper forcing hold (when we use RCS-iteration)
and it includes Prikry forcing. We did not know whether there is a forcing
changing the cofinality of N, to No which is semiproper (i.e., provably from
ZFC), but we shall have an approximation to this, (but see XII §2).

So in this section we introduce the notion, and prove the preservation
under RCS-iteration. In this we weaken a little the assumptions: for limit 4,
Qs is not necessarily semiproper, only Psy1/P;;1(¢ < d) is semiproper. This
change does not influence the proof, but is useful, as we can exploit the fact

that § was a large cardinal in V. Note that the useful result is Corollary 2.8.

2.2 Definition. A forcing notion P is §-semiproper (S a P-name of a class of
uncountable cardinals of V) if for any large enough regular A, and well-ordering
<* of H()\), and countable N < (H(X), €, <*), such that P € N, S € N, and
for every p € PN N there is ¢, p < q € P such that: for every cardinal kK € N
and P-name 3 € N of an element of x,

qlFp “f k € S then there is A € N, |A|Y < K,pBeA
Equivalently, if § consists of regular cardinals of V, ¢ IFp “if kK € S then
Sup(N N k) = Sup(N[G]Nk)”; or even q IF “ if cf(k)" € S, then Sup(N Nk) =
Sup(N[G] N k)”; the case “S = {N1} is the main case.
(Note that we write A and not 4, i.e., A is in V; also when & is regular in V,
without loss of generality A = v for some v < ; this is the main case.)

We call ¢, under such circumstances, §-semi-(N, P)-generic. “Semiproper”

means “{N; }-semiproper”, and “semi-generic” means “{R;}-semi-generic” (we
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change the conventions of [Sh:b] where they mean U~RCarVP- semiproper,

QRCarVP-semi-generic respectively (see below)).

2.2A Remark. We could here change the definition to:
qlkp “if kK € §N N[G] then, letting N’ = the Skolem Hull of N U {x}, we
have Sup(N' N k) = Sup(N[G] N k)"

(in this case every k € S is regular > Rg). We have not looked into this variant.

2.2B Remark. When we write “P is UCar-semiproper” or “P is UCar-
semiproper”, UCar means {6 : § = R} or chP(J) > No} so it is a P-name.
Similarly for SCar, RUCar instead of RCar (and also R;) etc. But e.g. RUCar"-

semiproper means the regular uncountable cardinals of V.

2.3 Claim.

(1) If Pis UCarV—semiproper, or even S-semiproper, S = {A: cfA > R and A
a cardinal, in V'}, or even RUCar" -semiproper, then P is proper, and vice
versa. Moreover, in this case, ¢ in Definition 2.2 is (IV, P)-generic which

means: if § € N is a P-name of an ordinal then g IFp “B € N”.

(2) Pis S-semiproper iff the condition of Definition 2.2 holds for some A > 2/71,
and well-ordering <* iffit holds for A = (2!P1)* (provided that P € H())).
Also, the well ordering <* is convenient but not really necessary.

(3) P is S-semiproper iff (BF \ {0}, >) is, where BF is the complete Boolean
algebra corresponding to P.

(4) In Definition 2.2, for £ > Rg, and & > |P|, the condition is trivially satisfied
by any g, so only SN {k: Ry < k <|P|} is relevant.

(6) If P < @, S a P-name and Q is S-semiproper then P is S-semiproper.

(6) If P is S-semiproper, IFp “k € §”, cf(k) > No, then IFp “cf(k) > Ro”. In
particular, if RY € S then XY = RY".

(7) If IFp “S* C §2”, P is S2%-semiproper then P is S!-semiproper (similarly

for semi generic).

Proof. Easy. Uas
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2.4 Definition.
(1) A property is preserved by RCS-iteration, provided that for any RCS-

iteration Q = (P;, Q1< @), if Q; has the property (in V) for each i,
then Rlim Q has the property.
(2) A property is strongly preserved by RCS-iteration provided that, for @ =
(Pi,Q; : i < a) an RCS-iteration, we have
(a) if for every v < § < a such that v not a limit ordinal, Pg;/Py has
the property then RlimQ has the property and
(b) if « = B+ 1>, Pg/P, and Qp have the property, then P, /P, has
the property.
(3) We can replace RCS-iteration by any other kind of iteration in this defi-

nition.

2.4A Remark. In VI 1.6, 1.7, many properties were shown to be preserved
by CS iteration. In fact we have proved they are strongly preserved for CS
iteration — see VI 0.1(B) and even RCS iterations.

2.5 Claim.
(1) In Definition 2.4(1), (2) it suffices to consider the two-step iteration and

the case where « is a regular cardinal and: v < 8 < a implies Pg/P, has
the property (where for 2.4(2) v is zero or a successor ordinal).

(2) If a property is strongly preserved by RCS-iteration then the property is
preserved by RCS-iteration.

(3) In (1), for a regular, we can add: [3 < a =IFp, “a is a regular cardinal”]
provided that: P, has the property iff {p € P, : Pal{q : ¢ > p} has the
property } is dense.

Proof. Easy, by induction on o; for (1) use the associative law 1.5(3). For (3)
use 1.5(4). Las

2.6 The Semi-Properness Iteration Lemma.

(1) “Q is S9-semiproper” is strongly preserved by RCS-iteration for
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S? = (RY}U{k: in V9 we have “x = cfx > Ry},

so it is a @J-name.

(2) Suppose Q = (Pi,Qi : 1 < a) is an RCS-iteration, for successor j <
for arbitrarily large non limit ¢ < j, P;/P; is S; j-semiproper (and S; ; is
defined, S; ; is a Pj-name). Let (S is a P,-name):

S = {\: X an uncountable regular cardinal, and for every i non-limit we
have: cf(A\)V"™ € S ; for every j € [i,a), for which S; ; is well defined }.
Then P, = Rlim@Q is S-semiproper provided that:

(C1) for every limit § < « there is £ < §, such that

IFp, “[cf(6) = Ro or for every £ <i<j<d: if §;; is defined

then I-p,/p, “Cf(ts)vpi € Sijl”.

(3) In (2) we can weaken (C1) by replacing £ by a (Q[4)- named [0, §)-ordinal
§ie ifp€ Pey,plk € =¢" then, for £ <1i < j <4, i non-limit we have,

pl€ Ikp, “ [cfd = Ro or pl[€, ) IFp;/p “(cfé)vpi € Si;”]”, and replace S
by § = {\: for every non-limit ¢ < @ and j € [i,a) (such that S;;(G; ;]
well defined), the cofinality of A as computed in VP is > Ro and belongs
to 54,;(Gr;l}-

(4) In part (2) we can omit the condition (C1) and replace “for arbitrarily large
non-limit i < j” by “for every iy < j there is a Q-named [io, j)-ordinal i

forced to satisfy the demand on 7”.

Remark.

(1) For i < a non-limit clearly S;:+1 is defined, so Q; is i +1-semiproper.

(2) In 2.6(2) and (3), in (C1) we can replace “for every” by “for arbitrarily
large” assuming S; ; decreases with j.

(3) See XII§1 for an alternative proof, using games.
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Proof. (1) Follows from (2).
(2) We prove the theorem by induction on a, for all Q’s and even for Q’s in

forcing extensions of V.

Let T = {(3,7) : Si,; is defined } (here T € V).

Note that for any 8 < v < a,8 non-limit, QI[8,7v) = (P;/P3, Qi : B <
i < «) satisfies the hypothesis on Q. Let A be big enough, <* a well-ordering
of H(A\), Q € H()\), N < (H()\),€,<*), N countable, S € N, P, € N hence
w.lo.g. Q € N [because (H(\),€,<*) F “there is Q, an RCS-iteration as in
2.6(2) such that P, = RlimQ”, as P, € N < (H()), €,<*) there is such a
@ in N]. Similarly w.l.o.g. (Si; : (i,5) € T) belongs to N. Furthermore, let

pe P,NN.

Case A. o non-limit.

The cases a = 0, a = 1 are too trivial to consider. For a > 1 by the
induction hypothesis on o and 1.5(3) we can assume a = 2.

So by 2.3(3)+1.4(3) w.l.o.g. P, = Qo * Q1, and let p = (po,p1) € PPN N.
As clearly Qo € N, there is go € Qo, po < go, which is So 1-semi (N, P)-generic.
To help us in understanding let Gy C Qo be generic, gy € Go. As <* is a well-
ordering of H(X), (H())[Go], H()), €, <*) has definable Skolem functions, and
a definable well-ordering (and note: H(A)[Go] is H(A) of the universe V[G] as
we know that any member of H())[Go] has a name in H()\)).

Now N|[Go] is the Skolem Hull of N in (H())[Go), €, <*). So: as p1[Go] €
N[Go] (because p1,Go € N[Go]), @1 = P1/Go is S1,2-semiproper (i.e. S1,2[Gol-
semiproper), and Q1, p1[Go] € N[Go] < (H(A)[Go], €, <*), there is ¢ € Q1
which is $1,2-semi (N[Go], Q1)-generic and g1 > p1[Go]. Let G, C Q; be
generic, q; € Gy. Note that § C So,1 N S1,2.

So if K € N and cf(k) € So,1{Go] then as qq is So 1-semi (NN, Qq)-generic
and go € Qo clearly Sup(N N k) = Sup(N[Go] N k); and similarly if k € N and
cfVICl (k) € 81 5[Go, G1] then Sup(N[Go] N k) = Sup(N[Go, G1] N k). We have
described ¢; knowing Gy, hence there is an appropriate Qo-name g; such that

o IFqQ, “q1 is as described above”.
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As § C Sp,1 N S1,2 and as Gy, G were arbitrary except that g € Gy,
q1 € G, clearly (qo, gl) is S-semi (N, P,)-generic.

Case B. a a limit ordinal and there are 8 < « and p' such that p|g < p' €
Pg and p' IFp, “cf(a) = Ro”.

As N < (H(\),€), Q € Nand B8 € N, p € N, we can assume [ is
a successor ordinal and p! € N, hence by 1.4(1) without loss of generality
plB = p!. Moreover by Case A it suffices to prove that P, /Ps, Pg are S-
semiproper (for Pg, more exactly {« : for no ¢ € Gp,,qIFp, “k ¢ S}|. By the
induction hypothesis this holds for Pg; for P,/Ps (we are working in V[Gg],
Gp C Pg generic over V, pt € Gg by 1.5(1)) w.l.o.g. 8 =0 so cfa = Ry, and as
Q € N, a € N, clearly there are o, < @, ap < Qny1, @ = U, <, @n, and w.l.o.g.
each a, is a successor ordinal or 0 and a, € N, ap = 3 and (o, ant1) € T

Now let {(Br,kn) : n < w} be a list of the pairs (3, k), where k € N and 3
a Py-name of an ordinal < «, 8 € N. We define by induction on n < w py,qn
such that:
(1) pr is a Py, -name of a member of N N Py, po = pt.
(2) gn € Pa,s Gnt1lon = @nyqn 8 (Nien Sak,ansr) -semi (N, Py, )-generic,
(3) pnlan < gn, (i-e. this is forced)
(4) pn+1 Fp, “Bn < 7y for some vy, a Py, -name of an ordinal < kp, Yo € N”.
(5) gn kP, “Pn < Png1 (in Py)”

This is easy (¢n+1/[an,@n+1) can be constructed like g1 in case A). Of
course the point is that a P, _-name of a condition in P, +1/P,, is essentially

a condition in Py, ,,. Now U, ,, ¢ is as required.

Case C. a a limit ordinal and for no 8 < a, p! € Pg, pIB < pt does
p'IFp, “cf(a) =Ro”.

Let &€ = £* be as guaranteed by condition (C1) from the hypothesis. By
case A without loss of generality £ = 0. Let a, € N, o < any1, U, <wQn =
Sup(N N a) (exists, as & € N), and a9 = 0, o, non-limit; and repeat the

previous proof getting (g, : n < w), adding
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(6) if r € pp (so r is a Q-named atomic condition) then for some m and

P,,-name {m, < o we have
Pm+1 r(§m +1) Ik “Q(T) =&m”,

in other words for n, k¥ < w for some m > n and P, -name §,, we have:

for every G, C Pa,, generic over V to which ¢, belongs, letting r be the k-th

member of p,, in the canonical well ordering of p, of order type w, we have:

either for £ = £,,[Ga,,] < an, and some p’ € Ga,, NP, +1, D IFpe,, ((r) =& or
for some £ € [a, @)(NN[G4,,]), we have pm[Go, ][ +1) Fp,/c,, “C(r) =§€".

By condition (C1) from the hypothesis and as £* = 0, we have g, IFp, “NNa
is unbounded in N[Gq,] N, i.e. {an : m < w} is an unbounded subset of
N[Ga,]Na”. Let ¢ € Psyp(Nna)s 4/@n = ¢n. The new point is that condition
(3) above does not immediately give p, < g, only yields () pn[(U,;c,, @) <
Ui<w @- But if ¢ € G C Py, G generic over V, then p;, def (G N Py, ] is a
member of NGy, ] N P,, and for every Q-named condition r € p, we know by
(6) above that for some m, &, is a Po,,-name and letting & = {,[G N Py, ]
we have p,, 1€ IFp, “¢(r) = . But {(r) € N[G,,] C N[G] and g, is {cfa}-
semi (N[Ga,], Pa/Pa,)-generic hence £,[G] < sup(N N a) hence by (x) we
know {r} € G. This insures that: if ¢ € G C Psup(nna), G generic over V and
T € pu[Ga,] (n < w) (s0 7 is a @-named condition) then ¢(r)[G] < sup(NNa).

As this holds for every r € p;, we necessarily have p/, € G [as some ¢* € G
forces (Vr)(r € pl, = r € G). Why? As this hold; assume toward contradiction
that g¢* I “pl, € G” so, w.Lo.g. it force the negation, but you can check that

P, Ugq* € Py/G,,, contradiction).

As this holds for every appropriate G, we have q I-p, “p, € Gp,” which is
enough.

(3) A similar proof ( only we increase p to determine &).
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(4) The proof is like the proof of part (2), but in the case « is a limit ordinal
(ie. cases B, C), we use @, a Q-named ordinal, so conditions (1)-(5) (see case
B) should be revised accordingly and if n < w, §isa Q-named ordinal in the

Skolem-hull of N U {p,} then for some m, I-p, “6 < am”. Oa6

As we do not actually need 2.6(4) we have not elaborate. In fact, essentially
we have proved above also the following, which will be useful e.g. for chain

conditions:

2.7 Lemma. If Q = (P;,Q; : i < §) is an RCS-iteration as in 2.6(2) or 2.6(3),
4 a limit ordinal, and @ IFp, “cfd > Ro” ( and of course I “R; € §”, really
(C1) of 2.6(2) is needed for é only), for every i < 8, then 0 I-p, “cf(6) > No”.
Moreover, in this case, |J, <5 P is a dense subset of P; more exactly essentially

dense (i.e. for every p € P; for some q € | J; 5 P; we have q IF “p € Gp;”).

Proof. Let p € Ps. Let x be large enough, <* a well ordering of H(x), N <
(H(x), €,<*) is countable, {Q,S,p} C N. In the proof of 2.6, for a = 4,
necessarily case C occurs. Now q € Pyyp(Nna) C Ug <a Pp is above py which is
p. Now in (C1) the second possibility always holds, so if 7 : w — ¢ is a Ps-name
from N, then g forces each 7(n) to be equal to some Py, (ny-Rame of an ordinal

< 6 from N, which g forces to be < sup(NN N §). Together we finish. Oo.r

Also note that the most useful case of 2.6 is
2.8 Corollary. Suppose (Pi,Qi : 4 < 6) is an RCS-iteration, and for every
J < ¢ for arbitrarily large non-limit ¢ < j+1, Pj41/P; is {R; }-semiproper, and
for every i < 4, IFp,,, “the power of P; is R;” for some n < w. Then Pj is {X; }-
semiproper. If in addition |P;| < |4, for ¢ < ¢ and § is inaccessible then Pj is
S-semiproper, for § = {RY } U {x :IFp, “k is a cardinal, k = cf(k) > Ro"}. If in
addition cf(d) = R; then |, _; P is a dense subset of Ps more exactly essentially

dense (i.e. for every p € P; for some q € |J,5 P; we have ¢l “p € Gp,”).

2.9 Remark. For iteration of proper forcings, there is really no difference

between CS and RCS-iterations (see III 1.16), i.e. for Q@ an RCS iteration of
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proper forcing, {p € RLim Q: the set {a: for some r € p and ¢ € Pgyq we
have g IFp,,, “((r) = 3"} is countable} is a dense subset (in a weak sense) of

Rlim Q. In fact E-properness (for some stationary E C S<y,(UE)) suffices.

2.10 Conclusion. Suppose « is supercompact (without loss of generality,
with Laver indestructibility). Then for some k-c.c. semiproper forcing notion
P of power k, IFp “SPFA” and even IFp “SPFA*” for all o < w;, where
SPFA = SPFA® and SPFA® is the assertion Az, [semiproper], i.e.:

If Q is a semiproper forcing notion, (7; : i < w;) a sequence of Q-names of
members of V, (S3 : f < a) a sequence of Q-names of stationary subsets of
w1, then for some directed G C Q:

(a) for every i < wy, for some g € G, q forces a value to 7;.

(b) for every 8 < a, {¢ < wi :3q € G,qIF “( € Sp} is a stationary subset of
wi.

Proof. Same as PFA-see VII, 2.7(2) or VII 2.9. We use iteration as in 2.8, e.g.

require Q241 is Levy(Xy, 21P2italy, .10

§3. Pseudo-Completeness

A widely used family (or property) of forcing is N;-completeness, i.e., if p, <
Pn+1 € P, then there is p € P, p, < p for every n. This is the simplest family
of forcing which does not add reals, nor new w-sequences of ordinals. In our

perspective we want a condition parallel to this, including, e.g., Prikry forcing.

3.1 Definition. For a forcing notion P, a P-name § of a set of cardinals of V,
an ordinal § (always a limit ordinal) and condition p we define a game E)fg(p, P):
in the i-th move, player I chooses a cardinal (in V) A; and a P-name f3; of an
ordinal < )\;, and player II has to find a condition p;, and a set A; C A;,
|A;| < Ai, Ai € V such that:

(A) pilF “Bi € Ajor \; ¢ S”; and

(B) pi > p, pi > p; for j <.
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The play continues for § moves.

In a specific play, player II wins iff {p} |J{p; : ¢ < 0} has an upper bound
(and loses otherwise). If a player has no legal move (this can occur to player II
only) then he loses instantly.

We say that a player wins the game if he has a winning strategy.

3.2 Claim.

(1) At most one player can win the game D‘_ss(p, P).

(2) If for every A\; € S and pu € SCar, u < \; = p € S, then in the definition
of the game, it does not matter if we demand |A;| =1 (i.e., if one side has
a winning strategy iff he has a winning strategy in the revised game).

(3) If pq is regular, uy < po, & divisible by uy (and if uy = i “§ divisible
by (u2)?” suffice) and for every cardinal p, [p1 < cfp < p < po = p € 9]
then in the definition of the game, it does not matter if we demand, when
Ai = Lo, that |A;| < py.

(4) Also we can replace A\; by any set B € V, |B| = A;. If \; is regular (even
if only in V') we can demand A; € ); (i.e., it is a proper initial segment).

(5) If for every regular p satisfying Rg < p < A we have p € S and there is
n € S,1 < n <Ny and for every p € P, player II does not lose in the game
E)‘ES(p, P), then forcing by P does not introduce new J-sequences from A.
(Usually n = 2; for n > 2 we have to work somewhat more in the proof.)

(6) If n e S, n <w, adding {m : n < m < R} to § does not change anything;
also if ¢f(A\) € S adding A does not change anything.

(7) In Definition 3.1, if cf¥(\) € S we can add X to S with nothing being
changed.

Proof. E.g.(3), player II can find a response in the revised game by playing
< p1 many moves in the original game, each time having a family P of < p,
candidates, and for each A € P, if cf(|A|) € [u1, 1o] we replace it by a subset of
smaller cardinal by one more, and if cf(|A|) < p1, we represent it as the union

of < u sets each of cardinality < |A|. In (6) (as well as in (2), (5)) just let
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player IT use several moves to “answer” one question (if m = w it is still finitely

many though without an a priory bound). Os.o

3.3 Definition. The forcing P is (S, §)-complete if player II wins in the game
0% (p, P) for every p € P.
We define “P is (9, < )-complete” similarly. P is pseudo x-complete if it

is (kT NSCar", p)-complete for every (cardinal) p < k.

3.4 Lemma.

(1) If P is |6|t-complete then it is (Car", §)-complete.

(2) If Pis (At NSCar”, §)-complete, § < A, then forcing by P does not change
the cofinality of any u, No < p < |4], and forcing by P does not add new
d-sequences from A .

(3) In particular if P is ({2},w)-complete (or even ({n},w)-complete) then
forcing by P does not add reals.

(4) If P is (S,w)-complete then P is S-semiproper.

(5) If P is (Sy,0;)-complete, then it is (Sz, d2)-complete provided that (Vy €
S2)(38 € S1) [cf(y) = B or v = ] and &2 < 45.

(6) P is (S,0)-complete implies (BF \ {0},>) is (S, §)-complete, (BF is the

complete Boolean algebra corresponding to P). (See also 3.8.)

Proof. Easy. O3 4

3.5 Theorem.

(1) RCS-iteration strongly preserves (SCar,w)-completeness, and (RCar,w)--
completeness and (RUCar, w) -completeness. Moreover, if the assumption
holds for the iteration Q, Q has limit length, and ) is in the sets of cardinals
mentioned above in each V% i < £gQ, then it is so in V5.

(2) RCS-iteration strongly preserves (S,w)-completeness for S C {2,Rq,R;},
if we restrict ourselves to Qs satisfying (Vi < £g(Q))[(3n) I+ “4PBl <
R;”].

(3) The strong preservation in (2) holds even without the extra assumption.

Piin
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3.5A Remark. Actually, we demanded in 3.1 that S is a set of cardinals but,

for example, SCar is essentially | P|* N SCar.

3.5B Remark.

We can also imitate 2.6, and vice versa.

Proof. (1) We use Claim 2.5(1), so have to deal only with iteration Q = (P;, Q; :

i < ) where oo = 2 or o = X a regular cardinal. ~
Let § be any one of those three classes of cardinals, (remember, the

meaning of our S depends on which forcing it applies to say S = SF, which we

know by the game we are using) so 9% (p, P) means E)‘:S’P (p, P).

Case A. o = 2.

Let p = (po,p1) € Qo * Q1, and let Fy, F'; be the winning strategies of
player II in 9§(po, Qo), O%(p1, @1) respectively. By 3.2(4), we can assume [
gives us an ordinal or a member of {0, 1} if the corresponding A is regular or 2
respectively. The idea of the proof is that the output F'; gives us, a Qp-name
for an ordinal, can be used as input for Fj.

Let in the i-th move player I choose \; and a P;-name j3; of an ordinal
< A, and player II choose (po,i,p1,:) € P2, a Pi-name Ay, and a set Ag; C A;
(Officially player II plays (po,1, Pl»i)’ Ap i, and chooses A; ; for himself). Player
II preserves the following property:

(x)(a) poi kg, “the following is an initial segment of the play of D‘S’(Pl, @1) in

”

which player II uses the strategy F; : (..., <)‘J"LBJ'>’ (Pl,j’ffll,j% c)<i”

(b) poi kg, “Ai,i is an ordinal o; < A; if A\; > o and a singleton {g;} C \;
if )\, =2 and -Al,i Q AO,i”-

(c) Ao, is an ordinal < A; if A; > Xg and a singleton C 2 if A\; = 2.

(d) The following is an initial segment of a play of the game 0% (po, Qo) in which

player II uses his winning strategy Fy: in the j-th move player I chooses
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Aj, o such that: [A\; > Ry = A1 = a;] and Mh=2= A = {Qz,}] and
player II chooses po ;, Ao ;-

It is easy to see that player II can do this and that it is a winning strategy.

Case B. a = X aregular cardinal and p € Py and there are 3 < \,p! € Pg,
plB < p' such that p' IFp, “cf(A) = Ro".

By the previous case, it suffices to prove that P,/Ps; is (S, w)-complete,
so w.L.o.g. cf(A) = Ro and in fact A = Rg, and there are no problems. We leave

the details as an exercise to the reader.

Case C. o= X is regular and for every 8 < o, p[f IFp, “cf(X) > Ro”.

We will first give an informal sketch of II’s strategy. We will also choose
€n, 0 =8 < & < ... <& < A After each move (\,,a,) of player I, player
IT starts a new game O = 0% [pnl[én,n+1), Penys/Pe,]s where pplfén, @) is
chosen such that it decides o, up to a P¢,-name q, . He then plays one step
in each of the games O,,, (m =n —1,...,0), simulating for I,,, (i.e. first player
in On) the move (An,anm+1) and II, answer (pn![ém,&m+1), Qn,m) (Where
Qn,m is a P, ,-name) where we choose a constant winning strategy for II,,, (it
is a P, -name) and player II answers in the true game in ay . The &’s must
be big enough such that all the p,’s are eventually forced to be essentially in
Uecw Pz, (i-e. equivalent to a member). We only have to deal with countably
many Q-named ordinals, so we can take care of finitely many at each step n.

We now describe more formally the winning strategy of player II. By a
hypothesis, for every non-limit 8 < v < a, and r € Pg (= P,/Pg) player 1I
has a winning strategy F'g ,(7) (a Pg-name) for winning the game 0%(r, P,/ Pp).
We can change a little the rules of the game O%(r, Py/Pg), letting in stage n
player I choose k < w and a finite sequence (A}, 8T, ..., AL, Bk) (B7 a Py/Pp-
name of an ordinal < A}) and player II will choose af,...,a} € VFPs and a
condition p, € P,/Pg satisfying VF# F “a} < X}, pn IFp /p, “if A} € S then
g? < ap < A} when A\} > wand 8} = oy when \} = 2” and pp, > p,pn = Pn-1,
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(remember here § is really a P,-name). Note: if player II wins the usual game
he will win also the revised one.
Let for every p € P,, p = {p[e] < w},p["’] a Q-named condition.
Now player II’s winning strategy uses some auxiliary games which he plays
on the side. In stage n, player I chooses A, a, (a P,-name of an ordinal < \y),
but player II chooses not only p,, A,, but also a non-limit ordinal &, < A, and
for £ < n Pg,-names q, ¢ of ordinals < A\, and for ¥ < n also ,?Z which is a
P, -name of ordinal < A such that:
a) p<PnyPn-1<Pn, &0 =0, €ny1 = Max{&, + 1,85 +1:£<n}
b) ppllén, @) IFp, “an = ann, C(pgf]) is < By < A(= @) (or undefined) for
£,k <mnsuchthat £=n—1Vk=n—1" where gy n, @2 are P -names.
c¢) for each m < n, the following is an initial segment of a play in the
game G%(Pm[[&m,&m+1); Pepyr/Pe,) in which player II uses his winning

strategy Fe,. €1 (Pm!lém>Em+1)):

<()\m+17 Am+1,m+1, )‘7?%1‘{% <pm+1 [[5ma£m+1)7 gm+1,ma§m+l)a D)

s @13 M B 1)y (Bl Gt Qmms Bi) )
ie.
<(()‘m+i» Omtimt1s A Bt ) (Pmill€my Eme1)s @metim, B ') :
1<i<n-— m>.
d) Player II choice of Ay, is A, = o if Ay > w and A, = {an o} if Ay = 2.
Player II can carry out his strategy easily, defining in stage n, first &,,
second pn[[én, @), @nn and Bn, third he defined by downward induction on
m < n, Pnll€m,Em+1]s Qn,m, B, and fourth play as in d).
2) The proof is left to the reader. (Compare 2.8).
3) Combining the proofs of 2.6(4) and part (1). Os.s

3.6 Definition.
For a forcing notion P, a P-name § of a set of cardinals, an ordinal § and
a condition p we define the games ED‘fS(p, P), RD'_SS(p, p)

(or EDa(p, P, S),RD%(p, P, S) respectively; E stands for essentially, R for re-
ally).
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In a play of the game EE)‘fS(p, P) in the i-th move, player I chooses a
cardinal A\; and a P-name i of an ordinal < A; and player II has to find
aset A; C A, |Ail < Ay, (A; € V).

The play continues for § moves. In the end player II wins if he can find a
condition p' € P, p < p' such that for every i < ¢, p' IFp “Bi € Aj, or
A ¢S,

In a play of the game RDfS(p, P) in the i-th move, player I chooses a
condition ¢;, ¢; > p; for every j < ¢ and g; > p, and a cardinal A; and a
P-name f3; of an ordinal < A; and player II has to find a condition p; and
aset A; C A, |Ai] < A, (4; € V) such that

(A) pilkp “Bi € Ajor A ¢ 57,

(B) pi = 4.

The play continues for § moves, and player II wins if {p} | J{p; : ¢ < 6} has

an upper bound.

Note: 3.6(1) is close to 3.1, 3.6(2) is stronger. Comparing Definition 3.6(2) with

XIV Definition 2.1, the definition here is stronger when 6 > w.

3.7 Definition. The forcing P is essentially (3, d)-complete [really (S, a)-

complete] if player II wins in the game EDg(p, pP) [Rng(p, P)] for every p € P.

3.8 Lemma.
(1) The parallels of 3.2, 3.4 hold.
(2) Let P be a forcing, B the corresponding Boolean algebra. Then P is

essentially (S, a)-complete iff (BF \ {0}, >) is (S, @)-complete; and if o >
w, this implies P is S-semiproper. If P is complete (i.e. for any Z C P
there is p such that every G C P generic over V:p € Gif ING #
and (Vg € Z)(q < p)) then P is (S, a)-complete iff P is essentially ($,a)-
complete. If P is really (S, a)-complete then P is (S, a)-complete which

implies essentially (S, a)-complete.

Proof. Easy. Us.s
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3.9 Theorem. (1) RCS-iteration strongly preserves the notions “essential
(S,w)-completeness” for S € {SCar, RCar, RUCar}. Similarly for “real (S, w)-
completeness.

(2) Moreover, if the assumption holds for the iteration Q, Q has limit length,
and the cofinality of ) is in the set of cardinals mentioned above in each Vi,
i < £gQ, then it is in Vs,

(3) RCS-iteration strongly preserves essential (S,w)-completeness for S C

{2, R0, N1}, if we restrict ourselves to Q’s satisfying

(Vi <Lg(@))[(3En) Irp,,, “IPi| <Ry

(or even without it).

Proof. Similar to previous ones. Us.o

3.10 Definition. For W C w; we call a forcing notion pseudo (*, W)-complete
if for each p € P in the following game player I has a winning strategy. The
play lasts w moves. In the n’th move: player I chooses an ordinal o, < w; such
that A,., B¢ < an and a P-name 7, of a countable ordinal. Player II chooses
ordinals fn, v, < wy such that o, < Bn, A\;c,, Bt < Bn. In the end player II
wins the play iff (a) or (b) where

(8) Upew 0 ¢ W.

(b) there is q € P satisfying: p < q and g Ikp “7p, = 7 for n <w”.

3.10A Remark. We can define games and completeness variations of the
earlier notions in this section with length of game w with a stationary W C w,
as a parameter as we have done to ({2},w) -completeness in 3.10 and the

parallel theorems hold.

3.11 Claim. (1) Pseudo (*, W)-completeness is strongly preserved by RCS-
iteration.
(2) If W is stationary (subset of wy) and P is (*, W)-complete then forcing with

P preserves stationarity of subsets of W and adds no real.
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3) If wy \ W is not stationary, P is pseudo (*, W)-complete then P is essentially
({R1},w)-complete.

Proof. Left to the reader. Us.11

84. Specific Forcings

We prove here for various forcings that they are semiproper and even (S, 6)-
complete; of course, otherwise our previous framework will be empty. See [J],
chapters 5-6, for a discussion of some of the large cardinals we use (which are
standard).

Prikry forcing (adding an unbounded w-sequence to a measurable cardi-
nal without adding bounded subsets) satisfies all we can expect. But for our
purposes, more important are forcings which change the cofinality of R to N,
without adding reals (or at least not collapsing R;). Namba [Nm] has found
such a forcing, when CH holds.

However we do not know the answer to:

Problem. Is Namba forcing {¥; }-semiproper? (But see XII §2).

However, Namba forcing is not necessarily ({2}, w)-complete; this is equiv-
alent to “D§> is Galvin” (see below).

We deal with a variant of Namba forcing, (for the original see XI 4.1),
Nm'(D) (D a system of filters on sets of power N, see below), and prove
the relevant assertion (4.7). Then we prove that if each filter in ® has the
({2, N0, Ry, },w)-Galvin property (see 4.9, 4.9A), then Nm'(®D) is semiproper,
moreover is ({Ro, N1, 2}, w)-complete. The point is that when a large cardinal is
collapsed to Rz, if D was originally a normal ultrafilter, then after the collapse

it may well have some largeness property like the Galvin property.

4.1 Definition. If D is a complete normal ultrafilter on &, then the D-Prikry
forcing, PF (D), is:
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{(f,A) : f a function, with domain n < w, f is increasing, (Vi < n)f(i) <
k, and A belongs to D}.

(f1, A1) < (f2, A2) iff f1 C f2, A1 2 Ag, and for i € Dom(f2)\Dom(f1), f2(3) €
A

Prikry defined this notion and proved [Pr] in fact that:

4.2 Theorem. For any normal ultrafilter D over s, P = PF(D) is (RCar’, )-
complete for every A < k, and changes the cofinality of only one cardinal, k (to
Ro). (So remembering the notation introduced before 3.2, (RCar”, \)-complete
really means (Car \ {s}, A)-complete).

4.3 Definition. (1) A filter-tagged tree is a pair (T,D) such that:

(a) T is a nonempty set of finite sequences of ordinals, closed under taking
initial segments, and there is some maximal 1o € T for which [v € T,
Lg(v) < Lg(no) = v = no[€g(v)]; we call ng the trunk of T, ny = tr(T).

(b) ® is a function such that for every n € T', ®, = D(n) is a filter on some
set C {n"(a) : o an ordinal} and if tr(T) < n € T then Sucr(n) & {v e
T : tg(v) = tg(n) + 1, vitg(n) = n} # P mod Dy,

(2) We call (T',®) normal if Dom(®) = {n € T : tr(T") < n} and for every such

n, Dy is a filter over Sucr(n) (see below). For n € T, (T, D) = (Tin), D) def

{veT:v<dnorn<v},D).

(3) We call (T',®) A-complete if each D, (n € T') is A -complete.

4.4 Definition. For filter-tagged trees (T1,D1), (T3, D2):
(1) We define: (T1,D,) < (T3, D5) iff
(a) > C Ty,
(b) For every n € Ty, if n > tr(T3) then Sucr,(n) # Omod Di(n) and
D1(n)[Sucr, (n) = Da(n)!Suct,(n) where for a filter D over I, and
JCI, J# 0modD we let:

D|J={ANJ:Ae D}
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(2) We define: (T, D1) <pr (T2,D2) (“pure extension”) if in addition tr(7}) =
tr(Ty).

(3) We define: (T1,D1) <n (T2,D2) if in addition (to (2)) for 5 of length < n,
nel & nel,.

4) Nm'(T*,®*) & {(T,D) : (T*,D*) < (T,D)} ordered by <. We write

ne (T,D) forneT If p=(T*D*) we write T, for T*, D, for D*.

Instead of Ty, Ty, Tp,, Tpr, etc, we usually write just T, T", Ty, Tk etc.

4.4A Remark. For every filter-tagged tree (T, ®) for a unique normal (T, D1)
we have (T,D) < (T,D') < (T,D).

2)So we can restrict ourselves to normal members of Nm'(T*, D*).

4.5 Claim. 1) If n € T = |Sucr(n)| < Ry then Nm'(T, D) is ({A : A = cf\ >
Ny}, w)-complete.

2) Moreover, in the cases where we shall prove that Nm’ is (S, w)-complete,
S C {2,N0,R;}, we could prove it is (SU{A: XA = c¢fA > Ry}, w)-complete (see
4.12).

Proof of 1). It is enough to prove:
(x) if p € P = Nm'(T,D), n < w, 7 a P-name of an ordinal, then there is
g€ P, p<, qand aset A of ordinals, |A] <Ny, glIF “T € A”.

Proof of (x): Let
Ty = {n € p:Lg(n) > n,tr(p) I n, and (p)[; has a pure extension deciding the
value of 7},

T} = {n € Tg: thereisno v < n, v € T§}.

4.5A Subfact. T7 is a front of r for some r satisfying p <,, r; i.e every w-branch

of r contains one and only one element of 7.

Proof of the Subfact. Clearly without loss of generality tr(p) has the length > n.
By a partition theorem in [RuSh:117] (or see here XI 3.5 or XV 2.6B(2), and
if CH see 4.6 below) there is 7 € Nm'(T, D), p <p r, such that:
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either (a) for every 7 € lim(r), (3n) [nIn € Ty]
or (b) for no n € lim(r), (3n) [nin € T7].
If (b) holds, then we can find p’ and « such that: r <p’ and p' IF “7T = +".
But then let v € p/, fgv > n, £g(tr(p’)). Then v € Ty (witnessed by (p')p))
hence for some k < n, vk € Ty. But this is a contradiction to (b), as v € r.
Hence (a) holds, hence T7 is a front of r, and p <,, r because p <, r and

Lg(tr(p)) > n. - Ugsa

Continuation of the proof of 4.5: Let, for v € TY, ¢” be a pure extension of
(7)1 satisfying
vn

¢ F“r=x

Then ¢ = U{g” : v € T7'} is a condition (ie. Ty = |J Ty and D4 = D,) such
veTy
that p <,, r <,, g and '

qgF“re{¥:velf}

So (*) is proved.
2) Check the proof of part (1). Uas

4.5B Remark.1) In 4.5(1), (2) we can replace Xy by any u > X,.
2) As in the proof of 4.5(1) we prove (*) we can (e.g. in 5.5) use the preservation
of RUCar-properness (3.5(1)) instead of 3.5(2).

4.6 Lemma. If (T, D) is a filter-tagged tree, which is A*-complete (i.e., each
D, is a A\T-complete filter) and H : T — X and ARo = )| then there is (T, D1),
(T, D) <pr (T, D) such that H(n) depends only on £g(n), for n € T*.

Remark. See Rubin and Shelah [RuSh:117] p. 47 - 48 on the history of this and

such theorems there.

Proof. For any sequence & = (a, : n < w), an < A, we define a game O4:

Let o be the trunk of 7'

In move 0 player I chooses A; C Sucr(no), A1 = 0 mod ®,,, and player II
chooses 71 € Sucr(no) \ A1.
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In move n, player I chooses Any1 C Sucr(nn), Any1 = Pmod®D,,, and

player II chooses 7,41 € Sucr (M) \ Ang1-
In the end, player II wins the play if for every n we have H(n,) = ay,.

Now we prove:

() For some & = (o, : n < w), a, < A, player II wins the game (i.e., has a

winning strategy).

Clearly the game is closed, hence it suffices to prove that for some @, player
I does not have a winning strategy. So assume that for every & player I has
a winning strategy Fj5 in the game o5, and we shall get a contradiction. A
winning strategy is a function which, given the previous moves of the opponent
(M, ---,Mn—1 in our case), gives a move to the player, so that in any play in
which he uses the strategy he wins the play.

Now define by induction on n, n, € T such that ¢g(n,) = £g(trT) + n and

Mnt1n = N

7o is the trunk of T
Mnt1 € SucT("?n) \ Ua Fa((n1,---,7))-

Why does 7,41 exist? For every &, F5((n1,...,7,)) = 0mod ®D,,,, D, is A*-
complete and the number of &’s is A" = X < A*. So U, Fa((m,--.,m)) =
P modD,,,, and so 7n4+1 exists as Sucr(n,) # modD,,, by Definition 4.3(1)

clause (b).

But let o, def H(ny) and &* = (o, : n < w), so

Fd'(<>)’ m,.--- 7F&‘(<771a .. -777n>),77n+1’- ..

is a play of 05+ in which player I uses his strategy Fs-, but he lost: contradic-

tion, hence (*) holds.

Proof of the Lemma from (x). Let {(a,, : n < w) be as in (x), and W be the
winning strategy of player II.
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Let To = {n € T : for some n, we have: £g(n) = £g(no) + n, and for some
Aq,..., Ay, for every 0 < £ < n we have n[(gno + £) = W((A1,...,As))} U
{not€: € < Lgno}.

It is clear that Tp is closed under initial segments. Now if n € Ty, o < n €
To then Sucr, (1) # mod D, for otherwise if n = £g(n)—£g(no), and Ay,..., A,
are “witnesses for n € Tp”, then player I could have chosen A,.; = Sucr,(n),
and then by definition W(A;,...,Ant+1) € Tp and also W(A4y,...,4n41) €
Sucry(n) = Aps1 but W(Ay,...,Ant1) € Sucr(n) and Sucr,(n) = To N
Sucp(n), contradiction.

So (Tp, D) <pr (T, D) and (T, D) is as required. 046

4.7 Theorem. Suppose (T*,D*) is an Rp-complete filter-tagged tree. Let

P = Nm'(T*,D*) then

(1) (CH) P does not add reals.

(2) If for every (T,D*) € P for some n € T,tr(T) < n and for some A C
Suc,(T) and function F : A — X we have (Va < A)[F7!({i :i < a}) =
Pmod®D}] and A # 0 mod D then Ikp “cf(A) = Ro”.

(3) P does not collapse ®; (and if D* is AtT-complete, cf(A) > No then
IFp “cf(A) > Ro”).

4.7A Remark. If we waive CH, P may add reals but it does not collapse Ny;

sometimes it satisfies the R4-c.c. even though 2% > Ry (see XI 4.3).

4.7B Notation. If Dom(D*) = T let Nm'(D*) = Nm'(T,D*), and if T =
“>(we), D*(n) = {{n" < a > a € A} : A € D}, we let Nm'(T,D) =
Nm'(D) = N/ (D*).

4.7C Remark. So if P = Nm/(D*), D* 2 DE(¥ {A C %, : 4 co -
bounded}), G C P is generic, then |J{n : n € (T, D*) for every (T, D*) € G}
is a member of “(wy) (in V[G]) and as D* 2 DY, it is unbounded in wy so
N (D) “cE(RY) = Ro”.



§4. Specific Forcings 505

Proof of 4.7.
(1) Now suppose 7 is a name of an w-sequence from wy, and let (7, D*) € P.

It is easy to define by induction (7, ®*) such that:
(a) (To,®") = (T,D7),
(b) (Tn,D*) <n (Tn«}—l’@*) and (Tnvg*) <pr (Tn+17©*)a

(c) for every n € Ty, if £g(n) = n + 1, then for some &, and £ < n
we have: (T 11, D%y IFp “71€ = &,”, and £ is maximal, i.e.,
either £ = n, or there are no T'f, a such that o < w; and (T, ®*) IF
“7(€) = a” and (Tny1, D*)py <pr (TT,D*).

Clearly (N,<o Tn,®*) € P and (T, D*) < (Np<p, Tn» D).

Now use Lemma 4.6 on (), Tn,D*), and H,H(n) = &, and get
(T, D*), (Nn<wTn, D*) <pr (T1,D*), H(n) = &" for n € T*, bg(n) = n+ 1.
Now for each £, there is (T",D*), (Tt,®*) < (T”,®*) and & such that
(T",D*) Ikp “rl¢ = &”, and let ny € T” be the trunk of T”; w.lo.g.
¢+ 1 < £g(no). By the choice of ay,,¢ < fg(ay,) hence & = a*[¢ for
k = fg(no), hence for every n € T, £g(n) = Lg(no) implies &yl = &y, [4,
hence (TT,ZD*)[,,] - “71€ = @y 1€ = &". But (TT,D*) IF ¢ for some n € TT,
g(n) = € and (T',D*)}, belongs to Gp (the generic subset of P).” So
clearly (T1,D*) IF “7[¢ = a8 1¢”  and as this holds for every ¢ we have
(T, ®*) IF “r = (@™ (n) : n < w)” when we choose the numbers m(n) large

enough, i.e., such that n < £g(@a™™).

(2) Clearly the following is a dense open subset of P, Zy = {(T',D) : (T,®) € P
and for every n € T, if there are A; C Sucr(n), for i < A, U;;4; =
P mod ®,, U;.» 4i # 0 mod D, then there is F, : Sucr(n) — A such that
Nacr{v 1 v € Sucr(n), F(v) < a} = 0 mod ®,}. Now for each (T,D) € I
let B(T,®) = {n € T : there is F;, as above}. Note: (1T1,D) < (12,D) =
B(T1,D) N Ty = B(T>,®); by [RuSh:117] or XI 3.5 or XV 2.6B(2) here, for
every (T, D) € I there is (T",D), (T,D) <pr (T",D) such that:

(a) (Vn € limT")(3%n)[nin € B(T, D)), or

(b) (¥n € imT")(3<"°n)[nn € B(T, D)),
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In the second case, applying again the partition theorem mentioned above
we get a constant bound n to {¢g(n) : n € B(T,D)}, and increasing the trunk
contradict the hypothesis (of 4.7(2)). So 71 = {(T,®) € Zp and (a) holds} is
dense open subset of P. Fix (T, ®) € Z,. For n € B(T, D), let F), be as required
above; and let 7 be the unique w-sequence such that for every p € Gp, and
n <w, 7[n € p. Then AN {F;1p(7(n)) : n < w (‘and Fyyy, is well defined) } is
a countable unbounded subset of A.

3) Similar to part (1) using XI 3.7 instead of 4.6 (but not used here). g7
4.8 Problem. Is the forcing semiproper? (See XII.)

4.9 Definition. For a filter D on a set I, and a set S of cardinals, we call
D an (S, a)-Galvin filter (and the dual ideal a Galvin ideal) if player II has a
winning strategy in the following game, for every J C I, J # @ mod D (we call
the game the (S, a)-Galvin game for (D, J)):

In the ith move player I chooses a function F; from I to some A € S and
player II chooses A; C J N [ A; such that [Fi(A;)| < A Player II wins if
N A; # Omod D. For simpl;(?izty we can say J was chosen by player I in his

i<a
first move.

4.9A Remark. Galvin suggests this game for fo; = the co-bounded subset of
k for a cardinal k, & = w and S = {2}. So for @ = w, S = {2} we omit (S5, ).

Note that only S N (JI| + 1) is relevant for the game.

4.10 Definition. A filter D on « has the Laver (or R;-Laver) property, if there
is a family W of subsets of kK, A € W = A # @ mod D, W is dense [i.e. VA C k,
A #0OmodD — (3B € W)(B C Amod D)], and W is closed with respect to
countable intersections of descending chains.

Related to this property is the following game:

In the n’th move, player I chooses a set A,, and player II chooses a set B, such

that for all n A, 2 B, 2 Apy1 # Omod D, II wins iff (), __ An # @ mod D.

n<w
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Clearly, if D has the Laver property, then player II wins.
Galvin, Jech and Magidor [GIJM] and Laver independently proved the following.

4.11 Theorem. If we start with a universe V, V E “G.C.H. + k is measurable”
and use Levy collapsing of k to No (so every A, 8y < A < k now will have
cardinality X;) then in the new universe V[G], D2 is a Galvin filter, in fact
(Car \ {X},w)-Galvin filter. Moreover if D € V was a normal ultrafilter on «,
then in V[G] the filter D has the Laver property. [We identify here D with the

filter it generates in VG| which is normal.]

More exactly, [GJM] proved that player II has a winning strategy in the
play above for D a normal filter on A, Laver proved the R;-Laver property in
that context, but the difference is not essential in our context.

(We shall not prove it here.)
The relevance of this is:

4.12 Theorem. Let S C SCar.

(1) If Pis Nm'(TT,D*) (see 4.4(4)), each D} is an (S, w)-Galvin, Ry-complete
filter then P is S-semiproper and even (S,w)-complete (and we can add
all A, cf(X) > |T| to S).

(2) We can strengthen the hypothesis in (1) by “®; is |a|-Laver” and then

get even (.5, a)-complete for pure extensions” (see XIV).

Proof. (1) Also easy, but we shall do it. By 3.4(4) it suffices to prove (S,w)-
completeness. Let p* € P and we shall prove that the second player wins in

%(p, P). For every n € T* \ {v : v < tr(T™)}, let H, be a winning strategy of
player IT in the (S,w)-Galvin game for (D, Sucr-(n)).

We first prove

4.13 Fact. Suppose p € P, (P = Nm/(T7,D*),D* is Ry-complete), A € S,

and ¢ is a P-name of an ordinal, p IF “a < \” and
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) XeDH F: X > A= (CBa){re X:Fv) <a} #0 mod D] (this
follows from ®,, being (S, w)-Galvin).

Then there are p! and o < A such that p <pr pt € Pandpf IF “A>Ry = a<

aland [ A=2=a=0qf".

4.13A Remark. In the proof of the fact we do not use the Galvin property

assumption; also the No-completeness can be waived, see 4.14 below.

Proof of the fact 4.13. For notational simplicity only we assume, 2 ¢ S. Easily
we can find p; = (Th,D*), p <pr p1, such that for every n € Ti, if there are
B < A, and ¢, (T1,D*)m <pr ¢, ¢ IF “@ < B”, then (T1,D*), IF “a < B”
for some 8. For each n € T1, let 3, be such that (p1)j, IF “a < 6,”, B, may
be undefined for some 75 but if n < v € T3, B, defined, then §, is defined and
equal to f,. So for every n € imTh, {£ : B, not defined} is an initial segment
of w. By the Ny-completeness and 4.6 if CH and XI 3.5 in general, there is T,
(T1,D*) <pr (T2,D*) and a set A C w such that Vn € T, 3, is defined iff
fg(n) € A (A is an endsegment or the empty set (so there are only countably
many possibilities, this is why XI 3.5 can be applied)). But A = ) is impossible
by density. So for some n 3, is defined for every n € Ts, £g(n) = n. We can (by
induction on n using (*) in the assumption, see below for a similar argument or
again by XI 3.5) define p3, (T2,D*) <pr p3, and B < X such that [n € p3s & 3,
defined = f,) < ] this implies p3 I- “a < 3, so the Fact holds. 0413

Continuation of the proof of 4.12(1): Remember p* = (T™,D*) is given;
w.l.o.g. the trunk of T™ is <>.

In the first move player I chooses Ag € S and a P-name [ of an ordinal
<A

Player II chooses 8o < A and po € P such that p* <, po, po IFp “Bo < 87
(possible by the Fact 4.13 above).

However if player II continues to play like this, he may loose as maybe
N T, (where p, = (T, D*)) will be {<>}.
n
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So he is thinking how to make Sucnn@ 1, (<>) # 0mod DL, If he, on
the other hand, will demand py <; pp+1, he will have Sucnn@ Tn(<>) ¢
 mod ®*, but it will be hard (and in fact impossible) to do what is required
when, e.g., A, = R;. So what he will do is to decrease Sucr, (<>), but do it
using his winning strategy H.s for the (S,w)-Galvin game for ® <. So in the
second move player I chooses a cardinal A; € S and P-name B1 of an ordinal
< A1. Player II, first for each 1 € po, £g(n) = 1, chooses p] = (17, D*) such
that (po)p <pr P] and p IFp “B1 < B,”, this is possible by 4.13. This defines
a function from Sucr,(<>) to A1, so player II consults the winning strategy
H s, gets A% C Ap, |A%.| < Ay, and lets Ty = (J{T7 : B, € A%, }. Now at
last player II actually plays: the condition (77, ©*) and the ordinal supA%.

In the third move, player II tries also to insure that {n € N T, : £g(n) = 2}
will be as required. Now player I chooses A2 € S and a P-na?ne B2. Player I1
chooses for every n € T, £g(n) = 2 a condition pJ such that (p1)p) <pr p3
and pg IFp “B2 < By”. So for every n € T, Zg(n) = 1, we have a function
from Suc,(T1) to Az, so consulting the strategy Hy, player II chooses A,ll C A2,
|A}| < A. We can assume that each A} is a proper initial segment (i.e., an
ordinal) and for A = 2, a singleton. So the number of possible A,l’ is A. So
now the function n — A} (n € Sucr,(<>)) is a function whose domain is
Sucr, (<>). So player II can consult again the strategy Hcs, and find A2,
and let Tp = U{T7 : £g(n) = 2, n € T1, B, € A}y, and A}y C A2, = A2}
Now at last player II plays: the condition (73, ®*) and the ordinal supA%).

The rest should be clear (compare with the proof of 6.2).

(2) By 4.13 it should be clear O4.12

4.14 Remark. Really in 4.12(1) we can replace Na-completeness by N;-
completeness by using XI 3.5 instead of 4.6. In fact even this can be waived.
We use Np-completeness only in the proof of Fact 4.13; but we now give a
proof which eliminate it. Instead of choosing 15, we let H : imTt — 2 be
defined by H(n) = 0 iff (3n)[Byn is defined], and so there is T such that
(TT,D*) <pr (T',D*) and H is constant on limT" (by XI 3.5 which does not
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need any completeness). Now on B = {n € T' : (V£ < £g(n)) [Byre is not

defined]}, we can define a rank:
rk(n) = U{'y +1:{v:v e BnSucr(n) and rk(r) > 0} # dmod Dy}.

If for some 7, rk(n) = oo we let T” e {v eT :v dnporn <
V& Npgn<o<og, TK(V1E) = oo}; we get T, (I',D) < (T",D),T" C T', con-
tradiction to the choice of T’. Otherwise (i.e. n € T" = rk(n) < o) we can
prove by induction on its rk(tr7”) that we can find p' as required.

(Note we are not assuming CH).

§5. Chain Conditions and Abraham’s Problem

Chain conditions are very essential for iterated forcing. In Solovay and Tannen-
baum [ST] this is the point, but even when other conditions are involved, we
have to finish the iteration and exhaust all possibilities, so some chain condition
is necessary to “catch our tail.” In our main line we want to collapse some large
k to Ng, in an iterated forcing of length (and power) k, each P; of power < &.
So we want that k stays a regular cardinal, and the obvious way to do this is by
the k-chain condition. We prove it by the traditional method of the A-system.
For general RCS iteration, we have to assume & is Mahlo (i.e., {\ < & strongly
inaccessible} is stationary) and for iteration of semiproper forcing we ask for
less.

Now we are able to answer the following problem of U. Abraham:

Problem. Suppose G.C.H. holds in V. Is there a set A C N; so that every
w-sequence from R,, belongs to L{A]?

To construct a model where the answer is “no” we shall collapse some inac-
cessible k, which is the limit of measurable cardinals, changing the cofinalities

of arbitrarily large measurables < k to Ng.
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5.1 Definition.

(1)

For any iteration Q = (P, Qi 11 < a) and a set S C a we call § = (p; :
i € S) a A-system if, for ¢ < j in S,p;[1 = p;[j and p; € P;. We call p;[i
the heart of the A-system, hr(p).

For a forcing P, we call p = (p; : ¢ € S) a u-weak A-system if p, € P,
Useg @ is a regular cardinal , and there is a condition ¢ = hr(p) (the
heart of p) such that for every r, ¢ < r € P there is a < & satisfying : if
o< o; €8 fori<pu; <pthen {r} U{pa, : # < p1} has an upper bound
in P.

5.2 Claim. Any A-system in an RCS iteration as in Definition 5.1 (1), with

a =supS and P, =J

i<a Pi is an Rj-weak A-system.

Proof. Easy. Us.2

5.3 The Chain Condition Lemma.

(1)

(3)

Suppose Q = (P,-,Qi : 1 < k) is an RCS iteration, k regular, |P;| < &
for i < k and let A = {\ < k : X strongly inaccessible}. Then for every
sequence p = (p; : j € B C A), we can find a closed unbounded C C &
and a pressing down function h on CN B (i.e., h(j) < j) such that for any
a, (pj : j € BNC,h(j) = a) is a A-system. (So in the non trivial case
is strongly inaccessible Mahlo cardinal.)

Assume A = £ and: Qi is RUCar-semiproper (for all ) or semiproper,
I-py4n;  (2P1)V has cardinality R;” (for all 4) or even Q as in 2.6(3), Q
as in 2.6(4) and A" = {i: @ Ikp, “{J,_, P; is dense in P,”}. Then in (1),
we can replace A by AT (We know that if each Q; is semiproper (or just
P;/P;11) then [cf¥ (i) = R; = i € Al] and also:[ limit, 2.6(2) or 2.6(3)
apply to Qi and IFp, “cfi > Ro” for every j < i} =i € Af]).

j<i

If we agree to weaken the conclusion to “Nj-weak A-system”, we can
replace “|P;| < k for i < K” by “d(P;) < & for i < k" or even, for any
A C &, “each P;(i < k) satisfies the conclusion of (1) for A”. In (2) we can

assume just each @Q); is semiproper.

Before we prove the lemma note:
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5.4 Corollary.

(1) If in 5.3(1), A is stationary or in 5.3(2), A' is stationary, then P, = RlimQ
satisfies the k-chain condition.

(2) If D is a normal ultrafilter on k, B € D, B C A then (in 5.3(1)) for some
Bt € D, (p; : j € BY) is a A-system.

Proof of 5.3. (1) If B is not stationary (as a subset of k), the conclusion is
trivial, so suppose B is stationary. Necessarily x is strongly inaccessible (as &
is regular, every member of A is strongly inaccessible and B C A), hence by
1.6, P, def RlimQ = Ui<x Pi- As |P;| < & for every i < k, there is a one to one

function H from P, onto k. Again as |P;| < & for i < k, clearly
C ={i: H maps |J,; P; onto i and for j < i: if j € B then p; € P;}.
is a closed unbounded subset of k. We now define the function h with domain
BnNC: h(i) = H(p;l1).
We first prove that h is pressing down. Clearly p;[i € P;, and if i € BNC

j<i P, 3
Pj, so h(i) < i. Now looking at the definitions of h and C

then i is strongly inaccessible and (Vj < i)[|P;| < 1] hence by 1.6, P; = |J

hence p;li € U,

we see that (p; : j € BN C,h(j) = a) is a A-system, for any o.
(2) The proof is similar, using 2.7 instead of 1.6.

(3) Left to the reader. Us.3

5.5 Theorem. Suppose Con (ZFC + “there is an inaccessible cardinal x which
is the limit of measurable cardinals”). Then the following theory is consistent:

ZFC + G.C.H. +(VA C ¥;)(3@) (@ an w-sequence of ordinals < Rq, & ¢ L[A]).

Proof. We start with a model V of ZFC + G.C.H + “k is strongly inaccessible,
and limit of measurables”. We define an RCS iterated forcing (P;, Qi< K),
such that |P;| < k. We do it by induction on %, and clearly (see 1.4(6) for i limit)
the induction hypothesis |P;| < & continues to hold. If Q% = (P;, Qj:J< i) is
defined, let x; be the first measurable cardinal > |P;|, where P; = RlimQ;. It is
known (see e.g. [J]) that &; is measurable in V| and any normal ultrafilter on

it from V is an ultrafilter (and normal) in V", too. As |P;| < &, by hypothesis
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ki < K. So let Q; 0 be PF(D;) (see 4.1) where D; € V is any normal ultrafilter
on k;, and let Q1 be P; x Q;o-name of the Levy collapse of kT to RNy (ie.
Qi1 = {f : Dom(f) is an ordinal < ®;, and Rang(f) C £}, with inclusion as
order). We let Q; = Qi,0 * Q1.

Now by 4.2, Q;0 = PF(D;) is (Car¥ \ {x;},w)-complete, Q; 1 is (Car”,w)-
complete trivially (by 3.4(1)) hence by 3.5 Q; is (Car" \ {k;},w)-complete.

Hence by 3.5(2), P = Rlim(P;,Q; : i < k) is ({2, R0, N1}, w)-complete,
hence it does not add reals and does not change the cofinality of X;. By 3.4(4)
P, is semiproper. By 5.3(2) P, satisfies the k-chain condition, so clearly if
G, C P, is generic then NY[G"] = NY,NE/[G‘] = Kk, V[G,] have the same reals
as V, and V[G,] satisfies the G.C.H.

Now if A C wy, then as P, satisfies the k-chain condition, A is determined
by G; = G.NP; for some i < k. By 1.1(D), G; is generic for P;, so L[{A] C V[G,],
but in V[G;] an w-sequence from N‘Z/[G‘] is missing: the Prikry sequence we shot

through x;,1 which was measurable in V[G]. Os.5

86. Reflection Properties of Sg:
Refining Abraham’s Problem and Precipitous
Ideals

In the previous section we have collapsed a large cardinal x to N3, such that to
“many” measurable cardinals < k we add an unbounded w-sequence. However,
“many” was interpreted as “unbounded set”. This is very weak and we often
desire for more, e.g. in 6.4, we would like to change cofinalities on a stationary
set.

Notice that it is known that if we collapse a large cardinal by R;-complete
forcing then S? def {6 < Ry : cf(6) = Ny} has reflection and bigness properties,
e.g., those from Definition 4.10. However, for SZ, we get nothing as it is equal
to {6 < Rg : in the universe before the collapse, cf(§) = No} and it is known,

e.g., that on such a set there was no normal ultrafilter.
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So we can ask whether SZ can have some “large cardinal properties”. The
natural property to consider is precipitous normal filters D on Ry such that
S3 € D. Such filters were introduced in Jech and Prikry [JP1] and studied in
Jech and Prikry [JP2], Jech, Magidor, Mitchell and Prikry [JMMP].

Their important property is that if we force by PP(D) (whichis {AC k:
A # Pmod D} ordered by an inverse inclusion), G is generic, the domain of D
is I, and in V[G], E 2 D is the ultrafilter G generates (on old sets) then V! /E
(taking only old f : I — V) is well-founded. Jech, Magidor, Mitchell and Prikry
[JMMP] proved that the existence of a precipitous filter on X; is equiconsistent
with the existence of a measurable cardinal, and also proved the consistency of
“Dy, (= the filter of closed unbounded sets) is precipitous”. (Notice that the
Laver property is stronger). Magidor asked:

Problem I Is ZFC + G.C.H.+ there is a normal precipitous filter D on N,
S2 € D consistent?

We answer positively, by collapsing suitably some & to Ry. Letting D be
a normal ultrafilter on « in V, provided that A = {A < &: in the old universe
A is measurable } € D. We will force that in the new universe, D generates a
normal precipitous filter (which we also call D) such that SZ belongs to it.

This was proved previously and independently, using supercompact cardi-
nals, by Gitik.

We can also consider the following strengthening of Abraham’s problem:

Problem II. If V satisfies G.C.H., does there exist A C Ny such that, for every
§ < Ry, every w-sequence from § belongs to L[A N 4]?

Again we have to change the cofinality on a stationary set, and to iterate
forcing such that stationarily often we change the cofinality of X2 to Ro.

When we do this the first time, in stage A for example, the forcing so far Py
is just Levy’s collapse Levy(R;, < A) so by 4.11, 4.12 we have a (Car¥' \{Ry},w)-
complete forcing Q@ doing this; but later the collapse Py is not even N;-
complete. We have two ways to cope with this. One way is to look again at

theorem 3.5 on iterated (S, w)-complete forcing (for various S), from which we
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see that less is needed. If Py = Rlim Q,Q = (P;, Qi 19 < A) collapses A to Ry, it
suffices that (RimQ/P;41) * Qx is ({2, Ro, N; }, w)-complete. We will show that
we can achieve this by using Namba forcing as @; and our induction hypothesis
there. The second possibility is to demand e.g. each @; is quite pseudo-complete
and prove that in VF* we get a large ideal in A. We use the first approach (but

see 6.1A). For clarity of exposition, we first prove a weaker lemma.

6.1 Lemma. Suppose D is a normal ultrafilter on A\, Q = (Pi,Qi 11 < A)
an RCS iteration and for all i < ), |P;| < ). Suppose further Py = RlimQ
is ({2, No, X1}, w)-complete and collapses A to Ny. Consider the following game
O(po, Ao) = 2“(po, Ao, Pr, D), for pg € Py, Ag a Py-name of a subset of A such
that pg IFp, “Ap # @mod D”. (The game is played in V)

In the first move:

Player I chooses Py-names f; (of an ordinal < ®;) and F; (a function
from A to Ny).

Player II has to choose p; € Py, pp < p1 and 71 < wy and 7 < w; such
that p1 IFp, “A1 = Ao N F7'({m}) # dmod D, and f1 = 5"

In the n-th move, player I chooses Py-names 8, < wi,Fn : A — Ry,
and player II chooses p,, pn—1 < pp and v, < w; and B, < w; such that
Pulpy “Ap = An_1 1 F5 ({7}) # Dmod D, and B = B,

In the end, player II wins if {p,, : n < w} has an upper bound p € Py such
that plkp, “ () An # 0mod D”.

n<w
Our conclusion is that player II wins the game.

6.1A Remark. If {i: Py/P; is {({2, No, R1 },w)-complete } € D (i.e. for almost
all i, for every G; C P; generic over V, in V[G;], P\/G; is ({2, R0, R}, w)-
complete) then in VPA Disa {2, R0, R; }-Galvin filter. Similarly for 6.2 (see
XIII 1.9).

Proof. Let pg € Py, Ao a Py-name, pg lFp, “Ag # @ mod D”. We shall describe
the winning strategy of player II in the game O(pg, Ao). Let the winning strategy
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of player Il in DL{U2,N0,N1}(1” Py) be H[p]. By 3.2(2), we can assume that player II
really determined the value of the Py-names of countable ordinals given to him.
We can also assume player II is given by player I a pair of names of countable
ordinals (instead of one).

Let By = {i < X: there is p > po, p Ikp, “i € A¢”}. Now By € D
because otherwise, as D is an ultrafilter in V we have By = f mod D, but since
po IFp, “Ao C By” (by Byg’s definition) we have py Ikp, “Ap = @mod D”,
contradiction.

Now for every i € By, there is pg; € Py, po < po,; such that po; IFp, “i €
Ao”.

So let player I's first move in O(po, Ao) be choosing 51 (a Px-name of an
ordinal < ®;), and F1 : A = Ny, F'; a Py-name. Now for each i € By, player
II simulates a play of the game o; = D?ZYNO,NI}(PO,“P,\). He plays (81, F'1(i))
(i.e., a pair of names of ordinals < X;) for player I;, and by the strategy H[po ;|
gets a move for player II;: p1; € Py, po,i < p1,i, and a1; < Ry, €1; < Ry such
that p;; IFp, “@1 = ay,; and F1(i) = €;,;”. Now for some B; C By, B; € D,
and (p1; : % € B1) is a A-system with heart p; (see 5.4(2)), and we can also
make (14,61, € By) constantly (ay,€1) (for @ € By) since there are only X,
many possibilities.

Now player II can make his move in O(po, Ao): he chooses p1, a; and e;. It is
easy to check that this is a legitimate move. (Use 5.2 to show p; IF “81 = a;”.)

So player II continues to play such that after the n-th move:

(*)n there are B, C B,_1 C...C By C By allin D, pg; € Py, for 0 < ¢ <n,
t € By, poi < p1i oo < peiy (Pei 1 0 € By) is a A-system with heart py (for
0<€<n)py <p1 <...<py, and at the £-th move player I chooses @g,lj'e,
and player II chooses pg,az,e0 and (for 1 < £ < n and i € By) py,; IF “ap = Be
and Fy(i) = e¢”. Also for each £ < n, £ > 0 and each i € By, the following is

an initial segment of a play of a game D?’?’No’m}(poﬂ-, P,), in which player II;

uses the winning strategy H [po ]

(:?h El("))a (pl,i’ alael)a <:~82a E2(1)>7 <p2,i7a2762>y ey (1857 El(l»y <pl,i7a£a€€)'
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It is easy to check that player II can use this strategy; moreover, by the
choice of H|po,], for every i € (By the set {p,; : n < w} C Py has an
upper bound, say g;; as B, € D, (qn@,Bn € D and clearly, by 5.4(2), for some
B, e D,B, CN
pn, < p for each n, and so by 5.2 p Ii—p:l “{i € N Bn: ¢ € Gp, hence for every
€ Be = ap & Fo(i) = &¢} # dmod D”. So clea?ly player II has won the play,

B, and (g; : i € () Bp) is a A-system with heart p, clearly

n<w

hence the game.
Ue.1

6.1B Remark. We could have used any S,.S C {2, Ro, R; } instead of {2, Rg, N1}
and would have obtained a parallel result. The same holds for 6.2 and 7.2 . Also

in both we can replace completeness by essential completeness.

6.2 Lemma. Suppose ) is measurable, D a normal ultrafilter over X\, Q =
(Pi, Qi 11 < A) an RCS iteration, each P;, P;/Piy1 is ({2, N0, N1}, w)-complete
and |P;| < Afori<j <A

Then, letting Q » = Nm’(D) in the universe VPA*Q the forcing notion Py * Q 2

is ({2, No, N1 },w)-complete.

Proof. Just combine the proofs of 6.1 and 4.12(1) (so now we will have a
tree of conditions instead pg;,i € Be)). Let us give the details. We will only
prove essential ({2, No, R1},w)- completeness (which is enough for all practical
purposes) and indicate modifications for ({2,Ro,R;},w)-completeness (if we
like to use only the essential version, naturally we should then also assume
only that P;, P;/P;y1 are essentially ({2, Rq, N;},w)-complete; remember the
implications from 3.8(2)). So let S = {2,Ro, X1}, r* = (p*, ¢*) € Py * Q» and
we shall describe a winning strategy for player II in the game ED%(r*, Py * Q A)
(see 3.6). As S = {2,Ng,R1}, by 3.2(2) without loss of generality player II has
to give actual values.

Without loss of generality p* IFp, “tr(¢*) =n*”, n* € “>\. For notational
convenience only (or considering @) = {T € @) : tr(T) & n*} ~ @)) we may

assume 7* =<>. In the n’th move (n > 0) player I will choose a P * Qx-name
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p"™ of a countable ordinal, and player II will choose a countable ordinal v, [and
a condition for the “real” game O%(r*, Py x Q,)].

To make his choice, player II plays on the side also trees T,, C "2\,
ordinals (i, : 7 € T, N ™A), and Py-names of Qx-conditions (g : n € T, N "X)
and conditions (py : n € Ty,) in certain forcings appearing in the iteration Q
and names of ordinals (8 : n € T, U {()™}), preserving the following:

(A)(1) T, C ™2\, each n € T,, is strictly increasing.

(2) If n € T, £ < £g(n), then n[f € T,,.

(3) If n € Ty, £g(n) < m, then {i > X :n"(i) € T,,} € D.

(4) Tpy1 N "ZXC T, ‘
(B)(1) If n > 1, n € ™A, then we let n~ =n(n —1).

(2) If n € T, N ™A, then i, < ), i, a successor ordinal > n(n — 1).

(8)IfneT,nN ™\, n>1then i, > i,

(4) <> is not really defined, but we let i.~- =0,

so P; /Pi<>_ =P_./Ph=F

(C)(1) For n € Ty, pj € P, /i _. (So for n =<>, pZ, € Pi_,).

(2) For € T, N Ty we have p7 < pp+? (this is actually implied by (3)
below).

(3) For n € T, (@e, pf,, ,fj’f’_ : £g(n) < £ < n) is an initial segment of a play

n
of at‘g) [pf)g("l)

<> <>°

, B,/ Pi"_] in which player IT uses his winning strategy. So ,?f’ isa

£

- is a real ordinal. Player II lets (in

P;, -name for a countable ordinal and
the actual play) v, = ﬂi> (for the “purely” essential version we should just
have pf, be in the completion of P; /P-n_ ).
(4) For p € P,, p! € P\/P,, pUp! is the element of Py corresponding to
(p, 1) € Po  (Pr/Pa). We let 77 € Upe oy PRye € Piy (see C1).
(D)(1) g7 is a Py-name for an element of Q) = Nm'(D) with trunk 7
(remember n € T, N ™).
(2) (0,Q7) Fpxq, “B" =By whenn €T, N"A.

(8) For n € T,N™\, pp IFp, “[Qx F q;‘_“l <grand Q) F [q:,'_'l][,,] <pr 45" ]-
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For the following, note that I-p, “D is an Ra-complete filter”, so by 4.13

we have IFp, “ for every q € @), every Q@x-name B of an ordinal < wj, there
is v <wi, and ¢, ¢ <pr ¢, ¢ IF B =7". In move number 0, player I plays @0.
Player II finds g2, € Q) and a Py-name $% such that:
kP, “q* <pr q%s,s0tr(g2,) =<>, and g2, kg, “B° = B%.7”.
But as Py & A-cc., 8%, is really a P;__-name (for some successor ordinal
i<> < \), so player II can find p%, € P;_, such that Py | “p* < p))” and
P Ik “BL, =", for some vp < wy. Then player II lets Ty = {<>} and play
Yo-

In move n + 1, player I plays a Py x @-name @"‘H. For each n € T,,N ™),
let (in V):

By = {a < X : VL < /Lg(n)|a>n) and 3Ip € P/P,, Py Up IFp, “n"(a) €

q’;]l”}'

6.2A Claim. B, € D.

Proof of the Claim. For each o < A let t; be the following P;, -name:

ty =0if ”_P*/GPi,, “n*(a) ¢ ¢5” and t = 1 otherwise.

As there are (essentially) < A many possible such P{Z’H—names [as |P;, | < A,
so 2/Pml < )], for some A, € D and t, Va € A, : ty =t I pp Ik “¢ =17, then
A, C B, and we are done. Otherwise, there is p’ > pp, p' € P, p' IF “t = 0”.
But 77 IF “{fa < A:n"(a) € g7} # 0mod D” and p’ IF “Va € Ay, n™() ¢ 77,
a contradiction (as A, € D). This ends the proof of the claim. Os.24

Continuation of the proof of 6.2: For o € By, let p:"A (@) be a p as in the definition
of By,. Then let q:;f?i) be (a Py-name of a member of @) such that:

=n+1 « « 1 1 »|»
p:;j'(a) IFpy [[qn][n ()] Spr q’l (a) and qn (a) ﬁn+ ﬂ:,l_‘.(a) ] )

where ﬁ“A ) is a Py-name. Again by A-c.c., for some large enough successor

ordinal in-(oy < A, ﬂ:‘%a is a P . ,-name and pgf“(;) € B ., /P, (and

in < ip-~(ay) and a < iy~ (q). We can increase p ( and 14,y such that
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Py IFp, “pgr“gl) IFp

As there are only < A many such names of countable ordinals, we can find

Sptl € D, Sp*! C By, and a name Bat! such that for all a € s+,

wan+1 _ n+1»» 3 n+1
- (@) / Pin gn”(a) = fn'a”" for some P, -name §;%,.

Bty = Bptl. Now we can, for each n = v (@) € T, N "\, play a step

[Bp+t, pott, @:"fla] in the game Og[py, P, /P; _], to get P; _-name ﬁzf,la
(i.e. we play for player I, the name ,@Z“, and the winning strategy of player
1L, gives us p,’;“, @:;ir’la; o was the last element in 7). Again, for each v € T},
of length n — 1 there is a set S?*! € D, S7*! C {a: v"(a) € Ty}, and for all
a€ S:/H_l, BZT(IQ) = ﬁl”}+1'

We continue by downward induction (in each step k, n > k > 0 defining P, -
names ,?’,}j’xl for v (a) € TN k), satisfying demand (C3) and then “uniformiz-

n+1
23", and

ing” using a set S?*! € D as before). Finally, player II plays vyn+1 =
define T4 1 € ™12\ by:
(1) Try1 N 2A = {<>}
(2) for n € Ty N ¥, Suer,,,(n) = {n"(a) : @ € §PF'}, for k < n.
This completes the description of player II’s strategy. Finally, define T as
T =Upco Npse(Tn N £)). Clearly (“> A, D) <, (T, D) (where D,, = D). For
each n € T' let p, € P, /P; _ be > pj; for every n > Lg(n) (i.e. this is H-pin_ );
(exists as we have used a winning strategy in Of, y; x,} f,g("), P, /P _]).
Let py = Upcrg(n) Prie € Pi,- By repeated use of 5.4(2) we can find T,
(T,®D) <pr (T',D) and (p} : n € T) such that for each n € T we have
(Pr(ay * @ < A,n*(a) € T) is a A-system with heart p} € Py/P; . Note:
n~=v,neT = pf <py

It is easy to see that if (p, : @ < A) is a A-system with heart p*, then
ptIFp, “{a:ps € Gp} # Omod D in VP27, Using this fact we can show that
p<> Upts Ik 4 qef {neT :p,Up} € Gp,} € Qx = Nm'(D) and ¢* < ¢”.

To finish the proof it is enough to show that (p<s Upt., q) Ik “(Vn)p" =
Yn”. Assume that this is false, then there is a witness, i.e. (p',q') > (p<> U
p2>,g), n € w and @* < wy, such that (p',¢') I “B" = o*”, but o* # Yn.

Without loss of generality ¢’ has a trunk of length > n, and also there is n €
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“> X such that p’ IF “tr(¢’) = 7" and £g(n) = m > n. As p' IF “n € ¢”, without
loss of generality V£ < £g(n) : Pyre Up;w <p'. By (D), p'IF “¢ > ¢ > ¢, for
all £ < £g(n). So for £ = n we get (p',q') > (Dpns Gnin)y S0 (P, ¢) IF “B™ = 7,7
and we are done.

If we want to play D‘fzy Ro, N1} and not only ED‘{Z Ro ,X;}» We also have to
give conditions r, forcing 8" = v, at each step n.

Without loss of generality we may assume that for each n € T,, of length
< n we have (p}.  : n"(a) € Ty) forms a A-system with heart p7. Let
P =D2 UPZs, gn = {n € “ZA:Lg(n) <n=ppUpy € Gp,, lg(n) >n =
ne g:; rn}‘

Then as above we can prove (pn,gn) IF “B" = v, then we have to
show (pn,gn) < (Pn+1,gn+1), and finally that (p<> UpJ<“>,g) (from the end
of the proof for EO{y xy, x,}) i8 = (Pn,gn) for all n (in Py * @), or at least in
Py x Q\ / ~). These details are left to the reader. Oe.2

6.3 Definition. A filter D on a set I (in a universe V') is called precipitous if

the following holds:

IFpp(p)y “there are no f, : I — ordinals, f, € V, such that f,41 <g fn for
each n”, where
(i) PP(D)={AC1I:A+#0modD} ordered by reverse inclusion.
(ii) FE is the filter generated by the generic set of PP(D),
(ili) f <g g means {a € I: f(a) <g(a)} € E.

6.3A Remark. The following is an equivalent definition: a filter D over I is

precipitous if player I does not have a winning strategy in the following game

Oprec(D).

First move
player I chooses A; C I, A1 # @ mod D,
player II chooses By C A;, By # @ mod D;

n-th move
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player I chooses A, C B,_1, A, # Omod D,
player II chooses B,, C A,, B, # dmod D.

Player II wins if ()| A, (which is = () B,) is nonempty (not necessarily
n<w n<w
# Pmod D).

See Jech and Prikry [JP2], and Jech, Magidor, Mitchell and Prikry
[IMMP].

6.4 Theorem. Suppose “ZFC + G.C.H. + &k is strongly inaccessible and

A = {X < k: X measurable } is stationary” is consistent. Then:

(1) The following statement is consistent with ZFC + G.C.H.: for every B C R,
for some § < Ry (in fact for some club C of X for every § € ANCN(SZ)VIG)),
cf(8) = Ro, but in L[BN 4], § is a regular cardinal > R; (in V[G], A = Ry).

(2) If in the hypothesis A € D, D is a normal ultrafilter on &, then there is a

normal precipitous filter on Ry to which S2 belongs.

Proof. So let V be a model of ZFC +G.C.H., and let k be a strongly inaccessible
cardinal, such that A = {A < K : X\ measurable} is stationary.

We now define by induction in i < k forcing notions P; € V,Q; € VP,
such that |P;| < k, (P;,Q; : j < k) is an RCS iteration. So by 1.5(1) it suffices
to define Q; for a given (P;,Q; : j < i).

Case A. 1 = ) is a measurable cardinal, such that for every j < A, |P;j| < A.
In this case let Dy be a normal ultrafilter over A (in V), and Qx = Nm'(D)).
(In VP2, Dy is not an ultrafilter any more, since we may have I-p, A = Ry, but

it will still be “large”, see 6.1, 6.2).

Case B. Not case A.
In this case let Q; be the Levy collapse of (27 + |i|T)V to Xy, ie.,

{f € VP : f a countable function from w; to 2P + |i|+}.

Now by 3.5 and 6.2 it is easy to see that Pc = Rliim(P;Q; : i < k) is

({2, Ro, ®1 },w)-complete (note: if for ¢ Case A occurs, then for every j < i,
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in VPi+1 D is still a normal ultrafilter), and by 5.4 it satisfies the k-chain
condition.

So clearly in VP~ G.C.H. holds, every real is from V, and X; = XY Ry = .
Also if X € A, then (Vi < A) |P;| < A (prove by induction on i for each X). Let
G C Py, be generic, and we shall prove that V|[G] satisfies the requirements.

Part 1. So let B C Ry, and let B € V be a P;-name for it. Then Cy = {¢ : for
every i < § we have BN{i} has a Pj-name for some j < ¢} is a closed unbounded
subset of k, because Pj satisfies the x-chain condition (and P; < P, = ;.. Pi
for j < k) and obviously Cp € V.

Now if A € Cy N A, then we can check that |P;| < A for i < A, so case
A holds hence @) = Nm'(D,), hence in V[G], cf(\) = Ro by 4.7(2). On the
other hand, clearly G N Py is a generic subset of Py (as P\ < P.), by 5.4 P,
satisfies the A-chain condition, so IFp, “cf(A) = A”. Hence in V[GN Py], AN A
is present, but A is a regular cardinal > RX;. So also in L[A N A, A is a regular
cardinal > R;. Lastly as P, satisfies the k-c.c. also in VP*, A is a stationary

subset of k = RY . Together we finish.

Part 2. The following implies the desired conclusion; it is essentially the same
proof as [JMMP] who do it for the Levy collapse; and it suffices for (2) of
the theorem. It follows from Magidor [Mg80] Theorem 2.1, and is included for
completeness only. (By construction, VP |= “A4 C 89 and A € D”).

6.5 Lemma. Suppose k is measurable, D a normal ultrafilter over s, Q =
(P;,Q; : i < k) an RCS iteration, |P;| < & for i < s, P = P, = RlimQ.

Then in V| D is a precipitous filter.
Proof. If not, in V¥ there is Ay € PP(D), A lFppp) “(fn:n <w)isan w-

sequence of functions from & to ordinals which belong to V¥ which is decreasing

mod E, fn € VP where E is as in clause (ii) of Definition 6.3.
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So there is p € P, a P-name Ag, and P * PP(D)-names f,'g of the f, such
that p IFp, “Ao, ﬂl are as above”.

Let By = {\ < K : A is strongly inaccessible and for some p! > p, pt € P,
and pf Ikp, “A € 4"}

Because D is normal, k measurable, {\ < & : X strongly inaccessible} € D,
hence By € D. For each A € By choose py o, p < pro € P, pao Ik “A € Ag”.

By 5.3 there is Bg C By, B(‘; € D such that (pyo: A€ Bg) is a A-system with

heart p'.
Now we define by induction on n < w, p n, Pn,ph, Bn, B}, An, AL, gnsAxn

(for X € B}) (An, A6, gn are P-names) such that:

(1) (pan:Ae B}) is a A-system of members of P with heart p! .

(2) Bus1 € Bl C Bn, Bay1 € D,

(3) pn+1 =D}, > pnallin P,

(4) PAn+1 = Pan both in P, g, a P-name of a function from & to Ord,

(5) Pan kP “N € Ap and gn_1(A) = arn-1", arn < arpn-1 for n >0,

(6) Al = {\ € B}, : pxn is in the generic set of P},

(7) pn+1 Fp “Ans1 € PP(D) and Api1 C A} and [Any1 Fppp) “fn/E =
gn/E"] and Ant1 C {i <K :gn(i) < gn-1(9)}",

(8) Bny1 = {X € B} : there is p' > pxn,p’ > pn+1, such that for some o,
p'IF “A € Any1 and gn(N) =’}

The definition is easy: for n > 0, we first we define p,, A, and gn-1 (by 7),

then B, and py, (by 5 and 8), then B}, and p}, (by (1), using 5.4), finally Af,

by (6).

Now as Bl € D, () Bl # 0, and if X belongs to the intersection, (axn : 1 < w)

n<w
is strictly decreasing sequence of ordinals, contradiction. U6.5,6.4

87. Friedman’s Problem

Friedman [Fr] asked the following.
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7.0 Problem. Is there for every S C S§ (= {t < Rq : cf(i) = No}), a closed
set of order type wy, included in S or in S§ \ S7 We call this statement Fr(X,).
Let Fr*t(X,) means that every stationary S C S§ includes a closed set of order
type wi.

Van Liere proved that Fr(R,) implies R is a Mahlo strongly inaccessible
cardinal in L; and Fr(R,)+ not Fr(Xz) (X, regular > R,) implies 0% exists
(using squares). We prove the consistency of Fr(X2)+G.C.H. with ZFC, modulo

the consistency of a measurable cardinal of order 1 . We recall the well known:

7.1 Definition. We define by induction on n what are a measurable cardinal of
order n and a normal ultrafilter of order n. For n = 0 those are just a measurable
cardinal and a normal ultrafilter. For n 4+ 1, D is a normal ultrafilter of order
n+1on &k if {\ < k: A is measurable of order n} € D and it is a normal
ultrafilter. We call k measurable of order n + 1 if there is an ultrafilter of order

n + 1 on it.

7.2 Lemma. Suppose D is a normal ultrafilter on x, Q@ = (P;,Q; : i < k) an
RCS iteration and |P;| < & for every i < k.

Suppose further that G C Py is generic, S C (S§)VIC€], S € V[G] stationary
and even # 0 mod D, and (in V[G]) let

Qx = {f : the domain of f is some successor ordinal o < Xy, f is into S and

it is increasing and continuous }

So let S, Qn be P;-names for them and IFp, “S # @mod D and S C S§”. We
then conclude:

(1) If P, is {R;}-semiproper, then so is P, * Qx,

(2) If Py is essentially ({2, Ro, N1 },w)-complete, then so is Py * Q-

Proof. (1) The problem is that Q, may destroy a stationary subset (of ws), so
it is not proper, though it obviously does not add w-sequences. So let §,Q, be
P.-names for S,Qx. Let A = {a < k : a a strongly inaccessible cardinal and

(Vi < a)(|1P] < a).
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Let A be regular, big enough, Q, Qx, SEH (A), let <* be a well ordering
of H(\) and let N < (H()),€,<*) be countable, p,q,Q, S, Qx €N, (p,q) €
P *Qy, and we shall prove the existence of an {R; }-semi (N, P, * Q. )- generic

condition > (p,¢). In V' (hence in H(})), we let

So={\e€ A: thereis p' € P, such that p < p' and p! I “\ € S”}.

As in previous proofs Sy € D, and for each A € Sy let pro € Px, pPro > p,
pro IF “A € §” and for some Sy C Sy, S1 € D, and (pro : A € S) is
a A-system (see 5.4(2)). As N was an elementary submodel we can assume
50,51, (Pr0 : A € S1) and its heart py belongs to N (but of course not all
included in N). Let S, = S nN{ST : ST € D and St € N}, so clearly
S2 = {a; : @ < K} C S is an indiscernible sequence over N|Jw; in the
model (H(A),€,<*) (but does not belong to N). Note that for a formulae
¢ = o(x1,..-,Tk;Y1,---,Yn) With n parameters y1,...,y, from w;, and k
parameters z; < ... < Zg, from k, the corresponding function f : [/s]’c —
{true, false}™' is in N and it is constant on Sy. (The function f is: for
a1 <...<ag <klet flag,...,;o0) = {(B1,---,0nt) 1 B1,..., 80 <wi the t
is the truth value of p(ay,...,as,01,...,8)}). Clearly p < po.

Let NN P, C P,, S3 =52\ (p+1) (with s < &, of course).

Clearly S3 € D hence S3 # 0. Let x € S3 be such that x = sup(S3 N x),
and N* be the Skolem Hull (in (H()), €, <*)) of N |J{x}, by the choice of S,
(and Rowbotton theorem), clearly & 4 N*Nw, = NNw; and kN (Skolem hull
of N Ux) = x (or you can choose such ).

Also P, € N* (as (P;,Q; 11 < K) € N*,x € N*) and clearly P, < P,.
Now P is {R;}-semiproper and (pro : A € S1) € N* and x € N*, hence
Pyx,0 € N* and po < py,0 and there is p; € Pg,p1 > Py,0, Which is {X;}-semi
(N*, P,)-generic. As N* Nw; = N Nwi, p; is also {R;}-semi (N, Py)-generic.

Let G C P, be generic, p; € G, and we shall find f € Q[G] which is {X;}-
semi (N[G], Qx[G])-generic, this obviously suffices. We have § = N*[G] Nwi.

In V[G], x has cofinality No, (as pyo I “x € §” and § C (§)V™). So



§7. Friedman’s Problem 527

there are ap < ... < ap < o1 < ..., Upcu@n = X, an € N*[G], and let
{7n : n < w} be a list of all Q«[G]-names of countable ordinals which belong
to N[G] (not N*[G]!). We let fo = ¢[G] € N[G], N, be the Skolem Hull of
N H{ao,..-,an} in (H(X),€,<*) and define by induction f, € N,[G] such
that Qu[G] - “fass > £u”, x > Sup Rang(fu) > @y and fu g i) “In = Bu”
for some 3,. This will suffice because U, ., fn U{(0,x)} € Q«[G] and is {X;}-
semi (N[G], Q«[G])-generic because N, Nwy € N* Nwy = N Nw;. Defining
fn+1, the only nontrivial point is x > Sup Rang(fn+1), but fr+1 € Npt1[G],
and N,1[G] Nk C ¥, (as by a version of Rowbottom’s partition theorem on
normal ultrafilters S3 \ x is indiscernible, in (H()), €, <*), over N Jx). Now,
for every P-name 8 € Ny, of an ordinal < k, for some 8 € N,Nk,l-p, “B < "
(as P, satisfies the k-c.c., see 5.3) hence Sup(N,[G] N k) = Sup(N, N k) < x.

So we can define f,.1, hence all the f,,’s hence, as said above, we finish.

(2) By 3.8(2) the complete Boolean algebra P = RO(Py) is (S,w)-complete,
where S will be {2, R, N1}; let @ = RO(Qy).
Let (p,q) € P*Q. Clearly it is enough to describe the winning strategy of

player II in EDg ((p, q), Px Q)

Suppose in the n-th move, player I chooses the PxQ-name 3, of an ordinal
< Ry, and player II will choose (,. Player II will do the following: after the
n-th move he will have (p, g,,) € Px Q and @;7, By for every increasing sequence
7 of ordinals < k of length < n such that:

(1) (p9<>) = (p,9),

(2) (P, gnre) < (p, gn),

(3) (P, gn) I “Beg(n) = By”, By a P-name (of an ordinal < ¥,).

(4) for some A, € D, for every increasing n C A, of length < n we have
Bn = Beg(n)»

(5) pIFp “Sup Rang(g,) > Max Rang(n)”,

(6) For n € ™k increasing, (@;ro,ﬂmo,@;’“,@nn,...,@jﬂn,ﬁmﬂ) is an initial

segment of a play of EOg(p, P) in which player II uses his winning strategy.
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Clearly Player II can do the above and it gives him a strategy. (i.e. the
zero-th move is easy. In the (n+1)’th move; first for every increasing v € " for
every ) = v (o) first choose g, to satisfy (2), (5) and force Byg(n) to be equal
to a P-name f3;; then choose f3, to satisfy (6). Finally he chooses A, and 3, to
satisfy (4) ). We have to prove that he wins by this strategy. So let A =) A4y,
and for n € “A increasing, we know that for some (by clause 6) p, € P,Q,np,, I
“Bute = Bnpe” for £ < w.

Let K = {T : T a tree of finite increasing sequences from A, closed under
initial segments, () € T and for every n € T, {i € A : n" (1) € T} € D}
(we can replace D by D, + A or D% + A in this context since we only need
k-completeness). Remember limT = {n : g(n) = w, nlk € T for every k < w}.
So K is closed under intersection of < k elements. For each T € K,n € T, let
zg be, in RO(P), Supp{p, : v € limT and v > n} (Remember, we replaced
P, by a complete Boolean algebra B or see 1.4(9)). Clearly 7 decreases
with T, so as P satisfies the x-chain condition, for some T, .7:(T> is minimal (i.e.,
Tt C T, Tt € K implies :L’z;T = x%’;), and similarly for every n € T

Obviously,

(1) 2§ = Sup{x? @ M <i>€T}: (this holds for any tree),
(2) RO(P) =0 < b < zT implies {i : RO(P) = bNzl- . # 0} # @mod D

(by T’s minimality).

Let T" = {n: x% belongs to the generic set of P}. Hence xz; lkp “T* # @, in
fact () € T*”, and
3) x%’; Ikp “ for any n € T* for k many i’s we have n~ (1) € T*”.

Now if G C P is generic, xz; € G then S[G] is a stationary subset of S2, and
C = {¢: if n € ¥4, then Rang(gy[G]) C 6} is closed unbounded. Hence for
some 7,6 with 7 € “§ the following holds: § € S[G] N C, (Vk)nlk € T*[G], and
Uew 1(8) = 6. Let ¢* = Upe, @nre U{(Sup U, Dom(gnpe), 6)} € Q- Let g* be

the P-name of such a ¢*. It is easy to check (xz;, q*) is as required. Or.2
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7.2A Remark. In 7.2, we can weaken the assumption allowing S = ) mod D

when e.g. Pj, Pj/P;;1 are semiproper. (A complete proof of a better theorem

appeared in XI.)

7.3 Theorem. If “ZFC + G.C.H. + there is a measurable of order 1” is
consistent, then so is “ZFC + G.C.H.+ for every subset of SZ, either it or its

complement, contains a closed copy of w;”.
p )

Remark. We do not try to get the weakest hypothesis. It will be interesting to

find an equi-consistency result. (See XI.)

Proof. So let V satisfy G.C.H., B C k the set of measurables of order 0,
not 1, and for every u € B, let D, be a normal ultrafilter on p; we know
(see below why) that Op holds, and let S = (S, : S, C H(u),u € B),
exemplify it. Moreover, if S C H(k), ¢ a II} sentence, (H(k),€,S) F ¢ then
{n€ B:SNH(u) =S,, (H(p),€,Sy) E ¢} is a stationary subset of &. It is well
known that there are such S,. [Why § exists? Choose inductively S, C H(y)
for u € B such that if possible {x' : u’ € pN B and S, N H(u') # S,/} is not a
stationary subset of p.

We define an RCS iterated forcing (P;, Q; : i < s) by induction on 4, such
that |P;| < k, and for every measurable u < &, 1 < u = |P;| < p.

When we have defined Q; for j < i then P;(j <) are defined. If i € s\ B,
Qi is {f : f a countable function from R; to |[P;|* + 282} (282 of VF+).

Ifie B, S;=(p,S),p € P, S a Pname, pl-p, “S is a subset of S§ and
S # 0 mod D for some normal ultrafilter D € V on ", then we let Q; be as in
7.2 if p is in the generic set, and trivial otherwise. We can finish as i~n previous

proofs. Oz

7.3A Remark. 1) We leave the checking that the forcing works, to the reader.
For the normal ultrafilters D’, D" on & if, for B’ C k we have B’ € D' & {\ €
B :B'N\e Dy} € D", then we can get in VP~ every A’ € (D')* contains a

closed copy of w;.
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2) Note that P, will be {X;}-semiproper and even {2, R, R; }-complete (see
3.5).

3) In fact we could have gotten that every stationary S C S2 contains a closed
copy of wy, i.e. Frt(Ry) if we use 7.2A.

4) The forcing in the proof of 7.3 preserve “cf(d) > Ro”. [Why? Use 2.7 and
simple properties of the Q;’s.]

7.4 Theorem. Suppose “ZFC + there are two supercompact cardinals” is

consistent. Then so is ZFC + G.C.H. + “Fr*(R,) for every regular R,(a > 1)”.

Remark. Slightly better is XI 7.6. We can also get result like XI 7.2(c) i.e.
(*) for every 6 = cf(f) > R4 and stationary W; C {§ < 0 : cf(6) = Ro} we can

find an increasing continuous h : w; — S such that h(i) € W;

Proof. Let V E “2* = u% for 4 > A” and k < A and &, A are supercompact.
By a theorem of Laver [L] we can assume no k-complete forcing will destroy
the supercompactness of x. The following is known:
(¥)o If Ry > X is regular, S C S§ is stationary, then for some p, kK < p < A and
§ < R, we have cf(8) = p and S N4 is stationary.
Let P be the Levy collapse of A to x*. By Baumgartner [B2], in VP,
(%), for every stationary S C AN S§°, for some § < A, cf(6) = & (in VF), SN§
is stationary.
Moreover,
(x)2 If in VP Rg > A, Ng regular, S C Sg stationary, then for some 6 < Ng,
cf(8) = k, and S N ¢ is stationary in 4.
(why? as |P| = A < Rg = cf(Ng), S is the union of A sets from V/, so at least one
of them is stationary (subset of X in V), so without loss of generality S € V.
Now by (*)¢ above we can find § as there. But P is k-complete and collapses
4 to size k, so cf(é)VP =k, and S N § is stationary in VFP. We want to deduce
IFp “SN§ is stationary in §”, as § € S = cf(d) = R this is easy).

We can conclude
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(*) in VP if u > & is regular, S C p N S is stationary then for some
d < p,cf(d) = k and S N4 is stationary.
Let Q be the forcing from 7.3 A(3) (or the proof of XI 7.1), we shall show that
VP*Q is as required.
Note: RY & = RV, RY © = &, RY © = A and every cardinal &z > X of V
remains a cardinal in VP*Q and the properties “ a limit ordinal ” “cf(d) = No”,
cf(8) > Ro are preserved by P (being N;-complete) and Q (by 7.3A(4)) so S§°
has the same interpretation in V, VP and V & .

Let, in VP*"Q, 1 be a regular cardinal > X; and S C p N S§° be stationary.
If 4 < K, apply the proof of 7.3, 7.3A(3). If 4 > k then, as VP E Q| =", S
is the union of & subsets which belong to V| so at least one is stationary, so
wlog SeVP.

So in VP, for some 6,cf(6) = k,d N S is stationary; as Q satisfies the

PxQ
k-chain condition, S N ¢ is still stationary in V' 7, as required. 074





