Appendix

Nonstandard Compactness Arguments
and the Admissible Cover

One of the subjects we have not touched on in this book is applications of
infinitary logic to constructing models of set theory and the relationship between
compactness and forcing arguments. At one time we planned to include a chapter
on these matters, but the book developed along other lines.

In this appendix we present one example of such a result because it leads
very naturally to the admissible cover of a model M of set theory. We want to
treat this admissible set for two reasons. In the first place, it gives an example
of an admissible set with urelements which has no counterpart in the theory
without urelements, and it is as different from IHY Py, as possible. Secondly, we
promised (in Barwise [1974]) to present the details of the construction of this
admissible set in this book.

1. Compactness Arguments over Standard Models
of Set Theory

Let A={A,e) be a countable transitive model of ZF. Then A is an admissible
set and, moreover, (A,R) is admissible for every definable relation R. We can
therefore apply Completeness and Compactness to L, or L, g, for any such R.
There are many interesting results to be obtained in this way; we present one
here and refer the reader to Barwise [1971], Barwise [1974], Friedman [1973],
Krivine-MacAloon [1973], Suzuki-Wilmers [1973], and Wilmers [1973] for other
examples. We also refer the reader to Keisler [1973] for connections with forcing.
The axiom V=L asserts that every set is constructible.

1.1 Theorem. Let A be a countable transitive model of ZF. There is an end
extension B=(B,E> of A which is a model of ZF+V=L.

Proof. Let T be the theory of L, containing:
ZF.
The Infinitary diagram of A.
We need to see that Tu{V=L} has a model. If not, then

T=V#L
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SO
THV#L

by the Extended Completeness Theorem of § IIL.5. Thus A is a model of the
¥, sentence expressing:

(1) 3@ 3p [p is a proof of (A #)—(V#L) where Vxe® (xeZF or x is
a member of the infinitary diagram)].

This X, sentence contains no parameters. Now let a=o0(A) and let A,=L(x).
Then A, is a model of ZF+ V=L (it is the constructible sets in the model A
of ZF) and, interpreting Shoenfield’s Lemma (Theorem V.8.1) in A, we have:
Any X, sentence true in A is true in A,.

Thus the sentence (1) is also true in A,. But this means that there is some
subset T, of the infinitary diagram of A, such that

To+ZF=V#L
which is ridiculous since A, itself is a model of Ty+ZF + V=L. [

There are a number of extensions of the above which will strike the reader;
most of these are covered by the version contained in Theorem 3.1 of Barwise
[1971]. What is not so obvious is how to extend the result from standard models
of set theory to nonstandard models. For if W={A4,E)> is a nonstandard model
of ZF then we have no guarantee that a “proof” in the sense of 2 proves any-
thing at all. What we need is a new admissible set intimately related to 2 which
will allow us to carry out the above, and similar, proofs.

What is even less obvious is how to generalize results like Theorem 1.1 to
the uncountable. There are uncountable models of ZFC with no end extension
satisfying V=L, assuming of course that ZFC is consistent. Is there an un-
countable generalization of Theorem 1.1, involving consideration like hg(A),
which explains more satisfactorily why the result holds in the countable case?
The same question applies to all the results in Barwise [1971] and Barwise [1974].

2. The Admissible Cover and its Properties

In this section we will be considering models of set theory as basic structures over
which we build admissible sets. Thus we denote such structures by M={(M,E>
where E is binary. Recall, for xe, the definition

xg={yeM|yEx} .

Let L contain only the relation symbol E; let L*=L(e,F) where F is a unary
function symbol. Let () be the axiom of L* given by

&) Vp,x [xEp—xeF(p)] A Va[F(a)=0].
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An admissible set (for L*), say Ayp=(M; A,€,F), is a cover of M if Ay is a
model of (). That is, Agy is a cover of I iff

F(x)=x, for xeM,

F(x)=0 for xeA.
The point of the definition is pretty obvious, assuming that we are working in
an admissible set Ay, with M Agy. A quantifier like Vx (xEy—...) is a bounded
quantifier in the sense of L but it is not bounded, in general, in L*. Using the
axiom (1) however, it becomes equivalent to the bounded quantifier VxeF(y)(...).

In this way every formula ¢ of L translates into a formula ¢ of L* with the
properties:

if ¢ is Ay (resp. Z,) is L then @ is A, (resp. X,) in L*

KPU+(T)}_vp1”pn [(P(Pp---,l’n)‘—’(z’(lhw-’Pn)]~
We use these remarks below without comment.

There are many admissible sets which cover a given structure M. For ex-
ample, if Agp=(M; A,€) is admissible above I (in the sense of L(g)) then we
can define an Ag-recursive F by

F(x)={yeM|yEx}, xeM,

F(x)=0, x¢M,
and then (Agy, F) will be admissible in the sense of L(g,F) and will cover 9.
These admissible sets are not tied closely enough to the intended interpretation
of M for the applications we have in mind; they are too big with too many

subsets of M. What we would like would be an admissible set Ag, which covers
MM and whose only sets of urelements are the sets of the form py for peI.

2.1 Definition. Let M=(M,E)> be an L-structure and let Covyy, be the inter-
section of all admissible sets which cover 9. More precisely,

Covg=(M; A,€,F)
where:

A=(){B|(M; B,&,F) is admissible and covers M} .
F(p)=pg for peM.
F(a)=0 for acA.

2.2 Theorem. If M is a model of KP then Covy, is admissible. Covyy is called
the admissible cover of IN.

Proof. Deferred to §3. O
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If we proved this theorem right now, the proof would look complicated and
ad hoc. What we shall do instead is to develop further properties of the admissible
cover in this section until, by the end of the section, we will know almost exactly
what Covgy, looks like. This should make the proofs (in § 3) easier to follow.

The next property of the admissible cover suggests the main step in the proof
of Theorem 2.2 and shows us that Covy, really lives in M. (The corollaries of
Theorem 2.3 are easier to understand than 2.3 at a first reading.)

2.3 Theorem. Let M=(M,E)> be amodel of KP. There is a single valued notation
system p projecting Covgy, into M satisfying the following equations (where we use
X for the unique y such that p(x)=/{y}, where 0,1 denote the first two ordinals
in the sense of MM and where <, is the ordered pair operation as defined in M):
(1) For xeM,
x=<0,x>
(ii) for aeCovgy, thereisa yeM such that
a=<{1,y>
and yp={x|xea}.
Proof. Deferred to §3,3.1—3.7. 0

Call a set a=M of urelements M-finite if a=x; for some xeIN.

24 Corollary. Let M=KP and let a<I. Then a is M-finite iff acCovg,.
Hence for any aeCovyy, the support of a is M-finite. In particular, M ¢ Covg,.

Proof. Let ac 9, aeCovg Using the notation from 2.3,
a=<1,y)
where yp={x:xea}. But a=9 so x=¢0,x) for all xea. Then we can define,

inside the model 9, the following set by X Replacement, remembering that
M=KP:

z={x|<0,x) Ey}
and then zp=a. The converse is trivial. [

Corollary 2.4 is very useful in compactness arguments involving Covgy, for
it tells us that if Tye Covyy, is a set of infinitary sentences, then the set

{xeM:x is mentioned in Ty}

is M-finite. Recall that x is the constant symbol used to denote x. 10



2. The Admissible Cover and its Properties 369

We can use the projection from 2.3 to identify the pure sets in Covgy, and the
ordinals of Covgy,

2.5 Corollary. Let M=KP. Let A, be the transitive set isomorphic to W¢(M).
The pure sets in Covey are exactly the sets in A,. In particular, o(Coveg)=o0(A,).

Proof. Since A, is admissible (by the Truncation Lemma) it is closed under TC
so it suffices to prove that every transitive set ae A is in Covy, in order to prove
A= Covyy, since Covyy, is transitive. Let ae A, be transitive and let

(a,e) = <X, Eer>

where xe ##(M). Since Covy, is admissible, by 2.2, we can apply Theorem V.3.1
in Covyy to see that aeCovg. To prove the other inclusion define the following
function by recursion in 9 (more precisely, define it by £ Recursion in KP and
interpret the result in IN):

0,x> =x
1,x)"={y'|yEx}.
(It is only the second clause which is relevant here but we'll use ' again later.)

Let n:{#W¢M),E>={A,,e) and consider the following diagram, where
Dy={a|a a pure set in Covey}:

Pure part(Covy) —— DySM
Id

'
v

Ay —— WY

We claim that, for every pure set aeCovgy, (a)e ##(M) and n((a))=a, which
will conclude 2.5. The proof is by induction on e. First, a={1,x) where
xg=1{b:bea}. But then (@) =z where

zg=1{y'| yEx}
={(b)|bea}.

Thus: (a)g= ##(M) by part of the induction hypothesis, and hence (d) e #Z(M).
Computing 7((a)’) we get

n((@))={n(y) yEz}
={n((b))|bea} .
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The other part of the induction hypothesis states that n((b))=b for bea so we
get
n((@))={blbea}

=a. 0

Using 2.4 and 2.5 we can give a picture of Covg,. The dotted line in 9 is the level
at which it becomes nonstandard (if it is nonstandard).

W)

N Covygy

Fig. 2A. A model M of set theory next to its admissible cover

The projection given in 2.3 is ad hoc in that we could have used others. The next
function, by contrast, is canonical.

Let Agp=(; A, F) be admissible and a cover of 9. A function * is an
e-retraction of Mg onto M if x* is defined for every xe Ay and satisfies the fol-
lowing equations:

" p*=p for peM
(a*);={b*|bea} forall aecAgy.

We can use the projection given by Theorem 2.3 to prove the following characteri-
zation of Covgy.

2.6 Corollary. Let ME=KP. Covy has an e-retraction into MM and it is the only
admissible set covering I which has such an e-retraction.

Proof. The proof is an elaboration of the proof of Theorem 2.5. It is clear that any
admissible set Aqy, covering M has a function * satisfying (1), simply by the second
recursion theorem for KPU':

x*=y iff (xisanurelement Ay=x)v
(x is a set and F(y)={b*|bex}).

The problem is that x* won’t usually be defined for all x. Let us first show that
for Ag=Covy, x* is defined for all x. Define ' just as in the proof of 2.5. We
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claim that for all xe Covgy,

(x)" is defined
(p)Y=p for peM
(@))g={(x)|xea} for aeM.
This is proved by induction just as in 2.5 and shows that x* is defined for all x

since x*=(x). This proves that Covyqy has an e-retraction onto M. Let Ay, be
any other cover

(M;A4,€,F)

which has a totally defined e-retraction *. Let D be the domain (in the peculiar
sense of Definition V.5.1; thatis D=rng(-)) of the notation system of Theorem 2.3
and let

|p| =the unique x such that Xx=p

for peD. Thus | | maps D onto Covg,. Define an Agy-recursive function f from
Aqy into M using *:

f(p)=<0,p>
fl@)=<1,{f(b):bea}*).

See Fig. 2B at this point.

-
-, -
- -
- -
- n

Fig. 2B.

A simple proof by induction on € shows that f(x)eD and |f(x)|=x, for all
X€Ag Thus Ag s Covy so Covg=Agy since Covgy, is the smallest admissible
set covering M. [

The e-retraction * of Covg, onto M is not one-one, of course, since (a*)* =a*
but a*#a, for any set aeCovg, Otherwise, though, it is far more natural and
less ad hoc than the projection of Theorem 2.3. We saw in the proof of 2.6 how to
reconstruct the projection from *.

Also note that * is Covg-recursive.

For applications of Covg, we need two more properties of Covg, The first
tells us what X, on Covgq, means in term of .
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2.7 Theorem. Let M=KP. A relation S on M is £, on Covgy iff S is X, inductive
on M; that is, iff’ S is a section of 1, where ¢=¢(vy,..., v, R,) is some T inductive
definition (in the language L(R)) interpreted over IN.

Proof. Deferred to 3.9. [0

The last property we need relates the admissible covers of two different
models M, N. Let M=(M,E>, R=(N,F) where M=N. Note that M< N
if CovpcSCovq If MRE=KP and Mc, N then Covy s Covy, as the
construction in § 3 makes translucent.

2.8 Theorem. Let M, N=KP, Mc . I Then
M< N

if and only if
Covyy<{Covyg .

Proof. The translation ¢—¢@ defined at the beginning of this section makes
the (<=) half of this theorem immediate. The converse follows from the considera-
tions of the next section. [I

3. An Interpretation of KPU in KP

The proofs of the theorems of §2 all involve interpreting the theory KPU of
L(g,F) in the theory KP of L, in the sense of § I1.4, and then applying this inter-
pretation to models M of KP.

The interpretation is the one suggested by the projection of Covgy, into W
which we want to construct to prove Theorem 2.3:

p=<0,p>, a=<{1,y>
where

yg={X|xEa} .

3.1 The Interpretation I. We are dealing with two separate set theories, KP
formulated in L with E as a membership symbol and KPU +(f) formulated in
L(, F) with € as the membership symbol, so this must make things a bit confusing
no matter what we do. In this subsection we want to work axiomatically within
KP so we use € for membership when we really ougth to use E, just because it
seems the lesser of two evils. We use the usual notation for symbols defined in KP,
symbols like 0, 1,{x, y>, OP (for ordered pair).
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Define predicates within KP by the following:

N(x) & Fy(x=<0,y>)
— 0OP(x)A 1%Y(x)=0
xE'y > N(x) A N(y) A (2"(x) € 2™(y))
Set(x) & Iy[x=<1,y> A Vze y(N(z) v Set(z))]
z28x « Ay[x=<{1,y> A zey]
— OP(x)A15(x)=1Aze2™(x)
Fx) = <1,{<0,y>: ye2"(x)}) .

The predicates N,E',& and F' are defined by A, formulas. The predicate Set is
defined, using the second recursion theorem, by a X, formula. We use these to
define our interpretation as follows, where L*=L(g,F) is considered as a one-
sorted language with relation symbols U (for urelement), S (for set)

Symbol of L* Interpretation in KP under 1
Vx Vx(N(x) v Set(x)-...)

U(x) N(x)

S(x) Set(x)

xEy xE’y

Xey x&y

F(x) F'(x)

3.2 Lemma. I is an interpretation of KPU+(}) in KP. That is, for each axiom ¢
of KPU +(%), ¢ is a theorem of KP.

Proof. We run quickly through the axioms, beginning with (f). The interpretation
of () reads

Vx Vy[N(x) A N(y)—=(xE'y >xEF(y)] -
So suppose N(x)A N(y). Let x=<0,xq), y=<0,y,>. Then the following are
equivalent:

xE'y,

X0€)o >

x8F(y).

Extensionality: The interpretation of Extensionality asserts that if Set(x) and
Set(y) and

Vz[(N(z) v Set(z) = (26 x < z&Y)]
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then x=y. Assume the three hypotheses. Let x=<1,u), y=<1,v). Then z&x
iff zeu, z&y iff zev. Since every zeuuwv satisfies N(z)v Set(z), u=v and hence
X=y.
Foundation.: Suppose there is an x such that
Set(x) A ¢'(x).
Choose such an x of least possible rank. Then since y&z—rk(y)<rk(z), we have
Vz[Set(z) A zEx—10'(2)] .
Pair: Suppose N(x)v Set(x) and N(y)v Set(y). Let
z={1,{x,y}>.
Then Set(z) A (u€z (u=xvu=y)).
Union: Suppose Set(x). Let
Vo={z| u&x(zEu)}
by A, Separation and let y=d{1,y,>.
A, Separation: Let @ be a A, formula of L(g, F). The formula ¢’ is a A, formula
ife It_* when L* isexpanded by the symbols N, E', E, F'. Suppose Set(x), say x={1,x¢.
Yo=12€X,|¢'(2)}
by A, Separation and let y=<{1,y,>. Then
z8y iff z&x A @'(z).
A, Collection: Suppose ¢(x,y) is A, suppose Set(a) and that
Vx&a3y[N(y) v Set(y) A ¢'(x, y)].
Let a=(1,a,) so that the above becomes
Vxeao Iy[(N(y) v Set(y)) A 0'(x,y)] .

By Z Reflection there is a b such that

Vxeaoyeb[(N(y) v Set(y) A ¢'(x,y)]?.
Let

bo={yeb|(N(y) v Set(y)®}
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by A, Separation and let b, ={1,b,>. Then
Vx&adyéb,@'(x,y). O

3.3 The model M~'. Let M=KP. Let N, E',Set,&, F' be the predicates and func-
tion defined in 9 by the corresponding symbols of KP. Then, letting | =(N,E")
we have

MM~ =(N;Set, & Set, F')
=By, say.

By, is a model of KPU +(}), by 3.2. The structure R is isomorphic to M via the
map x—<0,x). If Dy, is any admissible set covering 9t then

N,E',F' are Dg-recursive, as is the isomorphism x—{0,x) .
Set, & Set are Dg,-1.€.

by the remarks at the beginning of § 2.

3.4 The model #7(IMM 7). Let M=KP and let By, be as defined in 3.3. #¥(Bgy)
is the largest well-founded substructure of Bg, before being identified with a
transitive set this time. Notice that #¥(By) is closed under F’ since F'(x) is always
a set of urelements. Thus by the Truncation Lemma, #¥#(Bg) is a well-founded
model of KPU + (}). If IDyy, is admissible and covers 9 then

N,E,F' are Dgy-recursive, as is the isomorphism x—<0,x) and
Set N # ¥ (Bg), &1 (Set N WY (By)) are Dyy-r.e.

The first follows from 3.2. The second line follows from Theorem V.3.1.
3.5 The admissible set isomorphic to ##(9~!). Let M=KP and let
WY Ba)=(N; 4,6, F)=Aq

where A is transitive (in Vg). By 3.4, Ay is admissible and covers 9. Let Dg, be
any admissible set which covers M. By 3.4 and Theorem V.3.1, there is a Dgy-
recursive isomorphism of M and N, and A4 is Dyy-r.€.

3.6 Covg, defined. Let M=KP and let Ay be as in 3.5. The isomorphism i: 9t = I
extends to an isomorphism of Vg onto Vg, by:

i(a)={i(b)|bea},

carrying every transitive set in Vg onto a transitive set of Vg, In particular, Ag
is carried over to an isomorphic admissible set over M, say Ay =

(M;A4',e,F)
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where A’'={i(a)lac A}. We claim that this Ay, is the admissible cover of M.
It clearly is admissible and covers M. Let Dy, be admissible and cover M. The
isomorphism i can be defined by e-recursion in Dy, and so Ag < Dy, Thus Agy,

is contained in every admissible set covering M so Ay ==Covy. This proves
Theorem 2.2.

3.7 The projection. It is clear from the above construction of Covyy that every
xeM is “denoted by” <0,x) and that every aeCovgy, is denoted by

Ly
where y; is the set of “notations for” members of a. Turning this around gives the

desired projection.

We saw, early in §2, how to translate ¥, formulas of L into X, formulas of
L*, using the covering function. We now see how we can translate X, formulas
of L* into “formulas” about IR.

3.8 Translation Lemma. Let 3yo(x,y) be a £, formula of L*, where ¢ is A,
and let Y(x, z) be the interpretation

Iy[rk(y)=z A o(x, )],
a formula of L. Let ME=KP, let a=0(Covyy) and let xe Covgy. Then
Covgp =3y o(x,y)
iff thereisa B<a such that
M= y(x,p).
Proof. Suppose CoveyE=@(x,y). Then
M=o (x, ) A (tk(p) =2)f
for some “standard ordinal” z of M ~'. Thus, by Corollary 2.5,

W= y(x, )
for some f <a. The other half follows from 3.3—3.7. 0

3.9 Proof of Theorem 2.7. A complete proof of Theorem 2.7 would include a
proof of the following fact. The £, inductive relations on 9 contain all T relations
and are closed under A, v,3 and substitution by total X, functions. This is proved
just as in Exercise V1.4.18. But, given this, we have an easy proof of Theorem 2.7
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from 3.8. Suppose R is £, on Covgy, say

R(p) = Cov =y o(p, y)
where ¢ is A,. Let 6(x)=Ord(x)! and define
I'U)={x|ME=0(x)AVyExU(y)} .

Then I'isa X, inductive definjtion over M and I is the set of {#| B <a=o(Covyy)}.
Furthermore

R(p) iff 3zl (M=Y({0,p),2))

so R is £, inductive. The other half is trivial since any X, inductive definition I"
over M transforms into a X, inductive definition I' over Covg, and then, by
Gandy's Theorem, Ipis X, on Covg. [

3.10 Proof of Theorem 2.8. Suppose Mc N and M<;N. Since M=, N,
Covgp Senga Covyg so any X predicate true in Covgis true in Covyg. In particular,
the projections for Covy, and Covy agree on acCovy, so we may write d for
this projection without fear of confusion. Suppose aeCovyq and

Covg=3y¢(a,y)

where ¢ is A,. Then there is a  <o(Covg) such that 9t is a model of
[3yrk(y)=B A @@, )],

by 3.8. Hence R is a model of

(1) 3z[Ord(2) A [Iy(rk() =2z A 0(a,»)]'] .

Since M<; N, M is also a model of (1). By Lemma 3.2, M is a model of (Founda-
tion)! so M is a model of

3z[Ord(2)" A [Iv(rk(y) =z A @(@,y)]" A
[Vwez=3prk(y)=w A (@, y)]'].

Pick such a “least” z. Since M=, N, this least z must be <B in the sense of E,
so it must be a standard ordinal. That is, there must be some y <o(Covyg,) such
that =z Thus I is a model of

y[rk(y)=7 A 9(a,y)]
so, by 3.8,
Covg=3ye(a,y).

Thus Covy<;Covgq. [0
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3.11—3.13 Exercises
3.11. Prove that a relation SS9 (a model of KP) is s-IT} over M iff it is s-IT}
over Covgy,.

3.12. Prove the following result of Aczel: Let SS9 (a countable model of KPU).
Prove that S is s-IT} on MM iff S is £, inductive on M. [Combine 2.7, 3.9 and
VIL3.1.]

3.13. Extend the construction above from models of KP to models of KPU.

4. Compactness Arguments
over Nonstandard Models of Set Theory

In this final section we want to show how the admissible cover can be used to
extend results from standard to nonstandard models. We give two simple examples.

We know from Theorem VII.1.3 that no countable admissible set A is self-
definable. An equivalent statement (in view of Exercise VIIL.4.19(iv)) is that if A
is countable, admissible and

A=3R(R)

for some first order sentence (p(ﬁ) (possibly involving constants from A) then
there is a proper end extension B of A such that

B=3IRo(R).

Phrased this way, the result holds for any countable model of KP, standard or
nonstandard (or countable model of KPU by 3.13).

4.1 Theorem. Let M=(M,E> be a countable model of KP such that
ME=3IR o(R)

for some sentence @(R). There is a proper end extension M of M such that
N=3IARp(R).

Proof. Let A =Agy=Covgq and let L, be the admissible fragment given by A.
Let x be a constant symbol in A used to denote x, for each xeM, and let T be
the following X, theory of L,:

Vo[vEx—\/;c v =V]
diagram ()

¢(R)

c#Ex (all xeM).
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We can form the first sentences since A covers M. We must prove that T is con-
sistent. Since A is a countable admissible set, the Compactness Theorem implies
that if T is not consistent, then there isa T, T, T,eA such that T is not con-
sistent. By Corollary 2.4,

{xeM|x occurs in T}

is M-finite. But then there is always some yeM left over to interpret ¢ so T, is
consistent. [

Our final result extends Theorem 1.1 from standard to nonstandard models
of set theory.

4.2 Theorem. Let M=<{M,E> be any countable model of ZF. There is an end
extension N of M which is a model of ZF +V =L.

Proof. Let M, be the submodel of M such that

M,={xeM|ME=“o is the first stable ordinal” A xeL(x)}.
Then by Shoenfield’s Absoluteness Lemma (see § V.8)

PMy< M.

Let A=Covyqy, Ay=Covy, so that A,<,;A by Theorem 2.8. Let T be the
theory of L, containing

ZF
Vo[vEx—\/,,v=Y], forall xeM.

The proof now proceeds exactly like the proof of Theorem 1.1 except that the
model of Ty is not M, but the model M, where

M ={xeM|IME=“x is constructible” } .

The reason for using It,, rather than M, is that M, KM (parameters are not
allowed in Shoenfield’s Lemma) but the statement of Theorem 2.8 requires <;.
One could equally well improve 2.8. [

4.3—4.4 Exercises
4.3. Prove that both assumptions IM=KP and M is countable are needed for
Theorem 4.1.

4.4. Show that if ZF is consistent then there is an uncountable model of ZFC
which has no end extension satisfying ZF +V =L.





