Part C

Towards a General Theory

“The sensible practical man realizes that the questions which
he dismisses may be the key to a theory. Further, since he
doesn’t have a good theoretical analysis of familiar matters,
sometimes not even the concepts needed to frame one, he will
not be surprised if a novel situation turns out to be genuinely
problematic.”

G. Kreisel
Observations on Popular Discussions of Foundations






Chapter VII
More about L,

In this chapter we resume the discussion of L, where we left it in Chapter III.
This time, however, we do not restrict our attention to countable fragments but
develop the beginning of a general theory. In this way we can gain insight into the
countable case by seeing what principles are involved in the general case.

The most useful result, both for model-theoretic applications and for appli-
cations to generalized recursion theory, is the Weak Model Existence Theorem
of § 2. Its model theoretic applications are discussed in §§ 3 and 4. The applications
to definability theory can be found in Chapter VIIL

§§ 5,6 and 7 are concerned with Scott sentences of L, and their approximations.
These sections are independent of most of the rest of the book but they do illustrate
the importance of L, and some uses of admissible sets in studying them.

1. Some Definitions and Examples

Once the hypothesis of countability is removed, all the major theorems of
Chapter III fail dramatically. This section consists largely of “counter” examples
to these statements. It also contains a number of definitions which will be im-
portant in our study.

1.1 Definition. An admissible set A is X; compact if for each admissible fragment
of the form L, and each X, theory T of L,, if every subset T, of T which is a
element of A has a model, then T has a model.

The Compactness Theorem of § IIL.5 states that every countable, admissible
set is X, compact.

1.2 Definition. An admissible set A is self-definable if for some language L con-
taining the language of A there is a X, theory T of L, such that

(i) some expansion (A, ...) of A to an L-structure is a model of T.

(ii) if (B,...) is any model of T then B =A.
If T can be chosen to be a single sentence of L, then A is called strongly self-
definable.
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We obtain a host of counter-examples to X, compactness by means of 1.3
and 1.4. The first is a trivial exercise in compactness.

1.3 Proposition. If A is X, compact then A is not self-definable. 1
1.4 Proposition. For all o>0, HN,, ,) is self-definable.

Proof. Let A=H(N,,,) and let T be the theory consisting of the following
sentences:

KP,
Vx(xed e \fpe,x=Db) forall aeAd,
Vx3B3f[B<@,Af maps TC(x) one-one onto f].

With the obvious interpretation of the constant symbols, 4 is a model of T.
Suppose {B, E) is some other model of T. The infinitary sentences of T insure that
we can assume

(A,€) S cna{B.E) .
Let xeB and suppose yeB is such that
(B,EY=“TC(x)=y".
Pick B<¥N, such that
{B,E)=3f[ f maps y one-one onto fi]

by the last axiom of T. Then there is some F<f x f such that (B, E) is a model of
{»,Ely>=<B,F) and hence “{B, F) is well founded” is true in (B, E). The crucial
step in the proof is to verify that

(1) {B,F) really is well founded.

Suppose that {(f,F) is not well founded and let X< have no F-minimal
member. But card(X)<N,,.,, so XeA<B, and hence {B,E) is a model of
“X has no F-minimal element”, which is a contradiction. Thus (1) is established.
But then the transitive set isomorphic to {f, F) is, on the one hand, {y,E[ y> and,
on the other, in HN,,,). Thus yeH®,,,;) so xeH(N,,;). In other words
{A,e)={(B,E). 1

A strengthening of 1.4 is given in Exercise 1.12.

If we had wanted only to prove that H(N,, ) is not £; compact, we could
have come up with much simpler examples. A good example does more than
just refute (the function of a counterexample), it makes almost explicit some of
the ideas needed for understanding and generalizing existing results. Most of
the examples in this section are good examples.
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To understand the above example, the student should consider what happens
to the proof of 1.4 if we replace (H(¥X,,),€> by some countable, transitive set
{A,e) elementarily equivalent to it. Something must go wrong since 4 is X,
compact. If he works through the proof he will see that the only step that fails
is the proof of (1). This suggests the following proposition.

1.5 Proposition. Let A be admissible.

(i) If A is self-definable then there is a X, theory T(<) of L, which pins down
ordinals greater than those in A.

(i) If A is strongly self-definable then there is a single sentence (<) of L,
which pins down ordinals greater than those in A.

Proof. We prove (i); the proof of (ii) is the same. Let T;, be a theory which self-
defines A and let T=T,+“< =€l ordinals”. Then every model MM of T has
<™ of order type o(A). 10

Thus, self-definable admissible sets show that the theorems of § III.7 on the
ordinals pinned down by X, theories of L, cannot go through in general; for
example, they fail when A=H(N,). To get an example where a single sentence
pins down large ordinals, we need some strongly self-definable admissible sets.

A set A is essentially uncountable if every countable subset X = A is an element
of A.

1.6 Proposition. Let A be an essentially uncountable admissible set and let
B=HYP(A). Then B is strongly self-definable.

Proof. Let i be the conjunction of the following:

/\aeAu(A)vv[UEEH\/xeaU=§],
/\KPU,
Vo 3Ia [xeL(K, a)] )

L(A,a)

Va \/(peKP Y >
Vo 3r[rcAAris a pre-wellordering of type o] .

Since HY P(A) is projectible into A, HYP(A) is a model of the last conjunct and
hence of . The well founded models of the first four conjuncts are isomorphic
to HYP(A) so it remains to see that all models of  are well founded. Using the
rank function we see that if (B’,E) is a non-wellfounded model of { then there
is a descending sequence of ordinals in (B, E) so it suffices to see that the ordinals
of (B,E) are wellfounded. Let ae B’ be an “ordinal” of (B’,E). Apply the last
conjunct of i to get an r< A4 such that

{B',EYE=“r has order type a” .
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We need to see that r really is well ordered. Suppose

e F Xy (P Xl P Xy

is an r-descending sequence. Let b={x,|n<w}. Since b is a countable subset
of A, be A. But then beB’' and b has no r-minimal element, contradicting

{(B,EyE=*“ris well ordered”. [

For example, if cf(k)>w then A=IHYP(H(x)) is strongly self-definable.
Hence L, is not £, compact and there is a single sentence of L, which pins down
o(A).

Our next examples have to do with attempts to generalize the Completeness
and Extended Completeness Theorems of § II1.5 to arbitrary admissible fragments.

1.7 Definition. Let A be an admissible set.
(i) A is validity admissible if the set of valid infinitary sentence of A is £, on A.
(i) A is T, complete if, for every X, theory T of L,, the set

Cn(T)={peL,|T= g}
isX, on A.
Don’t forget, in reading 1.7, that the extra relations which may be part of A

count in the definition of X,. It is also important to notice that ¥, completeness
implies validity admissibility.

1.8 Proposition. Let A be admissible.
(i) If A is self-definable then A is not £, complete.

(ii) If A is a strongly self-definable pure admissible set then A is not even
validity admissible.

Proof. Recall, from § V.1, that there is a I, subset of A which is not ;. Hence,
there is certainly a I} subset of A which is not ,. Thus the result follows from
the following lemma. [

1.9 Lemma. Let A be admissible, let T be the theory which self-defines A in 1.8

and let X <A be I1} on A. There is an A-recursive function f such that for every
xeA we have xeX iff f(x)eCn(T).

Proof. Suppose
xeX iff AEVR@(R,X),

where R is a symbol not in the language of T. In case (i) of 1.8 we may assume that T
contains the diagram of A. Then xeX iff ¢(R,X)eCn(T).

In case (ii) we settle the question “xe X?” by checking whether the conjunction
of T and the diagram of TC({x}) implies ¢(R,X). 0
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1.10 Corollary. If A is pure and strongly self-definable then there are valid sen-
tences of L, which are not provable by the axioms and rules of Chapter I111.

Proof. The set of provable sentences is a X, set. [

Thus, H(X,,,) is never X; complete, even if a=0, and HYPH(N,,,) is
never validity admissible.

We conclude this section with a counterexample to the interpolation theorem.
It has a rather different flavor and will not be used in the following sections.

1.11 Proposition. Let A be an admissible set with an uncountable element and
o(A)>w. The interpolation theorem fails for L.

Proof. Let (<) characterize {(w, <) up to isomorphism and let y be

/\x,yea7 75?

x#y

where ae A is uncountable. (All we reed about  is that it has only uncountable
models and has no symbols in common with ¢.) Then @,yeA and =e——.
If the interpolation theorem held for L, then there would be a sentence 0 in-
volving only equality such that =@—60 and =y——60. Thus 0 is true in all
countable infinite structures since such structures can always be turned into
models of ¢. Similarly, 6 is true in all structures of power >card(a). But this
contradicts:

(2) A sentence 0el, , involving only equality is true in all infinite structures

00
Or 1 none.

The proof of (2) is easy, given some notation and results of § 5, which we assume.
Let M=<M,=>, M=(N,=) be infinite. Let I be the set of all finite one-one
maps from M,=M onto No=N. Then

M=, N
so M=N(L,,). Thus M=o iff N=0. 0

1.12—1.17 Exercises

1.12. Suppose O0<a<¥, and card(M)<N,. Show that H(X,)y, is self-definable.
This includes 1.4 and H(N,) as special cases.

1.13. A sentence ¢(<) (or theory T(<)) pins down a exactly if ¢ has models and
every model M of ¢ has <™ of order type exactly a.

(i) Prove that if A is self-definable (strongly self-definable) then there is a X,
theory T of L, (sentence ¢ of L,) which pins down o(A) exactly.

(i) Let A be a resolvable admissible set and let T be a X, theory of L, which
pins down o(4) exactly. Show that A is self-definable.
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1.14. Let A=HYP(H(X,,,)). Show that there is a sentence of L, which pins
down X, ,.

1.15. Show that the results of § IV.1 fail in the uncountable case.

1.16. Show that if A is essentially uncountable then every inductive relation on A
is Al. Conclude that not every IT} relation on A is inductive on A, for A essentially
uncountable.

1.17. Improve 1.8(ii) by allowing A, admissible above 9.

1.18 Notes. Counterexamples to compactness go back to Hanf [1964] and earlier
unpublished work of Tarski. Karp [1967] showed that, for cf(e)>cw, the set
H(R,) is not validity admissible. The results on pinning down large ordinals (1.14
for example) are due to Chang [1968]. The counterexample to interpolation is due
to Malitz [1971]. We have tried to unify the various examples by centering them
on the notion of self-definable, admissible set. Our notion is suggested by, and
equivalent to, that of Kunen [1968].

Kreisel [1968] has observed that the counterexample to interpolation has
the defect that it might disappear by some reasonable strengthening of the logic
L, or L, The other examples of this section do not have this defect. The situation
with compactness, say, could only get worse if we were to increase the expression
power of the logic by introducing some new quantifier or connective. Rather
than strengthen L, we must look for strengthenings of the notion of admissibility
which coincides with the old notion in the countable case. This is taken up in
Chapter VIIL

2. A Weak Completeness Theorem
for Arbitrary Fragments

The model theory of second-order logic is totally unmanageable and seems
destined to remain so. Infinitary logic is an attempt to dent second-order logic
by studying logics which have greater expressive power than L, but still have a
workable model theory. The examples of §1 show that uncountable fragments
behave more like second-order logic than do countable fragments. This makes the
problem of developing a theory which handles arbitrary admissible fragments
very intriguing.

In spite of, or because of, the “counter’-examples, the model theory of arbitrary
admissible fragments is becoming a rich subject. In this section we present some
basic tools for studying these logics. In particular, we prove an analogue of the
Extended Completeness Theorem of §IIL.5. Recall our line of attack on the
problem of completeness in Chapter III:

(1) We defined the notion: validity property for L.

(2) We proved that if L, is countable then a sentence ¢@el, is valid iff ¢
is in every validity property.
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(3) We showed that if L, is an admissible fragment then the intersection of
all validity properties is a validity property which is A-r.e., that is, £, on A.

When we drop the assumption that L, is countable step (2) breaks down.
In general, a sentence may be true in all models without being in every validity
property (i.e., without being a theorem of L,) as Corollary 1.10 shows. In this
section we attack the problem of completeness as follows:

(1') We define a stronger notion: supervalidity property for L,.

(2') We prove that a sentence ¢el, is valid iff ¢ is in every supervalidity
property.

(3') In Chapter VIII we will introduce a semantic notion of r.e., called strict I},
and show that the intersection of all supervalidity properties for L, is a strict IT!
set. When A is countable the notion of strict I1} reduces to £, on A.

It is convenient in this part of the theory to work with sufficiently rich frag-
ments, so-called Skolem fragments with constants.

2.1 Definition. Let L, be a fragment of L, and let C be a (possibly empty) set
of constant symbols of L such that every formula of L, contains at most a finite
number of constants from C.

(1) L, is a Skolem fragment with constants C if there is a one-one function

which assigns to each formula of L, of the form

Ix @(X, 45 .--» Vu), Where

¢ contains no constants from C and
V1i,--., y, are not bound in ¢

an n-ary function symbol

Fax(p

of L not occuring in ¢; it is called the Skolem function symbol for Ax p(x, y1, ..., ¥,)-
If C=0 we just say that L, is a Skolem fragment.

(ii) Let L, be a Skolem fragment with constants C. The Skolem theory for
L,, denoted by Tg,,em> consists of all sentences of L, of the form

V1o, Yu[ 30X V15 s V) 2 O(Fago(V1s oo os Yuh Visoos V)]

for all formulas Ix ¢(x, y,, ..., ¥,) as in (i). An L-structure M is a Skolem structure
for L, if

g'n = Tékolem .

The extra freedom permitted by the set C of constant symbols is crucial for
many applications. For now we can barely hint at their use by the following

lemmas.



264 VIL. More about L,

2.2 Lemma. Let L, be a Skolem fragment with constants C and let & be any
validity property for L, with Tyyoem S 2. Then for any formula

X P(X, V15 -+3 Vs C1s -5 C)

of L, the sentence
Vy1, ..o, Yl 3x0(x,3,€) > 0(F(7,6),3,€)]

is in 9, where F is the Skolem function symbol for

BX’(p(xayb"'aym Ynt+1seees yn+k)'

Proof. By the definition of Tggiems

vyh -~-,yn+k[3x<P(X,J’1, vy yn+k)—’(P(F(Y1, LARE] yn+k)’ yl’ ""yn+k)]

is in Tgpoem S 2. Using the axioms for V and modus ponens shows that the de-
sired sentence is in 2. [

If L, is a fragment and C is a set of new constant symbols we use L,(C) to
denote the fragment which consists of all substitution instances of formulas in
L, by means of a finite number of constants from C. If C={cy,..., c,} we some-
times use L,(cy,..., c,) for L,(C).

2.3 Lemma. Let L, be a Skolem fragment with constants C, and let C be a set
of new constant symbols. Then L,(C) is a Skolem fragment with constants C,u C.

Proof. Immediate from the definition. 0

The next result shows us that we lose nothing (we gain a lot) by restricting
ourselves to Skolem fragments and Skolem structures as far as the existence of
models is concerned.

2.4 Proposition. Let L, be a fragment of L. There is an expansion L' of L by
new function symbols with the following properties:

(i) Let L, be the set of formulas which result from a formula of L, by sub-
stituting a finite number of terms from L. Then L) is a Skolem fragment. Further-
more, card(L,)=card(L,) and every Skolem function symbol is in L' —L.

(i) Every L-structure M has an expansion ' =M, ...) to a Skolem structure
for L.

(i) If L, is an admissible fragment then we can define L' so that L, is A, on
A and such that the symbol F5,, is an A-recursive function of 3X@(X,yy,..., V)
In particular, Tygiem iS then an A-recursive set of sentences of L.

Proof. Let L°=L, LY=L,. For each formula

3x¢(X,Y1,'-‘, ym)
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of L} in which y,,...,y,, are not bound, add a new function symbol

Fixo
to L" and let L3*! be the resulting fragment. Let L'={J,L" so that L,={J,L}.
Part (ii) is obvious from thus construction. (See Lecture 13 of Keisler [1971] for

more details, if necessary.) Part (iii) is obvious if we just code up F3,, by something
like {17, 3x¢p). 10

We now come to the notion of supervalidity property.
2.5 Definition. Let L, be a Skolem fragment with constants C. A validity property
2 for L, is a supervalidity property (s.v.p.) for L, (more precisely, for (L,,C)) if
Tsioem S 2 and the following \/-rule holds.

\/-Rule: If \/® isa SENTENCE of L, and \/®€2 then there is some pe®
such that ¢pe2.

The \/-rule causes supervalidity properties to behave in quite a different
manner than ordinary validity properties. For example, it prevents the inter-
section of all supervalidity properties for L, from being an s.v.p. The next lemma
shows just how strong the \/-rule is.

2.6 Lemma. Let L, be a Skolem fragment with constants and let 2 be a validity
property for L, with Ty .n S 2. Then 9 is an s.v.p. iff & is complete, that is,
iff for each sentence yel,

ve? or (WeD.
Proof. Assume 9 is an s.v.p. Since all axioms of L, are in 2,

Y v wWez

so the conclusion follows by the \/-rule. Now assume & is complete, \/® a
sentence of L,, \/@e2. If for each pe®, ¢¢2, then, for each pe®, "9peP;
so, by the /\-rule R3,

N{¢lpedleD.

But this sentence is just ~\/®. Since Z is a validity property it cannot have both
\/® and ~\/® as members, so pe2 for some ped. 0

Note that if 2 is an s.v.p. for L, and ¢(vy,...,v,)eL, then

oy,...,0)€D iff Vv, .., 0,0y, ...,0,)ED
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so that & is determined by its sentences. We say that an L-structure I is a model of
2 if M is a model of all sentences in 9.

2.7 Definition. Let 9% be a Skolem structure for the Skolem fragment L, (with
constants). The supervalidity property given by M, denoted by Dy, is the set
of all ¢(v,,...,v,)eL, such that

M=o, ..., 0,04, ...,0,).

In the notation of 111.4.2, @y =Tg. It is clear that D¢, is an s.v.p. for L,.
If a sentence @el, is in all supervalidity properties then it is in all Qq,; hence
it is true in all Skolem structures for L,. This gives the trivial half of the next
theorem.

2.8 Theorem (Weak Completeness Theorem for Arbitrary Skolem Fragments).
Let L, be a Skolem fragment with constants C.

(i) A sentence ¢ of L, is true in all Skolem structures for L, iff ¢ is in every
supervalidity property.

(ii) Let T be a theory of L,, @ a sentence of L,. Then ¢ is true in every Skolem
structure M which is a model of T iff ¢ is in every s.v.p. @ with TS 9.

Proof. (i) is the special case of (ii) where T=@. The proof of (<=) in (ii) is immediate
by the remarks following Definition 2.7. Most of the work for proving (=) was
done back in the proof of the model existence theorem. We break its proof up in
two lemmas to make this clear and because we need one of the lemmas (2.9) later.

Compare the next lemma with the definition of consistency property on p. 85.

2.9 Lemma (Weak Model Existence Theorem). Let L have at least one constant
symbol and let L, be any fragment of L, Any set S of sentences of L, which
satisfies the following rules has a model.

Consistency rule: If ¢ is atomic and @eS then (m¢@)¢S.

—-rule: If (m@)eS then (~@)eS.

/\-rule: If A\ ®eS then for all pe®, peS.

V-rule: If (Vvp(v))eS then for each closed term t of L, ¢(t/v)eS.

\/-rule: If \/®eS then for some pe®, @eS.

J-rule: If (Jvp(v))eS then for some closed term t of L, ¢(t(v))eS.
Equality rules: For all closed terms t,,t, of L:

if (t;=t,)eS then (t,=t,)eS, and
if  o(t),(t,=t,)eS then ¢ft,)eS.

Proof. The proof of the Model Existence Theorem was in two stages. We first
showed how to construct a set s, of sentences having the above properties (plus
some others involving constants from C) and then showed how to construct a

model from such a set. The second stage of that proof constitutes the proof of
this lemma. 0
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2.10 Lemma (Alternate form of Weak Completeness Theorem). Let L, be a
Skolem fragment with constants C. Let 9 be an s.v.p. for (L,,C) and let S be the
set of sentences in 9. Then S is true in some Skolem structure for L,;i.e., 2 has a
model.

Proof. Since Tgygiem S 2, any model of S will be a Skolem structure for L,. We
need only prove that S satisfies the rules of Lemma 2.9. Since 2 contains the
axioms (A1)—(A7) and is closed under (R1)—(R3), these are all routine except
for the \/ and 3 rules. The \/-rule for S follows from the \/-rule for 2. To check
the 3-rule, suppose

Ixp(x,Cy,..., C,)ES.
By Lemma 2.2,
[3Ix o(x,cq,...,c,) > @(F(Cy,...,Cp), Cys...,C) | ES
for the appropriate function symbol F. Thus,
¢o(F(cy,...,C,),Cq,...,C)ES
as demanded by the 3-rule. [
Proof of Theorem 2.8 (ii) (=). Suppose TU Igoem™=¢®. We need to see that if
9 is an s.v.p. with T= 2 then ¢pe2. If not, then —19eP by Lemma 2.6. Then,

appying Lemma 2.10 we would get a Skolem model of Tu{—¢}, a contra-
diction. [

We conclude this section with a result which allows us to construct interesting
supervalidity properties and hence, by Weak Completeness, interesting models.
It often gives us the effect of the ordinary Compactness Theorem for L. Given
a Skolem fragment L, with constants C, and a Skolem fragment Ky with con-
stants C, we write

(Lo, Co)=(Kg, C))

if Ly,cKg Co=Cy, and if F,, is the Skolem function symbol assigned to
Ix o(x,yy,...,y by L,, then it is also the one assigned to 3Ix ¢(x, y;,...,y,) by Kp.

2.11 Union of Chain Lemma. Let I be a lineary ordered index set and suppose

that, for each iel, LY is a Skolem fragment with constants C; and 9; is a super-

validity property for (LY, C,). Suppose, further, that for all i,jel, with i<j,
(LY, C)=(LY,C) and 2,29,

Let Ky=\Jicr LY, Co =Uier Ci» Do =it @i Then Ky is a Skolem fragment
with constants C,, and D, is a supervalidity property for (Kg, C,).
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Proof. Simple checking of the definition shows that Ky is a Skolem fragment
with constants C,. The Skolem theory for (Kg,C,) is the union of the Skolem
theories for the various (LY, C,) so the Skolem theory for (Kg,C,,) is contained
in 9. Similarly, the axioms (A 1)—(A7) for Kg are all in &, It is a trivial matter
to check (R1), (R2) and the \/-rule. This time it is the /\-rule which requires a
moment’s thought. Suppose A ®eKy and that, for each ¢@e®, pe2,. We
need to check that A ®e€2,. Choose i so that A Pely. We claim that, for
each pe®, pe; (sothat \ PeP,=2,). Otherwise, suppose @ =(vy,...,0,)€P
but that ¢¢2;. Then

Vi, 0, O(Vg,...,0)¢9D;.

By completeness (Lemma 2.6),
Voy,..., v, @(vq,...,V)ED;.

But ¢(v,...,v,)€Z,, so for some j>i, ¢(vy,...,v,)€Z;. Hence
V0,0, @0y, 0)ED;.

But since 2,=9;, this contradicts the consistency requirement for the validity
property Z;. [

All known applications of 2.11 follow from the following very special case.
It exhibits the role of constants in our notion of Skolem fragment.

2.12 Union of Chain Lemma (Special form). Let L, be a Skolem fragment. Let
C={c,|0<n<w} be a countable set of new constant symbols. Suppose that for
each n, 9, is an s..p. for L,(c,,...,c,) and that 2,=9, for n<m. Let
D, =\UnP,. Then 9, is an s.v.p. for L,(C).

Proof. (Ly(cy,...,C,),{Cy,...,Co}) S(La(Cys...,Cp), {Cys-..s Cp)) fOr n<m so the re-
sult follows at once from 2.11. 0

Applications of the results of this section appear in the next two sections as
well as in Chapter VIIL

2.13—2.16 Exercises

2.13. Let L, be a fragment if L, and let M, N be L-structures. M is an
L ,-elementary substructure of N, written

IM<NR(L,)
if M<=N and for every o¢(vy,...,v,)eL, and every aj,...,a,eM

Me=olay,...,qa,] iff N=elay,....a,].
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(1) Prove that if M = 9 then M <N (L,) iff for every formula Ix ¢(x, y,,...,y)€ L,
and every a,...,a,eIM, if

NE=3Ix o(x,a4,...,a,)
then there is a beN such that
NE=ob,ay,...,a,).
(ii) Prove that if
M, <M, (Ly)
for a<p<y and M=|J;<,M,, then

Wy <M (L,)
for all f<y.

2.14. Let L, be a Skolem fragment with constants and let I, 9t be Skolem struc-
tures for L,. Show that if MR then M<N(L,). [Use 2.13(i).]

2.15 (Downward Lowenheim-Skolem-Tarski Theorem). Let L, be a fragment
of L,, and let x>card(L,). Let M be an L-structure, X =M, x<card (M),
card (X)<k. Prove that there is an 9 with

N<M(L,), cardM)=«x, and Xc<N.

[By 2.4 you may assume L, is a Skolem fragment and that 9 is a Skolem struc-
ture for L,.]

2.16. If 9 is an L-structure and X =M then Hullgy(X) is the smallest sub-
structure of M containing X.
(i) Prove

card (Hullg (X)) =max {N,, card(L), card (X)} .

(if) Prove that if 9 is a Skolem structure for a Skolem fragment L, and
X <IN then

Hullgy (X)<M(L,).

2.17 Notes. The essential content of the Weak Completeness Theorem is as old
as the Henkin [1949] proof of the completeness theorem for L,,. As we have
tried to suggest in 2.9, it is implicit in the Model Existence Theorem. Only recently,
however, has it become clear that the result is useful enough to deserve to be
called a Weak Completeness Theorem. (The perjorative “weak” is there for the
same reason as in § IT11.4; there is no nice notion of provability to go along with it.)
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The first explicit statement of the Weak Completeness Theorem appears as
Lemma 1.5 in Barwise-Kunen [1971], where it was used to attack the model
theory of uncountable fragment.

Our treatment of Skolem fragments is a modification of that contained in

Lecture 13 of Keisler [1971]. In particular, the exercises are proven there (in the
countable case).

3. Pinning Down Ordinals: the General Case

Several of the examples in § 1 hinge on our ability to pin down ordinals larger
then o(A) by a X, theory of L,, for certain uncountable admissible sets A. We
will see, in fact, that a good deal of the model theory of uncountable, admissible
fragments revolves about this question of pinning down ordinals. For this reason
we choose it as the first application of the Weak Completeness Theorem.

The proof of the next theorem proves more than we state. In fact, it will
allow us to compute exactly the ordinals pinned down by theories, once we
develep some recursion theoretic machinery in the next chapter. For now we
content ourselves with a crude statement of the result.

3.1 Theorem. Let T=T(<,...) be a set of sentences of L. If T pins down
ordinals then there is a & such that all ordinals pinned down by T are less than &.

Proof. We may assume that T has models since otherwise ¢=0 will do. We
may also assume that if T pins down « and f<a the T pins down S, by a
remark in § IIL.7. By 2.4 we may assume that T<l, where L, is a Skolem
fragment and that T, .. 7T. We want to set things up to apply the special
form of 2.12, the Union of Chain Lemma, so let C={c,|0<n<w} be a set of
new constant symbols. Let S, be the set of all supervalidity properties 2 for
L,(cy,...,c,) (this is just L, if n=0) such that

T2 and (c,<cy)eP,....(c,<C,_,)ED.

(For n=0,1, none of the sentences involving the ¢; occur.) Since T has a model
M, the s.v.p. Dy given by M is in Sy, so S,#0. Let

S= Uosn<w S,
and put an ordering < on & by

2'<9
if 2<92' and the (unique) n such that 2'€S, is greater than the unique m
such that 2e&,,. (Note that for €S, we can tell which n has Z2eS, by

just seeing what the largest n is such that (c,=c,)e%2.) We claim that

(1) <&, is well founded.
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For suppose
@0>@1>@2>"' .

Let 2,=\J,%, By the union of chain lemma, 2, is an s.v.p. and hence, by
the Weak Completeness Theorem, there is a model

M, a,,a,,...)

of 2, where a, is the interpretation of c,. But then M=T, and a,,,<a, for
all n<w which contradicts the hypothesis that T pins down ordinals. This
proves (1).

Using (1) it is easy to get an upper bound for the ordinals pinned down by T.
By (1), each 2€& has an ordinal rank p(2),

p(2)=sup {p(2)+1|2'€S,2' <D},
and (&, <) has a rank

E=sup {p(2)+1|2eS}.
We will prove that

() if 2e3, and M,a,,...,a,)=2 then the <™ predecessors of a, have
order type <p(2) when n>0; if n=0 then <™ has order type <p(2).

Since every IME=T is a model of DreS,, and p(Dgy) <&, (2) gives us:
(3) every model M of T has <™ of order type less than &,

which proves the theorem. We prove (2) by induction on p(2). Suppose 2€S,,
a=p(2), M, a,,...,a,)=2 but that the predecessors of a, have order type >a.
(The case n=0 is essentially the same.) Let a, ., be the o™ member of the field
of <™ as ordered by <™ and let 2 be the s.v.p. given by

M =M, a,,....a,+1)-

Then 2'€S,,,, and 2=9' so 2'<2 and hence p(2')<a. But MM’ is a model
of 2' with the precedessors of a,,, of order type a>p(2’), contradicting the
inductive hypothesis. 0

Without Theorem 3.1 we could not be sure that the next definition made sense.

3.2 Definition. Let A be an admissible set.
(i) h(A) is the least ordinal not pinned down by some sentence ¢(<,...) in

some admissible fragment L,.
(ii) hg(A) is the least ordinal not pinned down by some X; theory of some

admissible fragment L,.
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In the next chapter we will determine exact recursion-theoretic descriptions
of hg(A) and, in most cases, of h(A).
Let us collect together remarks made at various places.

3.3 Proposition. Let A be admissible.
(i) hg(A) is the sup of the ordinals pinned down by I, theories of L,; similarly,
h(A) is the sup of the ordinals pinned down by single sentences of L,.
(ii) hg(A)=h(A)=o(B).
(iii) If A is countable then

he(A) =h(A)=0(A).
(iv) If A is £, compact then
hg(A)=h(A).
Proof. Only (iv) needs proving. Suppose A is £; compact but that hg(A)> h(A).
Let T(<) be a X, theory which pins down some S>h(A). Add new constant
symbols c,...,c,,... and let T' be T plus the axioms
C,r1<c, (all n<w).
Since B=h(A), every A-finite subset of T has a model which is not well founded

so every A-finite subset of T’ has a model. Thus, by X, compactness, T" has a
model, a contradiction. 0

H(w,) is an example of a set A with hg(A)>h(A)=o0(A). HYP(H(w,)) is
an example with hg(A)=h(A)>o(A).

The next theorem is extremely useful in computations which involve hg(A)
and h(A).

3.4 Theorem. Let A be admissible and let F:Ord"— Ord be an n-ary function
on ordinals which is X, definable in KPU.

(1) ag,...,a,<hg(A) implies F(a,...,a,) <hs(B).

(i) oy,...,a,<h(A) implies F(ay,...,0,) <h(B).
Proof. We first prove (i) in case n=2. The case for n#2 is similar. Let

F: Ord x Ord - Ord

be X, definable in KPU, hence in the stronger KP, say by the X, formula
U(xl’xZ’y):

(4) KP=Vx, x, 3!y a(x;,x5,)),

(5) for all  a;,a, Vi=Eo(ay, oy, Foy,a,)).
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Suppose oy, 0, <hs(A) and let f=F(a;,a,). We need to prove that B<hg(A).
Let T{(<,,Ry), T,(<,,R;,) be X, theories which pin down a;, &, respectively, the
case with more relation symbols being similar. We will define a ¥, theory T(<)
which pins down f, but first let us exhibit its intended model IR, the one with
<™ of type B. Let k be a regular cardinal, «;,a, <k, so that f<x. Let

M, =<M,, <,,R;DFT,, <, oforder type «,,

M, =(M,, <,,R,>FT,, <, oforder type o,.
By the downward Léiw;nheim-Skolem Theorem (Exercise 2.15) (and the fact that
isomorphic models satisfy the same sentences) we may assume

O!,EM,EK and <,=€r0£,.
Now let

EIR=<H(<)7€, <’M1a <1,R1,M2, <2’R2aa1’a2,ﬁ>

where < =¢lf and oy, a, and f are treated as elements, not as subsets. Then M
is clearly a model of the following set of sentences, where U, is interpreted as M,
c; is interpreted as «; and d as .

oY1 forall ¢@eT,,

Y2 for all ¢eT,,

KP,

C,, C,, d are ordinals,

“<i=elo,

"<y =eles’,

“< =eld”,

o(cy,C,,d).
If we call the above set of sentences T(<,...), then M is a model of T with <™
of order type . We need to prove that every model 9 of T has <™ well ordered.

Thus, let
EIR=<M5E, <a U]a <13R13 U2, <25R2’a1’a27d>

be any model of T. Identify the well-founded part of (M,E) with an admissible
set {(B,e> by the Truncation Lemma. Since, for i=1,2

<Ui’ <iaRi>'= 7;,
<; is well ordered, so a; and a, are real ordinals and a,,a,eB. By (4),

{B,e>F13yalay,a,,y).
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By (5), and the persistence of ¥ formulas,

<B,€> = 0'(“1:‘12, F(alaGZ))
and, since

<B,€> Eend<M9E> >
we have by persistence,
<M1E>t:o-(al9a2’F(a1’a2))

so that b=F(a,,a,). Since b=F(a,,a,)eB, and < =€lb, < is a real well-ordering.
This proves (i).

The proof of (ii) is exactly the same when o(A)>w, since then we may form
/\KP and the rest as a single sentence of L,. If o(A)=w we must replace KP
by a single sentence 6 of ZF-Power (and hence true in H(k) since k is regular)
strong enough to insure that the standard part of any model of 6 is an admissible
set. We leave this to the student. [0

All we will actually need of Theorem 3.4 is the following special case.

3.5 Corollary. Let A be admissible. Then hg(A) and h(R) are closed under ordinal
successor, ordinal addition, multiplication, and exponentiation.

Proof. We have shown that all these functions are X, definable in KP. 0
The final result of this section seems almost obvious, but it needs proof.

3.6 Theorem. Let A be admissible.

(i) If Tis a X, theory of L, which pins down ordinals then there is a & <hg(A)
such that every ordinal pinned down by T is less than &.

(i) If ¢ is a sentence of L, which pins down ordinals then there is a & <h(A)
which is greater than all ordinals pinned down by @.

Proof. This is a typical example of a proof in soft model theory since the proof
works for any logic. We prove (ii). We may assume that the sentence ¢(<) pins
down an initial segment {f|B<¢}=¢ of ordinals. We show that some other
sentence Y(<,...) pins down &. As before, before writing down , we describe
its intended model M, the one with <™ of type &. To simplify matters we assume
@ =¢(<,R), where R is binary, contains no other symbols. For each f<¢, let

M= My, <p,Rp>, M=¢ and <, have order type B.

Since isomorphic structures satisfy the same sentences, we can rearrange M, a
bit and assume =M, and <, =€l f.
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Define M=<{M,U,<,N,S,,S,> where

M={Jp< My, U=csM,

N(B,x) iff f<éAxeMy,

B<y iff peyed,

S1(B,y,2) iff pf<iAy<,z,
S,(B,y,2) iff B<EARgy,z2).

Thus M is a structure where <™ has order type . Let y(<,...) be the sentence
described as follows. Let 6(x,N,S;,S,) result from ¢(<,R) by replacing

y<z by S,(x,y,2),

R(y,z) by Si(x,y,2),

Vy(.) by Vy(N(x,y)—), and
Iy(.) by Iy(NEx,y)A-)

taking care to avoid clashes of variables. Let i be the conjunction of:
(6) Vx [U(x)—6(x,N,S;,S,)];
(7) “U is linearly ordered by <”;
8) Vx [U(x)—> Vy, z(y<z<xSi(x,y,2)].

It is clear that 9 is a model of ¥ since (6) just asserts that each M, is a model
of 6. We need to show that any other model

EUE=<M,U’<’N’SI’SZ>

of i has < well ordered. To do this it suffices to prove that for any xe U, the <
predecessors of x are well ordered. Let

EI.Rx ={(M,, <,, Rx>
where M, ={y|N(x,y)}, y<,z iffl Si(x,y,2) and R.(y,2) iff S,(x,y,z). By (6),
M. =, so <, is a well-ordering and <, agrees with < on the predecessors of x.

Thus  does pin down ordinals, £ among them. 0

3.7—3.8 Exercises
3.7. Let A be admissible, o(A)=w, where A is X, compact. Show that

h(b)=c.
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3.8. Let A be X, compact and suppose that a=o0(A)>w is such that for some
xeA,
a=least f (L(x,B) is admissible).

Prove that
he(BA)=o0(BR).

3.9 Notes. Theorem 3.1 is due to Lopez-Escobar [1966]. His proof, however,
was by way of Hanf numbers and gave no clue as to the exact description of h(A)
or hg(A), even for A=H(N,,,). The proof given here is taken from Barwise-
Kunen [1971]. Theorem 3.4 is also taken from there.

There are, by the way, admissible sets which are £, compact but such that
hg(A)>o(A). This follows from Theorem VIIL.8.3. It is known that h(A) need
not be admissible. It is not known whether hy(A) is always admissible, though it
seems unlikely.

4. Indiscernibles
and Upward Lowenheim-Skolem Theorems

In this section we show how to use the Weak Completeness Theorem and the
ordinal hg(A) to tackle some model theoretic problems for L,. The material in
this section is not used elsewhere in this book.

The simplest result to state is the following theorem, stated in terms of the
Beth sequence. Given a cardinal x, define the cardinal D (k) by induction on a:

Do(K)=x,
D1()=22%,
Di(K)=sup,<; =,(K).

We write 2, for 2,(0), but warn the reader that some authors use 3, for J,(N,).
With our definition, 3,=card(V}).

4.1 Theorem. Let A be an admissible set, let k=card(A) and a=hy(A). Let T

be a T, theory of L,. If, for each B<a, T has a model of power >2(k), then
for any A=k, T has a model of power A.

The proof of 4.1 is given in 4.13 below. Actually the proof of this theorem is
no more complicated for uncountable L,; it is just that for countable A we
know that hg(A)=o0(A). Thus 4.1 gives us the following corollary.

4.2 Corollary. Let A be a countable, admissible set and let T be a T, theory of

La. If, for each B<a=o(d), T has a model of power >2,N,), then T has a
model of each infinite power. [
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If Ay is not HFy, then it is easy to show that for each Be Ay, there is a
sentence of L, which has a model of power D4(X,) but none larger (see Exercise
4.18), so 4.2 is best possible for Agy#HFy. For Agp=HFy,, L,=L,, so we
know a better result.

For applications, there are more useful upward Léwenheim-Skolem Theorems
in terms of two cardinal models.

Assume our language L has a unary symbol U. A model M={(M,U,...>
for L is a model of type (k,4) if

card(M)=x,

card(U) =4.
A set T of sentences of L, is said to admit (k, ) if T has a model 9 of type (k, 1).

4.3 Theorem. Let L, be an admissible fragment, let k=card(A), a =hg(A). Let
T be a X, theory of L,. If for each B<o there is a A=k such that T admits
(Dﬁ(l),/l), then T admits (0,k) for all cardinals §>=k.

Theorem 4.1 is an easy consequence of 4.3 by adding a new symbol U to L
without mentioning it in the theory T of 4.1. On the other hand, a direct proof
of 4.1 is a bit simpler than the proof of 4.3, and since the student may be interested
in 4.1, we will also give a direct proof of it.

4.4 Corollary. Let T be a X, theory of a countable admissible fragment L,.
Suppose that for each p<o=o(B), there isa A=w such that T admits (D4(2),4).
Then T admits (A,w) for all 1>z ow.

Proof. Immediate from 4.3 since hg(A)=o(A). [

4.5 Corollary (Morley's Two Cardinal Theorem). Let T be a countable theory of
Lo, Suppose that for each a<w, thereis a A= such that T admits (D,(1),2).
Then T admits (A,w) for all 1> w.

Proof. Immediate from 4.4 by putting T in some countable admissible frag-
ment. [

The reader of Keisler [1971] will have discovered many applications of
Corollary 4.5. Some of these have routine generalizations using 4.3.

Two-cardinal models are extremely natural when one is working with models
of set theory of urelements. How many times have we written a typical model
of KPU as a single sorted structure

A, =(AUM,M,..>?

In fact, we can use such models to prove that Theorem 4.3 is an optimal result
of its type, except for trivial generalizations using downward Léwenheim-Skolem

arguments.
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4.6 Example. Let A be an admissible set with k=card(A), a=hy(A). For any
B<a one can find a T, theory T=T(U,...) of L, and a &, B<E<hg(A) such that
(i) T has a model of type (y(k),x).
(i) If M is a model of T of type (4,0) then A<2DL0). In particular, T has no
model of type (3,(k),x).

Proof. Let Ty=Ty(<) be a X, theory of L, which pins down f. Let &<hy(A)
be greater than all ordinals pinned down by T,, by Theorem 3.6. Before de-
scribing T we describe its intended model, the one of type (D4(x),x). Let M be
a set of urelements of power k. Let

Mo =(Mo, <,...)

be a model of T, where < has order type . By the Downward Lowenheim-
Skolem theorem we may assume card(9,)< max(k,card(f)) so we may as
well assume M, <= Mupf. Now let

gJI:(MUVm‘l(ﬁLM’EaFaMO’ < )
where, by definition,

Fy(a)=rank of a in V,,,

F(a) = the Fy(a)-th member of <.

The theory T is defined as follows. For each xe A4 let c, be a constant symbol,
so there are x of them. T consists of

c,#c, forall x,yed, x#y,
U(c,) forall xeA,
Extensionality (as in KPU),
Vx Vy [xey—F(x)<F(y],
@Yo forall ¢eT,.

Here U and U, are new unary symbols. The theory T clearly holds in M. On
the other hand, if M=(A4,U,E,F,U,, <,...> is another model of T then
Uy, <,..0ET,, so < is well ordered of order type <¢&. But then F insures
that E is well founded and of rank <¢ so (4,U,E) is isomorphic to a submodel
of Vy(¢) and hence has card(A4)< I (card(U)). [

We now turn to the tools for the proofs of these theorems. Anyone familiar
with the model theory of L, is aware of the importance of the Ehrenfeucht-
Mostowski method of indiscernibles. It plays an even more important role in
the model theory of L.
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4.7 Definition. Let L, be a fragment of L, 9 be an L-structure and let (X, <)
be a linearly ordered set with X =9R. We say that (X, <) is a set of indiscernibles
(for L, in M) if for every n and any two increasing n-tuples from (X, <),

x1<'“<xna y1<'“<yn
we have
(SUI’xl""’xn)E(SUl’yl""?yn) (LA)a

i.e. the n-tuples {x,...,%X,>, {J1,..-,Vny satisfy the same formulas ¢(v,...,v,)
of L, in M. If M=(M,U,...) then we say that (X, <) is a set of indiscernibles
over U if, for every finite set u,,...,u,,€ U and all increasing n-typles from (X, <)

X1<"'<X", y1<“'<yn
we have

(g‘n’ula"'aumaxl)'--’xn)E(EIR’ul"--’um’ yl""’yn) (LA)'

The < relation on X need not be definable on M in the above definition.

The latter notion is really a special case of the first, for let M=<M,U,...>
be a structure for L,, let C={c,|lueU} be a set of new constant symbols, and
let MM’ =(M,u),., be the canonical expansion of M to a model for L,(C). (The
language L,(C) is defined in § 2.) Then (X, <) is a set of indiscernibles over U
for L, in M iff (X, <) is a set of indiscernibles for L,(C) in IN'.

Indiscernibles help us build large models, and hence prove our theorems by
means of the following Stretching Theorem.

4.8 Stretching Theorem. Let L, be a Skolem fragment with constants and let I
be a Skolem structure for L,. Let {X, <) be an infinite set of indiscernibles for
L,. For any infinite linearly ordered set {Y, <) there is a Skolem structure N
for L, such that:

(1) <Y, <) is a set of indiscernibles for L, in N;

(i) If x;<<x, in{X,<>and {y, <<y, in Y, <)

then (M, x4,.... %)=y, (L)
(iii) In particular, card()>card(Y) and M=% (L,).
Proof. Part (iii) is just part (ii) with n=0. Since the distinguished constants of

L, do not play any role in this proof we simply assume L, is a Skolem frag-
ment. Let

C={c,|yeY}

be a set of new constant symbols and form L,(C) as described in § 2. Then L ,(C)
is a Skolem fragment with constants C. We define a set 2 of formulas of L,(C)
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as follows. Any formula of L, can be written in the form

(1) (P(vla"wvn’ Cy,/vn+l""7cym/vn+m)

where

<<y, in Y, <),
Put the formula (1) into 2 just in case

(2) M, xy,...,x,,)EVvy,...,0, @@, cC c

Py yo)

for some increasing sequence
X< <x, in (X,<),
where x; interprets c,,, of course. We claim that

(3) 2 is a supervalidity property for L,(C).

If (1) is a logical axiom, then (2) certainly holds, so (1)e 2. We need to see that
if ¢(@,8)e2 then (M¢(7,€)¢2. If not, then we would have

M, x4,..., X)) EV,,...,0, (T, Cq,...,Cp),

M, x1,..., %) EV0q,..., 0, 10T, Cps- .., Cpa)

where x, <--<x,, x; <*'*<x, in (X, <). But this contradicts the indiscernibility
of (X, <). The other clauses are equally trivial. We check the \/-rule and leave
the other three to the student. Suppose ¥(cy,...,c,)=\/® is a sentence of

L,(C) and ¥(cy,...,c,)ED. Then
M, Xy, X))\ P
so, for some @e®,
M, x5, X )E @

so pe2. Thus 2 is a supervalidity property.

@) If o(vy,...,v)el, yy <<y, yi <<y, in (Y, <) then the following

L,(C) sentence is in & :

(*) ¢(Cy,s--,C, ) p(Cyys...,Cy).

To see what is going on here, suppose ¢ is ¢(v;,v,,v5) and that

y1<y,<yz and y;<y,<yj;.
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To see that the sentence (*) in question is in & we must first arrange these
elements of (Y, <) in order. Suppose, for example, that

V1<YV1<y2=y,<y3.

Thus there are only five elements in this case. Let (v,,...,v5) be
P(01,04,05) > P(03,03,04) .-

The definition of 2 says that (*) is in 2 iff
M= [x1,%2,X3,X4,X5]

whenever x, <x, < <xs. That is, just in case
ME=@[xy,x4,x5] iff ME@[x,,x3,%,4]

whenever x; <:--<xs. This is obvious from the indiscernibility of (X, <), so
this proves (a typical example of) (4). Apply the Weak Completeness Theorem
to get a model (N,a,),.y of 2. Since (c,#c,)eZ for y#y', we can identify a,
with y. Then 9% has properties (i), (ii) of the theorem. 0

Using the Stretching Theorem we can reduce our theorems to proving the
existence of models with indiscernibles, as in the next lemma.

4.9 Lemma. Let L, be a Skolem fragment with constants and let T be a theory
of Ly, TgoremST. Let x=card(L,).
(i) If T has a model with an infinite set of indiscernibles for L, then T has

a model of any power =k.
(i) If T=T(U,...) has a model M={M,U,...> with {X,<) an infinite set
of indiscernibles over U for L, then T admits (4,card(U)) for all A=k+ card(U).

Proof. (i) is immediate from 4.8 (iii) and the Downward Léwenheim-Skolem
Theorem for L,. To prove (ii) let M have (X, <) an infinite set of indiscernibles
over U. Let

C={c,|lueU},
SIR/ =(9R’u)ueU

be as usual. Thus, (X, <) is a set of indiscernibles for L,(C) in M. Given 1>k,
let <Y, <) be a linearly ordered set of power A and let

En/:‘(gz’u)uEU
be as given by 4.8, the Stretching Theorem. By Exercise 2.16, we may assume

9% = Hully (),
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since this Hull also has properties (i), (ii) of 4.8. Write 9%t as N =<{N,U’,...>. We
claim that U=U’. For suppose acU’. Then

A=U(Y1y-er Vs UpseenslUp)

for some term t of L,, some uy,...,u,eU and some y, <---<y, in (Y, <).
But, then,

gu':Lj(t(yl’--”ym ub""um))
50, by (i) of 4.8,
M= U(E(X1,. s Xy Ugseees )

whenever x; <'-<x, in (X, <). Pick such a sequence of x’s. Then there is
a ueU such that

MEU=1(X1,n ey Xy Upyeens )
and, hence by (ii) of 4.8,

REU=UV1ses Vu> Upsers Uypy)
o)
NEu=a.

In other words, every member of U’ is one of the original members of U. Thus,
card(U')=card(U) but
card (M) =card (L ,(C))+card(Y)

=k+card(C)+ 4

=k+card(U)+ 4

=i. 10

To construct a model with an infinite set of indiscernibles, we use the Erdds-

Rado theorem of cardinal arithmetic (Lemma 4.10) to construct “coherent sets
of k-variable indiscernibles” and the Weak Completeness Theorem to piece them

together to get a model with a set of indiscernibles.
We use [X]" to denote the set

{xc X |card(x)=n}.

4.10 Lemma (Erd8s-Rado Theorem). Let k be an infinite cardinal and let 0 <n<w.
Let X be a set with card(X)>23,_,(x) and suppose [ X]" is partitioned into <k

subsets, say [X]"=\Jic; C; where card(I)<k. There is an X,<=X and an ioel
such that

card(Xo)>« and [X,]"=C,,.
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Proof. 1If the reader is not familiar with this result, he can find a proof in most
advanced books on set theory, in Keisler [1971] or in Chang-Keisler [1973]. [

Let M be a structure for L and let (X, <) be linearly ordered with X = IR.
Let k<w be fixed. We say that (X, <) is a set of k-variable indiscernibles for
L, in M if, for all increasing k-tuples

Xy <t <Xk, <<V
in (X, <), we have
(g‘naxl,--'sxk)z(‘J'n’ylv--’yk)'

Thus (X, <) is a set of indiscernibles iff it is a set of k-variable indiscernibles
for each k<w. Also note that if (X, <) is a set of k-variable indiscernibles
then (X, <) is a set of l-variable indiscernibles for all /<k. Any linearly ordered
(X,<)> with X< is a set of O-variable indiscernibles. The notion of set of
k-variable indiscernibles over U (when M ={(M,U,...>) is defined in the same way.

As a first simple use of the Erdds-Rado Theorem we can prove a result which
is useful when hg(A)=w.

4.11 Proposition. Let L, be a fragment of L, with card(L,)=x. Let O0<k<w
be fixed and let M be a structure for L.

(i) If card(M)>2D(k) then there is an infinite set (X, <) of k-variable in-
discernibles for L, in IN.

(i) If M=<M,U,...> where card(U)=>«k and card(M)> D;(card(U)), then
there is an infinite set (X, <) of k-variable indiscernibles over U for L, in M.

Proof. (i) Let < be a linear ordering of M and, for each k-tuple X=x; < <x,
from M, let

’1}:{q)(l}l,...,Uk)IEUu=(P[x1a""xk]}‘

This partitions [M]* up into <2* distinct sets, since there are <2* different
sets of formulas of L,. Since

card (M)> D (k) = D _,(29),

the Erdds-Rado Theorem tells us that there is an X <M (of power >2*>N,)
such that every element of [X]* is in one fixed member of the partition. That
is, T,=T; whenever X=x; <" <Xy, y=y; <<}y and Xy,...,Xg, Vi,..-, k€ X.
Thus {(X,<[X) is a set of k-variable indiscernibles in 9. To prove (ii), let
C={c,|lueU} and apply (i) to L,(C) and M =(M,u),.y, with k replaced by
card(L,(C)). 1O

Theorem 4.1 follows easily from Lemma 4.9 (i) and the following theorem.
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4.12 Theorem. Let L, be an admissible fragment, let card(A), a=hg(A). Let T
be a T, theory of L,. If for each p<a, T has model of power > 2y(x), then T
has a model with an infinite set of indiscernibles.

Proof. We may assume by 2.4 that L, is a Skolem fragment, that T emS T
and that L, is A, on A. We assume that T has models but no model with a set
of indiscernibles for L, and prove that, for some f<a, T has no models of
power >2(k). Let L, be a Skolem fragment containing L, and two new sym-
bols X, <. Let

C={c,|0<n<w}
be a set of new constant symbols. We will be concerned with all the languages

LA(Clv--,Cn)o L/A(Cl,...,C,,),
L.(0), La(0).

These are all Skolem fragments with constants. For n>0 define S, to be the
set of all supervalidity properties 2 for L,(c,...,c,) with the following properties:

(a) T=2;

(b) “X is linearly ordered by < and has no last element” € Z;

(c) “c;e X AC;<Cip €D for O0<i<n;

(d) Vxq,..0, %X [x; < <x, = (x4, ..., X)) 2 @(Cys-..,CL)) | €D
for each ¢(v,...,v,)€L,, when n>0.

It follows immediately from the Weak Completeness Theorem that

2eS, iff D is an s.v.p. for L,(cy,...,c,) given by some structure

) M, X, <,ay,...,4a,)

where ME=T, {X,<) is an infinite set of n-variable indiscernibles for
L, in M and a, < <a, in{X,<>.

Let 6=U,, S,. Note that each 2e© is in exactly one &, for n>0; this n
is called the level of 2 and we can determine the level n of 2 by seeing whether
(c,=c))eZ but (c,,;=C,+1)¢2. Let (D) be the level of 2. We define an
order < on & by

2'<2 it U2)>U2) and DnL,(cy,...,C )= D' .
Thus, if 2'<2 then 2 and 2’ contain exactly the same formulas from the
language L,(c,,...,c,), n=02), but not necessarily from L,(c,,...,C,).

The crucial step in the proof is to realize that

(2) <S,<) is well founded.
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Suppose that it were not well founded and let
'“<9n+1<9n<'“<91<@0
be an infinite descending chain. If €&, and n>m then 2nL,(c,,...,c,)eS,
so we may suppose that the level of 9, is n. Let 2°=92,nL,(c,,...,C,)
and let 29 =(),2,. By the union of chain lemma, 22 is an s.v.p. for L,(C).
Let (M,ay,...,a,,...) be a model of 22, by the Weak Completeness Theorem.
Then M=T and X ={a,,a,,...} is an infinite set of indiscernibles for L, in M

when ordered by a;<a; if i<j. This proves (2).
Using (2), we can define the usual rank function on S:

p(@)=sup (p(2)+1|12'< D},
p(S)=sup {p(2)+1]|Z€S)}.

Since S,#0, p(S)>0. We will prove later that p(S)<hg(A).

(3) Assume p(S)=n<w. Then no model M of T has an infinite set of n-variable
indiscernibles.

For suppose =T and (X, <) is an infinite set of n-variable indiscernibles.
Let, for 0O<m<n,

M, =M, X, <,a,,...,a,,)
and let 9,, be the s.v.p. for L,(c,,...,c,) given by M,,. Then 2,€S,, and

P(2o)>p(D1)>p(D3)>>p(D,) =20

so p(Z,)=n and hence p(S)>n, contrary to hypothesis.
From (3) and Proposition 4.11 (i), we immediately obtain

4) If p(S)=n<w then T has no model of power > 2,(k).

If p(S)=>w then we cannot put such an a priori upper bound on the “size” n
of a set (X, <) of n-variables indiscernibles, but we can put a bound on card(X).

Suppose Me=T, (X, <) is a set of n-variable indiscernibles for L, in M
(5)<and that a,<---<a, in {(X,<). Let 9 be the s.v.p. in S, given by
M, X, <,a,,...,a,). If B=p(D) then card(X)< D+ 1)(K).

We prove (5) by induction on B using the Erdés-Rado Theorem as in
4.11(i). So suppose we know the result for ordinals y<f (f>0) and suppose
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card(X)>3,4+1)(x). For each increasing n+1 tuple X=x; <" <X,<X,4;
from (X, <), let

T={pv1,--,Vys )ELA I M= Q[ X1, X041 ]}
This partitions [X]"*" into <2* sets. Since 2*<3,5.,(x) and

card (X)> 2,5+ 1)(K)
= Dm(/3+ 1)(2'()
> DwB + n(2K)
= Dn(DwB(K))
we can apply the Erdds-Rado Theorem to find an X, X with card(X,)> 2,,(x)

such that every member of [X,]"*! lies in one member of the partition. That
is, for n+1-tuples x; <'--<x,,,; from X,

L-T
so that (X,, <> forms a set of (n+1)-variable indiscernibles in 9. Let
a;<''<a,,, be chosen from X, and let 2, be the s.v.p. given by

Moo=, Xy, <[ Xo,a1,---,0p41)-

Then 2,<2 so p(PD,)<p. But then M, contradicts the inductive hypothesis

since card(X)> 2,4(k)>23,,+1),(k) where y=p(Z,). This contradiction proves

(5) for B>0. The case for f=0 is easier and is left to the ideal student.
From (5) we get at once:

(6) Every model W of T has power <2,4(k), where p=p(S).

For let X=M and let < be any linear ordering of X. Recall that (X, <)
is a set of O-ary indiscernibles for M. Then, if @ is the s.v.p. for L, given by

M, X, <)

then p(2)<p and card(M)=card(X) <2, +1)(x) which is <, ,(x).
Finally, we claim that

(7) p(S)<hy(B).

To see that this concludes the proof, we see that if hy(A)=cw then the result
follows from (4). If p(S)=p and hg(A)>w then wpf<hy(A) by Corollary 3.5,
so the conclusion follows from (6). (This is the only use of anything remotely
approaching admissibility in the entire proof.)

It remains only to prove (7). We will see in § VIIL6 that (S, <) is a II de-
finable well-founded tree of subsets of A and that every such tree has rank less
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than hg(A). That is probably the simplest proof of (7). It's good for the soul,
though, and gives added appreciation of the machinery developed in § VIILS6,
to give a direct proof. We present a sketch to be filled in by the student.

Our goal then is to write down a X, theory T'(<) of L, which pins down
B=p(S). As is our custom, we first describe the intended model M of T'(<),
the one where <™ has order type . Let MM be the following structure:

(M; B, <;A; Power(A),E;S,<,F,G,x)ca

where
M =puAuPower(A),

<=€p,
G(2)=level of @ for €S
=some constant ¢, otherwise,
F(2)=p(2) if 9€S
=some constant ¢ f§ otherwise,

E=en(A x Power(A)).
Now suppose that
M =(M';B,<',W; PE.C, < ,F,G',X)cuy,
satisfies all the finitary first order sentences true in M and that
Y/ N =H]

We will show that (B, <’) is well ordered. The proof will show that the set of
finitary sentences we actually use is X, on A so that will conclude the proof.
By the axiom of Extensionality for Power(A), we may assume that

PcPower(W), E=en(A'xP), and S <P.

Now suppose that the linear ordering (B, <') is not well ordered, so that there
is a subset B,<B with no <’-minimal element. Let

S, ={2eC'|F(2)eB,)
and let
Sy ={2nL,(cy,...,C,)) | DSy, m<w,m< G (D)},

where we must remember that G'(2) might be a nonstandard integer. It is not
difficult, though tedious, to see that S;<= &, since each €& claims to be
an s.v.p. for L,(cy,...,Cgg) of the appropriate kind, and the relevant quantifiers
are all universal. So ©; must have a minimal element &. By chasing & back
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into B, a contradiction easily results by considering the cases G'(2) standard
and G'(2) nonstandard separately. 0

4.13 Proof of Theorem 4.1. Again, using 2.4 we may assume L, is a Skolem
fragment and that T, .. T. Then 4.1 follows from 4.12 and 4.9 (1). [0

4.14 Corollary. Let L, be an admissible Skolem fragment with hg(A)=w. Let T
be a X, theory of L,. If for each k<w, T has a Skolem model with an infinite
set of k-variable indiscernibles, then T has a Skolem model with an infinite set of
indiscernibles for L,.

Proof. See line (3) of the proof of Theorem 4.12. [
We next turn to the analogous theorem for two cardinal models.

4.15 Theorem. Let L, be an admissible fragment with k=card(A), a=hg(R).
Let T=T(U,..) be a £, theory of L,. If for each f<a, there is a A=k such
that T admits (D,,(/l),l), then T has a model M={(M,U,...> with an infinite set
of indiscernibles over U for L,.

Proof. We indicate the changes necessary in the proof of Theorem 4.12. We may
again assume that L, is a Skolem fragment and that T, ., 7. We may also
assume (by adding x new constant symbols and some axioms of the form
U(c,), c,#c, to T) that every model M of T has card(U)=>«.

Let L,(cy,...,c,) be as before and let €S, iff Z is an s.v.p. for L,(c,,...,C,)
with properties (a), (b), (c), (d) as before plus

(e) U(t(cy,...,C.)) = Vxyp,..,x,€ X [x, < " <X, t(Xy,...,X,) =1(Cy,...,Cp) |
for all terms t(vy,...,v,) of L,.

The analogue of (1) is the one way result:

(1) 2€6, if 9 is the s.v.p. for L,(cy,...,c,) given by some (M, X, <,a,,...,a,)
where (X, <) is a set of n-variable indiscernibles over U™ for L, and
a,<-<a, in{X,<>.

Luckily, we never really used the other half of (1).

The relation < on &= (J,S, is defined just as before. Again we have, as-
suming T does not have a model MM with a set of indiscernibles over U™,

(2) <S,<) is well founded.
This is just a bit trickier than (2). Suppose

<@n+1<@n<<@1<90
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Again, we may assume that each 9, has level n. Let 22=92,nL,(c,,...,c,) and
let 29 =|J,29. By the Union of Chain Lemma, 22 is an s.v.p. for L,(C). Let
My, ay,a,,...,a,,...) be a model for P let X ={a,,a,,...}, a;<a; iff i<j. Let
M = Hully (X). By Exercise 2.16, Mi=22. Thus, M is a model for T and <X, <)
is a set of indiscernibles for L, in 9. We need to see that (X, <) is a set of
indiscernibles over U™. Thus suppose ueU™. We need to see that increasing
n-tuples from (X, <) satisfy the same formulas in (9R,u). (The case with more
that one u is similar.) Since 9t=Hull(X), there is a term ¢(vy,...,v,) such that

ME=Eu=tay,...,a,,).
Then, by (e)

MEU=1t(X1,...,X,)
whenever x, <:-<x,, in (X, <). Now suppose n<wm, x; < <X, y; < <Y,
in (X,<). We need to see that for all formulas @(v,,...,0,,0,44), if
M= @[ xy,..., X, u] then M= @[ yy,..., y,, u]. Pick an increasing m-tuple wy <+ <w,,

such that w, >x,, w; >y,. Now consider the formula W(vy,...,0,, Vps15-esUpsm)
given by

Oy Uy lUp 15wy Un )/ Unt 1) -
Then, since u=t(wy,...,w,,),
MEY[X1eees Xy Wsenos Wy
and hence,
MEY[Viseeor Vs Wiseees Wi ]
by the indiscernibility of (X, <) in M. Thus
M= Q[ Y1sens V]

Thus (X, <) is indiscernible over U, proving (2).
Define p(2), p(S) as before.

(3) Assume p(S)=n<w. Then no model M of T has an infinite set of
n-variable indiscernibles over U™,

The proof of (3) is just like the proof of (3).
Using (3') and 4.11(ii), we get

@4) If p(S)=n<w then T has no models of type (,,,(4),4) for any A.
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Corresponding to (5) we have
Suppose ME=T, (X, <) is a set of n-variable indiscernibles over U(=U"™)
(5)%and that a,<---<a, in {X,<). Let @ be the s.v.p. in S, given by
M, X, <,a,,...,a,) and let B=p(P). Then card(X)< D, ;. ) (card(V)).

The proof is by induction on f# and uses the Erdds-Rado Theorem. The proof
it too similar to the proof of (5) to present. From (5') we get

(6') If M=T then card(‘.U?)<Dwﬁ(card(U""‘)) where B=p(S).

The proof is concluded by showing that

(7) p(S)<hs(d).
The proof of (7) is just like the proof of (7). 0O

Theorem 4.3 follows from 4.15 just as Theorem 4.1 followed from 4.12.
4.16—4.20 Exercises
4.16. Prove that if « is admissible then

Mo)=3, if a>w,
2.(No)=2,(No)

=Dyie I a=w.
4.17. Let Ay be admissible above N, k,=card(N), a=0(A). Prove that
card (Aqy) < D (k).
Let x, =card(Agy). Prove that if hg(A)=p>a then
D) = Dp(xco).

4.18. Let A be an admissible set, a=h(A). Prove that the Hanf number for
single sentences of L, is at least

A=sup{2,(k)|x=card(X) for some XeA}.

That is, show that for 1,<A there is a sentence ¢ of L, which has models of
power >4, but none of power >1. [Given XeA, B<h(h), formalize Vy(B).]
Prove that the Hanf number is always of the form D, for some limit ordinal A.
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4.19. Let A be an admissible set with o(A)>w.

(i) Prove that each @eA can be put in a Skolem fragment LgeA in such
a way that every model of ¢ (not just those in A) can be expanded to a model
of Tgorem- [ Use Infinity to carry out the proof of 2.4 inside A.]

(i) Prove that the Hanf number for single sentences of L, is

A=sup {3,(x)|x=card(X), Xe A}

where a=h(A). That is, prove that if ¢pel, does not have a model of every
power >card(A) then there is an XeA and a f<h(A) such that ¢ has no
model of power >2Jj(card(X)). [The set X will be the Ly of (i). Modify the
proof of 4.12.]

(iii) Prove that if A is a pure admissible set then the Hanf number for single
sentences of L, is 2, even if o(A)=w.

4.20. Let A be an admissible set, let a=hg(A) and let

Ao=sup {2 (k)| k=card(X) some XeA},

Ay =, (card(A)).

Theorem 4.12 states that the Hanf number for %, theories of L, is <4,.

(i) Prove that this Hanf number is > 4,.

(i) Prove that if A is countable and # HFy, or if hg(A)>o0(A), then 1,=4,.
It is an open problem to describe this Hanf number in general. Is it 4, or 4; or
something in between?

4.21 Notes. Morley [1965] shows that the Hanf number for single sentences of
Lo, Was 2, . (This follows from 4.2.) Morley [1967] showed that the Hanf num-
ber for single sentences of w-logic was 2, where a=w$. (The hard half of this
follows from 4.2 with A =1(x).) Barwise [1967] generalized this to obtain the
Hanf number for any countable, admissible fragment. This was generalized in
Barwise-Kunen [1971] to obtain 4.19(iii). The theorems of this section are a
reworking of the ideas from Barwise-Kunen [1971] so that they apply to theories,
not just single sentences. Theorem 4.3 is a generalization of Morely’s Two Car-
dinal Theorem of Morley [1965]. The student should consult lectures 16 and
17 of Keisler [1971] for a different proof of the countable versions of these results.

The student should be aware of a difference between the results of this section
and those in Chapter III. The use of admissible sets was absolutely essential in
Chapter III to obtain our results. Here they provide a convenient setting but
weaker assumptions would do. Of course we need to know that the countable
set A is admissible to know that hg(A)=o0(A).
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0w

5. Partially Isomorphic Structures

Having seen in the previous sections that the model theory of uncountable frag-
ments is not completely beyond our control, even if it is less tractable than
for countable fragments, we now investigate some uses of uncountable sentences.

One way to appreciate L, is to see the role it plays in algebra, but this is
not the book to discuss such topics. We can only give a few exercises. The topics
we discuss are of a more logical nature. These final sections are completely
independent of the first half of the chapter. Admissible sets will not appear in
an essential way until § 7.

A partial isomorphism f from MM into N is simply an isomorphism

[ Me=N,

where M,, N, are substructures of M and N respectively. A set I of partial
isomorphisms from IR into N has the back and forth property if

(1) for every fel and every xeI (or yeM) there is a gel with fcg
and xedom(g) (or yerng(g), resp.).

We write
M=, N

if I is a nonempty set of partial isomorphisms and I has the back and forth
property. If there is an I such that I: 9= 9 then we say that I, N are partially
isomorphic and write M=, N. (Some authors prefer the more picturesque ter-
minology potentially isomorphic, to suggest that 9t and 9t would become isomor-
phic if only they were to become countable, say in some larger universe of set
theory.) Note that if f:IM=~N, then {f}: M=, N.

5.1 Examples. (i) The canonical example is given by two dense linear orderings
M=<{M, <> nd N=(N, <) without end-points. Let I be the set of all finite
partial isomorphisms from 9 into N. Then

M=, N

regardless of the cardinalities of 9t and 9. This is quite easy to verify. Combined
with Theorem 5.2, this shows that the theory of dense linear orderings without
end points is X ,-categorical, i.e., that all its countable models are isomorphic.

(i) If M, N are dense linear orderings with first elements x,, y, respectively,
but without last elements, then 9=, 9N but the set I used in (i) no longer has
the back and forth property. Let

Io={f€I|xo€d0m(f)’f(xo)=,Vo}~

Then I,: M=, N.
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(iii) We can generalize (i), (i) as follows. Let L, be a countable fragment
and let T be an N,-categorical theory of L,. Then for any two infinite models
M, N of T,

M

112

%N.

p

A proof of this will be given in 5.5 below.

(iv) We can get a different generalization of (i) and (ii) by looking at
No-saturated structures M and N. If M=N (L,,) then M=, N. The set I is de-
fined as follows: Consider those partial isomorphisms

[iM=N,
where I, is finitely generated by some aq,,...,a,. We will let fel iff
(mt»al’“-’an)z(m’f(al)a'"’f(an)) (wa)'

A simple use of Ny-saturation shows that I has the back and forth property.
Traditionally, the back and forth property has been used for constructing
isomorphisms of countable structures.

5.2 Theorem. Let M, N be countable structures for the same language and let
I: M=, N. For every fyel there is an isomorphism

S M=
with fo< f.
Proof. Enumerate M= {x,x,,...}, R={y;,y,,...}. Define

fons1=s0me gel with f,, =g, x,edom(g),

Sons2=some gel with f,,,,<g, y,erng(g)

by using the back and forth property (1). Let f=|J, f,. Then f maps 9 onto
N and preserves atomic and negated atomic formulas so f: IM=N.

The examples and Theorem 5.2 should suggest to the student of the previous
chapter that =, could be the absolute version of =. After all, they agree on
countable structures and =, does not seem to depend on cardinality. At first
glance, though, it is not obvious that =, is absolute, but merely that it is Z,:

M=, N iff IT[1: M=, N
where the part within brackets is A,. This is no better that =, itself a Z; notion.

The I, equivalent of =, is given by the next result. There is, of course, no IT;
equivalent of =~. This result as well as 5.7 appear in Karp [1965].
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5.3 Karp’'s Theorem. If MM, N are structures for the language L, then M=, N
iff M=N(L,,,)

Proof. We first prove (=). Let I: M=, N. We prove, by induction on formulas
o(vy,...,v,) of L, thatif fel, x,,...,x,edom(f) then

9JEF=(p[x1,...,x"] iff Ne=o f(x),..., f(x)].

(The theorem follows by considering those ¢el,, which are sentences.) If
@ is atomic, the result follows from the fact that each fel is a partial iso-
morphism and so preserves atomic and negated atomic formulas. The case
where ¢ is a propositional combination of simpler formulas is immediate by
the induction hypothesis. The back and forth property (1) comes into play only
in getting past quantifiers. Suppose ¢ is Jv,,; Y(vy,...,0,41). Let f,xy,...,x, be
given. We assume ME=o[x,,...,x,] and prove N= o[ f(xy),..., f(x,)], the other
half being similar. Thus, there is a ye9t so that

MEY (X, X, Y]

Use (1) to get a gel with f =g, yedom(g). Then, by the induction hypothesis,
NE=Y[g0xy),-..,90xn),9(1)]
RE= gy Y9x5 9(x,), Vnr1)]

and g(x;)= f(x;) so

“n’:(p[f(xl)a”wf(xn)] )

SO

as desired. Since Vv, &—13v, ), we need not treat V separately.
Now assume M=N (L_,). What should our set I be? The proof of the first
half of the theorem tells use. Let fel iff

[ Me=N,, M, =M, Noc=h
where I, is finitely generated by some x;,...,x, and

(wt’xlﬁ""xn) Eww(m’f(xl)""af(xn))

by which we mean that x,,...,x, satisfies the same formula of L, in M that
f(x1),..., f(x,) satisfy in N. (Note that we need Il; Separation to define I so
that we cannot carry out this proof in KPU.) Since M=N (L), the trivial
partial isomorphism is in I. We claim that I has the back and forth property.
Let fel be as above and let x,,; be a new element which we need to add to
the domain of f. It suffices to find a yeM so that

(SD?’xl’ cees Xy X4 1)E oow(msf(xl)a -~-7f(xn),Y)
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for then we may set g(x,.,)=y and extend to the substructure generated by
X{,..., Xp4; in the canonical fashion. So suppose there is no such y. Then, for
every yet thereis a formula ¢ (vy,..., v,,,) such that

SUU:: qoy[xp ooy xmxn+ 1]9
9’“: _‘q)y[f(xl)’ "'7f(xn)’y]

Let Y(vy, ..., v,) be
F0ns1 /\yen @015 -5 Up Uy 1) -

Then ME=y([xy,..., x,] by letting v,,,;=x,,, but
RE=WLS (), fx0)]

This contradicts fel. 0

This theorem has a number of important uses. Here we state those having to do
with absoluteness.

5.4 Corollary. =, is the absolute version of =.

Proof. M=N(L,,,) isa I1, predicate of M, N, by the results of § [11.1, s0 = ,is A,.
It agrees with =~ on countable structures by Theorem 5.2. 0

5.5 Corollary. Example 5.1(iii) is true.
Proof. Let T, L, be as in 5.1(iii). We need to show that
VIRVR[IM, N infinite AM=ETARET - V= N].

By 5.4, the part within brackets is absolute (in the countable parameter T), so we
need only verify the result for MM, N countable. But for such M, N, the result
follows from the hypothesis that T is ¥ -categorical. [

This result (5.5) shows us that if a countable theory T is N,-categorical, then
we should be able to prove this by a back and forth argument.

5.6 Corollary. Let MM, N be partially isomorphic structures for a finite language L.
(i) For all o, L(o)qp= , L(%)g.
(ii) For all o, o is M-admissible iff o is N-admissible.
(iil) o(HY Pgy)=o0(HY Pg).

Proof. (i) This is a IT; condition on 9,9 which clearly holds when I, 9 are
countable since then they are isomorphic. Part (ii) follows immediately from (i)
since o is MM-admissible iff L(a)y=KPU™*. Part (iii) follows from (ii). 0O
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One of the advantages of Theorem 5.3 is that it allows us to approximate the
relation M= N by approximating

M=N(L,,).
Define the quantifier rank of a formula ¢ of L, recursively as follows:

qr(p)=0 if ¢ is atomic,
qr(Fve) =qr(Voe) =qr() +1,
qr(m) =qr(¢),
ar(AP)=qr(\/®)=sup {qr(p)| pe P} .
Thus qr(¢p) is an ordinal number. Since qr is defined by X Recursion in KPU,

we have qr(¢)<o(A) whenever ¢ is in the admissible fragment L,.
We write

M="N
if for all sentences ¢ of L, with qr(p)<a,
M=o iff NE=oe.

Thus M=N(L,,) iff for all o, M="N.
The following is a refinement of Karp’'s Theorem also due to Karp [1965].

5.7 Theorem. Given structures MM, N for L, M=*N iff the following condition
holds: There is a sequence

[y 20,220,221, (<o)

where each 1 is a nonempty set of partial isomorphisms from I into N and such
that whenever B+1<a, fely,, and xeIM (or yeN) there is a gel, such that
f<g and xedom(g) (resp., yerng(g)).

Proof. The proof is a routine refinement of the proof of Karp's Theorem. To prove
(<=), one shows that if

qr(@(vy, ..., v,))< B, fel Xy, ..., x,edom(f)
then

MEe[xy,....x,] iff NREe[f(x),.... f(x)]-

To prove (=), let I, be the set of those finitely generated partial isomorphisms f
which preserved satisfaction of formulas ¢ with qr(p)<p. [
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5.8—5.12 Exercises

5.8. Prove that if a theory T of L, is N,-categorical then every model of T is
No-saturated. [Use 5.1(iii), Theorem 5.3 and the fact that N -saturation can be
defined by a conjunction of sentences from L, ,,.]

5.9. Let M, N be partially isomorphic structures for a finite language. Show that
for every o, the pure sets in L(a)g; and L(a)y, are the same.

5.10. Let A be a limit ordinal. Prove that if M=*N for all f<i then M=*N.
[Each sentence of quantifier rank A is a propositional combination of sentences of
smaller quantifier rank.]

5.11. Show that the following notions are definable by a single sentence of L .
(i) G is an ¥X,-free group.
(ii) G is an abelian p-group of length <« (for any ordinal «).

5.12. (i) Show that if G is a reduced abelian p-group and G=H (L) then H is a
reduced abelian p-group.

(i) Show that the notion of a reduced abelian p-group is not definable by a
single sentence of L . [Hint: There are reduced p-groups of every ordinal length.
Show that if the notion were definable then there would be a sentence which
pinned down all ordinals, contrary to Theorem 4.1.]

6. Scott Sentences and their Approximations

One of the tasks the mathematician sets for himself is the discovery of invariants
which classify a structure 9 up to isomorphism (homomorphism, homeomor-
phism, etc.) among similar structures. In this section we consider the problem
of characterizing arbitrary structures up to =, We will associate with each
structure I, in a reasonably effective manner, a canonical object o such that

M=, N iff op=o0yg.

Hence, if I, N are countable we will have M=N iff o3 =04 Our invariants
will not be cardinal or ordinal numbers, though, as is often the case. Rather,
they will be sentences of L, with the additional properties:

M=oy, and
N=ogy implies M=, N.
The sentence oy is called the canonical Scott sentence of M.
The canonical Scott sentence is built up from its approximations defined

below. We use s to range over finite sequences {xy,..., x,» from 9 and s"x
to denote the extension {xq, ..., X,, X of s by x.
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6.1 Definition. Let 9 be a structure for a language L. For each ordinal o and
each sequence s=<{x,..., x,» wedefinea formula¢¥(v,, ..., v,), the a-characteristic
of s in M, by recursion on a:

(1) 0'2(01,..., Un) iS
Nf{o(y,...,v,)| ¢ is atomic or negated atomic and M= o[s]}.

(i) o?*Y(vy, ..., v,) is the conjunction of the following three formulas

(1) O.E(Ub...,l?n);
(2) VUn+ 1 xewlo-g/\x(vl’ EAREY vn);
(3) /\xe?]l 3vn+ 1 o-g/\x(vla .. : U,,) .

(iii) If >0 is a limit ordinal then ¢(vy, ..., v,) is

/\B<).O-s(vl’ LR l)n) .

If we need to indicate the dependence on Mt we write afy, , for o5. If s is the empty
sequence we write g% or og,.

6.2 Lemma. Fix Mo and s=<{xy,..., Xp)-
() gr(o)=a.
(i) ME=o?]s].
(iii) If a=p then

=Yy, ..., 0,04y, ..., 0,) > E(vy, ..., 0,)) .

(iv) If x is an infinite cardinal and card(M) <k, card(L)<k and o<k then
card(sub(s?)) <k.

Proof. A simple induction on o proves all these facts. 0

The crucial properties of the a-characteristics are given by the next result.
In this section we write

(wt’xlv""xn)Eoow(m’yl""’ yn)
(and

(gﬁ’xl’ '“’xn)Ea(m?yla LXR] ] yn))

toindicate that all (x4, ..., x,» satisfies the same formulas ¢(v,, ..., v,) (of quantifier
rank at most «) in 9 that {y,,..., y,» satisfies in N.

6.3 Theorem. Let MM, N be L-structures, s=<Xy,...,X,» a sequence from IN,
t=<{Y1,..., Yuy a sequence from N. The following are equivalent:
@) D xq, s )= Y1, ees Vi)
(i) N=ofym o [t]-
(ii1) The a-characteristic of s in I is identical with the a-characteristic of t
in N.
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Proof. The proofs of (i)=(ii) and (iii)=>(ii) and both trivial. The first follows
immediately form 6.2(i), (ii). The second implication also follows from 6.2(ii),
since NE=ofy ,[t], soif oy =0, then

NE=oiy,s) -

We are left with task of proving (ii)=>(i) and (ii)=-(iii). To prove (ii)=-(i), we use
Theorem 5.7. Assume

Ni=ofm o [ 1]
and define, for f<a, a set I as follows: fely iff

[ Me=N,, MW, RNy, where
M, is generated by some z, ..., z;, and
gt'20.?‘.lll,z1,...,zk)[f(zl)a ""f(Zk)] .

The map f, generated by sending x; to y; (i=1,...,n) is in I, by hypothesis. By
6.2(iii), we have

Iy21,220,2-21, (<q).
The final condition on this sequence, the one demanded by 5.7, follows immediately

from the definition of of5 L ...
Finally, we prove (ii)=>(iii) by induction on o«. The cases for «=0 and « a

limit ordinal are trivial. So suppose
NE=ofey o[1].

By 6.1(ii), we need to prove that

“4) Olan,s) 1S Ola,o)

(5) for each xeM thereisa yeM such that

afﬂl!,sAx) 18 O-é’?.t/\y) >
and

(6) for each yeIt thereis an xeIN such that
Ufm’s/\x) iS O’fm’t/\y) .
Now, by the induction hypothesis, (4) is true, (5) reduces to

(Sl) gU=/\xe‘.mavn+ lafﬂ)t,s/\x)(vn+ 1)[t]
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and (6) reduces to
(61) m’: an+ 1 xeM o-f‘m.s/\x)(vn+ 1)[t] .
But (5'), (6') are immediate consequences of
NE=ol by

by lines (3), (2) respectively. 0

If we apply 6.3 to the empty sequence, we obtain the following result.
6.4 Corollary. For all I, N, the following are equivalent:

(i) M=%,
(i) M=oy
(i) opy=0%. 0

6.5 Definition. The Scott rank of a structure M, sr(M), is the least ordinal a such
that for all finite sequences x, ..., X, V1, ..., ¥, from I,

M x1, e X) =" Y1, ees Vi)
implies
O, x4, X)) ="My, 0y 1)
We will see, quite soon, that if a=sr(9) then
M, xq, e X) = Y1, s V)
actually implies
(iUt,Xl, AR X,,)E ww(g‘nayla Ty yn) .

It is more convenient to use 6.5 as the definition, though, since then the next
lemma becomes obvious.

6.6 Lemma. If k is an infinite cardinal and card(MM) <k then sr(M)<k.

Proof. The proof is easy and we will get a much better bound in the next section,
so we leave the proof to the student. 0

6.7 Definition. Let 9 be a structure for L, let u=sr(M). The canonical Scott
theory of M, Sg, consists of the sentences below:

u
Oap,

Yoy, ..., i [olm o (015 ..., v) = Ol 5 (U1, -, )]
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for all finite sequences s=<{xy,..., x,> from 9. The canonical Scott sentence
of M, oq, is the conjunction of the canonical Scott theory of IM:

om=/\Sm -
Note that qr(oey)=sr(M)+w. Also, from the definition of sr(9%) we see that
M=oy .
We now come to the main theorem on Scott sentences.

6.8 Theorem. Given structures M, N for a language L, the following are equivalent :
(i) M=, Nn;
(i) NME=ogy;
(iil) ogp=04g.
Proof. We already know that 9t~ 9 iff M=, N Since M=oy, we see that
(i)=>(ii) is immediate. Similarly, since M=oy, (iii)=>(ii) is immediate. To prove
(ii)=(i) define I, for all B, just as in the proof of 6.3. The hypothesis that =0y,
insures that I,,,=1I, so

[, M=, 9.

Finally, we prove that (i)=>(iii). Assume that M= _, 9. Then sr(M)=sr(N).
Let u=sr(M). For each x,..., x,€M there is a sequence y,, ..., y,€IN such that

m'zo-é“.m,xl ..... x,.)[,Vp---, yn]

and vice versa. Then, by 6.3, every aly ; is some afyy ,, and vice versa. Thus Sg = Sg
and op=0g. [

The remainder of this section is devoted to corollaries of Theorem 6.8. First
we have Scott’s original result.

6.9 Corollary (Scott’'s Theorem). Let L be a countable language and let M be a
countable structure for L. The Scott sentence oy is a sentence of L, with the
property that

M=N iff NE=ogy
for all countable L-structures .

Proof. oy is in L, , by Lemma 6.2(iv). The result is then an immediate con-
sequence of Theorem 5.2 and 6.8. 0

An n-ary relation P on M=(M,R,,...,R,> is invariant if for every automor-
phism f of M and every x,, ..., x,eIN,

PCxys.yx,) iff P(f(xy)..os f(X,).
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From now on (in this section) we assume L is countable. Whenever we refer to
HY Py, we assume L is finite.

6.10 Corollary. If M is a countable structure for L and P is an n-ary relation on M,
then P is invariant iff P is definable by some formula ¢(vy, ..., v,) of L, . (without
additional parameters) :

P(xy,...,x) iff M=Ee[xg,...,x,].
Proof. If P is defined by ¢ then P must be invariant since f:9MM=~IM and

ME=@[xy, ..., x,] implies M= f(xy),..., f(x,)]. Now assume P is invariant.
Let ¢(vy, ..., v,) be

VA% a1 s D) P(Xg, oy X))
where p=sr(M). It is clear that P(x,, ..., x,) implies M= [x,, ..., X,].

To prove the converse, suppose that ME=o[y,,...,y,], so that
M=oy, eyl va] for some xy,..., x, with P(xy, ..., x,). Then

(g'n?xlv""xn)Eoow(mt?yl’ AR yn)v

so that there is an automorphism f of M with f(x;)=y; by 5.2. Since P is invariant,
P(yy,...,y,) holds. 10

6.11 Corollary. Let M be a countable structure for L and let xeM be an element
fixed by every automorphism of IN. Then x is definable by a formula ¢(v) of L,,,:

M= ve(v),
M=op[x].
Conversely, a definable element of WM is fixed by every automorphism.
Proof. Apply 6.10 with P={x}. [
A rigid structure is one with only one automorphism, the identity map.

6.12 Corollary. If M is a countable structure for L then W is rigid iff every element
x of M is definable by a formula ¢(v) of L

wiw*

M=),
ME=op[x]. O

These results will be improved in the next section.
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6.13—6.14 Exercises

6.13. Let M be a countable structure with x,,..., x,eM such that (M, x,,..., x,)
is rigid; i.e., no nontrivial automorphisms of M fix, x,,...,x,. Show that M
has <X, automorphisms.

6.14. Let M be a countable L-structure with <2%° automorphisms.

(i) Prove that there is a finite sequence x, ..., x, from 9 such that (M, x,, ..., x,)
is rigid. [Hint (P.M. Cohn): Let o, fix xi,...,x, but move, say, x,,,. Let
6=...0,"...07 07 where ¢=0 or =1. Show that this gives 2%° automorphisms.]

(ii) Show that for all N, Ni=og implies M=N; i.e., that there are no un-
countable N with M=N (L

(01(1))‘

6.15. Show that if G is an N,-free abelian group then G, H iff H is NX,-free.
Thus the notion of free group is not definable in L,

6.15 Notes. Scott’s Theorem and Corollary 6.10 were announced in Scott [1965].
A proof, in the context of invariant Borel sets, appears in Scott [1964]. The Scott
sentences used here are derived from Chang’s proof of Scott’s Theorem in Chang
[1968]. The presentation follows that used in the survey article Barwise [1973].
Exercises 6.13, 6.14, 6.15 are due to Kueker. They are proved in Barwise [1973].

7. Scott Sentences and Admissible Sets

The first systematic study of the relationship between a-characteristics, canonical
Scott sentences and admissible sets was undertaken by Nadel in his doctoral
dissertation. His idea was to use a-characteristics and Scott sentences as approx-
imations of models, asking to which admissible sets the formulas og,0§,; belong
as an alternative to asking to which admissible sets I itself belongs. This has
proven to be a fruitful idea. In this section we delve into the more elementary
parts of the theory.

To simplify matters we assume the underlying language L of L, has no
function symbols. Since function symbols can always be replaced by relation
symbols, this is no essential loss. (The sole point in this restriction is that if L is
an element of an admissible set A then the set of atomic and negated atomic
formulas of the form

(P(Ul, LA vn)

(for fixed n<w) is a set in A if L has no function symbols, or if o(A)>w, but
not if L has a function symbol and o(A)=w).
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7.1 Proposition. The formula

O V15 - Uy)

is definable in KPU as a X, operation of IM,s,o.

Proof. Consider sequences s as functions with dom(s) some n<w and range
<. Let

FOM,s,0) =08, {(V1,..-, V) -
If we write out the definition of F as given in 6.1 it takes the following form:

FM,s,0)=y iff (i) v (i) v (iii)
where

1) a=0AAKM,s,y) (a Ay predicate of M, s and y);
(i) a=p+1 for some f<a and y=A{0,,0,,05} where

0,=FM,s,p),

0,1is Vv,,, \/® where
VxeMIAze@FIM,s"x,f)=z,
VzedIxeMFM,s"x,f)=z, and

05 is similar to 0,.

(iii) Lim(e) A y= A {FOR,s,B)| B <at).
This definition clearly falls under the second recursion theorem. [

7.2 Corollary. If L, is an admissible fragment and MM is an L-structure in the ad-
missible set A then, for any L-structure R,

M=N(L,) implies M=*N
where o =o(A).
Proof. By Exercise 5.10 it suffices to prove that
M=FN

for all B<a. But for f<a, obel, by 7.1 and M=ok, so Ni=of,. But then
M= N by Corollary 6.4. [

If o4y were definable as a X, operation of 9 in KPU then we could extend 7.2
to read

M=% (L, implies M= _, N,
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since then o4, would be in L,. This, however, is not true. Unlike its approximations,
the canonical Scott sentence agy is not definable in KPU as a X, operation of M.
The problem is that sr(3®) may be just a bit too big; that is, sr(¥) may equal
o(HY Pg,). (See Exercise 7.13, 7.14.) This is as big as it can get, though, as we see
in Corollary 7.4.

7.3 Theorem. Let L, be an admissible fragment of L, and let M, N be L-structures
which are both elements of the admissible set A. Then

M=N(L,) implies M= _,N.

Proof. By 7.2 we see that IM=*N where a=0(A). Let I be the set of finite partial
isomorphisms f={{xy, ¥, ..., {XpYn>} (0<n<w) such that

(1) %, X)) =Ry, ees Vi) -
Since M =N, the trivial map is in I so [#@. We will prove that
M= N,

Suppose (1) holds and that a new x,,,€9 is given. We need to finda y,, €M
such that

x4, s X X )= Y10 s Vi Vut 1) -
By Exercise 5.10 it suffices to insure that
(D15 s X Xt ) =L Y15 s Vo Vs 1)
for each fp<o. Suppose that no such y, . exists. Then
VY 1 €NIB<a(NE 00 o[ V1> Y V1))
where s={xy,..., X,4 1. By E Reflection in A, there is a y<a such that

Vyn+1€m3ﬂ<))(mt=_|ag]l,s[yla LRRE1 yn’yn+l])

and hence

NE=VV, 105 One ) V1o V)
o)

mhﬁa(ywt,ls)[)’l, o> Vul
contradicting

(ﬂn?xl""’xn)za(mayla seey y,.)
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This establishes the “forth” half of the back and forth property; the “back” half
follows from the symmetry of 9 and 9 in the theorem. 0

Theorem 7.3 is sometimes called Nadel's Basis Theorem. The reason for calling
it a basis theorem is seen by stating the converse of its conclusion: If there is a
sentence ¢ of L, true in M and false in N, then there is such a sentence in L,.

Our first application of 7.3 is to get the best possible bound on sr(3t). Another
proof of this can be given by means of inductive definitions.

7.4 Corollary. Let M be a structure in an admissible set A. Then
st <o(A).
Proof. Let a=o0(A). Let xq,..., X, V15 ..., V,€D be such that

X1y, X)) ="M, Y15 eees Vi) -
But then

(mt’xh trey Xn)E(g‘n’yl’ 7yn)(LA)
so, by 7.3,
M, xqsee %)= 00 yis oy, 0

The remainder of this section deals with uses of Nadel's Basis Theorem to
improve the results of the previous section.

7.5 Theorem. Let M be an L-structure and let P be a relation on MM which is definable
by some formula of L., without parameters. Let A be any admissible set with
(M, P)e A. Then P is definable by a formula of L, without parameters.

Proof. Let us suppose, for convenience, that P is unary. We assume that P is not
definable by any formula of L,. If we can find an x,y such that

P(x), 7P(y), and (M, x)=(M,y)(L,)
then, by 7.3,

(M, %)= 500 (M, y)

so P is not definable by any formula of L _ . To find such an x,y we proceed as
follows. Define, for f<ua, ¢4(v) to be the formula

V {ob(v)| xe P} .

Then ¢g4v)el, by 7.1 and

@ F @ g0)—@,(v)
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for f=y. Since ME=q@y[x] for all xeP, and ¢, does not define P (nothing
in L, does) there must be some yeM —P such that M=g,[y].

We claim that there is a fixed ye M —P which works for all f<a:
3) IyeM —PVB<a(ME=gyly]).
For otherwise we would have

VyeM —P I <o (ME="19,0y]).

But then by X Reflection there is a y <« such that for all yeM —P

M=\ <, T10s00]
and hence by (2),

VyeM —P (M="9,[y]),

a contradiction. Thus (3) is established. Let y be as in (3). For each f there is an
x€P such that

Me=ol[y]

by the definition of @, By an argument entirely analogous to the proof of (3), we
see that

IxePVB<a(M=d?[y]).

For any such x we have (I, x)=%M,y) and hence (M,x)=(M,y)(L,), as de-
sired. O

7.6 Corollary. Let M={(M,R,,...,R,> be a countable structure for L. A relation
P on M is invariant on M iff it is definable by a formulain L, HYP gy p)

Proof. Combine 6.10 with 7.5. [

7.7 Corollary. Let L, be an admissible fragment of L. If M is an L-structure,
WMe A, then every element of M definable by some formula of L, is definable
by a formula of L,.

Proof. Apply 7.5 with P={x}. 0

7.8 Corollary. Let MM=(M,R,,...,R,> be a countable L-structure. Then IM is
rigid iff every element of M is definable by a formula of L, HY P,

Proof. Combine 6.12 with 7.7. 0
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79 Corollary. If M={(M,R,,...,R,> is a countable rigid structure then
sr(I) < O(M).

Proof. By 7.8 we know that
VxeMIAME=vo(v).

Let B(x) be the least such B. Then ¢™)(v) is a HY Pgy-recursive function of x so,
by X Replacement,

®(v)={c2X(v)| xe M}

is in HYPy, and every element of M is definable by some member of it. Let
y=sup{f(x)|xe M}. We claim that sr(M)<y. For suppose

(m’xl’ "-’xn)Ey(m’yl?"" yn)'
Then

M=l [y:]
so x;=y; for i=1,...,n, and hence
X150 X) = 00DV, ¥ . O

We can improve 7.9 by replacing the requirement that 9 is rigid by the re-
quirement that M have <2%° automorphisms. See Exercise 7.15.

We end this section by returning to our old favorite, recursively saturated
structures, to see what some of our results say in this case.

7.10 Corollary. Let M={(M,R,,...,R,> be a recursively saturated L-structure
and let P be a relation on I definable by some formula of L, Then (M, P) is
recursively saturated iff P is definable by a finitary formula of L.,

Proof. The (=) half follows from 7.5 with A =IHYP g p. To prove the (<) half,
note that if P is definable by a formula ¢eHY Py, then PeHY Py, by A, Separa-
tion so o(HYP gy p)=w. [

Note that if M is recursively saturated then so is (IR, X) for any xeIM so 7.10
also applies to relations definable by a fixed finite number of parameters. The
same remark applies to the next result.

7.11 Corollary. Let Mi={(M,R,,...,R,> be an infinite recursively saturated
L-structure and let

DY (M) = {yeM|y is definable by some formula ¢(v) of L., without parameters} .
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Then we have the following:
(i) Every element of 2¢(W) is definable by a finitary formula of L,
(i) 2¢/(M) is T, on HY Py, hence inductive* on M.
(i) If ZY(M) is hyperelementary* on M (i.e., if it is in HY Pyy) then D¢ (M) is
finite.
(iv) M—2¢ (M) is infinite.

Proof. (i) follows from 7.7 and (i) = (ii). To prove (iii) suppose that 2 AIN)eIHY Py,
Let

@ ={0%(v)| xe ZY(M), M=31v o3(v) and M= A, <, 03! @7(v)} .

Then, exactly as in the proof of 7.9, @ is an element of HY Py,. But @ is a pure
set and o(HY Py)=w so & is finite. Thus 2¢#(I) must also be finite, since every
member is defined by a formula in &. Part (iv) is immediate from (iii), for if
M —¢(M) is finite then Z/(M)eHYPy. 0

7.12. Example. Let /" be a nonstandard model of Peano Arithmetic and let
xeN' be a nonstandard integer. Let .#"[x] be the submodel of .4 with universe

YN, X).
The axiom of induction insures that
N[x]<A".

Corollary 7.11(iv) (applied to (#[x],x)) shows that models of the form 4[x]
can never be recursively saturated. Hence, the standard integers of 4[x] form
a hyperelementary subset of 4[x] by VL5.1(ii). From this it follows that such
models can never be expanded to a model of second order arithmetic, by Exer-
cise IV.5.13.

7.13—7.18 Exercises

7.13. Let M be countable, o a countable admissible ordinal, «>w, and let #
be the order type of the rationals.

() Prove that if <, is a linear ordering of M of order type «(1+#) than,
setting M, =M, <>,

HY Py, =<, is well founded”,
o= o(HY Py,).

[See the proof of 1V.6.1.]
(i) Let My=#7(M,). Let L, be the admissible fragment of L, given by
HY Py, where L={<}. Prove that

Mo<M,  [L,].
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[Use the Tarski Criterion for L, (Exercise 2.13) and the fact that any x in the
non-wellfounded part of <, can be moved by an automorphism of IM,.]
(iii) Prove that

EIRO E"'iml .

(iv) Prove that sr(9M,)=a.
(v) Conclude that oqy is not definable in KPU as a X; operation of 9.

7.14. Prove that sr(9) and o, are X, definable in KPU + Infinity + X, Separation,
as operations of IN.

7.15. Use 6.14 (i) to improve 7.9 to the case where I has <2%° automorphisms.
7.16. Prove that if o(HY Py)>w and sr(M)<o(HYPy) then ogyeHY Py,
7.17. Prove that the absolute version of

“P is invariant on I’
is
“P is definable by a formula of L, ,NHYPgy p, .

7.18. Prove that the absolute version of “I is rigid” is “Every element of M
is definable by a formula of L ,nHYPy .

7.19 Notes. There are a number of interesting and important results which could
be gone into at this point, but they would take us too far afield. The student is
urged to read Makkai [1975] and Nadel [1974].

Theorem 7.3 is from Nadel [1971] (and Nadel [1974]) as are Collaries 7.7
and 7.8. Theorem 7.5 is new here but it is a fairly routine generalization of
Nadel's 7.7. The important example 7.13 is also taken from Nadel [1971]. The
last sentence of Example 7.12 is a theorem of Ehrenfeucht and Kreisel. [Added
in proof: A recent paper by Nadel and Stari called “The pure part of HYP”
(to appear in the Journal of Symbolic Logic) has a number of interesting and
highly relevant results. In particular, they characterize the pure part of HY Py, in
terms of the sentences a§; for f<O(M).]





