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Towards a General Theory

"The sensible practical man realizes that the questions which
he dismisses may be the key to a theory. Further, since he
doesn't have a good theoretical analysis of familiar matters,
sometimes not even the concepts needed to frame one, he will
not be surprised if a novel situation turns out to be genuinely
problematic."

G. Kreisel
Observations on Popular Discussions of Foundations





Chapter VII

More about L ooω

In this chapter we resume the discussion of L^ where we left it in Chapter III.
This time, however, we do not restrict our attention to countable fragments but
develop the beginning of a general theory. In this way we can gain insight into the
countable case by seeing what principles are involved in the general case.

The most useful result, both for model-theoretic applications and for appli-
cations to generalized recursion theory, is the Weak Model Existence Theorem
of § 2. Its model theoretic applications are discussed in §§ 3 and 4. The applications
to definability theory can be found in Chapter VIII.

§§ 5,6 and 7 are concerned with Scott sentences of L^ and their approximations.
These sections are independent of most of the rest of the book but they do illustrate
the importance of L^ and some uses of admissible sets in studying them.

1. Some Definitions and Examples

Once the hypothesis of countability is removed, all the major theorems of
Chapter III fail dramatically. This section consists largely of "counter" examples
to these statements. It also contains a number of definitions which will be im-
portant in our study.

1.1 Definition. An admissible set A is Σx compact if for each admissible fragment
of the form LA and each Σί theory T of LA, if every subset Γ0 of T which is a
element of A has a model, then T has a model.

The Compactness Theorem of § III.5 states that every countable, admissible
set is Σ! compact.

1.2 Definition. An admissible set A is self-definable if for some language L con-
taining the language of A there is a Σ! theory T of LA such that

(i) some expansion (A,...) of A to an L-structure is a model of T.
(ii) if (33,...) is any model of T then 95 ̂  A.

If T can be chosen to be a single sentence of LA then A is called strongly self-
definable.
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We obtain a host of counter-examples to Σ1 compactness by means of 1.3
and 1.4. The first is a trivial exercise in compactness.

1.3 Proposition. // A is Σ^ compact then A is not self -definable. D

1.4 Proposition. For all α^O, #(Kα+1) is self -definable.

Proof. Let /l = H(Kα+1) and let T be the theory consisting of the following
sentences :

KP,

Vx(xea<->\/bef lx = b) for all aeA,

Vx 3β 3/ [jβ ̂  ωα Λ / maps TC(x) one-one onto /?] .

With the obvious interpretation of the constant symbols, A is a model of T.
Suppose <#,£> is some other model of T. The infinitary sentences of T insure that
we can assume

Let xe£ and suppose ye 5 is such that

Pick β^Nα such that

<£, £> 1= 3/ [/ maps y one-one onto β]

by the last axiom of T. Then there is some F^βx β such that <#, £> is a model of
<y,F|»^ <β,F> and hence "</?,,F> is well founded" is true in <£,£>. The crucial
step in the proof is to verify that

(1) <jβ,F> really is well founded.

Suppose that <β,F> is not well founded and let X^β have no F-minimal
member. But card(X)<Kα+1, so XeA^B, and hence <£,£> is a model of
"X has no F-minimal element", which is a contradiction. Thus (1) is established.
But then the transitive set isomorphic to <β,F> is, on the one hand, (y,E\ y> and,
on the other, in H(Kα+1). Thus yeH(Kα+1) so xeίf(Kα + 1). In other words
04,6> = <B,E>. D

A strengthening of 1.4 is given in Exercise 1.12.
If we had wanted only to prove that H(Kα+1) is not Σ1 compact, we could

have come up with much simpler examples. A good example does more than
just refute (the function of a counterexample), it makes almost explicit some of
the ideas needed for understanding and generalizing existing results. Most of
the examples in this section are good examples.
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To understand the above example, the student should consider what happens
to the proof of 1.4 if we replace <//(Nα+1),e> by some countable, transitive set
<^4,e> elementarily equivalent to it. Something must go wrong since A is Σί

compact. If he works through the proof he will see that the only step that fails
is the proof of (1). This suggests the following proposition.

1.5 Proposition. Let A be admissible.
(i) If A is self-definable then there is a Σ1 theory T(<) of LA which pins down

ordinals greater than those in A.
(ii) If A is strongly self-definable then there is a single sentence φ(<) of LA

which pins down ordinals greater than those in A.

Proof. We prove (i); the proof of (ii) is the same. Let Γ0 be a theory which self-
defines A and let T=T0 + "<=et ordinals". Then every model 95Ϊ of T has
<9CR of order type o(A). D

Thus, self-definable admissible sets show that the theorems of § III. 7 on the
ordinals pinned down by Σ1 theories of LA cannot go through in general; for
example, they fail when A = /f(K1). To get an example where a single sentence
pins down large ordinals, we need some strongly self-definable admissible sets.

A set A is essentially uncountable if every countable subset X^A is an element
of A.

1.6 Proposition. Let A be an essentially uncountable admissible set and let
IB = HYP(A). Then B is strongly self -definable.

Proof. Let ψ be the conjunction of the following:

ΛKPU,
Vt;3α[xeL(A,α)],

Vα 3r[r c= A Λ r is a pre-wellordering of type α] .

Since MYP(A) is projectible into A, HYP(A) is a model of the last conjunct and
hence of ψ. The well founded models of the first four conjuncts are isomorphic
to HYP(A) so it remains to see that all models of φ are well founded. Using the
rank function we see that if <£',£> is a non-wellfounded model of ψ then there
is a descending sequence of ordinals in <£',£> so it suffices to see that the ordinals
of <#',£> are wellfounded. Let aεB' be an "ordinal" of <£',£>. Apply the last
conjunct of ψ to get an re A such that

<£',£> !="r has order type a" .
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We need to see that r really is well ordered. Suppose

...rxπ + 1rxπr...rx 1

is an r-descending sequence. Let b = {xn\n<ω}. Since b is a countable subset
of A, be A. But then beB' and b has no r-minimal element, contradicting

<£',£> N"r is well ordered". D

For example, if cf(κ)>ω then A = ΉΎP(H(κ)) is strongly self-definable.
Hence LA is not Σί compact and there is a single sentence of LA which pins down

Our next examples have to do with attempts to generalize the Completeness
and Extended Completeness Theorems of § III.5 to arbitrary admissible fragments.

1.7 Definition. Let A be an admissible set.
(i) A is validity admissible if the set of valid infinitary sentence of A is Σ^ on A.

(ii) A is Σ! complete if, for every Σί theory T of LA, the set

is Σ! on A.
Don't forget, in reading 1.7, that the extra relations which may be part of A

count in the definition of Σt. It is also important to notice that Σ^ completeness
implies validity admissibility.

1.8 Proposition. Let A be admissible.
(i) // A is self-definable then A is not Σj complete.

(ii) // A is a strongly self-definable pure admissible set then A is not even
validity admissible.

Proof. Recall, from § V.I, that there is a Γ^ subset of A which is not Σ t. Hence,
there is certainly a Π} subset of A which is not Σ^ Thus the result follows from
the following lemma. D

1.9 Lemma. Let A be admissible, let T be the theory which self-defines A in 1.8
and let X 9ΞA be Πj on A. There is an A-recursίve function f such that for every
xeA we have xeX iff /(x)eCn(T).

Proof. Suppose

xeX iff A N V R φ ( R , x ) ,

where R is a symbol not in the language of T. In case (i) of 1.8 we may assume that T
contains the diagram of A. Then xeX iff (p(R,x)eCn(Γ).

In case (ii) we settle the question "xeXT by checking whether the conjunction
of T and the diagram of TC({x}) implies φ(R, x). D
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1.10 Corollary. If A is pure and strongly self-definable then there are valid sen-
tences of LA which are not provable by the axioms and rules of Chapter III.

Proof. The set of provable sentences is a Σ1 set. D

Thus, #(Kα+1) is never Σ1 complete, even if α = 0, and HYP(/f(Kα+1)) is
never validity admissible.

We conclude this section with a counterexample to the interpolation theorem.
It has a rather different flavor and will not be used in the following sections.

1.11 Proposition. Let A be an admissible set with an uncountable element and
o(A)>ω. The interpolation theorem fails for LA.

Proof. Let φ(<) characterize <ω, <> up to isomorphism and let ψ be

where aeA is uncountable. (All we reed about φ is that it has only uncountable
models and has no symbols in common with φ.) Then </>,^eA and N=φ-»> — \ψ.
If the interpolation theorem held for LA then there would be a sentence θ in-
volving only equality such that l=φ->θ and t=^->— iθ. Thus θ is true in all
countable infinite structures since such structures can always be turned into
models of φ. Similarly, ~\θ is true in all structures of power ^card(α). But this
contradicts :

(2) A sentence θe Looω involving only equality is true in all infinite structures
or in none.

The proof of (2) is easy, given some notation and results of § 5, which we assume.
Let 9K = <M, =>, 91 = <ΛΓ, => be infinite. Let / be the set of all finite one-one
maps from M0^M onto N0^N. Then

so S R s S l ί L . Thus W\=θ iff

1.12 — 1.17 Exercises

1.12. Suppose 0<α<Kα and card (501) <Kα. Show that H(KΛ)m is self-definable.
This includes 1.4 and //(KJ as special cases.

1.13. A sentence φ(<) (or theory Γ(<)) pins down α exactly if φ has models and
every model 50ί of φ has <αίϊ of order type exactly α.

(i) Prove that if A is self-definable (strongly self-definable) then there is a Σ1

theory T of LA (sentence φ of LA) which pins down o(A) exactly.
(ii) Let A be a resolvable admissible set and let T be a Σί theory of LA which

pins down o(A) exactly. Show that A is self-definable.
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1.14. Let A = HYP(H(Xα+1)). Show that there is a sentence of LA which pins
downKα + 2.

1.15. Show that the results of § IV.l fail in the uncountable case.

1.16. Show that if A is essentially uncountable then every inductive relation on A
is Δj. Conclude that not every Π{ relation on A is inductive on A, for A essentially
uncountable.

1.17. Improve 1.8 (ii) by allowing A^ admissible above ΪR.

1.18 Notes. Counterexamples to compactness go back to Hanf [1964] and earlier
unpublished work of Tarski. Karp [1967] showed that, for cf(α)>ω, the set
#(Kα) is not validity admissible. The results on pinning down large ordinals (1.14
for example) are due to Chang [1968]. The counterexample to interpolation is due
to Malitz [1971]. We have tried to unify the various examples by centering them
on the notion of self-definable, admissible set. Our notion is suggested by, and
equivalent to, that of Kunen [1968].

Kreisel [1968] has observed that the counterexample to interpolation has
the defect that it might disappear by some reasonable strengthening of the logic
LA or L^. The other examples of this section do not have this defect. The situation
with compactness, say, could only get worse if we were to increase the expression
power of the logic by introducing some new quantifier or connective. Rather
than strengthen LA we must look for strengthenings of the notion of admissibility
which coincides with the old notion in the countable case. This is taken up in
Chapter VIII.

2. A Weak Completeness Theorem
for Arbitrary Fragments

The model theory of second-order logic is totally unmanageable and seems
destined to remain so. Infinitary logic is an attempt to dent second-order logic
by studying logics which have greater expressive power than Lωω but still have a
workable model theory. The examples of § 1 show that uncountable fragments
behave more like second-order logic than do countable fragments. This makes the
problem of developing a theory which handles arbitrary admissible fragments
very intriguing.

In spite of, or because of, the "counter'-examples, the model theory of arbitrary
admissible fragments is becoming a rich subject. In this section we present some
basic tools for studying these logics. In particular, we prove an analogue of the
Extended Completeness Theorem of § III.5. Recall our line of attack on the
problem of completeness in Chapter III:

(1) We defined the notion: validity property for L A .
(2) We proved that if LA is countable then a sentence φeL A is valid iff φ

is in every validity property.



2. A Weak Completeness Theorem for Arbitrary Fragments 263

(3) We showed that if LA is an admissible fragment then the intersection of
all validity properties is a validity property which is A-r.e., that is, Σί on A.

When we drop the assumption that LA is countable step (2) breaks down.
In general, a sentence may be true in all models without being in every validity
property (i.e., without being a theorem of LA) as Corollary 1.10 shows. In this
section we attack the problem of completeness as follows:

(Γ) We define a stronger notion: supervalidity property for LA.
(2') We prove that a sentence <peLA is valid iff φ is in every supervalidity

property.
(3') In Chapter VIII we will introduce a semantic notion of r. e., called strict Π},

and show that the intersection of all supervalidity properties for LA is a strict Π}
set. When A is countable the notion of strict Πj reduces to Σ: on A.

It is convenient in this part of the theory to work with sufficiently rich frag-
ments, so-called Skolem fragments with constants.

2.1 Definition. Let LA be a fragment of L^ and let C be a (possibly empty) set
of constant symbols of L such that every formula of LA contains at most a finite
number of constants from C.

(i) LA is a Skolem fragment with constants C if there is a one-one function
which assigns to each formula of LA of the form

, 3; !,..., 3>«),

φ contains no constants from C and

y^ ",yn are not bound in φ

an n-ary function symbol

' 3xφ

of L not occuring in φ; it is called the Skolem function symbol for 3xφ(x9yί9 ..., yn).
If C = 0 we just say that LA is a Skolem fragment.

(ii) Let LA be a Skolem fragment with constants C. The Skolem theory for
LA, denoted by 7Jkolem, consists of all sentences of LA of the form

for all formulas 3xφ(x, _ y l 5 ..., yn) as in (i). An L-structure $01 is a Skolem structure
for LA if

The extra freedom permitted by the set C of constant symbols is crucial for
many applications. For now we can barely hint at their use by the following
lemmas.



264 VII. More about !_„„

2.2 Lemma. Let LA be a Skolem fragment with constants C and let & be any

validity property for LA with TSkolem^@. Then for any formula

,y !,..., yπ, C 1 ? . . . ,c f c )

of LA the sentence

is in 2, where F is the Skolem function symbol for

Proof. By the definition of 7^kolem,

is in T^koiem — ̂  Using the axioms for V and modus ponens shows that the de-
sired sentence is in <2). D

If LA is a fragment and C is a set of new constant symbols we use LA(C) to

denote the fragment which consists of all substitution instances of formulas in
LA by means of a finite number of constants from C. If C = {c l9 . . . , cπ} we some-
times use LA(c l 5 ..., cπ) for LA(C).

2.3 Lemma. Let LA be a Skolem fragment with constants C0 and let C be a set
of new constant symbols. Then LA(C) is a Skolem fragment with constants C0uC.

Proof. Immediate from the definition. D

The next result shows us that we lose nothing (we gain a lot) by restricting
ourselves to Skolem fragments and Skolem structures as far as the existence of

models is concerned.

2.4 Proposition. Let LA be a fragment of Looω. There is an expansion L' of L by
new function symbols with the following properties:

(i) Let LA be the set of formulas which result from a formula of LA by sub-
stituting a finite number of terms from L'. Then LA is a Skolem fragment. Further-

more, card ( LA )= card (LA) and every Skolem function symbol is in L' — L
(ii) Every L-structure 9W has an expansion 501' = (501, . . .) to a Skolem structure

for L;.
(iii) // LA is an admissible fragment then we can define L' so that LA is Δ t on

A and such that the symbol P3xφ is an A-recursive function of
In particular, TSkolem is then an Ik-recursive set of sentences of LA.

Proof. Let L°=L, L A =L A . For each formula

' , y !,..., ym)
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of LA in which yί9...9ym are not bound, add a new function symbol

to L" and let LA

+1 be the resulting fragment. Let L' = \JnL
n so that L^jJ^L^.

Part (ii) is obvious from thus construction. (See Lecture 13 of Keisler [1971] for
more details, if necessary.) Part (iii) is obvious if we just code up F3jc<p by something
like <17, 3xφ>. D

We now come to the notion of supervalidity property.

2.5 Definition. Let LA be a Skolem fragment with constants C. A validity property
S> for LA is a supervalidity property (s.v.p.) for LA (more precisely, for (LA,C)) if
Tskoiem £® and the following \J-rule holds.

\J-Rule: If \JΦ is a SENTENCE of LA and \/Φε@ then there is some
such that

The \/-rule causes supervalidity properties to behave in quite a different
manner than ordinary validity properties. For example, it prevents the inter-
section of all supervalidity properties for LA from being an s. v. p. The next lemma
shows just how strong the \/-rule is.

2.6 Lemma. Let LA be a Skolem fragment with constants and let 2 be a validity
property for LA with ^kolem^^. Then Q) is an s.v.p. iff Q) is complete, that is,
iff for each sentence ι//e LA

or (

Proof. Assume Q) is an s. v. p. Since all axioms of LA are in

so the conclusion follows by the \/-rule. Now assume 2 is complete, \/Φ a
sentence of LA, \/ΦeQ). If for each φeΦ, φφ@, then, for each φeΦ,—\(pE@;
so, by the /\-rule K3,

/\ {-\φ I φe Φ} E@ .

But this sentence is just ~ \/Φ. Since Q) is a validity property it cannot have both
\JΦ and ~\]Φ as members, so φe@ for some φeΦ. D

Note that if 3) is an s.v.p. for LA and φ(vl9 ..., vn)e LA then

iff \/vί9...9vnφ(vί9...9 vn)
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so that 3f is determined by its sentences. We say that an L-structure 9JI is a model of
2 if 9W is a model of all sentences in ® .

2.7 Definition. Let 9Jί be a Skolem structure for the Skolem fragment LA (with
constants). The supervalidity property given by $R, denoted by Q)^ is the set
of all φ(ι? !,..., t Je LA such that

In the notation of III.4.2, ®a» = Λw It is clear that @m is an s.v.p. for L^.
If a sentence φeLA is in all supervalidity properties then it is in all ®OT; hence
it is true in all Skolem structures for LA. This gives the trivial half of the next
theorem.

2.8 Theorem (Weak Completeness Theorem for Arbitrary Skolem Fragments).
Let LA be a Skolem fragment with constants C.

(i) A sentence φ of LA is true in all Skolem structures for LA iff φ is in every
supervalidity property.

(ii) Let T be a theory of LA, φ a sentence of LA. Then φ is true in every Skolem
structure Wl which is a model of T iff φ is in every s.v.p. 2 with Ί^Q).

Proof, (i) is the special case of (ii) where T=0. The proof of (<=) in (ii) is immediate
by the remarks following Definition 2.7. Most of the work for proving (=>) was
done back in the proof of the model existence theorem. We break its proof up in
two lemmas to make this clear and because we need one of the lemmas (2.9) later.

Compare the next lemma with the definition of consistency property on p. 85.

2.9 Lemma (Weak Model Existence Theorem). Let L have at least one constant
symbol and let LA be any fragment of L^. Any set S of sentences of LA which
satisfies the following rules has a model

Consistency rule: If φ is atomic and φeS then (—\φ)φS.
-(-rule: If (-κp)eS then (~φ)eS.
/\-rule: If /\ΦeS then for all φeΦ, φeS.
V-rule: If (Vvφ(υ))eS then for each closed term t of L, φ(t/υ)eS.
\J-rule: If \/ΦGS then for some φeΦ, φεS.
3-rule: If (Jvφ(v))eS then for some closed term t of L, φ(t(v))eS.
Equality rules: For all closed terms ί l5ί2 of L:

if (tl = tz)eS then (t2 = ti)GS, and

if φ(ίι),(fιΞΞf 2)eS then φ(ί2)eS.

Proof. The proof of the Model Existence Theorem was in two stages. We first
showed how to construct a set sω of sentences having the above properties (plus
some others involving constants from C) and then showed how to construct a
model from such a set. The second stage of that proof constitutes the proof of
this lemma. D
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2.10 Lemma (Alternate form of Weak Completeness Theorem). Let LA be a
Skolem fragment with constants C. Let Q> be an s.v.p. for (LA,C) and let S be the
set of sentences in Q). Then S is true in some Skolem structure for L^; i.e., Q) has a
model.

Proof. Since I^kolem ̂  ̂ , any model of S will be a Skolem structure for LA. We
need only prove that S satisfies the rules of Lemma 2.9. Since @) contains the
axioms (Al) — (A 7) and is closed under (Rl) — (R3), these are all routine except
for the V and 3 rules. The \/-rule for S follows from the \/-rule for Q). To check
the 3-ruίe, suppose

By Lemma 2.2,

for the appropriate function symbol F. Thus,

as demanded by the 3-rule. D

Proof of Theorem 2.8 (ii) (=>). Suppose TvTSkolem\=φ. We need to see that if
2 is an s.v.p. with T^& then φe^. If not, then —\φe& by Lemma 2.6. Then,
appying Lemma 2.10 we would get a Skolem model of T\j{—\φ], a contra-
diction. D

We conclude this section with a result which allows us to construct interesting
supervalidity properties and hence, by Weak Completeness, interesting models.
It often gives us the effect of the ordinary Compactness Theorem for Lωω. Given
a Skolem fragment LA with constants C0 and a Skolem fragment KB with con-
stants Cί we write

if L A cK B , CO^CΊ, and if F3xφ is the Skolem function symbol assigned to
3x φ(x,yl,...,yn) by LA, then it is also the one assigned to 3x φ(x,y1,...,yj by KB.

2.11 Union of Chain Lemma. Let I be a lineary ordered index set and suppose
that, for each ie/, L^ is a Skolem fragment with constants Ct and Q){ is a super-
validity property for (Lj^Q. Suppose, further, that for all ijel, with ί<j,

.) and ^<Ξ%

Let KB = U£6/ Lίλ Q =y i6/ Ci9 &„ =(Ji6/ ®{. Then KB is a Skolem fragment
with constants C ,̂ and Q)^ is a supervalidity property for (K^C^).
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Proof. Simple checking of the definition shows that KB is a Skolem fragment
with constants Q. The Skolem theory for (K^CJ is the union of the Skolem
theories for the various (L^C,) so the Skolem theory for (K^C^) is contained
in Q)^. Similarly, the axioms (Al) — (A 7) for KB are all in Q)^. It is a trivial matter
to check (Rl), (R2) and the \/-rule. This time it is the /\-rule which requires a
moment's thought. Suppose /\ΦeK B and that, for each φeΦ, φe^^. We
need to check that f\Φe&^. Choose i so that /\Φel_A

l ). We claim that, for
each φeΦ, φe^ (so that ΛΦe^ c^J. Otherwise, suppose φ = φ(ι;1,...,ι;ϊl)eΦ
but that <ρφ®i. Then

By completeness (Lemma 2.6),

-Ί\fvί9...,vnφ(v1,...9υn)e®i.

But φ(vί,...,vn)e@ao so for some j>i9 φ(vΐ,...,vn)e&j. Hence

But since Q)^Q) p this contradicts the consistency requirement for the validity
property 3) y D

All known applications of 2.11 follow from the following very special case.
It exhibits the role of constants in our notion of Skolem fragment.

2.12 Union of Chain Lemma (Special form). Let LA be a Skolem fragment. Let
C = {cπ |0<tt<ω} be a countable set of new constant symbols. Suppose that for
each n, Q)n is an s.v.p. for LA(c l9...,cn) and that Q)n^Q)m for n^m. Let
2^=\Jn &„. Then &„ is an s.v.p. for LA(C).

Proof. (LA(c1,...,cJ,{c1,...,cn})c(LA(c1,...,cJ,{c1,...,cm}) for n^m so the re-
sult follows at once from 2.11. D

Applications of the results of this section appear in the next two sections as
well as in Chapter VIII.

2.13—2.16 Exercises

2.13. Let LA be a fragment if L^ and let 9JΪ, 91 be L-structures. $R is an
L ̂ -elementary substructure of 91, written

if 9Jίc9l and for every ^^....^^eL^ and every α1,...,απe9Jί

,...,a iff
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(i) Prove that if 9JΪ c ϊt then SR X 91 ( LA) iff for every formula 3x φ(χ, ̂  , . . . , yn) ε LA

and every α l 5...,απeSOl, if

then there is a beWl such that

(ii) Prove that if

for α</?<y and 9M = (J^<yaR^, then

for all

2.14. Let LA be a Skolem fragment with constants and let 9M, 91 be Skolem struc-
tures for LA. Show that if 9M<=9i then 9W<Ή(LA). [Use 2.13 (i).]

2.15 (Downward Lowenheim-Skolem-Tarski Theorem). Let LA be a fragment
of L^ and let κ^card(LA). Let 50Ϊ be an L-structure, X^Wl, κ<card(95ϊ),

κ:. Prove that there is an 91 with

A), card(Ή) = /c, and X^Vl.

[By 2.4 you may assume LA is a Skolem fragment and that 90Ϊ is a Skolem struc-
ture for LA.]

2.16. If $R is an L-structure and X^M then Hull^X) is the smallest sub-
structure of 9JZ containing X.

(i) Prove

card (HullTO(X)) = max (K0? card(L), card(X)} .

(ii) Prove that if 50Ϊ is a Skolem structure for a Skolem fragment LA and
X^Wl then

2.17 Notes. The essential content of the Weak Completeness Theorem is as old
as the Henkin [1949] proof of the completeness theorem for Lωω. As we have
tried to suggest in 2.9, it is implicit in the Model Existence Theorem. Only recently,
however, has it become clear that the result is useful enough to deserve to be
called a Weak Completeness Theorem. (The perjorative "weak" is there for the
same reason as in § III.4; there is no nice notion of provability to go along with it.)
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The first explicit statement of the Weak Completeness Theorem appears as
Lemma 1.5 in Barwise-Kunen [1971], where it was used to attack the model
theory of uncountable fragment.

Our treatment of Skolem fragments is a modification of that contained in
Lecture 13 of Keisler [1971]. In particular, the exercises are proven there (in the
countable case).

3. Pinning Down Ordinals: the General Case

Several of the examples in § 1 hinge on our ability to pin down ordinals larger
then o(A) by a Σ^ theory of LA, for certain uncountable admissible sets A. We
will see, in fact, that a good deal of the model theory of uncountable, admissible
fragments revolves about this question of pinning down ordinals. For this reason
we choose it as the first application of the Weak Completeness Theorem.

The proof of the next theorem proves more than we state. In fact, it will
allow us to compute exactly the ordinals pinned down by theories, once we
develop some recursion theoretic machinery in the next chapter. For now we
content ourselves with a crude statement of the result.

3.1 Theorem. Let T = T( <,...) be a set of sentences of Lr^ω. If T pins down
ordinals then there is a ξ such that all ordinals pinned down by T are less than ξ.

Proof. We may assume that T has models since otherwise ί = 0 will do. We
may also assume that if T pins down α and β<a the T pins down β, by a
remark in § III.7. By 2.4 we may assume that T c LA where LA is a Skolem
fragment and that ^koiem^^- We want to set things up to apply the special
form of 2.12, the Union of Chain Lemma, so let C = {cn\0<n<ω} be a set of
new constant symbols. Let Sn be the set of all supervalidity properties 2 for
LA(c l 5...,cn) (this is just LA if n = 0) such that

Ί^Q) and (c2<

(For rc = 0,l, none of the sentences involving the ct occur.) Since T has a model
$R, the s.v.p. &m given by 9JΪ is in S0, so S0^0. Let

and put an ordering < on S by

if 2^2' and the (unique) n such that ^'e®π is greater than the unique m
such that ^eSm. (Note that for ^eS, we can tell which n has @εQn by
just seeing what the largest n is such that (cn = cn)e@.) We claim that

(1) <S,-<> is well founded.
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For suppose

Let 2ao = (jn^n. By the union of chain lemma, 3f^ is an s.v.p. and hence, by
the Weak Completeness Theorem, there is a model

of Q)^ where an is the interpretation of CΛ. But then 9JΪNT, and an + ί<an for
all n<ω which contradicts the hypothesis that T pins down ordinals. This
proves (1).

Using (1) it is easy to get an upper bound for the ordinals pinned down by T.
By (1), each ^eS has an ordinal rank p(β\

and <S,<> has a rank

We will prove that

(2) if ^eSn and (^Ol9aί,...9an)^=Q then the <9CW predecessors of an have
order type ^p(@) when rc>0; if n = 0 then <m has order type

Since every SOΪI=T is a model of ί^eSo, and p(^5m)<ξ, (2) gives us:

(3) every model 9)1 of T has <aι of order type less than ξ,

which proves the theorem. We prove (2) by induction on p(2\ Suppose
α = p(ί^), (yjl,aί9...,an)\=@ but that the predecessors of an have order type >α.
(The case n=Q is essentially the same.) Let an + ί be the αth member of the field
of <9Cίί as ordered by <m and let Q)' be the s.v.p. given by

Then &fε<5n + ί, and Q)^Q)' so Q)' <Q) and hence p(&')«x. But TO' is a model
of Q)' with the precedessors of an + ί of order type α>p(^'), contradicting the
inductive hypothesis. D

Without Theorem 3.1 we could not be sure that the next definition made sense.

3.2 Definition. Let A be an admissible set.
(i) /z(A) is the least ordinal not pinned down by some sentence φ( <,...) in

some admissible fragment LA.
(ii) /ιΣ(A) is the least ordinal not pinned down by some Σl theory of some

admissible fragment LA.
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In the next chapter we will determine exact recursion-theoretic descriptions
of ftΣ(A) and, in most cases, of fo(A).

Let us collect together remarks made at various places.

3.3 Proposition. Let A be admissible.
(i) /ιΣ(A) is the sup of the ordinals pinned down by Σl theories of LA; similarly,

h(A) is the sup of the ordinals pinned down by single sentences of LA.
(ϋ) MA)>MA)>o(A).

(iii) // A is countable then

(iv) // A is Σ! compact then

Proof. Only (iv) needs proving. Suppose A is Σ: compact but that /ιΣ(A)>/ι(A).
Let T(<) be a Σ! theory which pins down some β^h(A). Add new constant
symbols c l5...,cn,... and let T" be T plus the axioms

Since β^/ι(A), every A-finite subset of T has a model which is not well founded
so every A-finite subset of T has a model. Thus, by Σl compactness, T' has a
model, a contradiction. D

^) is an example of a set A with /zΣ(A)>/z(A) = o(A). HYP^α^)) is
an example with /ίΣ(A) = /ι(A)>o(A).

The next theorem is extremely useful in computations which involve hΣ(A)
and h(A).

3.4 Theorem. Let A be admissible and let F: Ordπ-> Ord be an n-ary function
on ordinals which is ΣL definable in KPU.

(i) α1? . . . , απ < /ιΣ(A) implies F(αl9 . . . , απ) < hΣ(A).
(ii) α1,...,αn</z(A) implies F(α1,...,αn)</z(A).

Proof. We first prove (i) in case n = 2. The case for n^2 is similar. Let

F OrdxOrd^Ord

be Σ! definable in KPU, hence in the stronger KP, say by the Σ! formula
σ(xί9x2,y):

(4)

(5) for all α1,α2¥Nσ(α1,α2,F(α1,α2)).
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Suppose α1,α2<hΣ(A) and let /? = F(αl5α2). We need to prove that β<hΣ(A).
Let Ti(<1, R x), T2(<2, R2) be Σl theories which pin down α1? α2 respectively, the
case with more relation symbols being similar. We will define a Σx theory T(<)
which pins down β, but first let us exhibit its intended model 50Ϊ, the one with
<m of type β. Let K be a regular cardinal, α 1 ?α 2<κ, so that β<κ. Let

3R1 = <M1, < 1 ,Λ 1 >NΓ 1 , <! of order type α l 9

50Ϊ2 = <M2, <2,^2>^72, <2 of order type α2.

By the downward Lδwenheim-Skolem Theorem (Exercise 2.15) (and the fact that
isomorphic models satisfy the same sentences) we may assume

α^MjC/c and <. = e|kα ί.

Now let

, <,M1? <1,R1,M2, <2,Λ2,α1,α2,)8>

where < =ef j8 and α l 9 α2 and /? are treated as elements, not as subsets. Then $R
is clearly a model of the following set of sentences, where U f is interpreted as Mp

cf is interpreted as αf and d as j8.

φ ( U l ) for all

φ(U2) for all φeT 2,

KP,

c1? c2,d are ordinals,

"< =efd",

σ(c l9c2,d).

If we call the above set of sentences T(<, ...), then 501 is a model of T with <9cri

of order type β. We need to prove that every model 501 of Γhas <αrl well ordered.
Thus, let

be any model of T. Identify the well-founded part of <M ,£> with an admissible
set <£,e> by the Truncation Lemma. Since, for ί = l,2

t is well ordered, so a± and a2 are real ordinals and aί9a2eB. By (4),
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By (5), and the persistence of Σ formulas,

and, since

we have by persistence,

, E> 1= σ(aί9 α2, F(aί9 a2))

so that b = F(aί,a2). Since b = F(aί9a2)eB, and <=e\b, < is a real well-ordering.
This proves (i).

The proof of (ii) is exactly the same when o(A)>ω, since then we may form
/\KP and the rest as a single sentence of LA. If o(A) = ω we must replace KP
by a single sentence θ of ZF- Power (and hence true in H(κ) since K is regular)
strong enough to insure that the standard part of any model of θ is an admissible
set. We leave this to the student. D

All we will actually need of Theorem 3.4 is the following special case.

3.5 Corollary. Let A be admissible. Then /ιΣ(A) and /ι(A) are closed under ordinal
successor, ordinal addition, multiplication, and exponentiation.

Proof. We have shown that all these functions are Σt definable in KP. D

The final result of this section seems almost obvious, but it needs proof.

3.6 Theorem. Let A be admissible.
(i) // T is a Σ! theory of LA which pins down ordinals then there is a ξ</ιΣ(A)

such that every ordinal pinned down by T is less than ξ.
(ii) // φ is a sentence of LA which pins down ordinals then there is a ξ< h(A)

which is greater than all ordinals pinned down by φ.

Proof. This is a typical example of a proof in soft model theory since the proof
works for any logic. We prove (ii). We may assume that the sentence φ(<) pins
down an initial segment {β\β<ξ}=ξ of ordinals. We show that some other
sentence ψ( -<,...) pins down ξ. As before, before writing down ψ, we describe
its intended model 9JI, the one with -<*" of type ξ. To simplify matters we assume
φ = φ(<,R), where R is binary, contains no other symbols. For each β<ξ, let

$R0 = <M0, <β,Rβy, yjlϊ=φ and <β have order type β.

Since isomorphic structures satisfy the same sentences, we can rearrange SJΪ^ a
bit and assume β^Wlβ and <β=e\β.
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Define 9M = <M,C7,<JV,S1,S2> where

N(β,x) iff

β<y iff βεγεξ,

SM9y9z) iff

S2(β,y,z) iff

Thus 9JΪ is a structure where -<m has order type ξ. Let ιA(X, • ••) be the sentence
described as follows. Let 0(x,N,S l5S2) result from φ(<,R) by replacing

y<z by S^x^z),

R(y,z) by S2(x,y,z),

) by Vy(N(x,y)-> ), and

by

taking care to avoid clashes of variables. Let φ be the conjunction of:

(6) Vx[U(x)^θ(x,N,S1,S2)];

(7) "U is linearly ordered by -<"

(8) V

It is clear that 501 is a model of ψ since (6) just asserts that each Wβ is a model
of θ. We need to show that any other model

of ψ has •< well ordered. To do this it suffices to prove that for any xe L7, the -<
predecessors of x are well ordered. Let

aw, =<M,, <„/?,>

where Mx = {y\N(x,y)}, y<xz iff S^x^z) and Rx(y,z) iff S2(x9y9z). By (6),
$Jlx\=φ, so <x is a well-ordering and <x agrees with < on the predecessors of x.
Thus ^ does pin down ordinals, ξ among them. D

3.7—3.8 Exercises

3.7. Let A be admissible, o(A) = ω, where A is Σx compact. Show that
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3.8. Let A be Σx compact and suppose that α = o(A)>ω is such that for some
xeA,

α = leastβ (L(x,β) is admissible).

Prove that

fcΣ(A) = o(A).

3.9 Notes. Theorem 3.1 is due to Lopez-Escobar [1966]. His proof, however,
was by way of Hanf numbers and gave no clue as to the exact description of /z(A)
or /ιΣ(A), even for A = H(Kα+1). The proof given here is taken from Barwise-
Kunen [1971]. Theorem 3.4 is also taken from there.

There are, by the way, admissible sets which are Σ! compact but such that
/ιΣ(A)>o(A). This follows from Theorem VIII.8.3. It is known that /ι(A) need
not be admissible. It is not known whether /ιΣ(A) is always admissible, though it
seems unlikely.

4. Indίscernίbles
and Upward Lowenheίm-Skolem Theorems

In this section we show how to use the Weak Completeness Theorem and the
ordinal hΣ(A) to tackle some model theoretic problems for LA. The material in
this section is not used elsewhere in this book.

The simplest result to state is the following theorem, stated in terms of the
Beth sequence. Given a cardinal /c, define the cardinal Uα(κ;) by induction on α:

We write 5α for iα(0), but warn the reader that some authors use 5α for
With our definition, 3Λ = c

4.1 Theorem. Let A be an admissible set, let κ = card(A) and oc = hΣ(A). Let T
be a ΣI theory of LA. //, for each β<α, T has a model of power ^2β(κ), then
for any λ^κ, T has a model of power λ.

The proof of 4.1 is given in 4.13 below. Actually the proof of this theorem is
no more complicated for uncountable LA; it is just that for countable A we
know that hΣ(A) = o(A). Thus 4.1 gives us the following corollary.

4.2 Corollary. Let A be a countable, admissible set and let T be a Σt theory of
LA //, far each β<α = o(A), T has a model of power ^^(K0), then T has a
model of each infinite power. D
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If Agfl is not HFgjn then it is easy to show that for each βeAm there is a
sentence of LA which has a model of power ^(K0) but none larger (see Exercise
4.18), so 4.2 is best possible for A^HF^. For A^^HF^, L A =L ω ω so we
know a better result.

For applications, there are more useful upward Lδwenheim-Skolem Theorems
in terms of two cardinal models.

Assume our language L has a unary symbol U. A model 9JΪ
for L is a model of type (TC, λ) if

caτd(U)=λ.

A set T of sentences of Looω is said to admit (K, λ) if T has a model 50Ϊ of type (K, λ).

4.3 Theorem. Let LA be an admissible fragment, let τc = card(A), a = hΣ(A). Let
T be a Σ! theory of LA. // for each β<a there is a λ^κ such that T admits
(2β(λ),λ)9 then T admits (δ,κ) for all cardinals δ^κ.

Theorem 4.1 is an easy consequence of 4.3 by adding a new symbol U to L
without mentioning it in the theory T of 4.1. On the other hand, a direct proof
of 4.1 is a bit simpler than the proof of 4.3, and since the student may be interested
in 4.1, we will also give a direct proof of it.

4.4 Corollary. Let T be a Σ1 theory of a countable admissible fragment LA.
Suppose that for each /J<α = o(A), there is a λ^ω such that T admits (3β(λ),λ).
Then T admits (λ,ω) for all

Proof. Immediate from 4.3 since /zΣ(A) = o(A). D

4.5 Corollary (Morley s Two Cardinal Theorem). Let T be a countable theory of
Lωιω. Suppose that for each a<ω1 there is a λ^ω such that T admits (2j(λ),λ).
Then T admits (λ,ώ) for all

Proof. Immediate from 4.4 by putting T in some countable admissible frag-
ment. D

The reader of Keisler [1971] will have discovered many applications of
Corollary 4.5. Some of these have routine generalizations using 4.3.

Two-cardinal models are extremely natural when one is working with models
of set theory of urelements. How many times have we written a typical model
of KPU as a single sorted structure

In fact, we can use such models to prove that Theorem 4.3 is an optimal result
of its type, except for trivial generalizations using downward Lόwenheim-Skolem
arguments.
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4.6 Example. Let A be an admissible set with κ = card(A), α = /ιΣ(A). For any
jβ<α one can find a Σί theory T=T(U,...) of Luanda ξ,β<ξ<hΣ(A) such that

(i) T has a model of type (^(κ:),κ:).
(ii) // SK is a model of T of type (λ,δ) then λ^5ξ(δ). In particular, T has no

model of type (5α(κ:),κ).

Proof. Let T0 = T0(<) be a Σ! theory of LA which pins down β. Let £</zΣ(A)
be greater than all ordinals pinned down by T0, by Theorem 3.6. Before de-
scribing T we describe its intended model, the one of type (3β(κ),κ). Let M be
a set of urelements of power K. Let

be a model of 7^ where < has order type β. By the Downward Lowenheim-
Skolem theorem we may assume card ($R0)< max (K, card (β)) so we may as
well assume M0cMuβ. Now let

2R = (MuVTO(jS),M,e,F,M0, <,...)

where, by definition,

F0(a) = rank of a in VM,

F(ά) = the F0(fl)-th member of < .

The theory T is defined as follows. For each xeA let cx be a constant symbol,
so there are K of them. T consists of

cx^cy for all

U(cJ for all xεA,

Extensionality (as in KPU),

φ(Uo) for all φeT 0 .

Here U and U0 are new unary symbols. The theory T clearly holds in M. On
the other hand, if 9K = <Λ,17,E,F,170, <,...> is another model of T then
<L/0, <,...> 1=7^), so < is well ordered of order type <ξ. But then F insures
that E is well founded and of rank <ξ so <>4, 17, £> is isomorphic to a submodel
of V^ξ) and hence has card(>4)<^(card(t7)). D

We now turn to the tools for the proofs of these theorems. Anyone familiar
with the model theory of Lωω is aware of the importance of the Ehrenfeucht-
Mostowski method of indiscernibles. It plays an even more important role in
the model theory of Looω.
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4.7 Definition. Let LA be a fragment of L^, 951 be an L-structure and let <X, <>
be a linearly ordered set with X c $01. We say that <X, < > is a sef o/ indiscernibles
(for LA in 95Ϊ) if for every n and any two increasing rc-tuples from <X, <>,

we have

(m9Xl9...9xJ = (m9yl9...,yJ (LA),

i.e. the n-tuples <x1,...,xll>, <y l 5...,yn> satisfy the same formulas φ(v1,...,vn)
of LA in 951. If 95ί = <M, t/,...> then we say that <X, <> is a seί o/ indiscernibles
over U if, for every finite set w l 5 . . . ,M m e t/ and all increasing π-typles from (X9 < >

we have

(50l,u1,...,um,x1,...,xπ) = (9K,M1,...,Mm,y1,...,y I I) (LA).

The < relation on X need not be definable on 951 in the above definition.
The latter notion is really a special case of the first, for let SB = <M, [/,...>

be a structure for LA, let C = {cjMeC/} be a set of new constant symbols, and
let W = ($Jl9u)ueU be the canonical expansion of ΪR to a model for LA(C). (The
language LA(C) is defined in § 2.) Then <X, < > is a set of indiscernibles over U
for LA in 9Jί iff <X, <> is a set of indiscernibles for LA(C) in 951'.

Indiscernibles help us build large models, and hence prove our theorems by
means of the following Stretching Theorem.

4.8 Stretching Theorem. Let LA be a Skolem fragment with constants and let 9JΪ
be a Skolem structure for LA. Let (X, <) be an infinite set of indiscernibles for
LA. For any infinite linearly ordered set <7, <> there is a Skolem structure 91
for LA such that:

(i) <y, <} is a set of indiscernibles for LA in 91;
(ii) // x^ ^x,, in (X, <> and Oι< <)O in <Y, <>

(iii) In particular, card (51)^ card (Y) and 351 = 91 (LA).

Proof. Part (iii) is just part (ii) with n = 0. Since the distinguished constants of
LA do not play any role in this proof we simply assume LA is a Skolem frag-
ment. Let

C = {cy\yeY}

be a set of new constant symbols and form LA(C) as described in § 2. Then LA(C)
is a Skolem fragment with constants C. We define a set Q) of formulas of LA(C)



280 VII. More about !_„„,

as follows. Any formula of LA can be written in the form

(1) φ(vί9...9vn, cyι/vn + l9...9cyjvn + m)

where

yι<~'<ym

 in < y ><>

Put the formula (1) into Q) just in case

(2) (m9xl9...9xj\=\fvl9...,vnφ(ΰ9cyι9...9cym)

for some increasing sequence

x1< <xm in <Jr,<>,

where x< interprets cy., of course. We claim that

(3) 3) is a supervalidity property for LA(C).

If (1) is a logical axiom, then (2) certainly holds, so (l)e^. We need to see that
if φ(v9G)e@ then (—\φ(ΰ,£))φ@. If not, then we would have

(3Λ9xl9...9xm)t=Vvl9...9vnφ(ΰ9cί9...9cm),

where xί < < xm9 xί < < x'm in <Jf, < >. But this contradicts the indiscernibility
of (X9 <>. The other clauses are equally trivial. We check the \/-rule and leave
the other three to the student. Suppose ι^(c1,...,cm) = \/Φ is a sentence of
LA(C)and ^(clί...,cje®. Then

(9W,x1,...,xm)l=V*

so, for some φeΦ,

so φe^. Thus 3) is a supervalidity property.

(4) If φ(υί,...9vjG\-9 yι< "<yn, y'i<"m<y'n
 m <^<> then the following

LA(C) sentence is in 2 :

(*) φ(cyι, . . . , cyn) <-> φ(cy{, . . . , cy.n) .

To see what is going on here, suppose φ is φ(vi,v2,v3) and that

and
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To see that the sentence (*) in question is in Q) we must first arrange these
elements of < 7, < > in order. Suppose, for example, that

Thus there are only five elements in this case. Let i//(vl9...,v5) be

The definition of Q) says that (*) is in β> iff

whenever xί <x2< <x5. That is, just in case

,x4,x5 iff

whenever xί< ~<x5. This is obvious from the indiscernibility of <Jf, <>, so
this proves (a typical example of) (4). Apply the Weak Completeness Theorem
to get a model (5l,fly)yey of Q). Since (cy^cy )e® for yφy\ we can identify ay

with y. Then 91 has properties (i), (ii) of the theorem. D

Using the Stretching Theorem we can reduce our theorems to proving the
existence of models with indiscernibles, as in the next lemma.

4.9 Lemma. Let LA be a Skolem fragment with constants and let T be a theory
o/L A , TSkolemc:T. Let κ = card(LA).

(i) // T has a model with an infinite set of indiscernibles for LA then T has
a model of any power ^ K.

(ii) // Γ = T(U,...) has a model 9M = <M, I/,...) with <X, <> an infinite set
of indiscernibles over U for LA then T admits (Λ,,card(£/)) for all λ^

Proof, (i) is immediate from 4.8 (iii) and the Downward Lόwenheim-Skolem
Theorem for LA. To prove (ii) let 9K have <X, < ) an infinite set of indiscernibles
over U. Let

C = {cJ«eI7},

be as usual. Thus, <ΛΓ, <> is a set of indiscernibles for LA(C) in 9JZ'. Given
let < Y, < > be a linearly ordered set of power λ and let

be as given by 4.8, the Stretching Theorem. By Exercise 2.16, we may assume
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since this Hull also has properties (i), (ii) of 4.8. Write 91 as 31 = <N, £/',...>. We
claim that 17=17'. For suppose aeU'. Then

for some term t of LA, some M 1,...,Mmel7 and some )Ί <•"<)'„ in <Y, <>.
But, then,

so, by (ii) of 4.8,

whenever x1< <xπ in <J*f, <>. Pick such a sequence of x's. Then there is
a ueU such that

and, hence by (ii) of 4.8,

so

In other words, every member of U' is one of the original members of 17. Thus,
card (17') -card (17) but

card (Stt) = card ( L A(Q) + card ( Y)

= /c + card(C) + /l

= >L D

To construct a model with an infinite set of indiscernibles, we use the Erdos-
Rado theorem of cardinal arithmetic (Lemma 4.10) to construct "coherent sets
of /c-variable indiscernibles" and the Weak Completeness Theorem to piece them
together to get a model with a set of indiscernibles.

We use X n to denote the set

4.10 Lemma (Erdόs-Rado Theorem). Let K be an infinite cardinal and let 0 < n <ω.
Let X be a set with card(X)>5π_1(/c) and suppose [̂ ]n is partitioned into ^K
subsets, say \_X~\n = \JieICt where card(/)^κ. There is an X0^X and an i0e/
such that

card(X0)>/c and [X0]
π^Cίo.
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Proof. If the reader is not familiar with this result, he can find a proof in most
advanced books on set theory, in Keisler [1971] or in Chang-Keisler [1973]. D

Let SOΪ be a structure for L and let <ΛT, <> be linearly ordered with X^Wl.
Let k<ω be fixed. We say that (X, <> is a set of k-variable indiscernibles for
LA in 5DΪ if, for all increasing /c-tuples

x^ ^Xfc, J>ι< <J>fc

in (X, <>, we have

Thus < Jf , < > is a set of indiscernibles iff it is a set of /c-variable indiscernibles
for each k<ω. Also note that if <X, <> is a set of /c-variable indiscernibles
then (X, <> is a set of /-variable indiscernibles for all l<k. Any linearly ordered
(X, <> with Xc9JJ is a set of 0- variable indiscernibles. The notion of set of
k-variable indiscernibles over U (when SOΪ = <M, 17, . . .» is defined in the same way.

As a first simple use of the Erdόs-Rado Theorem we can prove a result which
is useful when /ιΣ(A) = ω.

4.11 Proposition. Let LA be a fragment of Laoω with card(LA) = κ. Let 0</c<ω
be fixed and let 501 be a structure for L

(i) // card (501) ><Dk(/c) then there is an infinite set (X, <> of k-variable in-
discernibles for LA in 50Z.

(ii) // 2B = <M,l/,...> w/ιm> card(ί/)^κ: and card (M)>Dk (card (L/)), ί/zerc
ί/zere is απ infinite set (X, <> o/ k-variable indiscernibles over U for LA in 50Ϊ.

Proof, (i) Let < be a linear ordering of M and, for each /c-tuple x = xt < < xk

from M, let

This partitions [M]k up into ^2K distinct sets, since there are ^2* different
sets of formulas of LA. Since

the Erdόs-Rado Theorem tells us that there is an X^M (of power >2K>K0)
such that every element of [X]* is in one fixed member of the partition. That
is, Tχ = Tf whenever x=Xι < <xk, y = y^ <"'<yk an(3 Xι,...,x f c, yi,...,ykeX.
Thus (X9 <\Xy is a set of /c-variable indiscernibles in 501. To prove (ii), let
C = {cjMel/} and apply (i) to LA(C) and W = (Wl,u)ueυ with K replaced by
card(LA(C)). D

Theorem 4.1 follows easily from Lemma 4.9 (i) and the following theorem.
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4.12 Theorem. Let LA be an admissible fragment, let card (A), α = /zΣ(A). Let T
be a Σ! theory of LA. // for each β<α, T has model of power ^3β(κ), then T
has a model with an infinite set of indiscernibles.

Proof. We may assume by 2.4 that LA is a Skolem fragment, that ^koiem— T
and that LA is Δt on A. We assume that T has models but no model with a set
of indiscernibles for LA and prove that, for some j?<α, T has no models of
power ^ 3β(κ). Let LA be a Skolem fragment containing LA and two new sym-
bols X, <. Let

C = {cπ |0<n<ω}

be a set of new constant symbols. We will be concerned with all the languages

LA(C), L'A(C).

These are all Skolem fragments with constants. For n^O define Θn to be the
set of all supervalidity properties 0 for LA(c1?..., cw) with the following properties:

(a) TCΞ^;

(b) "X is linearly ordered by < and has no last element" 60;

(c) "cteXΛCi<ci + 1" e@ for

for each φ(ι;1,...,ί;π)eLA, when

It follows immediately from the Weak Completeness Theorem that

:>„ iff <2 is an s.v.p. for LA(c1,...,cπ) given by some structure

(1)

where 9Jl^Γ, <X, <> is an infinite set of n-variable indiscernibles for
LA in $R and a1< <an in (X, <>.

Let S = yπSπ. Note that each ^e6 is in exactly one ®n for Oθ; this n
is called the level of 2 and we can determine the level n of 2$ by seeing whether
(cπ = cje^ but (cn + 1=c n + 1)<^. Let 1(2) be the level of 2. We define an
order < on S by

iff /(0')>/(0) and

Thus, if 0X0 then 0 and 0' contain exactly the same formulas from the
language LA(cί9...9c^9 n = /(0), but not necessarily from L^c^. ^cJ.

The crucial step in the proof is to realize that

(2) <6,-<> is well founded.
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Suppose that it were not well founded and let

be an infinite descending chain. If ^eSn and n>m then ^nLA(c1,...,cm)e®m

so we may suppose that the level of $)n is n. Let ®J=®πn LA(c l 5...,cπ)
and let °̂ =(JΠ^°. By the union of chain lemma, ®£ is an s.v.p. for LA(C).
Let (50Ϊ, #!,..., απ,...) be a model of ί^°, by the Weak Completeness Theorem.
Then 501 NT and X = {al9a2,...} is an infinite set of indiscernibles for LA in 50Ϊ
when ordered by α^α/ if i<j. This proves (2).

Using (2), we can define the usual rank function on S:

= sup

Since 60^0, p(S)>0. We will prove later that p(S)<ΛΣ(A).

(3) Assume p(S) = n<ω. Then no model 501 o/ T has an infinite set of n-variable
indiscernibles.

For suppose 50ί N T and (X, < > is an infinite set of n- variable indiscernibles.
Let, for

and let $)m be the s.v.p. for LA(c1,...,cJ given by 50ίw. Then ^meSm and

so p(^o)^^1 and hence p(®)>n, contrary to hypothesis.
From (3) and Proposition 4.11 (i), we immediately obtain

(4) // p(S) = n<ω then T has no model of power >3n(

If p(S)^ω then we cannot put such an a priori upper bound on the "size" n
of a set <A', <> of n- variables indiscernibles, but we can put a bound on card(X).

(Suppose 501 NT, <Jf, <> is a set of n-varίable indiscernibles for LA in 50ί
(5)<and that a1< ~<an in <JΓ, <>. Let & be the s.v.p. in 6Π given by

We prove (5) by induction on β using the Erdδs-Rado Theorem as in
4.11(i). So suppose we know the result for ordinals γ<β (β>0) and suppose
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(κ). For each increasing n + l tuple x = xl<- '<xn<xn+ί

from <X, <>, let

This partitions [X]π + 1 into ^2K sets. Since 2κ^'Dωβ + 1(κ) and

we can apply the Erdδs-Rado Theorem to find an X0^X with card(AΓ0)> 3ω^(κ;)
such that every member of [X0]"

+1 ϋes in one member of the partition. That
is, for tt + 1-tuples x1< <xn+1 from X09

so that (X0, <> forms a set of (n + l)- variable indiscernibles in 9W. Let
al< -<an+i be chosen from X0 and let ̂ 0 be the s.v.p. given by

Then Q)Q<$) so p(^0)<jS. But then 9W0 contradicts the inductive hypothesis
since card(X0)>lDω/s(κ:)>5ω(y+1)(κ:) where y=p(®0) This contradiction proves
(5) for jS>0. The case for j5=^0 is easier and is left to the ideal student.

From (5) we get at once:

(6) Every model 9JI of T has power <5ωβ(κ), where β = p(S).

For let X = M and let < be any linear ordering of X. Recall that <X, <>
is a set of 0-ary indiscernibles for 50Ϊ. Then, if ® is the s.v.p. for L'A given by

(W9X9<)

then p(@)<β and card (5K) = card (-SO<3ω(pW + 1)(ιc) which is ^Sωβ(κ).
Finally, we claim that

(7) p(S)<ΛΣ(A).

To see that this concludes the proof, we see that if hΣ(Jk)=ω then the result
follows from (4). If p(S)=)8 and ΛΣ(A)>ω then ωβ<hΣ(A) by Corollary 3.5,
so the conclusion follows from (6). (This is the only use of anything remotely
approaching admissibility in the entire proof.)

It remains only to prove (7). We will see in § VIII.6 that <S, -<> is a Π de-
finable well-founded tree of subsets of A and that every such tree has rank less
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than /ιΣ(A). That is probably the simplest proof of (7). It's good for the soul,
though, and gives added appreciation of the machinery developed in § VIII.6,
to give a direct proof. We present a sketch to be filled in by the student.

Our goal then is to write down a Σl theory T'(<) of LA which pins down
β = p(&). As is our custom, we first describe the intended model 9JI of T'(<),
the one where <αίϊ has order type β. Let 5R be the following structure:

<Λf ;)»,<; A; Power(A),£;S,<F,G,x>X6A

where

M = /?uAuPower(A),

= level of 2 for

= some constant φω, otherwise,

= p(2) if ^e6

= some constant φβ otherwise,

x Power (A)).

Now suppose that

satisfies all the finitary first order sentences true in M and that

Ac:endSΓ.

We will show that <£, <'> is well ordered. The proof will show that the set of
finitary sentences we actually use is Σί on A so that will conclude the proof.

By the axiom of Extensionality for Power (A), we may assume that

PC Power (21'), F = en(2ΓxP), and S'cp.

Now suppose that the linear ordering <£, <'> is not well ordered, so that there
is a subset B0^B with no <'-minimal element. Let

and let

where we must remember that G'(^) might be a nonstandard integer. It is not
difficult, though tedious, to see that ®o^S5 since each £#e®' claims to be
an s.v.p. for liA(cl9...,cG(g)) of the appropriate kind, and the relevant quantifiers
are all universal. So ®'ό must have a minimal element 2. By chasing 3> back
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into B, a contradiction easily results by considering the cases G'(^) standard
and G'(^) nonstandard separately. D

4.13 Proof of Theorem 4.1. Again, using 2.4 we may assume LA is a Skolem
fragment and that ^kolemcT. Then 4.1 follows from 4.12 and 4.9 (i). D

4.14 Corollary. Let LA be an admissible Skolem fragment with /zΣ(A) = ω. Let T
be a Σ! theory of LA. // for each /c<ω, T has a Skolem model with an infinite
set of k-variable indiscernibles, then T has a Skolem model with an infinite set of
indiscernible s for LA.

Proof. See line (3) of the proof of Theorem 4.12. D

We next turn to the analogous theorem for two cardinal models.

4.15 Theorem. Let LA be an admissible fragment with τc = card(A), α = /ιΣ(A).
Let T=T(U,...) be a Σ^ theory of LA. If for each β<α, there is a λ^κ such
that T admits (3β(λ),λ), then T has a model 501 = <M, [/,...> with an infinite set
of indiscernibles over U for LA.

Proof. We indicate the changes necessary in the proof of Theorem 4.12. We may
again assume that LA is a Skolem fragment and that ^kolemcT. We may also
assume (by adding K new constant symbols and some axioms of the form
U(cx), cx^cy to T) that every model 9JI of T has card(L/)^κ.

Let LA(c1,...,cn) be as before and let ^eSn iff <2) is an s.v.p. for LA(c1,...,cn)
with properties (a), (b), (c), (d) as before plus

(e)
for all terms ί(^1?...,ι;n) of LA.

The analogue of (1) is the one way result:

(Γ) ^eSπ if Q) is the s.v.p. for LA(c1?...,cJ given by some (9JΪ,X, <,α1,...,αj
where <X, <> is a set of n-variable indiscernibles over Uw for LA and
aί<" <an in <X, <>.

Luckily, we never really used the other half of (1).

The relation -< on S = (Jn ®n is defined just as before. Again we have, as-
suming T does not have a model ΪR with a set of indiscernibles over U931,

(2') <6,-<> is well founded.

This is just a bit trickier than (2). Suppose
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Again, we may assume that each Q)n has level n. Let ̂  = ̂ nnLA(c1?...,cn) and
let @%=\Jn@°. βy the Union of Chain Lemma, °̂ is an s.v.p. for LA(C). Let
(9010,α1,α2,. ..,«„,...) be a model for °̂ let X = {α1,α2,...}, α^α,. iff i<j. Let
aW-Hull^X). By Exercise 2.16, 2Rl=®£. Thus,9ϊϊis a model for Γand <X, <>
is a set of indiscernibles for LA in $R. We need to see that (X , < > is a set of
indiscernibles over U9". Thus suppose i/eU9^. We need to see that increasing
n-tuples from (X, <> satisfy the same formulas in (95ϊ,w). (The case with more
that one u is similar.) Since ΪJΪ = Hull (X), there is a term ί(ι;l5...,t;TO) such that

Then, by (e)

whenever x1< <xm in <X, <>. Now suppose rc<ω, ̂  < <xπ, ̂  <" <yn

in <X, <>. We need to see that for all formulas φ(vl9...,vn9vn + ί), if
501 \= φ\_x^. . . , xπ, w] then <ίΰl\=φ\_yί,...,yn9u]. Pick an increasing m-tuple w± < - < wm

such that W!>Λ:Π, Wι>yn. Now consider the formula ψ(vί9...9vn,vn + ί,...9vn+m)
given by

Then, since M = ί(w l5...,\vm),

and hence,

by the indiscernibility of <X, <> in 9K. Thus

Thus <X, < > is indiscernible over 17, proving (2).
Define p(^), p(S) as before.

(3') v4sswme p(S) = π<ω. T/zβπ no model Wl of T has an infinite set of
n-varίable indiscernibles over (Jm.

The proof of (3') is just like the proof of (3).
Using (3') and 4.11(ii), we get

(4') // p((S) = n<ω then T has no models of type pn+1(A),/l) for any λ.
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Corresponding to (5) we have

(Suppose M\=T, (X, <> is a set of n-varίable ίndίscernibles over U( = \
(5')<and that aί<"-<an in <X, <>. Let Q) be the s.v.p. in ®B given by

[(aR,X,<,α1?...,απ) and let β = p(&). Then card(X)<5ω(/?+1)(card(l7)).

The proof is by induction on β and uses the Erdόs-Rado Theorem. The proof
it too similar to the proof of (5) to present. From (5') we get

(6') // art^T then card (9W)<3ω/ϊ (card (U9*)) where β = p(<S).

The proof is concluded by showing that

(7) p(S)</ιΣ(A).

The proof of (7') is just like the proof of (7). D

Theorem 4.3 follows from 4.15 just as Theorem 4.1 followed from 4.12.

4.16—4.20 Exercises

4.16. Prove that if α is admissible then

3α(K0) = 2α if α>ω,

3β(No) = ̂ («o)

= 3ω+ω if α = ω.

4.17. Let AN be admissible above 91, κ0 = card(9l), α^o(A). Prove that

Let κl=carά(A9l). Prove that if hΣ(A) = β>a then

4.18. Let A be an admissible set, α = /ι(A). Prove that the Hanf number for
single sentences of LA is at least

for some

That is, show that for λ0<λ there is a sentence φ of LA which has models of
power ^λ0 but none of power ^λ. [Given XeA, β<h(A), formalize Vx(β).~\
Prove that the Hanf number is always of the form 5λ for some limit ordinal λ.
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4.19. Let A be an admissible set with o(A)>ω.
(i) Prove that each φeA can be put in a Skolem fragment LβeA in such

a way that every model of φ (not just those in A) can be expanded to a model
of Tskoiem [Use Infinity to carry out the proof of 2.4 inside A.]

(ii) Prove that the Hanf number for single sentences of LA is

where α = /z(A). That is, prove that if φeLA does not have a model of every
power ^ card (A) then there is an XeA and a β<h(A) such that φ has no
model of power ^3β(caτd(X)). [The set X will be the LB of (i). Modify the
proof of 4.12.]

(iii) Prove that if A is a pure admissible set then the Hanf number for single
sentences of LA is 5h(A), even if o(A) = ω.

4.20. Let A be an admissible set, let α = /zΣ(A) and let

some

Theorem 4.12 states that the Hanf number for Σx theories of LA is ^λl.
(i) Prove that this Hanf number is ^λ0.

(ii) Prove that if A is countable and /HF^, or if /zΣ(A)>o(A), then λ0 = λ ί f

It is an open problem to describe this Hanf number in general. Is it λ0 or λί or
something in between?

4.21 Notes. Morley [1965] shows that the Hanf number for single sentences of
Lωιω was 5ωι. (This follows from 4.2.) Morley [1967] showed that the Hanf num-
ber for single sentences of ω-logic was 3α where α = ω{. (The hard half of this
follows from 4.2 with A = L(α).) Barwise [1967] generalized this to obtain the
Hanf number for any countable, admissible fragment. This was generalized in
Barwise-Kunen [1971] to obtain 4.19 (iii). The theorems of this section are a
reworking of the ideas from Barwise-Kunen [1971] so that they apply to theories,
not just single sentences. Theorem 4.3 is a generalization of Morely's Two Car-
dinal Theorem of Morley [1965]. The student should consult lectures 16 and
17 of Keisler [1971] for a different proof of the countable versions of these results.

The student should be aware of a difference between the results of this section
and those in Chapter III. The use of admissible sets was absolutely essential in
Chapter III to obtain our results. Here they provide a convenient setting but
weaker assumptions would do. Of course we need to know that the countable
set A is admissible to know that hΣ(A) =
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5. Partially Isomorphίc Structures

Having seen in the previous sections that the model theory of uncountable frag-
ments is not completely beyond our control, even if it is less tractable than
for countable fragments, we now investigate some uses of uncountable sentences.

One way to appreciate Looω is to see the role it plays in algebra, but this is
not the book to discuss such topics. We can only give a few exercises. The topics
we discuss are of a more logical nature. These final sections are completely
independent of the first half of the chapter. Admissible sets will not appear in
an essential way until § 7.

A partial isomorphism f from 501 into 91 is simply an isomorphism

where 9Jί0, 910 are substructures of 9JI and 91 respectively. A set / of partial
isomorphisms from 9JΪ into 91 has the back and forth property if

(1) for every /e/ and every xe$R (or ye9ΐ) there is a gel with f^g
and xedom(g) (or yerng(g), resp.).

We write

if / is a nonempty set of partial isomorphisms and / has the back and forth
property. If there is an / such that /: 9K^p9t then we say that 9JZ, 91 are partially
isomorphic and write 501 ̂ p 91. (Some authors prefer the more picturesque ter-
minology potentially isomorphic, to suggest that $R and 91 would become isomor-
phic if only they were to become countable, say in some larger universe of set
theory.) Note that if /: 501^91, then {/}:9Jϊ^p9l.

5.1 Examples, (i) The canonical example is given by two dense linear orderings
9K = <M, <> nd 9t = <Λf, <> without end-points. Let / be the set of all finite
partial isomorphisms from $R into 91. Then

regardless of the cardinalities of $R and 91. This is quite easy to verify. Combined
with Theorem 5.2, this shows that the theory of dense linear orderings without
end points is K0-categorical, i. e., that all its countable models are isomorphic.

(ii) If 50Ϊ, 91 are dense linear orderings with first elements x0, y0 respectively,
but without last elements, then 9W^p9l but the set / used in (i) no longer has
the back and forth property. Let

Then
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(iii) We can generalize (i), (ii) as follows. Let LA be a countable fragment
and let T be an X0-categorical theory of LA. Then for any two infinite models
w, 9i of r,

an ̂ 91.

A proof of this will be given in 5.5 below.
(iv) We can get a different generalization of (i) and (ii) by looking at

Ko-saturated structures 9JΪ and 9ί. If 9K^9l (LωJ then Wl^pW. The set / is de-
fined as follows: Consider those partial isomorphisms

where 9Ϊ10 is finitely generated by some aί9...,an. We will let fel iff

(^a^...,an)^(^f(a^...J(an)) (Lωω).

A simple use of K0-saturation shows that / has the back and forth property.
Traditionally, the back and forth property has been used for constructing

isomorphisms of countable structures.

5.2 Theorem. Let 9Jί, 9ΐ be countable structures for the same language and let
/:SDΪ=p9l. For every /Oe/ there is an isomorphism

with /o<Ξ/.

Proof. Enumerate <3R = {xί,x2,...}9 9l = {y1,j;2,...}. Define

/2n+ι=some gel with f2n^g, xwedom(#),

/2n + 2 = some 9^1 with /2« + ι — #> .y«erng(0)

by using the back and forth property (1). Let / = (Jn /„. Then / maps 50ί onto
91 and preserves atomic and negated atomic formulas so /:9JΪ^9l.

The examples and Theorem 5.2 should suggest to the student of the previous
chapter that ^p could be the absolute version of ^. After all, they agree on
countable structures and ^p does not seem to depend on cardinality. At first
glance, though, it is not obvious that ^p is absolute, but merely that it is Σi:

where the part within brackets is Δ0. This is no better that ^, itself a Σί notion.
The Πi equivalent of =p is given by the next result. There is, of course, no Γ^
equivalent of ^. This result as well as 5.7 appear in Karp [1965].
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5.3 Karps Theorem. // $R, 91 are structures for the language L, then 9Jϊ^p9i
i^aBΞΞϊiα^j.
Proof. We first prove (=>). Let /:SR^p9l. We prove, by induction on formulas
φ(vί9...9vj of L^ that if /G/, x1,...,xπGdom(/) then

OT^IX,...,*,] iff 9tNφ[/(xO,...,/(x,,)].

(The theorem follows by considering those φeLaoω which are sentences.) If
φ is atomic, the result follows from the fact that each /G/ is a partial iso-
morphism and so preserves atomic and negated atomic formulas. The case
where φ is a propositional combination of simpler formulas is immediate by
the induction hypothesis. The back and forth property (1) comes into play only
in getting past quantifiers. Suppose φ is 1vn+ί\l/(vl9...9vn+ί). Let f,xi9...9xn be
given. We assume 9JtNφ[x !,...,*„] and prove yi\=φ\_f(xί),...9f(xn)']9 the other
half being similar. Thus, there is a ye9Jl so that

W\=ιl/[_xl9...9xΛ9y].

Use (1) to get a gel with /£#, .yedom(g). Then, by the induction hypothesis,

so

and X = (X) so

as desired. Since Vt;w^<-»-n3t;w— 11 ,̂ we need not treat V separately.
Now assume $R = 9l (L^J. What should our set / be? The proof of the first

half of the theorem tells use. Let /G/ iff

where $R0 is finitely generated by some x l 5...,xπ and

by which we mean that x1?...,xπ satisfies the same formula of L^ in M that
f(xΐ ),..., f ( x n ) satisfy in 91. (Note that we need Πj Separation to define 7 so
that we cannot carry out this proof in KPU.) Since $01 = 91 (L^J, the trivial
partial isomorphism is in /. We claim that 7 has the back and forth property.
Let /G/ be as above and let xn+1 be a new element which we need to add to
the domain of/. It suffices to find a y e 91 so that
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for then we may set g(xn+1) = y and extend to the substructure generated by
Xi, . . . ,x w +ι in the canonical fashion. So suppose there is no such y. Then, for
every ye9l there is a formula φy(vi9..., vn+l) such that

Let ψ(vl9 ...,*;„) be

Then 9WN^[x 1 ? ...,xn] by letting uπ +ι = xπ + 1 but

This contradicts fel. D

This theorem has a number of important uses. Here we state those having to do
with absoluteness.

5.4 Corollary. ^p is the absolute version of ^.

Proof. 501 = 91(1.̂ ) is a Πx predicate of 9M,9t, by the results of § III.l, so ^p is A t .
It agrees with ^ on countable structures by Theorem 5.2. D

5.5 Corollary. Example 5.1 (iii) is true.

Proof. Let T, LA be as in 5.1 (iii). We need to show that

VSR V9l[9Jϊ, 91 infinite Λ9Jt^TΛ9l^T -» 9Jl^p9ί].

By 5.4, the part within brackets is absolute (in the countable parameter T), so we
need only verify the result for 9M, 91 countable. But for such 9JΪ, 91, the result
follows from the hypothesis that T is K0-categorical. D

This result (5.5) shows us that if a countable theory T is X0-categorical, then
we should be able to prove this by a back and forth argument.

5.6 Corollary. Let SR,9t be partially isomorphic structures for a finite language L
(i) For alia, L(α)OT ̂  p L(α)«.

(ii) For all α, α z's ̂ -admissible iff α is Wl-admissible.
(iii)

Proo/. (i) This is a Π t condition on 301,91 which clearly holds when 9W, 91 are
countable since then they are isomorphic. Part (ii) follows immediately from (i)
since α is 9Jt-admissible iff L(oί)^\= KPU + . Part (iii) follows from (ii). D
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One of the advantages of Theorem 5.3 is that it allows us to approximate the
relation 9R^p9l by approximating

Define the quantifier rank of a formula φ of Laoω recursively as follows:

) = 0 if φ is atomic,

qr(3ι;φ) = qr(Vι φ) = qr(φ) 4- 1,

qr(/\Φ) = qr( N/Φ) = sup (qr(φ) | φ e Φ} .

Thus qr(<p) is an ordinal number. Since qr is defined by Σ Recursion in KPU,
we have qr(φ)<o(A) whenever φ is in the admissible fragment LA.

We write

if for all sentences φ of L^ with

iff

Thus SRΞίlίLaJ iff for alia, SHI = "31.
The following is a refinement of Karp's Theorem also due to Karp [1965].

5.7 Theorem. Given structures 9W, 91 for L, 9JΪΞΞα9l i/f ί/ie following condition
holds: There is a sequence

where each Iβ is a nonempty set of partial isomorphisms from 9JΪ into 91 and such
that whenever β + l^α, felβ+ί and xe9Jl (or yε 91) there is a gεlβ such that
f^g and xedom(g) (resp., yerng(gf)).

Proof. The proof is a routine refinement of the proof of Karp's Theorem. To prove
(<=), one shows that if

then

2Rl=< 3o[x 1,...,xJ iff

To prove (=>), let /^ be the set of those finitely generated partial isomorphisms /
which preserved satisfaction of formulas φ with qr(φ) ̂ β. D
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5.8—5.12 Exercises

5.8. Prove that if a theory T of Lωω is K0-categorical then every model of T is
X0-saturated. [Use 5.1(iii), Theorem 5.3 and the fact that K0-saturation can be
defined by a conjunction of sentences from Lωιω.]

5.9. Let SOΐ, 91 be partially isomorphic structures for a finite language. Show that
for every α, the pure sets in L(α)aR and IXα)^ are the same.

5.10. Let λ be a limit ordinal. Prove that if Wi = β(3l for all β<λ then $R = A9l.
[Each sentence of quantifier rank λ is a propositional combination of sentences of
smaller quantifier rank.]

5.11. Show that the following notions are definable by a single sentence of Looω.
(i) G is an K^free group.

(ii) G is an abelian p-group of length ^ α (for any ordinal α).

5.12. (i) Show that if G is a reduced abelian p-group and G = H (L^J then H is a
reduced abelian p-group.

(ii) Show that the notion of a reduced abelian p-group is not definable by a
single sentence of L^. [Hint: There are reduced p-groups of every ordinal length.
Show that if the notion were definable then there would be a sentence which
pinned down all ordinals, contrary to Theorem 4.1.]

6. Scott Sentences and their Approximations

One of the tasks the mathematician sets for himself is the discovery of invariants
which classify a structure 9JΪ up to isomorphism (homomorphism, homeomor-
phism, etc.) among similar structures. In this section we consider the problem
of characterizing arbitrary structures up to ^p. We will associate with each
structure 9JΪ, in a reasonably effective manner, a canonical object σm such that

9Ή^p9l iff <7OT = <r»-

Hence, if 9JI, 91 are countable we will have 50Ϊ ̂  91 iff σyn = σ^. Our invariants
will not be cardinal or ordinal numbers, though, as is often the case. Rather,
they will be sentences of Looω with the additional properties:

and

implies 9W^ p9ϊ.

The sentence σ^ is called the canonical Scott sentence of 9M.
The canonical Scott sentence is built up from its approximations defined

below. We use s to range over finite sequences <x l 5 ...,*„> from 9JΪ and S Λ X
to denote the extension <x l 9..., xπ,x> of s by x.
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6.1 Definition. Let $ίl be a structure for a language L. For each ordinal α and
each sequence s = <x l 9 . . . , xπ> we define a formula σ%(vί9 . . . , vn\ the ^-characteristic
of s in 9K, by recursion on α:

(i) σ*(υί9...9vj is

/\{φ(vί9...9vj\φ is atomic or negated atomic and 9WN=φ[s]}.

(ii) σf + ί(υί,..., vn) is the conjunction of the following three formulas

(1) σζ(υl9...9vj;

(2) VVn+l\/XeW°^X(Vl>~">Vn);

(3) Λ*e^ 3^+l σK(^ ! > • • • > O

(iii) If Λ>0 is a limit ordinal then σ^(v^ ..., i J is

If we need to indicate the dependence on 9JΪ we write σ*mtS) for σ*. If 5 is the empty
sequence we write σα or σ^.

6.2 Lemma. Fix 9JΪ,α and s = <x l 5 ...,xπ>.
(i)

(ii)
(iii)

(iv) // /c is an infinite cardinal and card(!0l)<κ:, card(L)</c and a<κ then
card(sub(σ^))<κ;.

Proof. A simple induction on α proves all these facts. D

The crucial properties of the α-characteristics are given by the next result.
In this section we write

(and

to indicate that all <x1? . . . , xπ> satisfies the same formulas φ(vί9 . . . , vn) (of quantifier
rank at most α) in 9Jί that <)>ι, ..., }O satisfies in 9ί.

6.3 Theorem. Let 9K,^ fee Lrstructures, s = <x l 5 ...,xπ) α sequence from 9JΪ,
ί = <y1? ..., };„) α sequence from 91. Tfe following are equivalent:

(i) (9W,x1,...,xπ)Ξ

α(9d,y1,...,3;π).
(ii) 9lf=σ^>s)[f].

(iii) Γ/ie ^-characteristic of s in 5R is identical with the ^.-characteristic of t
in 91.
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Proof. The proofs of (i)=>(ii) and (iii)=>(ii) and both trivial. The first follows
immediately form 6.2 (i), (ii). The second implication also follows from 6.2 (ii),
since ΉNσf^O], so if σ^s) = σ^ί)? then

We are left with task of proving (ϋ)=>(i) and (ii)=>(iii). To prove (ii)=>(i), we use
Theorem 5.7. Assume

and define, for β^α, a set Iβ as follows: felβ iff

/: arioso, W10^WI, yi0<^9l, where

9JΪ0 is generated by some z1? ..., zk, and

The map /0 generated by sending xf to y. (i = l, ..., n) is in /α by hypothesis. By
6.2 (iii), we have

The final condition on this sequence, the one demanded by 5.7, follows immediately
from the definition of σf^^ >Zk).

Finally, we prove (ii)=>(iii) by induction on α. The cases for α^O and α a
limit ordinal are trivial. So suppose

By 6.1 (ii), we need to prove that

(4) σ(0«,s) 1S σ(9M) '

(5) for each xeϊR there is a ye9t such that

σ?SR,s x sx) i s σ?»,fX X3')>
and

(6) for each ye 91 there is an xe9Jί such that

σ(m,s~X)
 is σon,r^y)

Now, by the induction hypothesis, (4) is true, (5) reduces to

(5')
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and (6) reduces to

(6') 911= Vl^ Vxe«^f»..-χ)(^+l)M

But (5'), (6') are immediate consequences of

by lines (3), (2) respectively. D

If we apply 6.3 to the empty sequence, we obtain the following result.

6.4 Corollary. For all 501,91, the following are equivalent:
(i) SRΞα9ί;

(ii) 91 ̂ σ^;
(iii) σ^ = σ^. D

6.5 Definition. The Scott rank of a structure ΪR, sr(9Jl), is the least ordinal α such
that for all finite sequences x l 9 . . . , xn, y 15 . . . , yn from 9ϊί,

implies

(9W,x1,...,xn)^a+1(^,yi,...,yM).

We will see, quite soon, that if α = sr(9W) then

(aMι,...,xJ = W3>ι,...,3U

actually implies

It is more convenient to use 6.5 as the definition, though, since then the next
lemma becomes obvious.

6.6 Lemma. // K is an infinite cardinal and card(50l)<κ: then sr($R)<κ:.

Proof. The proof is easy and we will get a much better bound in the next section,
so we leave the proof to the student. D

6.7 Definition. Let 9JI be a structure for L, let μ = sr(ΪR). The canonical Scott
theory of 9JI, Sm consists of the sentences below:
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for all finite sequences s=<x 1 ? ..., xπ> from SDΪ. The canonical Scott sentence
of 9JI, σ ,̂ is the conjunction of the canonical Scott theory of 9JΪ:

σ<m — Λ ^SEK

Note that qr(σαrί) = sr(9JΪ) + ω. Also, from the definition of sr(9Jΐ) we see that

We now come to the main theorem on Scott sentences.

6.8 Theorem. Given structures 501,91 for a language L, the following are equivalent:
(i) m^p9l;

(ii) $i\=σm;

(iii) σ<m = σ<n

Proof. We already know that Wl^p$l iff m= rjoω^l. Since 9KNσOT we see that
(i)=>(ii) is immediate. Similarly, since ^l\=σ^ (iii)=>(ii) is immediate. To prove
(ii)=>(i) define Iβ, for all β, just as in the proof of 6.3. The hypothesis that 91 Nσ^
insures that Iμ+l=Iμ so

/ 9Ή~ 911 μ. JJl — p Jl .

Finally, we prove that (i)=>(in). Assume that 501=^91. Then sr(9M) = sr(9l).
Let μ = sr(9Jί). For each xl9 ...,xπe9M there is a sequence yί9...9ynE9l such that

and vice versa. Then, by 6.3, every σf^ s) is some σ(Vo and vice versa. Thus 8^ = 8^
and σ^^σ^. D

The remainder of this section is devoted to corollaries of Theorem 6.8. First
we have Scott's original result.

6.9 Corollary (Scott's Theorem). Let L be a countable language and let Wl be a
countable structure for L. The Scott sentence σm is a sentence of Lωιω with the
property that

9JΪ^9l iff Vl\=σm

for all countable L-structures 91.

Proof, σ^ is in Lωιω by Lemma 6.2(iv). The result is then an immediate con-

sequence of Theorem 5.2 and 6.8. D

An π-ary relation P on 9K = <M,K1,...,R/> is invariant if for every automor-
phism / of 9JΪ and every x l 9 ...,xπ

iff ^/(xj,..., /(*„)).
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From now on (in this section) we assume L is countable. Whenever we refer to
we assume L is finite.

6.10 Corollary. // ΪR is a countable structure for L and P is an n-ary relation on 501,
then P is invariant iff P is definable by some formula φ(vl9 ..., vn) of Lωιω (without
additional parameters) :

P(xl9...,xJ iff 9W^(p[x 1,...,xJ.

Proof. If P is defined by φ then P must be invariant since /:$0ΐ^9W and
9Jί^φ[x l9...,xπ] implies yR\=φ\_f(x1\ ...,/(*„)]. Now assume P is invariant.
Let φ(vl9 ...,!;„) be

where μ = sr(ΪR). It is clear that P(xl9 ...,xπ) implies 9Kt=φ[x l 5 ...,xπ].
To prove the converse, suppose that $X\=φ\_yl9 ...,yn]> so that

[yl9...,y^\ for some x1? ...,xπ with F(xl9 ...,xn). Then

xί9 . . . , xn) = ̂ ω (9W, yί9 . . . , yn) ,

so that there is an automorphism / of 9JI with f ( x t ) = yt by 5.2. Since P is invariant,
P(y !,..., yn) holds. D

6.11 Corollary. Let 9JI be a countable structure for L and let x£ΪR be an element
fixed by every automorphism of 9JΪ. Then x is definable by a formula φ(v) of Lωιω:

Conversely, a definable element of $R is fixed by every automorphism.

Proof. Apply 6.10 with P-{x}. D

A rigid structure is one with only one automorphism, the identity map.

6.12 Corollary. // 9Jί is α countable structure for L then $R is rigid iff every element
x of ail is definable by a formula φ(v) of Lωιω:

These results will be improved in the next section.
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6.13—6.14 Exercises

6.13. Let ΪR be a countable structure with x l 9 . . . , xneWl such that ($01,x^, ...,xj
is rigid; i.e., no nontrivial automorphisms of 501 fix, x l 5...,xπ. Show that 501
has ^K0 automorphisms.

6.14. Let 501 be a countable L-structure with <2K° automorphisms.
(i) Prove that there is a finite sequence x ί,..., χn from 501 such that (501, x t,..., χn)

is rigid. [Hint (P. M. Cohn): Let σn fix x l 9 ...,xπ but move, say, xπ + 1. Let
σ = ... σε

n

n... σε

2

2 σ^1 where ε£ =0 or = 1. Show that this gives 2*° automorphisms.]
(ii) Show that for all 5R, 9ll=σOT implies 501 ̂ 5R; i.e., that there are no un-

countable 91 with 5DΪΞΞ9l(Lωιω).

6.15. Show that if G is an K t-free abelian group then G = pH iff H is N1-free.
Thus the notion of free group is not definable in Looω.

6.15 Notes. Scott's Theorem and Corollary 6.10 were announced in Scott [1965].
A proof, in the context of invariant Borel sets, appears in Scott [1964]. The Scott
sentences used here are derived from Chang's proof of Scott's Theorem in Chang
[1968]. The presentation follows that used in the survey article Barwise [1973].
Exercises 6.13, 6.14, 6.15 are due to Kueker. They are proved in Barwise [1973].

7. Scott Sentences and Admissible Sets

The first systematic study of the relationship between α-characteristics, canonical
Scott sentences and admissible sets was undertaken by Nadel in his doctoral
dissertation. His idea was to use α-characteristics and Scott sentences as approx-
imations of models, asking to which admissible sets the formulas σm9σξΛ belong
as an alternative to asking to which admissible sets 501 itself belongs. This has
proven to be a fruitful idea. In this section we delve into the more elementary
parts of the theory.

To simplify matters we assume the underlying language L of Lαoω has no
function symbols. Since function symbols can always be replaced by relation
symbols, this is no essential loss. (The sole point in this restriction is that if L is
an element of an admissible set A then the set of atomic and negated atomic
formulas of the form

φ(vl9...,vn)

(for fixed n<ω) is a set in A if L has no function symbols, or if o(A)>ω, but
not if L has a function symbol and o(A) = ω).
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7.1 Proposition. The formula

is definable in KPU as a Σ^ operation of $R,s,α.

Proof. Consider sequences s as functions with dom(s) some n<ω and range
can. Let

If we write out the definition of F as given in 6.1 it takes the following form:

F(3W,s,α) = y iff (i)v(ii)v(iii)

where
(i) α = 0 Λ Δ0(9Jί, s, y) (a Δ0 predicate of 9Jί,s and y);

(ii) α = /ί + l for some β<a and y = /\{θί,θ2,θ3} where

Θ2 is Vu π + ! \/Φ where

R,sΛx,β) = z,

,sAx,jβ) = z, and

is similar to Θ22

(iii) Lim(α)Λy =
This definition clearly falls under the second recursion theorem. D

7.2 Corollary. // LA is an admissible fragment and 9JΪ is an L-structure in the ad-
missible set A then, for any L-structure 91,

$R = 9t(LA) implies $0ΪΞΞα9l

where α = o(A).

Proof. By Exercise 5.10 it suffices to prove that

for all β<α. But for β<α, σ^eLA by 7.1 and »l^σ^ so 91 Nσ^. But then
9JίΞ^9l by Corollary 6.4. D

If σgjj were definable as a Σ^ operation of 9JI in KPU then we could extend 7.2
to read

3[R = 9l(LA) implies 951=^91,
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since then σm would be in LA. This, however, is not true. Unlike its approximations,
the canonical Scott sentence σm is not definable in KPU as a Σl operation of 9JΪ.
The problem is that sr(9Ji) may be just a bit too big; that is, sr(9#) may equal
otHYPgfl). (See Exercise 7.13, 7.14.) This is as big as it can get, though, as we see
in Corollary 7.4.

7.3 Theorem. Let LA be an admissible fragment of LaQω and let 9W,9Ϊ be L-structures
which are both elements of the admissible set A. Then

aW = 5R(L A ) implies 501 = ̂ 91.

Proof. By 7.2 we see that 9JlΞΞα9ΐ where u = o(A). Let / be the set of finite partial
isomorphisms /={<x1, ιy1>,..., <xπ,);II>} (0^rc<ω) such that

(1) (Wxι,...,xJ = *(W,yι,...,yJ.

Since 9JΪΞΞα9l, the trivial map is in / so 7^0. We will prove that

Suppose (1) holds and that a new xn + 1e$R is given. We need to find a
such that

By Exercise 5.10 it suffices to insure that

for each β«x. Suppose that no such yn+ί exists. Then

where S = <X I , . . . ,X B + I >. By Σ Reflection in A, there is a y<α such that

and hence

so

contradicting
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This establishes the "forth" half of the back and forth property; the "back" half
follows from the symmetry of 9JΪ and 91 in the theorem. D

Theorem 7.3 is sometimes called NadeΓs Basis Theorem. The reason for calling
it a basis theorem is seen by stating the converse of its conclusion: If there is a
sentence φ of L^ true in 501 and false in 91, then there is such a sentence in LA.

Our first application of 7.3 is to get the best possible bound on sr(50l). Another
proof of this can be given by means of inductive definitions.

7.4 Corollary. Let 9JI be a structure in an admissible set A. Then

Proof. Let oc = o(A). Let x l 9 ..., xπ, y1? ...,3/πe9Jl be such that

But then

so, by 7.3,

...,y). D

The remainder of this section deals with uses of NadeΓs Basis Theorem to
improve the results of the previous section.

7.5 Theorem. Let 9JΪ be an L-structure and let Pbea relation on $R which is definable
by some formula of Looω without parameters. Let A be any admissible set with
(9K,P)eA. Then P is definable by a formula of LA without parameters.

Proof. Let us suppose, for convenience, that P is unary. We assume that P is not
definable by any formula of LA. If we can find an x,y such that

O, and (SW,x)Ξ=(SR,j,)(LA)

then, by 7.3,

so P is not definable by any formula of L^. To find such an x,y we proceed as
follows. Define, for β<α, φβ(v) to be the formula

VM(ι;)|xeP}.

Then ψβ(v)£ LA by 7.1 and

(2)
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for β^y. Since 9Mt=^[x] for all xeP, and φβ does not define P (nothing
in LA does) there must be some yeM — P such that 9Ml=^[);].

We claim that there is a fixed yεM-P which works for all β<u:

(3) 3yeM

For otherwise we would have

But then by Σ Reflection there is a γ <α such that for all yeM — P

and hence by (2),

a contradiction. Thus (3) is established. Let y be as in (3). For each β there is an
xeP such that

by the definition of φβ. By an argument entirely analogous to the proof of (3), we
see that

For any such x we have (3R9x) = *(Wl,y) and hence (5TO,x) = (9K,j;)(LA), as de-
sired. D

7.6 Corollary. Lei $K= <M,#l9 ..., /^> be α countable structure for L A relation
P on 9Jί is invariant on $01 zjff iί z's definable by a formula in Laoω n HYP(OT P).

Proo/. Combine 6.10 with 7.5. D

7.7 Corollary. Lef LA fee απ admissible fragment of L^. // 9W z's an L-structure,
SDΪeA, ί/z^« £i>£ry element of SPΪ definable by some formula of Looω is definable
by a formula of LA.

Proof. Apply 7.5 with P = {x}. D

7.8 Corollary. Let 9M = <M,Λ 1 , . . . ,R / > fo? α countable L-structure. Then 9W is
rigfid i/f every element of 9W is definable by a formula of L^

Proo/. Combine 6.12 with 7.7. D



308 VII. More about !_„„

7.9 Corollary. // 3Λ = (M,Rί9 ..., Rty is a countable rigid structure then
sr(50ϊ)<O(50l).

Proof. By 7.8 we know that

Let β(x) be the least such β. Then σβ

x

(x\υ) is a HYP^-recursive function of x so,
by Σ Replacement,

is in HYPgg, and every element of M is definable by some member of it. Let
y = sup{jβ(x)|xeM}. We claim that sr(50l)^y. For suppose

Then

so Xi = yt for i = l,...,n, and hence

(aR^i,...^^^^^^!,...,^). D

We can improve 7.9 by replacing the requirement that 50Ϊ is rigid by the re-
quirement that 501 have <2X° automorphisms. See Exercise 7.15.

We end this section by returning to our old favorite, recursively saturated
structures, to see what some of our results say in this case.

7.10 Corollary. Let $R=(M,Ri,...,Rly be a recursively saturated L-structure
and let P be a relation on 501 definable by some formula of L^. Then (501, P) is
recursively saturated iff P is definable by a βnitary formula of Lωω.

Proof. The (=>) half follows from 7.5 with A = HYP(SW>P). To prove the (<=) half,
note that if P is definable by a formula φelHYP^ then PeHYP^ by Δj Separa-
tion so o(HYP(aΛ>P)) = ω. D

Note that if 9W is recursively saturated then so is (501, x) for any xeϊR so 7.10
also applies to relations definable by a fixed finite number of parameters. The
same remark applies to the next result.

7.11 Corollary. Let 501 = <M,K1? ..., Rty be an infinite recursively saturated
L-structure and let

= {yeM\y is definable by some formula φ(v) of Looω without parameters} .
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Then we have the following:
(i) Every element of @/(Wl) is definable by a finitary formula of Lωω.

(ii) ^/($R) is Σ! on HYP^, hence inductive* on 50Ϊ.
(iii) // ^/(9JΪ) is hyperelementary* on SR (i.e., if it is in HYPOT) then @/(Wl) is

finite.
(iv) 2R-0/(2R) is infinite.

Proof, (i) follows from 7.7 and (i) => (ii). To prove (iii) suppose that
Let

Then, exactly as in the proof of 7.9, Φ is an element of ΉYP^. But Φ is a pure
set and o(HYPΪR) = ω so Φ is finite. Thus ^/(9Ή) must also be finite, since every
member is defined by a formula in Φ. Part (iv) is immediate from (iii), for if

is finite then S^Λ)eΉΎPm. D

7.12. Example. Let tΛ
r' be a nonstandard model of Peano Arithmetic and let

xeN' be a nonstandard integer. Let yΓ[x] be the submodel of Jf' with universe

The axiom of induction insures that

Corollary 7.11(iv) (applied to (^Γ[x],x)) shows that models of the form Λ^[x]
can never be recursively saturated. Hence, the standard integers of jV[x] form
a hyperelementary subset of J^[x] by VI.5.1(ii). From this it follows that such
models can never be expanded to a model of second order arithmetic, by Exer-
cise IV.5.13.

7.13—7.18 Exercises

7.13. Let M be countable, α a countable admissible ordinal, α>ω, and let η
be the order type of the rationals.

(i) Prove that if <ί is a linear ordering of M of order type a,(i+η) than,
setting aK1 = <M, <!>,

N"^ is well founded",

[See the proof of IV.6.1.]
(ii) Let aRo = ̂ 7(9ftι) Let LA be tne admissible fragment of L^ given by

, where L = {<}. Prove that
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[Use the Tarski Criterion for LA (Exercise 2.13) and the fact that any x in the
non-wellfounded part of <l can be moved by an automorphism of <SJlί.~\

(iii) Prove that

(iv) Prove that sr(9Jϊ1) = α.
(v) Conclude that σ^ is not definable in KPU as a Σί operation of SCR.

7.14. Prove that sr (501) and σM are Σ^ definable in KPU + Infinity + Σt Separation,
as operations of 9JI.

7.15. Use 6.14 (i) to improve 7.9 to the case where 9JI has <2*° automorphisms.

7.16. Prove that if o(HYPTO)>ω and sr(2R)<o(HYPOT) then σ^elHYP^.

7.17. Prove that the absolute version of

"P is invariant on 9JI"

is

"P is definable by a formula of LooωnHYP(aRfP)".

7.18. Prove that the absolute version of "501 is rigid" is "Every element of 9JΪ
is definable by a formula of LooωnHYPαϊl".

7.19 Notes. There are a number of interesting and important results which could
be gone into at this point, but they would take us too far afield. The student is
urged to read Makkai [1975] and Nadel [1974].

Theorem 7.3 is from Nadel [1971] (and Nadel [1974]) as are Collaries 7.7
and 7.8. Theorem 7.5 is new here but it is a fairly routine generalization of
NadeΓs 7.7. The important example 7.13 is also taken from Nadel [1971]. The
last sentence of Example 7.12 is a theorem of Ehrenfeucht and Kreisel. [Added
in proof: A recent paper by Nadel and Stari called "The pure part of HYP"
(to appear in the Journal of Symbolic Logic) has a number of interesting and
highly relevant results. In particular, they characterize the pure part of HYP^ in
terms of the sentences σ^ for β




