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Chapter 1
Admissible Set Theory

Admissible sets are the intended models of a certain first order theory. In this
chapter we discuss the theory itself and show how to develop a significant part
of intuitive set theory within it.

1. The Role of Urelements

Our approach to admissible sets is unorthodox in several respects, the most
obvious being that we allow admissible sets to contain urelements. Bluntly put,
we consider admissible sets which are built up out of the stuff of mathematics,
not just the sets built up from the empty set. To make this a little clearer, and to
see why it is an obvious step to take, we begin by reviewing the development
of ZF, Zermelo-Fraenkel set theory, as it is correctly presented (in, for example,
§9.1 of Shoenfield [1967]).

The fundamental tenet of set theory is that, given a collection M of mathe-
matical objects, subcollections are themselves perfectly reasonable mathematical
objects, as are collections of these new objects, and so on. We begin with a col-
lection M of objects called urelements (sometimes called points, atoms or in-
dividuals, depending principally on our subject), which we think of as being
given outright. The objects in M might be real numbers, elements of some group
or even physical objects. We construct sets out of the objects of M in stages.
At each stage o we are allowed to form sets out of urelements and the sets formed
at earlier stages. An object is a set on M just in case it is formed at some stage
in this construction; the collection of all sets on M is denoted by V,,.

Now it turns out, and it must have been a surprising discovery, that if we
allow strong enough principles of construction at each stage «, and if we assume
that there are enough stages, then urelements become superfluous. All ordinary
mathematical objects occur, up to isomorphism, in V, i.e. in V,, where M is the
empty collection. It is consistent with this that the extensionality axiom of ZF
explicitly rule out the existence of objects which are not sets; the combination
of the power set and replacement axioms is so strong as to make urelements
unnecessary.

Set theory, as formalized in ZF, provides an extremely powerful and elegant
way to organize existing mathematics. It is not without its drawbacks, never-
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theless. While it is too weak to decide some questions (like the continuum hypo-
thesis) which seem meaningful (even important), it is in some ways too strong.
Some examples:

(1) The most obvious advantage of the axiomatic method is lost since ZF
has so few recognizable models in which to interpret its theorems.

(2) Important distinctions on the nature of the sets asserted to exist are
completely lost.

(3) The principle of parsimony, of established value throughout the mathe-
matical ages, is violated at every turn.

(4) Large parts of mathematical practice are distorted by the demand that
all mathematical objects be realized as sets (as opposed to being isomorphic to
sets). If these objections are not too clear, they should becomes so as we inves-
tigate the theory of admissible sets. At any rate these considerations, and others
familiar to anyone versed in generalized recursion theory, eventually dictate
the study of set theories weaker than ZF, weaker in the principles of set existence
which they attempt to formalize. The theory we have in mind here, of course,
is the Kripke-Platek theory KP for admissible sets.

It is at this point that one is tempted to make a simplifying mistake. We have
first thrown out urelements from ZF because ZF is so strong. When we then
weaken ZF to KP we must remember to reexamine the justification for banning
the urelements. Doing so, we discover that the justification has completely dis-
appeared. In this book we readmit urelements by “weakening” KP to a theory
KPU. The original KP will be equivalent to the theory

KPU + “there are no urelements”.

This approach has many advantages. The chief is that it allows us to form,
for any structure IM={(M,R,...R,> a particularly important admissible set
HY Py, above M, one which is of great use in the study of definability over IR.
The approach has no disadvantages since we can always restrict attention to
the special case where there are no urelements.

1.1—1.4 Examples

1.1. The point made in (1) above becomes clearer when we recall that if ZF is
consistent, so is

ZF + “There is no transitive model of ZF”.

(Prove this without using Godel's Incompleteness Theorems!)

1.2. The observation in (2) is illustrated by considering, for example, an arbitrary
abelian group =G, + ). Consider the following subgroups of G:
pG = {px|xeG},
T = {x|nx=0 for some natural number n>0}
= the torsion subgroup of G,

D =|J{H|H is a divisible subgroup of G}
= the divisible part of G .
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While these definitions are clearly increasing in logical complexity, there is no
distinction to be made between them from ZF’s point of view. We will return
to this example in Chapter IV.

1.3. As an example of the way one is tempted to violate the principle of parsi-
mony when working in ZF, one need only look in the average text on set theory.
There you will find the power set axiom (a very strong axiom from our point
of view) used to verify a simple fact like the existence of a x b.

1.4. The point made in (4) above is illustrated by considering the real line. While
we know how to construct something isomorphic to the real line in ZF (either
by Cauchy sequences or by Dedekind cuts), in practise the mathematician is not
interested in the details of this construction. For example, he would never think
of worrying about what the elements of ]/5 happen to be.

1.5 Notes. The notes at the end of sections are used to collect historical remarks,
credit for theorems (when possible) and various remarks which might otherwise
have gone into footnotes.

In the early days of set theory, certainly in the work of Zermelo, urelements
were an integral part of the subject. The rehabilitation of urelements in the
context of admissible set theory is such a simple idea that it would be silly to
assign credit for it to any one person. Probably everyone who has thought at
all about infinitary logic and admissible sets has had a similar idea.

Karp [1968] suggests the study of nontransitive admissible sets. Kreisel [1971]
points out that “the principal gap in the existing model theoretic [generalized
recursion theory] ... is its preoccupation with sets (that is sets built up from
the empty set by some cumulative operation ...); not even sets of individuals
are treated.” Barwise [1974] contains the first published treatment of admissible
sets with urelements. This book grew out of that paper, to some extent. It is worth
remembering that the defense of urelements given in §1 would have been un-
necessary not too long ago. Perhaps it will be equally pointless sometime in
the future.

2. The Axioms of KPU

Let L be a first order language with equality, some relation, function and con-
stant symbols and let M=<M,---> be a structure for this language L. We wish
to form admissible sets which have M as a collection of urelements; these ad-
missible sets are the intended models of a theory KPU which we begin to develop
in this section.

The theory KPU is formulated in a language L*=L(e,...) which extends L
by adding a membership symbol € and, possibly other function, relation and
constant symbols. Rather than describe L* precisely, we describe its class of
structures, leaving it to the reader to formalize L* in a way that suits his tastes.
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2.1 Definition. A structure Wgy=(M; 4,E,...) for L* consists of
(i) a structure M=(M,---> for the language L, where M =0 is kept open
as a possibility (the members of M are the urelements of Uyy);
(i) a nonempty set A disjoint from M (the members of A are the sets of Ugy);
(iii) a relation Ec(M u A)x A (which interprets the membership symbol €);
(iv) other functions, relations and constants on M U A to interpret any other
symbols in L(g,...) (that is the symbols in the list indicated by the three dots).
The equality symbol of L* is always interpreted as the usual equality relation.

We use variables of L* subject to the following conventions: Given a structure
Wy =(M; 4,E, ...) for L*

p,4q,D15--- range over M (urelements),
a,b,c,d,f,r,bl, ... range over A (sets),

X, Y52,y ... range over MU A.

This notation gives us an easy way to assert that something holds of sets, or of
urelements. For example, Vp3aVx (xea<>x=p) asserts that {p} exists for any
urelement p, whereas Vp3daVq (gea<—q=p) asserts that there is a set a whose
intersection with the class of all urelements is {p}.

We sometimes use (e.g. in 2.2(iii)) u,v,w to denote any kind of variable.

The axioms of KPU are of three kinds. The axioms of extensionality and
foundation concern the basic nature of sets. The axioms of pair, union and A,
separation deal with the principles of set construction available to us. The most
important axiom, A, collection, guarantees that there are enough stages in our
construction process. In order to state the latter two axioms we need to define
the notion of A, formula of L(g,...), of Lévy [1965].

2.2 Definition. The collection of A, formulas of a language L(g,...) is the smal-
lest collection Y containing the atomic formulas of L(g,...) closed under:
(1) if @ is in Y, then so is Tp;
(i1) if @, are in Y, so are (¢ AY) and (¢ v ¥);
(iii) if ¢ is in Y, then so are Vuev ¢ and Juev ¢ for all variables u and v.

The importance of A, formulas rests in the metamathematical fact that any
predicate defined by a A, formula is absolute (see 7.3), and the empirical fact

(which we will verify) that many predicates occuring in nature can be defined
by A, formulas (see Table 1).

2.3 Definition. The theory KPU (relative to a language L(g,...)) consists of the
universal closures of the following formulas:

Extensionality: Vx (xea<—xeb)—a=b;

Foundation: Ix p(x)—3Ix[@(x) A Vyex—1¢(y)] for all formulas ¢(x) in which
y does not occur free;
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Pair: Jda (xeanyea);
Union. IbVyeaVxey (xeb);

A, Separation: 3IbVx (xeb—xean ¢(x)) for all A, formulas in which b does
not occur free;

A, Collection: Vxeadyp(x,y)»3IbVxeadyeb p(x,y) for all A, formulas in
which b does not occur free.

Note that the formulas ¢(x), ¢(x,y) used above may have other free variables.

2.4 Definition. KPU" is KPU plus the axiom:
JaVx [xea—3p (x=p)],

which asserts that there is a set of all urelements.

2.5 Definition. KP is KPU plus the axiom:
Vx3a(x=a),

which asserts that every object is a set, i.e. that there are no urelements.

2.6 A word of caution. There are some axioms built into our definition of struc-
ture for L(g,...). The following sentences make these conditions explicit and
should be considered part of the axioms of KPU:

VpVa(p#a)  (cf. 2.1(ii));
Jda (a=a) (expresses A#@ in 2.1(ii));
VpVx (xép)  (cf. 2.1(iii).

2.7 Notes. The notions of A, and X, are due to Lévy [1965]. The axioms of
KP go back to Platek (the P in KP), in particular, to Platek [1966]. He defined
an admissible set A to be a transitive, nonempty set closed under TC satisfying
A, separation and X reflection. Kripke [1964] (the K in KP) had, independently,
a similar notion with X reflection replaced by X replacement. (For the models
Kripke had in mind (L,’s) they are equivalent; but in general it is X reflection
which matters.) Both of these men were influenced by Kreisel [1959] and Kreisel
[1965]. See, e.g. Kreisel [1965, p. 199(b)]. (For the notion of a X formula, see
4.1 below.)

3. Elementary Parts of Set Theory in KPU

In this section we show how to define some of the elementary concepts of intuitive
set theory in KPU. We thus want to show that certain sentences of L(e,...) are
logical consequences of KPU. We do this here by translating these sentences
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into English and then giving their proofs in English, being careful to use only
axioms from KPU. For example, rather than state:

KPURVxVy3laVz [zeaoz=xVvz=)],

we state:

Given x,y, there is a unique set a={x,y} with only x,y as members;

and then we give an informal proof of the latter. (Given x,y, there is a b with
x,yeb, by Pair. By A, separation there is an a with zea—zebA[z=x or z=y],
the part in brackets being a A, formula. By Extensionality, there can be at most
one such a.) Thus all results in this section are proved in KPU.

3.1 Proposition. (i) There is a unique set O with no elements.
(i) Given a, there is a unique set b=\Ja such that xeb iff Iyea(xey).
(iii) Given a,b there is a unique set c=auUb such that xec iff xea or xeb.
(iv) Given a,b there is a unique set c=anb such that xec iff xea and xeb.

Proof. These are all routine. By 2.1 (ii) there is a set b. For (i) we apply A, sep-
aration to b and the formula x## x. For (ii) use the union axiom to get a b’ such
that VyeaVxey (xeb’), and then form

b={xeb'|Iyea (xey)}
by A, separation. For (iii), form (J{a,b}. To prove (iv), let c={xea|xeb},
which exists by A, separation. In each case uniqueness follows from the axiom
of extensionality. [

We define, as ususal, the ordered pair of x,y by
Cxyy = {{xh v

and prove that (x,y)>=<z,w) iff x=z and y=w.

3.2 Proposition. For all a,b there is a set c=axb, the Cartesian product of a
and b, such that

c={{x,yy|x€a and yeb}.
Proof. By Table 1 the predicate of a,b,u:

u is an ordered pair {x,y) with xea and yeb
is Ay so we can use A, separation once we know that there is a set ¢ with {(x,y>ec
for all xea, yeb. This follows from A, collection as follows. Given any xea

we first show that there is a w, such that {(x,y)>ew, for all yeb. Why? Well,
given yeb there is a set d={x,y). So, by A, collection there is a set w, such
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that {x,y>ew, for all yeb. Now, apply A, collection again. We have

VxeadwVyebIdew (d=<{x,y))

Ao

so there is a ¢; such that for all xea, yeb, {x,y>ew for some wec,. Thus, if
c=\Je;, then (x,ydec for all xea, yeb. [

The above is a good example of the principle of parsimony. In ZF, where
one has the power set axiom, the set ¢ needed in the proof can be taken to be
just P(P(au b)), but this proof does not carry over to KPU.

We can define ordered n-tuples, for n>2, as follows, by induction on n:

<x1, [EXE] xn> = <x17<x2, veey xn>>
and, similarly,

ay X o xa,=a; xX(@;x - xa,).
Thus a, x - xa, is the set of n-tuples <{x,,...,x,> with x;eq; for i=1,...,n.
Now that we have ordered pairs, we can give the usual definitions of intuitive

notions like relation, function, etc., all by A, formulas as in Table 1.
A set a is transitive, written Tran(a), iff

VyexVzey(zea),

so that Tran(a) is a A, formula. Urelements are not considered transitive. Every
set of urelements is transitive. The empty set 0 is transitive.

3.3 Definition. Let S(a)=au {a}.
3.4 Exercise. Prove (by induction) that for each n,
KPURVx,,...,Vx,3a (@={x,..., x,}) .
3.5 Exercise. Show that if a is a set of transitive sets, then Ua is transitive.
Show that if a is transitive and b<a, then au {b} is transitive. In particular,

if a is transitive, so is #(a).

3.6 Definition. An ordinal is a transitive set a such that every member x of a
is also a transitive set. Thus, we may write this definition as:

Ord(a) <> Tran(a) A Vxea Tran(x).
We use a,f,7,... to range over ordinals. We write a<f for aef. An ordinal «

is a natural number if for all B<a, if f#0 then f=(y) for some y. We use
variables n,m, ... over natural numbers.



14 I. Admissible Set Theory

3.7 Exercise. We assume that the reader has some familiarity with ordinal
numbers. He should verify that all the usual things are provable in KPU:

(i) 0 is an ordinal;

(i) If « is an ordinal so is #(«), usually written o+ 1.

(iii) If «# B then a<p or B<o. (This uses the axiom of foundation!)

(iv) For all a, a £ a.

(v) If a is a set of ordinals, then Ua is an ordinal f with a<f whenever
aca, and Joea (y<a) whenever y<pB. (Thus f is the supremum of a, and we
write f=sup(a).)

(vi) If a<f then a+1<p.

(vii) Every nonempty set of ordinals has a smallest element.

3.8 Definition. A set a is finite if there is a one-one function f with dom(f)=a
and range some natural number n. A set a is countable if there is a one-one
function f with domain a such that f(x) is a natural number for every xea.

3.9 Exercise. (i) Show that every member of an ordinal is an ordinal.

(i) Show that a set is an ordinal iff it is transitive and its elements are
linearly ordered by e.

(iii) Show that an ordinal is finite iff it is a natural number.

Table 1. Some A, Predicates

Predicate Abbreviation A, Definition
xcy Vzex (zey)
a={y,z} yeanzeanVxea (x=yvx=z)
a={y,z) Jbeadcea (b={y} rc={y,z} na={b,c})
a={x,y) forsome y 1*(a)=x dceaIyec (a=<{x,y))
a={x,y) for some x 2"(g)=y JceaIxec (a=<{x,yD)
a={x,y) for some x,y “a is an ordered pair’ dceadxecIyec (a=<{x,y))
a is a relation Reln(a) Vxea “x is an ordered pair”
f is a function Fun(f) Reln(f) AVaefVbef (1%a=1%p—2"q=2"p)
r is a relation with
domain a dom(r)=a Reln(r) AVber (1*bea) AVxeaIber (1%b=x)
r is a relation with
range a mg(r)=a Reln(r) AVber (2"bea) AVxeaIber 2"b=x)
r is a relation with
field a field(r)=a a=dom(r)u rng(r)
y=f(x) Fun(f)adx,y>ef
a=Jb VxebVyex (yea)aVyeaIxeb (yex)

4. Some Derivable Forms of Separation
and Replacement

Our development of set theory progressed smoothly as long as the predicates
involved were definable by A, formulas. With the notions of finite and count-
able in 3.8 we hit the first examples of predicates which cannot be so expressed.
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For example, if we write either of these out they take the form

Af9(f.a)

where ¢ is Ay. A formula of the form Ju ¢(u), where ¢ is A, is called a X, formula.
It turns out that a wide class of formulas are equivalent to X, formulas and that
we can use these formulas in various forms of separation, collection and replace-
ment.

4.1 Definition. The class of £ formulas is the smallest class Y containing the
A, formulas and closed under conjunction and disjunction (2.2(ii)), bounded
quantification (2.2(iii)) and satisfying:

(1) if @ isin Y so is Ju¢ for all variables u.

The class of IT formulas, on the other hand, is the smallest class Y’ containing
the A, formulas closed under conjunction, disjunction, bounded quantification
and satisfying:

(ii) if ¢ is in Y’ so is Vu ¢, for all variables u.
For example, the two formulas:

Vbea [b is countable] and Vxea3b [Tran(b) A xeb],

are X but not X,. Clearly the negation of any X formula is logically equivalent
to a IT formula and vice versa. As a corollary to Theorem 4.3 we will see that
for every X formula ¢, there is a X, formula ¢’ such that

KPUF g .

Given a formula ¢ and a variable w not appearing in ¢, we write @™ for the
result of replacing each unbounded quantifier in ¢ by a bounded quantifier; that
is we replace:

Ju by 3Juew, and
Vu by Vuew,

for all variables u. Thus ¢™ is a A, formula. If ¢ is A, then @™ =¢, since there
are no unbounded quantifiers in ¢. We always assume that w does not already
appear in @.

4.2 Lemma. For each T formula ¢ the following are logically valid (i.e., true in
all structures Uyy):

(i) 9 Auco—e®,

(i) ¢ >0,
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where ucv abbreviates the formula Vx [xeu—xev]. (Actually it is the universal
closures of these formulas which are true in all g, since ¢ may have other free
variables. We will not bother with this comment in the future.)

Proof. Both facts are proved by induction following the inductive definition 4.1
of X formula. Let us just prove the first, the second being similar. Fix a structure
W =(N; 4,E,...) and x,ye AUM so that x<y is true in Wyy. For A, formulas
@, we have, obviously, ¢=¢" =¢®. Assume first that (¢ A )™ (i.e., assume
it’s true in Wyy). Hence, o™ and ™. By induction ¢ and ¢y, so (¢ A Y)Y
Similarly for (¢ v ¥)®—(¢ v ¥)® and bounded quantifiers.

Now assume (Iw @(w))™, so there is a wex such that ¢(w)™. By induction
e(w)¥; and, since x<y, wey(ew)?); ie, AwoWw)?. O

4.3 Theorem. (The X Reflection Principle). For all £ formulas ¢ we have the
following:

KPUF@p—3ap®@.
(Here a is any set variable not occurring in ¢; we will not continue to make these

annoying conditions on variables explicit.) In particular, every T formula is
equivalent to a X, formula in KPU.

Proof. We know from the previous lemma that 3a ¢®@—¢ is valid, so the axioms
of KPU come in only in showing ¢—3a¢@. The proof is by induction on ¢,
the case for A, formulas being trivial. We take the three most interesting cases,
leaving the other two to the reader.

Case 1. ¢ is Y A 0. Assume that

KPUFy—3ay®@, and
KPUF0<3a0@

as induction hypothesis, and prove that
KPU (Y A0)—>3a [y A0]9.
Let us work in KPU, assuming y A6 and proving Ja [y A6“@]. Now there
are a,,a, such that 9, 0“? so let a=a, ua,. Then ¢ and Y@ hold by the
previous lemma.
Case 2. ¢ is Yuevy(u). Assume that

KPUHy—Iay®@,

Again, working in KPU, assume Vuevy(u) and prove 3JaVuevy(u)®. For
each uev there is a b such that y(u)®, so by A, collection there is an a, such that
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VuevIbeayy(u)®”. Let a=|Ja,. Now, for every uev, we have Ib<ay(u)®;
so Yuevy(u)®, by the previous lemma.

Case 3. ¢ is Juy(u). Assume Y(u)<—3IbyY(u)® proved and suppose Juy(u)
true. We need an a such that Jueay(u)®. If Y(u) holds, pick b so that y(u)®
and let a=bu {u}. Then uea and Y(u), by the previous lemma. 1[I

In Platek’s original definition of admissible set he took the T reflection
principle as basic. It is very powerful, as we’ll see below. The A, collection axiom
is easier to verify in particular structures, however, and is also more like the
replacement axioms with which one is familiar from ZF.

4.4 Theorem. (The X Collection Principle). For every X formula ¢ the following
is a theorem of KPU: If Vxea3yop(x,y) then there is a set b such that
Vxeadyeb ¢(x,y) and Vyeb Ixea ¢(x, ).
Proof. Assume that

Vxea3yo(x,y).

By X reflection there is a set ¢ such that

)] Vxeadyecp“(x,y).
Let
() b={yec|Ixeap“(x,y)},

by A, separation. Now since ¢ (x,y)—>¢(x,y) by 4.2, (1) gives us:
Vxeadyeb o(x,y);

whereas (2) gives us:
Vyeb3axeaop(x,y). 0O

4.5 Theorem. (A Separation). For any X formula ¢(x) and I1 formula y(x), the
following is a theorem of KPU: If for all xea, ¢(x)—y(x), then there is a set

b={xealp(x)}.

Proof. Assume Vxea (¢(x)<>y(x)). Then Vxea [¢(x)v —w(x)], which is equiv-
alent to a ¥ formula, so there is a ¢ such that Vxea [¢“(x) v =y (x)]. Let, by
A, separation, b={xea|p“(x)}. Clearly every xeb satisfies ¢(x). If xea and
o(x) then Y(x), so Y9(x) (since Y(x)—Y(x)); so ¢)(x). Thus xeb. [

4.6 Theorem. (X Replacement). For each X formula ¢(x,y) the following is a
theorem of KPU: If ¥Yxea3lyo(x,y) then there is a function f, with dom(f)=a,
such that Vxea ¢(x, f(x)).
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Proof. By T Collection there is a set b such that Vxea3yeb ¢(x,y). Using
A Separation there is an f such that

f={xy>eaxblox,y)}
={{x,yyeaxb|Az[p(x,z) Ay#z]}. O

The above is sometimes unsuable because of the uniqueness requirement 3!
in the hypothesis. In these situations it is usually 4.7 which comes to the rescue.

4.7 Theorem. (Strong X Replacement). For each X formula ¢(x,y) the following
is a theorem of KPU: If Vxea 3y ¢(x,y) then there is a function f with dom(f)=a
such that

(1) Vxea f(x)#0;
(i) VxeaVyef(x) o(x,y).

Proof. By X Collection there is a b such that Vxea3Jyebo(x,y) and
Vyeb3Ixea ¢(x,y). Hence there is a w, by 4.3, such that

Vxeadyeb ¢™(x,y), and VyebIxeap™(x,y).
For any fixed xea there is a unique set c, such that
c,={yeblo™(x,y)}

by A, Separation and Extensionality; so, by £ Replacement, there is a function
f with domain a such that f(x)=c, for each xea. 0

4.8—4.9 Exercises. There are a number of minor variations on the above.
4.8. For example, prove that, for each X formula ¢,

KPUF@—3a(xean - Ax,ean o@).
4.9. Given a X formula ¢ let ¢** denote the result of replacing some, but not

necessarily all, existential quantifiers Ju by Juea for some new set variable a.
Show that: KPU ¢ —3dap*°.

5. Adding Defined Symbols to KPU

The introduction of defined relation and function symbols is a common practice,
but it must be used with just a little care in KPU. In a theory like ZF one is able
to take any formula ¢(x,, ..., x,), define a new relation symbol by

(R) Vxy ... Vx, [R(xys ..., X)) o 0(xq, ... X,)]
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and then use R as an atomic formula in other formulas—even in the axiom of
replacement. After all, one could always go back and replace R by ¢. For KPU,
however, where we must pay attention to the syntactic form our axioms take,
a definition like (R) would work, at first glance, only if the ¢ in (R) were A,. We
have tacitly used this form of introducing new relation symbols repeatedly
in § 3. Using the principles of §4 we may allow ourselves a bit more freedom.

5.1 Definition. Let ¢(x,,...,x,) be a £ formula of L* and (x,,...,x,) be a
IT formula of L* such that

KPUR @y .
Let R be a new n-ary relation symbol and define R by (R) above. R is then called
a A relation symbol of KPU.

To be really precise it would be the triple R,¢, such that the above hold
which constitute a A definition of the relation symbol R, but we do not need to
be this careful. The next lemma shows that we can treat A relation symbols as
though they were atomic formulas of L*. Here, and elsewhere, we abbreviate
X1,-.- Xg DY X.

5.2 Lemma. Let KPU be formulated in L* and let R be a A relation symbol of
KPU. Let KPU' be KPU as formulated in L*(R), plus the defining axiom (R)
above.

(i) For every formula 6(xq, ..., x;, R) of L¥(R), there is a formula 04(x,...,x;)
of L* such that KPU +(R) implies

0(X,R)0,(X).
Moreover, if 0 is a £ formula of L*(R) then 0, is a X formula of L*.

(i) For every A, formula 6(x,, ..., x,, R) of L¥(R) there are T and I1 formulas
0o(x15.es Xp), 01(x1, ..., x;) of L* such that KPU+(R) implies

0(X,R)—0y(X), and O(X R)—0(X).
(iii) KPU' is a conservative extension of KPU. That is, for any sentence 6 of L*,
KPU'+6 iff KPURO.
Proof. Let us suppose that R is defined by
R(x{y..r X)) 2 0(X1,5 .05 X,)

where ¢ is a X formula, and that

KPUF(,D(X,I, "'9xn)(_>lp(x1’ ""xn)a
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where  is a IT formula. The first sentence in (i) is obvious since we may replace
R by its definition. It is to make the second sentence of (i) true that we need R
to be a A relation symbol of L*. Using de Morgan’s laws, push all negations in
0 inside as far as possible so that they only apply to atomic formulas. Now re-
place each positive (i.e., unnegated) occurrence of R in 6 by ¢, each occurrence
=R by the ¥ formula equivalent to —wy. The result is called 6,. Since

KPU+—Re¢ and KPUR—-ReW,
it is clear that

KPU'F0(xy,..., xx, R)00(xy, ..., X;) .

It is also clear that this transformation takes X formulas into £ formulas. Note,
however, that the transformation does not take A, formulas into A, formulas,
but only into £ formulas. However, since the A, formulas are closed under
negation, (ii) immediately follows from (i). To prove (iii) it suffices to show that
every axiom of KPU' is turned into a theorem of KPU when R is replaced as
above. For example, A, Separation of KPU’ becomes A Separation in KPU
and A, Collection for KPU’ becomes a consequence of £ Collection for KPU. [

Using this lemma we can clear up a point which may have been bothering
the reader. One way of formalizing L*=L(g,...) is to make it a single sorted
language with predicate symbols U for urelements and S for sets. In this way
Vp(...p...) would stand for Vx(U(x)—(...x...)), and Va(...) would stand for
Vx(S(x)—(...x...)), and “x is an urelement” would be a A, formula, U(x). The
other way of formalizing L* is to have a many-sorted language with the three
sorts of variables

p’q"" ki

ab,..., and

X, Vyun .

The predicate “x is an urelement” is no longer A,, but it is A. Our definition of
L* insures that

x is an urelement < 3Ip (x=p), and

x is not an urelement <> Jda (x=a);

so the predicate and its negation are X,. The lemma assures us that we can
introduce a new symbol by:

U(x)«x is an urelement,
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and use it in A, formulas without fear. Similarly we can introduce

S(x)3Ja(x=a)
<73p (x=p)
for “x is a set” and treat it as a A, formula.

A predicate of intuitive set theory is said to be a A predicate of KPU if it
can be defined by a A relation symbol. Using the above lemma we see that we
may treat A predicates as though they were defined by atomic formulas of L*.
Furthermore, the A predicates are closed under A, v, Vuewv, Juev. Using

these observations, we see that all the predicates listed in Table 2 are indeed
A predicates.

The introduction of defined relation symbols is a convenience, but the intro-
duction of defined function symbols is a practical necessity (though theoretically
a luxury). The conditions necessary for us to be able to do this are given in the
following definition.

5.3 Definition. Let ¢(x,,..., x,,y) be a £ formula of L* such that
KPURVx,....,x, Ay @o(xq,..., X, ) .

Let F be a new n-ary function symbol and define F by:

(F) VX1 Xy V[F(X1s ooy X)) =y 0 (X1, ey X)) ] -

F is then called a X function symbol of KPU.
The next lemma lets us treat ¥ function symbols as though they were atomic
symbols of the basic language L*.

5.4 Lemma. Let KPU be formulated in L* and let F be a T function symbol of
KPU. Let KPU' be KPU as formulated in L*(F), plus the defining axiom (F) above.

(i) For every formula 6(x,,..., xy,F) of L*(F) there is a formula 0y(x,,...,x;)
of L* such that KPU +(F) implies

0(X,F)—=0,(%).

Moreover, if 0 is a X formula of L*(F) then 0, is a ¥ formula of L*.

(i) For every A, formula 0(x,..., X, F) of L*(F) there are £ and I1 formulas
Oo(x15 .-y Xi), O1(x1, ..., x;) of L* such that KPU+(F) implies

0(%,F)«>0,(%), and
0%, F) = 0,(x).

(iii) KPU' is a conservative extension of KPU.
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Table 2. Some A predicates

Predicate Abbreviation Definition

X is an urelement U(x) dp (x=p) (or Va(x+#a))

x is a set S(x) da (x=a) (or Vp (x#p))

X is transitive Tran(x) S(x)AVyex Vzey (zex)

x is an ordinal Ord(x) Tran(x) A Vyex Tran(y)

x is a limit ordinal Lim(x) Ord(x) Ax#0AVyex Izex (z=yu {y})
x is a natural number Nat No(x) Ord(x) A Vyex—1Lim(y) A 71Lim(x)

less than for ordinals a<f Ord(o) A Ord(B) A e

less than or equal a<p a<fva=p.

Proof. Note that if ¢(x,,...,x,,y) is a £ formula and if F(x,,...,x,)=y iff
@(xy,..., X,,y), then we can get a ¥ definition for F(x,,...,x,)#y by

(1) Flxy,...,x)#y iff Fz[o(x,...,x,2) Ay#2].

Thus the graph of F is a A predicate. The only complication, then, that can occur
here but not in the previous lemma, is that F may occur in 6 in complicated
contexts like:

F(G(x))=H(y) and R(F(x)y).
Call a formula simple if F only appears in simple contexts like:
F(xy,....,x, )=y and F(x,,...,x)#y.

Repeated uses of the equivalences below allow us to transform every formula
into an equivalent simple formula in such a way that ¥ formulas transform into
Y formulas:
F(G(X), X5, ..., X)) =y 3z [G(x)=z A F(z,%;,..., x,) =],
F(G(x),x3,.... X)) #y 3z [G(X)=z A F(z,X,,..., X)) # V]
F(xi,...,x)=H(y) <3z [HO)=zAF(x,...,x)=V],
F(xy,..., x)#H(y) 3z [Hy)=zAF(x,...,x,)#2],
o(F(%), ... o3Iz [z=FF)Ae(z,...)] (¢ quantifier free).

The proof now proceeds as in 5.2, replacing occurrences of F(x,,...,x,)=y
by ¢@(x,,...,x,,y), occurrences of F(x,,...,x,)#y by the T formula in (1). [

When we use 5.1 (or 5.3) to introduce a A relation symbol R (or X function
symbol F) we often abuse notation by using KPU to denote the new theory
KPU' of 5.2 (or 5.4). The lemmas insure us that we can’t get into trouble with
this abuse of notation.
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Table 3. Some X operations

Abbre- X Definition (the unique z

Operation Domain viation such that)

domain of all functions f dom(f) see Table 1

range of f all functions f rng(f) see Table 1

the first coordinate of x all ordered pairs x 1% x see Table 1

the second coordinate of x all ordered pairs x 2ndx see Table 1

the restriction of f to a all functions f and sets a  fla z={xef|1"xea}

the image of f restricted to a all functions f and sets a f"a z={xerng(f)|Iyea(f(x)=y)}
successor all sets x F(x) z=x0U{x}

ordinal successor all ordinals « a+1 z=%(a)

supremum sets of ordinals sup(a) z= Ua

An operation of intuitive set theory is a £ operation of KPU if it can be
defined by a X function symbol of KPU. The following exercises summarize
some of the ways, in addition to 5.3, we have of defining  operations. The most
important method, though, must wait for the next section.

5.5—5.7 Exercises

5.5. Every function symbol of L* is a  function symbol.
5.6. The X operations are closed under composition.

5.7. The X operations are closed under definition by cases. That is, if Gy, ..., Gy
are n-ary X operations and @,(xy,..., X); ..., @x(Xy, ..., X,) are X formulas such
that

KPURVx[Vi<k@ix1, ... X,)]

y indicates exclusive or), then we may define a ¥ operation F by:

Gi(xg,eesxy) I @y(xy,...,%,),
Flxiy.oo Xp) =<
Gi(xq,..0, X))  If @pxy,..., %)

Frequently we are interested in the value of a function symbol only for cer-
tain kinds of objects. For example, we want to define 1*a to be the first coordi-
nate of a if a is an ordered pair, but we don’t really care what 1*'a means other-
wise. To introduce 1%a as a function symbol then, we should, to be completely
rigorous, first do something like prove: Vx 3!y ¢(x,y), where ¢(x,y) is:

x is an ordered pair with first coordinate y, or

x is not an ordered pair and y is the empty set,
and then define:

t'x=y iff @(xy).
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Similarly, we are interested in | Jx only when x is a set. We will not bother with
such details in the future, as long as it is clear that the intended domain of our
new function symbol is A definable.

6. Definition by £ Recursion

Definition by recursion is a powerful tool. It will allow us to introduce, in ac-
cordance with 5.3, operations such as ordinal addition, ordinal multiplication
and the support function sp:

sp(p)=1{p},
sp(@)= UxcaSP(X) ,

which gives the set of urelements which go into the construction of a set a. Before
showing how to justify such recursions we must first prove outright what is in
effect a special case.

6.1 Theorem (Existence of Transitive Closure). We can introduce a X function
symbol TC into KPU so that the following becomes a theorem of KPU: For every
x, TC(x) is a transitive set such that x=TC(x); and for any other transitive set a,
if x<a, then TC(x)=a.

The axiom of foundation will be used in the proof of 6.1, in the form of
Proof by Induction over €. If one takes the contrapositive of foundation one

gets the following scheme. For every formula ¢ the following is a theorem of
KPU:

Vx(Vyex o(y) = ¢(x)) > Vxo(x).
Thus in proving Vx ¢(x), we pick an arbitrary x and prove ¢(x) using, in the
proof, ¢(y) for any yex. (Of coure if x is an urelement then there are no such
YEX.)

Proof of 6.1. If we had the ordinal w at our disposal (we cannot prove it exists
in KPU) we could use it to defite

TC(a)=au(Ja)u(JYa)u .

This definition should be kept in mind to understand the following proof. Define
Q(x,a) to be:

xcaATran(@) AVb(x=b A Tran(b)—ac<h).

Thus @ is defined by a Il formula and Q(x,a) iff a is the smallest transitive set
containing x. It is clear that Q(x,a) A Q(x,a')—»a=d'.
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Now let P(x,a) be the following X predicate:

x is an urelement Aa=0, or
x isaset, x=a, Tran(a) AVzeadf[Fun(f) A dom(f)
is a natural number n+1={0,...,n} Az=f(0)ef(1)e "€ f(n)ex.]
(This can be easily formalized without writing “---”; so there is no hidden re-
cursion.) A simple induction on natural numbers n shows that P(x,a)— Q(x,a).
In particular, P(x,a)A P(x,a’)—»a=d .

If we can prove that for every x there is an a such that P(x,a) then we will
be able to define a ¥ function symbol TC by

TC(x)=a iff P(x,a)

and TC(x) will have the desired property of the transitive closure of x. We still
need to show that Vx 3a P(x,a). If x is an urelement, take a=0. Thus, we need
only prove Vb3Ia P(b,a), which we do by induction on €. Given b, in proving
da P(b,a) we may assume

Vxeb 3c P(x,c)
and hence, by the above,
Vxeb3!lc P(x,c).

By X replacement there is a function g with dom(g)=5b, such that P(x,g(x))
holds for all xeb. Let

a=bu(|Jg(g))

= bU Uxebg(x) .
It is clear that b=a and it is not difficult to check that a is transitive. Let us
verify the last clause of P(b,a). Thus, let zea. If zeb then take f={0,z)}. Now
assume zeUrng(g), i.e. zeg(x) for some xeb. But then there is an h such that

dom(h) is an integer n+1, h(0)=z, h(i)eh(i+1) and h(n)ex since P(x,g(x)).
Let f=hu {{n+1,x)}. Then f(0)=zef(1)ef(2)e--ef(n+1)=xeb so P(a,b). 0

6.2 Exercise. Verify

(i) TC(p)=0, and
(ii) TC(@)=au|J{TC(x)|xea} .
Once we have Theorem 6.4 we could use the equations in 6.2 to define TC;

unfortunately we need 6.1 and 6.3 to state and prove 6.4. The following is a
strengthening of the method of proof by induction over €.
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6.3 Theorem (Proof by Induction over TC). For any formula ¢(x) the following
is a theorem of KPU: If, for each x, (Vye TC(x) @(y)) implies ¢(x), then Vx ¢(x).

Proof. We show, under the hypothesis, that VxVyeTC(x) ¢(y). This implies
Vx ¢(x), since xe TC({x}). We may assume, by induction on €, that for all zex

1 VyeTC(z) o(y)

in showing VyeTC(x) ¢(y). But by the hypothesis, (1) implies ¢(z) so we have
@(y), for all yexu|J{TC(z)|zex}=TC(x). O

The following theorem is of central importance to all that follows.

6.4 Theorem (Definition by X Recursion). Let G be an n+2-ary X function
symbol, n=0. It is possible to define a new X function symbol F so that the fol-
lowing is a theorem of KPU (+ the defining axiom (F)): for all x,,...,x,,Y,

(1) F(xla ceey xmy) = G(xls LERE] xn,y’ {<Z5 F(xla (XXX} xmz)>|Z€TC(y)})'

Before turning to the rather tedious proof of 6.4, let us make some remarks
on variations which follow from it. For example, we could replace 6.4(i) by:

F(xla -'-,xn’y)=G(x1’“~7xmy9 {<Z, F(xl’ --wxmz)>|zey)} .

(Let G'(X,y,f)=G(X,y,fly), and apply 6.4 to G'.) We could also start out with
two functions G,H and define

F(xyy..o, X, p)=H(X15 .0 Xps D)
F(X1s.ens Xpa@) = G(Xy, ..., X, a, {{2,F(x1,..., x,)>: 2z TC(a)}) .

This is the form we usually use. (Let G'(X,y,f) be H(X,y), if y is an urelement,
otherwise G(X,y,f) if y is a set. Then apply 6.4 to G'.)

Proof of 6.4. To be a little more formal, what we really want to prove about F,
once we find a way of defining it, is that for all x,,..., x,,y thereis an f such that

1) fis a function A dom(f)=TC(y),
(2) Vwedom(f)(f(w)=F(x,,..., x,,w)), and
3) F(Xyseos X V) =G(Xq, oo Xpo 1, f) -

This suggests the correct defining formula for F. Let n=1 to simplify notation.
Let P(x,y,z,f) be the X predicate given by:
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fis a function Adom(f)=TC(y)

AVWeTC(y) (f(w)=G(x,w, /I TC(w))
AZ:G(x?yaf) .

We will prove:
(4) VxVy3lz3f P(x,y,z,f);
and so we can introduce a ¥ function symbol F by:

©) F(x,y)=z<3f P(x,y.2.f),

where it is clear that the right-hand side of (5) is a £ formula. In order to prove
(4) it suffices to prove;

(6) P(x,y,z, f)AP(x,y,2, f)oz=z A f=f", and
7 Vy3z3f P(x,y,z,f).

We prove both (6) and (7) by induction on TC(y). We use, in these proofs, lines
(8), (9) below which are obtained by inspecting the definition of P:

(8) P(x,y,z,f)—>z=G(x,y,f) 5
) P(x,y,z,f) AweTC(y) - P(x,w, f (w), /TC(w)) .

We now prove (6) by induction on TC(y). Thus, we may assume that for
weTC(y) there is at most one u and g with P(x,w,u,g) and prove that
P(x,y,z, YANP(x, 9,2, f)>z=2 A f=f". Since z=G(x,y,f) and z'=G(x,y,f"),
it suffices to prove f=f'. But f and f’ are functions with common domain
TC(y) so it suffices to show that f(w)=f'(w) for all weTC(y). But by (9),
P(x,w, f(w), ffTC(w)) and P(x,w,f'(w),fITC(w)); so f(w)=f'(w) by the in-
duction hypothesis. It remains to prove (7), and this is where A, Collection
enters in the guise of £ Replacement. We prove 3z3f P(x,y,z,f) assuming, by
induction on TC, that YweTC(y)3u3g P(x,w,u,g); and hence, by (6), there is
a unique u,,g,, such that P(x,w,u,,.g,). By £ Replacement the function

f={{wu,>|weTC(y)}

exists. To prove (7) it suffices to prove P(x,y,G(x,y,f),f) and this will follow
from VzeTC(x)(f(z)=G(x,z ] TC(2)). Since we have P(x,z,u,,g,) we have
f(2)=u,=G(x,y,g9,). Thus, all we have to show is f[TC(z)=g,. For wedom(g,)
=TC(z), (9)implies P(x,w,g,(w),g, TC(w)). Thus by (6) we have g,(w)=u,,=f(w);
so ¢,=fITC(w) as desired. This proves (7). Now let us introduce F by line (5)
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and go back to prove 6.4(i). By (5) we have

F(x,»)=G(x,y,f) where P(x,y,G(x,y,/).f),

so we need only show that
f={{z,F(x,2)>|2e TC(y)} .

For zeTC(y) we have, by (9), P(x,zf(2), f{TC(z)) so, by (5), F(x,z)=f(2)
as desired. [

6.5 Exercise. Prove that if two operations F;,F, both satisfy 6.4(i) in place of
F for all x,,...,x,y then Fi(xq,..., X, »)=F,(xy,...,X,,Y), for all x,,....,x,,y.

In applications of 6.4 one does not usually bother to introduce the explicit
function symbols G,H first.

6.6 Corollary (A Predicates Defined by Recursion). Let P,Q be A predicates of
n+1, n+2 arguments respectively, n=0. We can introduce a A predicate R by
definition so that the following are provable in the resulting KPU:

@) R(xy,..es X p) o P(Xy5..y X0 D)5

(i) R(xyy.mes Xp@) 2 Q(xy, ..., X,,a, (b€ TC(a)|R(x1, .., X, D)}).

Proof. Introduce the characteristic functions G,H of P,Q respectively. Use Z
Recursion to define the characteristic function F of R and then note that
R(xy,..os Xps ¥) o F(xq, ..., X, ) =1
o F(xg,..., X, 1) #0,

so that R is shown to be A. [

In Table 4 we give some examples of operations defined by recursion. The

reader not familiar with this type of thing should work through the following
exercises.

6.7—6.9 Exercises

6.7. (The rank function). (i) Show how to make the definition of rk given in
Table 4 fit into the form of Theorem 6.4.

(ii) Prove that rk(x) is an ordinal, rk(a)=o for ordinals o, and rk(y)<rk(x)
whenever ye TC(x).

(iii) Prove that rk(a)={rk(y)|yeTC(a)}. (This could be used to give a dif-
ferent recursive definition of rk.)
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6.8. (The support function). (i) Show how to make the definition of sp given in
Table 4 fit into the form demanded by 6.4.
(ii) Prove that sp(a)={xeTC(a)|x is an urelement}.

6.9. (Ordinal addition). (i) Show how to make ordinal addition fit into the
form of 6.4.
(ii) Prove:
a+0=0a;
a+(p+1)=(a+p)+1; and
a+A=sup{a+p|f<y}, if Lim(J).

(iii) Prove:

a+(B+y)=(@+p)+7;
p<a+p;
O<f=a<a+pf;
a<f=3y<pla+y=4);
p<y=a+f<a+y;
a<Pry<d=a+y<f+0.

To conclude this section we point out that, like much of axiomatic mathe-
matics, the development of set theory in KPU is largely a matter of refining
proofs from ZF. Among its rewards is the X recursion theorem (1.6.4). Since we
end with a X operation symbol, the operation defined by recursion is absolute.
The usual development in ZF completely looses track of this vital information.
(This is relevant to the point we made in § 1, line (2).)

Table 4. Some X Operations Defined by Recursion

Operation Domain Abbreviation Recursive definitions
rank function everything rk(x) rk(p)=0

rk(a)=sup {rk(x)+1|xea}
support function everything sp(x) sp(p)={p}
ordinal addition pairs of ordinals «, 8 o+ p a+pf=ausup{(a+y)+1]ly<p}
ordinal multiplication pairs of ordinals a, of af=sup{ay+aly<p}
collapsing function pairs a,x C(x) C.(p=p
(cf. L7) C,(b)={C,(x)|xeanb}
constructible sets pairs a,o L(a,a) L(a,0)=TC(a)
(cf. IL.5) L(a,0+1)=2(¥(L(a,n)))

L(a,4) = J.<1L(a,®), for limit .
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7. The Collapsing Lemma

We return to the development of set theory in KPU to discuss an important
operation C of two arguments; we write C,(y) instead of C(x,y). The operation
is defined in KPU using X Recursion by the equations:

Cdp)=p;

Cda)={C.y)lyeanx}.
(This falls under the second variation on Theorem 6.4.) C will be called
Mostowski’s collapsing function. We shall compute C,(y) for some specific values

of x and y after we have a lemma to aid us. In this section we will only be inter-
ested C.(y) for yex.

7.1 Lemma. (i) C,(a)=0, for all p,a.
(i) If a<b and a is transitive, then Cy(x)=x for all xea.
(iii) For any b the set {Cy(x)|xeb}=C,(b) is transitive.

Proof. (i) is obvious. We prove (ii) by e-induction. Thus, given xea we suppose
that C,(y)=y for all yex. But since a is transitive, xSa<bh, so we have

Cyx)= {Cb()’)lyex (@ b}
=G, lyex}
={ylyex}

=X.

To prove (iii), let a={Cy(x)|xeb}. We must show that a is transitive. Let
zeyea. Thus y=Cy(x) for some xeb, hence ze{Cy(x')|x'exnb}; so z=Cyx')
for some x'eb. Hence zea. [

7.2 Example. Let »={0,1,2,4,{1,3,4},{1,4}}. If we let a=3={0,1,2} then
7.1(ii) applies to give:

Cy0)=0,

GC(1)=1,

C,2)=2.
Let us compute C,(4):

Cy(4)={Cy(x)| xeb, x4}
={Cy(x)|x=0,1,2}
={0,1,2}
=3.
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Thus C, “collapses” 4 to 3 since 3 wasn’t in b. Now let us compute C,({1,3,4})
and C,({1,4}):

C,y({1,3,4}) = {Cy(x)| xe{1,3,4} N b}
={Cy(1), Cy(4)}
={1,3};

Cy({1,4})={Cy(x): xe {1,4} N b}
= {Cbﬂ), Cb(4)}
—{1,3}.

Thus both the sets {1,3,4} and {1,4} are collapsed to {1,3}, all because 3 was
left out of b. Note that

{Cy(x): xeb} ={0,1,2,3,{1,3}},

which is a transitive set, just as 7.1 (iii) foretold.

7.3 Definition. For any set b let ¢, denote the restriction of C,(*) to b; i.e.
¢, ={{x,Cy(x)>: xeb}, and let

clpse(b) =rng(c,) = {C,(x): xeb} =C,(b) .
Note that the function ¢, exists (as a set) by  replacement and that clpse(b)
is a transitive set by 7.1 (iii).
A set b is extensional if for every two distinct sets a,,a,eb there is an xeb
such that x is in one of a,,a, but not both; in other symbols,
Vxeb (xea, > x€a,)—a;=a,.
We would like to say that b is extensional if
{b,e nb?>=“Extensionality”,
but we cannot do this because we have not yet defined syntax and semantics

(say =) in KPU. So, what we have done is simply to write this out in full.
In Example 7.2, b was not extensional because of the two sets

a;={1,3,4}, a,={1,4}.

Any transitive set is extensional, as is any set of ordinals. The next lemma shows
that any extensional set is isomorphic to a transitive set.
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7.4 Theorem (The Collapsing Lemma). If a is extensional then c, maps a one-
one onto the transitive set clpse(a). Furthermore, for all x,yca

(i) xey iff cidx)ecly).

In other words, ¢, is an isomorphism of {(a,ena*) onto {clpse(a),e N clpse(a)*).

Proof. We need to show ¢, is one-one and that c,(x)ec,(y) implies xey. We
prove both of these by proving Vx Vy P(x,y) where P(x,y) is the conjunction of:

X,yeanc(x)=cy)->x=y,
x,yeancx)ec(y)>xey, and

X, yEaA c,(y) €cx)>yex.
Given an x, we can assume, by induction on €,
(1) Vxex,Vy P(x,y)
in our proof of Vy P(x,,y). Given an arbitrary y, we can assume
@ Vy€yo P(xo,y)

in our proof of P(x,,y,), again using e-induction. Thus, suppose Xx,,y,€a.

Case 1. c(xo)=c,yo). Suppose x,#y,. We see that both x,,y, must be
sets since c,(p)=p. But then, since a is extensional there is a zea with
z2€(XoU ¥o)—(Xo N yo). Suppose zex,—y,, the other possibility being similar.
Then c,(z)ec,(xo)=c(yo) but, by (1), P(z,y,) so z€y,, a contradiction.

Case 2. c(xg)ecyo). But then c,(xy)=c,(z), for some zey,, but P(xq,z)
by (2), so xo=z and xy€y,.

Case 3. c(y)ecy(xo). Similar to Case 2. 0

We hint at some of the types of applications of the collapsing lemma in the
exercises.

7.5—7.8 Exercises

7.5. Show that if a is finite so is C,(a). [Hint: Use induction on natural numbers.]

7.6. Show in KPU that a set a of ordinals is finite iff clpse(a) is a natural num-
ber. This shows that the predicate “a is a finite set of ordinals” is a A predicate
in KPU. (For contrast see the remarks in 9.1.)
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7.7. Assuming intuitive set theory, or ZF, use the collapsing lemma and the
Lowenheim-Skolem theorem to show that for every transitive A there is a count-
able transitive set B such that {A4,e)={B,e). (= denotes elementary equiv-
alence; we use (4,€) for (4,en A?) when 4 is transitive.) Show that = can-
not in general be replaced by < (elementary substructure).

7.8. Let a,b be transitive sets, f an isomorphism of <{a,e)> and <{b,e). Show
that if f(p)=p for all urelements pea then f(x)=x for all xea and hence a=bh.

7.9 Notes. The collapsing lemma is due to Mostowski [1949] and is one of the
standard tools of the set-theorist. (See also the notes to §9.) The value Cy(x) of
the collapsing function is of interest even when x¢b. For example if b is count-
able one can use C,(x) as a kind of countable approximation to x. Using a notion
of “almost all” due to Kueker and Jech, one can prove that if P is a T predicate
and P(x) holds, then P(C,(x)) holds for almost all countable sets b. For more
on this see Kueker [1972], Jech [1973] and Barwise [1974].

8. Persistent and Absolute Predicates

In this section we discuss the reason for the restriction to A, formulas in the
axioms of separation and collection. The rationale behind this restriction rests
in one of the basic notions of the subject, that of absoluteness.

Recall the discussion of V,, from §1. The sets in V,, come in stages and
separation tells us what principles are allowed in forming the sets at each stage.
The content of A, Separation is that we allow ourselves to form the set
b={xealo(x,y)} at stage « if we already have formed a and y, but only if the
meaning of ¢(x,y) is completely (or absolutely) determined solely on the basis
of the sets formed before stage a. In other words, when we come to a later stage
B and form {xea|@(x,y)} we want to get the same set b, even though there are
now more sets around which might conceivably affect the truth of ¢(x,y) by
altering the range of any unbounded quantifiers in ¢.

Similar considerations apply to collection. Suppose that, in the process of
building V,,, we suddenly notice that Vxea3dy ¢(x,y) is true. We want to be
able to form at the next stage a set b for which Vxea3Jyeb ¢(x,y) is true, and
remains true. But what if the introduction of this very set b destroyed the truth
of ¢(x,y) for some xea? This can happen if ¢ has unbounded universal quan-
tifiers in it. If we want this stability, we must apply collection only if ¢(x,y) can-
not become false when we add new sets to our universe of set theory. That is,
¢(x,y) should persist.

The aim of this section is to extract formal consequences from these ideas.

8.1 Definition. Let WAy =(M; A, E,...) be a structure for L*. For aec A we define

ag={yeMUA|yEa}.
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Note that the value of a; in 8.1 depends on gy, and a. The import of 8.1 is clear.
Speaking very loosely, the set a; is “the set that a believes itself to be”. In the
natural intended structures a; will just be a itself.

The usual notion of substructures has an obvious generalization to L*. We
say that Bg, is an extension of WUgy,, and write Wg =By (Where Wy =(M; 4, E,...)
and By=N;B,E,...) if MR (as L-structures), if A<B, and if the inter-
pretations E, ... are just the restrictions to M U A4 of the interpretations E', ... .

A moment’s reflection shows that gy, =By is not really the natural notion
of extension when one is thinking of models of set theory. For suppose a€A.
The trouble is that a may be “schizophrenic” in its role as a set in Wy, and as
a set in Bg. The relation Wy, =By, guarantees that azSag but it does not
rule out the possibility that for some xeB—A, xe(ag —ag). This is clearly a
chaotic situation (since a set is supposed to be determined by its members), so
we introduce a stronger notion of extension suitable for the study of set theory.

8.2 Definition. Given structures Wy =(N; 4,E,...) and By=(N; B,E,...) for
L*, we say that By is an end extension of gy, written either as:

Up S enaBy 0F By 2 0q U,

if Wy =By, and if for each ae 4, ap=ag . One sometimes reads, aloud, g, S .g By
as “UWgy, is an initial substructure of By,

8.3 Example. If 4 is a transitive set, B2 A4, E=en A%, and E'=en B?, then
(g‘n; AaE)—C—end(‘Jﬁ; BaE,) 5

for in both structures any aeA4 has ap=ag =a. If A were not transitive, how-
ever, this could fail.

8.4 Lemma. Let Wy, By, be structures for L*, Bg2 1qWm. If ¢ is a T formula
of L* then for any xi,...,x,e Wy, UnE=@[ Xy, ..., x,] implies Bgy=@[xy,...,X,].

Proof. This just repeats the proof of Lemma 4.2 proceeding by induction on ¢.
The end extension hypothesis is used to assure that Vxea has the same mean-
ing in Wy, and By. 0

8.5 Definition. A formula ¢(uy,...,u,) of L* is said to be persistent relative to
a theory T of L* if for all models gy, By, of T with By 2 ,,q WUy, and all x,...,x,
in Wgy:

UpEo[x,,...,x,] implies ByE=oe[xy,...,x,].

The formula ¢ is absolute relative to T if for all gy, By, x4, ..., x, as above:

=[xy, ..., x,] iff BypEoe[x,...,x,].
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The significance of 8.5 should be clear enough. Absolute formulas don’t
shift their meaning on us as we move from gy to its end extension B, and back
again. Absoluteness is a precious attribute.

8.6 Corollary. All ¥ formulas are persistent and all A, formulas are absolute
(relative to any theory T).

Proof. By 8.4 all X formulas are persistent, hence all A, formulas are persistent.
But the A, formulas are closed under negation and ¢ is absolute iff ¢ and ¢
are both persistent. [

8.7 Example. Let Uy, and By be models of KPU, Ay <. 4By, We can inter-
pret all the definitions and theorems of KPU in these two models. For example,
let aeWg. Since Ord(x) is a A, formula,

WUy =O0rd(a) iff Be=Ord(a).

Now let us return to consider the rationale behind the A, in A, Separation
and A, Collection. We see from Corollary 8.6 that we have asserted separation
and collection for absolute formulas, at least some of them. For example, if
we form the set b={xea|p(x)} in Wy, a model of KPU, (with ¢ a A, formula),
then in any By2,.¢WUm, the equation for b will remain true.

Have we asserted separation and collection for all absolute formulas? Yes,
but not explicitly. There are formulas ¢(x, y) which are absolute relative to KPU
which are not A,; separation for such ¢ is not an axiom of KPU. It is a theorem
of KPU, though, as we see from the following result of Feferman-Kreisel [1966].

8.8 Theorem. For any theory T of L*, if ¢(x,,...,Xx,) is persistent relative to
T then there is a ¥ formula Y(x,,...,Xx,) such that

THEVXy, . Xy [0(X1, s X)W (Xq, ., X,)]

Hence, if ¢ is absolute relative to T, there are T and I1 formulas Y(x,,..., x,),
0(xy, ..., x,) such that

THEVYX, X, [0(X g X)) Y (X, X) A QX0 X,) 0,0, X,)].

From the results in §4 it follows that we can prove separation in KPU for
all formulas absolute relative to KPU and collection for all formulas persistent
relative to KPU. Furthermore, if we later extend KPU to a stronger theory T
(and we will from time to time) then we’ll still have separation for all ¢ absolute
relative to T and collection for all ¢ persistent relative to T. (If T is stronger
then it has fewer models so, in general, it is easier for a formula to be persistent
or absolute.) These results are not used in the actual study of KPU but they
are reassuring.

We conclude this section with a lemma which will prove useful later on.
We include it here so that the student can become familiar with the concept
of absoluteness. First some remarks.
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If Bu=KPU and we use a phrase like “b is an ordinal of By , what we
mean, of course, is that be By and By=Ord(b). The object b need not be a
real ordinal at all. If W <S,.qBy and acWg,; then, as we saw in Example 8.7,
a is an ordinal of gy, iff a is an ordinal of Bg. Furthermore, since Wgy S ngBw
the ordinals of g, form an initial segment of the ordinals of Bg. (Why?) This
initial segment may or may not exhaust the ordinals of Bg, even though Uy, # Bgy.
In the case where it is a proper initial segment there need not be any ordinal b
of By which is the least upper bound of this segment.

89 Lemma. Let WypS..iBy where By =KPU. Suppose that whenever
By Erk(a)=o we have ac A iff aeA. Suppose further that there is no ordinal
of By which is the least upper bound of the ordinals of Wgy. Then, with the possible
exception of foundation, all the axioms of KPU hold in Ugy.

Proof. We check three axioms and trust the student to verify the other two,
Extensionality and Union.

Pair: Suppose, x,yeWUq, let o,feA be such that
By Ea=rk(x)A f=1k(y).
Then, if Byu=y=(@+1)u(f+1), we have ye A since otherwise y would be the
least upper bound of the ordinals of g. Thus if we choose beBy with

Byt=b={x,y} so that By=rk(b)=y, then bed and yE=b={x,y} by ab-
soluteness of the formula b={x,y}, from Table 1.

A, Separation: Suppose a,yeWUqy. Let o(x,y) be A;,. We want to find
a,beWg, such that

(1) b={xealp(x,y)}
holds in Ug,. Let beBgy, be such that (1) holds in By, using A, Separation in Bgy.

But since
By =1k (b) <1k (a)

the set b is in Wy, It still satisfies (1) in Wg, by absoluteness.

A, Collection: Suppose that ae gy, the formula ¢(x,y) is A, with parameters
from Uy, and that Vxeay ¢(x,y) holds in Wqy,. Then we have:

(2) for each xea there is a yeA and aeA such that WgyE=e(x,y) and
By =1k(y)=a, and hence, by absoluteness By, = o(x,y) ATk () =0t

Thus in By, we have VxeaJaIy[rk(y)=a ¢(x,y)]. So, by T Reflection
in By, there is an ordinal BeBy, such that

VxeaJa< B3y [tk(y)=aA o(x,y)],
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and hence:

(3) Vxea3y [rk(y)<B A @(x,y)]

holds in Bg,. In By, pick the least ordinal B satisfying (3): it exists by foundation.
By (2), B is a sup of ordinals aeWy, so feWy. Apply A, Collection in Bgy, to
(3) to find a set beBy, such that

Vxeadyeb [o(x,y) Ark(y)<f]
holds in Bgy,. Since By =rk(b)< B, beWg. But then the formula
Vxea3dyeb ¢(x,y)

is Ay, it holds in By, and it has all its parameters in Uqy,. Hence by absoluteness,
it holds in Ag,. 0O

8.10—8.12 Exercises

8.10. Given Uy =By, we write Uy < By, if for all X, formulas ¢(x,,...,x,) of
L* and all x,,...,x, in Agy:

UpFE@[xy,....x,] iff BaEe[xg,...,x,].

Show that if WS naBa, U<;Bg, and By=KPU then, with the possible
exception of foundation, all the axioms of KPU hold in g, (The end extension
hypothesis is used to insure that ¥ formulas persist from Uy, to By, Without
this, the exercise is false.)

8.11. Given UyE<=By, show that WUy < By iff for every A, formula
O(V1y... Uy Uyt q) and all x,,...,x,€Wgy,

But=Iv,,1 @[ Xy5-..,x,] implies 3Ix,,; €Uy (BaFE@[Xqs. s Xns1])-
(We are not assuming Wz S .y By !)

8.12 (Schlipf). Find an example of two structures Uy, and By, satisfying the
hypotheses of Lemma 8.9 but where Uy, fails to satisfy the axiom of foundation.
[Let By, be a proper elementary extension of HFgy,. (Cf. § 11.2.)]

8.13 Notes. The considerations involved in the choice of A, Separation and
A, Collection are suggested by the informal notion of “predicative”. Kripke, in
fact, called his axioms for admissible sets PZF, for predicative ZF. As an expli-
cation of the intuitive idea of predicativity, however, KP has certain debatable
features. See, for example, Feferman [1975] for a discussion and examples of set
theories which are predicative in a more stringent sense.
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9. Additional Axioms

There are certain extensions of KPU which surface from time to time. We have
already defined KPU* and KP in § 2. We catalogue some of the others here.

9.1 Definition. The axiom of infinity, or Infinity, is the axiom:
Jo Lim ()
where Lim () is defined in Table 2. We use w as a symbol for the first limit ordinal.

Note that — (Infinity) asserts only that all ordinals are finite, not that all
sets are finite.

The axiom of infinity is often used to form sets by taking a=U,,<wb,l where
b, is defined by recursion on n. We saw one example where this would have
been convenient in the proof of 6.1. For another example, define (in KPU)

F(a,0)={0},
F(a,n+1)={bu{x}:beF(a,n), xea, x¢b},

by X recursion. We find that F(a,n) is the set of n-element subsets of a. In
KPU + (Infinity) we can introduce a new X operation symbol P, by

P.(@=.<, Fla,n),

as the student should verify. We can use P, to convert quantifiers over finite
subsets of a to bounded quantifiers:

Vb [b=anb finite > (...b...)]

becomes

VbeP,(a)(...b...)
in KPU +(Infinity). Since a is finite iff aeP,(a), we see that “a is finite” is

A; in KPU + (Infinity) (whereas it is only X, in KPU).
The remaining axioms will be of secondary importance for our study.

9.2 Definition. X, Separation is the set of axioms of the form
(i) IbVx(xebexean ¢(x)),

where ¢ is a X, formula of L*,

9.3 Definition. Full separation asserts 9.2 (i) for all formulas ¢ of L*.
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9.4 Definition. Full collection asserts the collection scheme
Vxeady o(x,y)— IbVxeaIyeb ¢(x, )

for all formulas ¢ of L*.

9.5 Definition. The axiom Beta. A relation r is well founded on a if
Vb[bsanb#0—-3IxebVyeb({y,x)¢r)].

If rcaxa and r is well founded on a then we say that r is well founded. (If r
is well founded on a, then rn(ax a) is well founded, but r itself may have some
funny things going on outside the set a.) The axiom Beta asserts: for every well-
founded relation r<axa on a set a there is a function f, dom(f)=a, satisfying:

0 f)={f(y):yean(yxer},
for all xea. The function f is said to be collapsing for r.

The axiom Beta has the effect of making the IT, predicate “r is well founded
on a” a A, predicate since it becomes equivalent to:

3f [dom(f)=an f is collapsing for r].

(See 9.8 (ii) (b).) Beta is not provable in KPU but it is provable if we add
X, Separation.

9.6 Theorem. Beta is provable in KPU + (X, Separation).

Sketch of proof. Let us work in KPU+ (X, Separation). Let r be well founded
on a, and write x<y for {x,y)er. Define a operation F on the ordinals by
¥ recursion:

F(a)={xea|Vyea (y<x—3If<ayeF(B))}
=the set of all xea such that {yea|y<x}<|Js<q F(B).

Note that a<f implies F(x)=F(f). Let us show that every xea is in some
F(a). If not, then the set b=a—b, is non empty, where

bo={xea|Ia (xe F(0)},

this being the place where we need X, Separation. Let xeb be such that for all
yeb, we have y<x (using the well-foundedness of r). Then

Vyea[y<x—3B(yeF(h)]
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so by X Reflection there is an o such that
Vyea[y<x—3p<a(yeF(P))], and hence

{vea:y<x}cUp<. F(B).

So xeF(x) by the definition of F(x), which contradicts x¢b,. Now since
0=Ua F(a) there is, by X Reflection, a y such that a=Ua<yF(a).

The rest of the proof is easy. Define f,, for a<y, by recursion on a: f, is
the function with domain F(x) such that

L)={f(NIB<anyeF(B)ry<x},

for all xe F(x). These f, are increasing (f<a implies f;< f,, by induction on a),
and f= fy=Ua<y f, is the desired function satisfying

f)={f(y):yeany<x}

for all xea.

9.7 Definition. The power set axiom. We think of the power set operation as
a primitive operation. When we use the power set axiom we will assume
L*=L(g P,...) where P is a 1-place operation symbol. The power set axiom asserts

VxVy [xeP(y) =(S(x) A xsy)]
where, as in Table 2, S(x) means “x is a set”.

9.8—9.12 Exercises

9.8. Prove in KP (not KPU) that every set of finite rank is finite. Hence
KP + —(Infinity) implies that every set is finite. This greatly limits KP as opposed
to KPU, as we'll see in later chapters.

9.9. Let r<axa and let f be a function with dom(f)=a which is collapsing
for r. Prove the following in KPU:

(i) r is well founded;

(ii) rng(f) is transitive and has no urelements in it;

(iil) If g is a function with dom(g)=a and g is collapsing for r, then f =g.
[Hint: Prove Vb Vxea(f(x)=beg(x)=b) by e-induction on b]

(iv) If for all x,yea, x#y, thereisa zea with —({z,x>er<{z,y>er), then
fis one-one and hence is an isomorphism of {a,r) with a transitive set {(b,enb?}.

9.10. Show that in KPU+(Beta) we can introduce a £ operation symbol B
such that

B(r,a)=0 iff r is not well founded on a,
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but if r is well founded on a, then B(r,a) is a (the) function f with dom(f)=a
such that f(x)={f(y): yean{y,xyer} for all xea. [Use 9.9.]

9.11. A relation r<axa well orders a if it orders a linearly and is well founded.
Show in KPU +(Beta), that if » well orders a, then there is a (unique) ordinal «
such that <{a,r)={o,€).

9.12. Show that adding X, Separation to KPU has the same effect (i.e. same
theorems) as adding all the following axioms, where ¢ is A,:

IbVxea[3y o(x,y)— Iyeb o(x,y)].

9.13 Notes. In a theory like ZF containing X, Separation, Beta becomes a theo-
rem and the collapsing lemma of § 7 is a consequence of it. In such theories Beta
itself is often called The Collapsing Lemma. It is due to Mostowski [1949]. In
KPU we must separate the two aspects since one is provable and the other is
not. Beta is so named because Mostowski [1961] used the terminology “f-model”
(with “g” for bon ordre) for models where well-orderings were absolute.





