
STATISTICAL STUDIES RELATING TO
THE DISTRIBUTION OF THE
ELEMENTS OF SPECTROSCOPIC

BINARIES
ELIZABETH L. SCOTT
UNIVERSITY OF CALIFORNIA

1. Introduction
A study of the relation between the theoretical distribution of the orbital ele-

ments of binary stars, on the one hand, and of the distribution of their catalogue
values, on the other hand, is of interest in the problem of stellar evolution. One
example is presented by the hypothesis of Struve [1] that the evolutionary process
of certain binaries involves the emission of streams of gas which encircle the two
components of the binary system.

With the spectroscope, the radial velocity (the component of velocity in the line
of sight) of a star can be measured. If the star is a member of a binary system then
its radial velocity will vary periodically with time in a type of periodic curve which
is perfectly determined by Kepler's laws. If, in addition to the two stars, there is
present a stream of gas then the measurements of the radial velocity of the bright
component will be affected by the absorption of the star's radiation by the gas
streaming between and encircling the two components. As a result, the numerical
graph of radial velocities will not conform to Kepler's laws and the catalogue ele-
ments, representing "best fitting" compromise values obtained by forcing a Kep-
lerian orbit onto the non-Keplerian graph, will be affected by systematic errors.
Thus, the Struve effect would contribute to the differences between the distribu-
tion of the true elements of binaries and that of their catalogue elements. Struve
has found some binaries for which there is strong evidence of a ring of gas.

Theoretical considerations suggest that the true value of W, the longitude of
periastron, which describes the orientation of the major axis of the orbital ellipse,
must be distributed uniformly between 00 and 3600. However, it was shown [2],
[3] that, at least for some categories of stars, the distribution of the catalogue value
of w is not uniform. It is obvious that the true distribution of w could be distorted
by many causes. For example, stars with some values of w are easier to identify
as binaries than others. This effect will be referred to as selective identifiability.
Furthermore, the ordinary procedure of computing orbital elements from observa-
tions affected by errors is likely to favor some values of co at the expense of others.
Now, proof that the combined effect of these factors is not sufficient to explain the
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nonuniformity of the observed distribution of w would provide evidence for the
necessity of some additional hypothesis such as that of the Struve effect.

The purpose of the present paper is to summarize some results relating to the
effects that selective identifiability of binaries and also errors in determining their
orbits will have upon the distribution of the catalogue values of the elements. Com-
plete presentation of some of these results is deferred to a forthcoming issue [4]
of the Publications in Statistics of the University of California.

2. Selective identifiability of spectroscopic binaries

In this section we shall consider how the probability of classifying a binary star
as having variable radial velocity depends upon the various elements of the orbit
of the bright component. In so doing, it will be necessary to construct a precise but,
unfortunately, oversimplified model of the processes which lead to the conclusion
that a star has variable radial velocity.
We consider that n observations,

XT1,-X2, ..* . XnX

of the radial velocity of a star will be taken at times

tl, 12,... . tn,

respectively, and that the time of observation is chosen at random and thus is uni-
formly and independently distributed throughout the period of revolution. Let tj
denote the star's true radial velocity at time tI. Then the difference, Xj- ti, is
the error of the j-th observation. We assume that the errors of observation are
completely independent of each other and of the true radial velocities and that
they follow a normal distribution with expectation zero and known standard
error o.

Consider a star which has orbital elements
K = semiamplitude of variation in radial velocity,
e = eccentricity,
w = longitude of periastron,
to = radial velocity of center of mass of the system

(to is used instead of the usual notation y).

Then, by considering the laws of motion, it was found [4] that the probability
density of t, the true radial velocity, is given by, say,

(1) p( K, e,w o) = L!-e -2) [l+e 1 + 5f~~
KK=e [l+e sin(4+w)]2 I[l+e sin (0-w) 1

where t varies between the limits

K (e cos co- 1) + to < t _ K (e cos co + 1) + to

and where, for the sake of brevity,
(2) 4 =arc sin[t K e cos co]
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Figures 1 to 4 illustrate the general u -shaped distribution corresponding to equa-
tion (1). Curves of this kind were obtained graphically by Schlesinger [5] for
w = 00, 90°, etc.

Combining equation (1) with the assumptions above, we find that the absolute
probability density of each x, the observed radial velocity, is given by
(3) p (x K, e, w, to, a)

=(2 7r)3/)2-fX" e-X/202In++ e si-n(o++) ]2+ [1+ e sin(O _ ) 12
d

where, for brevity,
X = x - - K (sin + e cos w) .

The lower part of figure 5 illustrates typical distributions corresponding to equa-
tion (3). This figure indicates how the probability density of the true radial velocity
t combines with the probability density of the error of observation to produce the
probability density of x, the observed radial velocity. Note that the probability
density of the error of observation is shifted so that it may be more easily compared
with that of x.

It will be noticed that, for moderate values of K, the distribution of x differs but
slightly from the normal distribution. Thus, it is clear intuitively that, no matter
what method of identifying binaries is used, the probability of detecting that such
a star has variable radial velocity must be very small. If a were not known but
estimated from the observations x, this probability would be still smaller. It is also
clear intuitively that when the eccentricity is small or when w differs from zero so
that the distribution of t is not so concentrated at one point, then the probability
of detecting that the star has variable radial velocity will increase somewhat. This
is because the proportion of time during which the radial velocity of the bright
component differs appreciably from that of the center of mass of the binary system
will increase so that there is more chance of observing such a divergent velocity.

Although no standard method has been adopted to decide whether a star has
constant or variable radial velocity, we postulate that the procedures ordinarily
used conform to the "best" (in a certain sense) criterion for identifying a variable.
This corresponds to the experience in many fields of application of mathematical
statistics that the procedures developed on intuitive bases by persons in the field
have later been proved by statisticians to be the best possible.
We want the function of the observable velocities, xi, X2, . . ., xn, which is

"best" for testing the hypothesis that the star has constant radial velocity, that is,
for testing the hypothesis that K = 0. Using the Neyman-Pearson theory of
testing hypotheses [6], the test which has the following properties was found [41:

(a) The probability that a constant velocity star is deemed to have variable
radial velocity is a small number a, fixed in advance, no matter what to, uf and n
may be.

(b) Out of all the tests satisfying (a), the probability that a variable velocity
star is recognized as having variable velocity is as large as possible in the neighbor-
hood of K = 0 in the sense that the first nonzero derivative of this probability,
taken with respect to K and evaluated at K = 0, is maximum for all e, w, t, a

and n.
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The criterion corresponding to the best test, in this sense, is: Declare that the
star has variable radial velocity whenever

(4) (x -X) 2> XQ

where x is the arithmetic mean of the observed radial velocities, xi, X2, . . ., xn and

K K1

I=. 1. 8I.,
.7 e=.7 t-L.

.6 6
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.1
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FIGuRE 5

Distribution of true radial velocity t, of error I = x - t, and of the observable radial ve-
locity x.

XQ2,,, is the value of the classical x2 corresponding to the level of significance a
and to n - 1 degrees of freedom. This is the test suggested by Trumpler [7] on
intuitive grounds. Previously, the author proved [8] that Trumpler's test has the
described optimum property for the special case when the orbit is a circle. In this
case, however, the computations are greatly simplified.

If the star actually is a binary with specified elements, K, e and w, then the
probability of identifying it by criterion (4) was found [4] to be represented ap-
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proximately by, say,

(5) i(K, e,w,n)= () (D6ryEP8+r) P.-1±2,

where Pn-1+2, is the probability that the classical x2 with n - 1 + 2r degrees of
freedom exceeds the value X2,-i and

n((nn-1-A22
n(n-) A4( )(n-3) /2(t

2ff27~~~~~~~~

(n1 ) A 2 (W
in which A2(Q) and 44(Q) are the second and fourth, respectively, central moments
of the true radial velocity (, namely,

IA2 (Q) = 2K2 (1 - e2) (1 - E2) X

IA4 ( K)5 8K4 [4 (1 - e2)3/2 -(1-e2)2 (3 - 4E2 + E4)]
with

E- el cos rw for r = 2, 4.
[1_+ (1I - el) 1/211

Sampling experiments indicate that the error introduced by the approximation
in (5) is negligible, being <.01.

Figure 6 and table I illustrate formula (5) and show how the probability of
identifying a binary depends very sharply on all of the parameters involved, that
is, on K/lo, e, w and n. Since the probability depends upon all these parameters at
once, formula (5) cannot be illustrated very conveniently by graphs; in fact, the
dependence on n is shown for two sets of e and w only: for the circle, e = 0, the
case in which the binary is most easily identified, and for one of the most difficult
cases, e = 0.9 and w = 00.

Our intuitive considerations are now verified: the probability of identifying a
binary increases as w departs from 0° or 180°, as the eccentricity decreases and,
also, as K/l increases. The dependence on eccentricity is especially strong so that
as e tends to one, the probability of detecting variable velocity decreases to a, the
preassigned level of significance.

Comparing the curves in the upper left section of figure 6 with the observed dis-
tribution of the catalogue values of X [2], [3], it will be noticed that the observed
nonuniformity cannot be the effect of selective identifiability alone.

Figure 6 and table I may be used to read out the proportion of binaries of par-
ticular categories which one may expect to identify with a given observing pro-
gram. Also, they may be used to design an observing program so that the proba-
bility of identifying a given type of binary has a specified value. The curves in the
lower right section of figure 6 illustrate a fact which seems interesting and, per-
haps, unexpected. Whenever the number of plates is increased by any factor, say m,
and, at the same time, there is a decrease in precision by the same amount (so that
af is increased by the factor V/m) then the probability of identifying a binary is
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usually decreased. Thus, for example, it is less efficient to obtain 10 plates each of
which has a standard error of 2oo than to take only 5 plates with standard error
of ao each. In other words, two plates taken independently and, as far as possible,
simultaneously on each of five randomly selected nights give a better chance of
identifying a binary than ten plates taken singly on ten different nights. In interpret-
ing this result, one must emphasize the condition of independence of the plates
taken in quick succession on the same night. If the two plates are taken by the
same instrument then this condition cannot be satisfied exactly because of the so
called "night error." However, if the night error is not large, the condition may be
satisfied approximately.

3. Effects of the determination of the elements

The present section is concerned with the next step in establishing the connec-
tion between the true elements and the catalogue elements of spectroscopic bi-
naries. For this purpose, it is necessary to extend the model we have been consider-
ing so as to include the processes used by the astronomer in the determination of
the orbital elements.
We consider that all those stars which are classified, after n observations of

radial velocity, as having variable radial velocity are observed further in an effort
to determine the period and the other elements. The method of determining the
period consists, strictly, of: make a guess at the period, obtain a few observations
in an attempt to verify this guess, then guess again, and so forth. It is possible
that no satisfactory estimate of the period can be found even when the number of
observations available is increased to a total of N (perhaps, N = 40).

Even though a binary is identified as having variable radial velocity and a pe-
riod determined, the catalogue elements determined for it need not be the true ele-
ments, K, e, X and to. The calculation of the elements is influenced by the errors in
observing the radial velocity and by any error made in determining the period.
The methods used contain an essential step which consists in drawing a "smooth"
curve through the observations of radial velocity plotted against the phase of the
observation. Then, either by identifying this curve as representing one of the pos-
sible Keplerian orbits or by certain geometric computations, the estimates of the
elements are deduced. When the observations are numerous and relatively accu-
rate, corrections are computed which mitigate the effects of any errors in judg-
ment, but the effects of the errors in the observations, of course, persist.
We postulate that a total of N observations are available for estimating the ele-

ments K, e, w and to and that the combined effects of the weather, of the efforts
to find the period and, once the period has been determined, of the efforts to fill the
gaps in the velocity curve will tend to produce a uniform distribution of the times
of observation with respect to the period.

There are, then, three steps which must be accomplished before the catalogue
elements are obtained.

(i) The first step is that the binary be identified as having variable radial veloc-
ity. In the last section we studied the probability #(K/l, e, w, n) that this step
will be accomplished.
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(ii) The next step is the determination of a period. Let V1(P, K/a, e, w, N, var.)
denote the probability that an estimate of the period is obtained with N or fewer
observations, given that the binary has been identified as having variable velocity.
In addition, let 4)(Q P, K/a, e, w, N, var.) denote the probability density of the
estimate, say Q, of the period when the true elements are P, K, e and c, the
standard error of observation is a, and given that the binary has been identified
as variable and a period determined with N or less observations.

(iii) When the first two steps are completed and N observations are available,
then estimates of the elements K, e, w and to are determined. Let L, f, v and i7
stand for the catalogue elements corresponding to K, e, w and 4o, respectively.
Also, let A(L, f, v, 7o0 P, K/u, e, w, So, N, var., Q) denote the probability density of
the estimates L, f, v and qo relative to all the conditions enumerated at the end of
(ii) plus the condition that the true velocity of the center of mass is 40 and that the
estimated period is Q.

It is obvious that all of the probabilities, ,B, i, 4 and A, enter into the relation
between the observable distribution of the catalogue elements Q, L,f, v and 77o and
the unknown distribution of the true elements P, K, e, w and 0o. Unfortunately, at
the present time, there is no information about 4', 4), and A. The remainder of the
present section is given to a study of the probability density

(6) A1 (L, f, v, loJP, K/u, e, w, to, N, var.)

= A (L, f, v, noiP, K/u, e, w, So, N, var., P) .

Thus, A1 is defined as the probability density of L, f, v and ?o relative to all the
conditions previously specified with the additional hypothesis that there is no error
in estimating the period. As a justification for the special interest in A1, the argu-
ment may be advanced that, whenever an astronomer announces the period of a
spectroscopic binary, it may be expected that, owing to the usual checks already
described, this estimated period is approximately equal to the true period.

Since the usual procedure for estimating K, e, w and 4o is not strictly analytic,
no analytic study of its properties seems possible and the probability density Al
was studied by means of a sampling experiment.

For a large number of cases, N = 40 synthetic observations were produced and
then, assuming the correct period known, the other elements were estimated from
a plot of the synthetic observations without knowledge of the true elements used
to produce these observations. Figure 7 is intended to illustrate how the sampling
experiment was set up. Each of the two halves of the figure corresponds to a sepa-
rate combination of values of the true elements. The curves in the upper part of
the figure show the true radial velocity as a function of phase (labeled from 00 to
360°, for convenience) and are computed from known formulae and tables. In
order to produce the first "synthetic observation," we begin by selecting at random
a number between 0 and 360 to represent the phase of the first observation. (This
may be accomplished by reading from a table of random numbers, for example,
from [91.) Next, the error of this observation is determined by choosing at random
a normal deviate of appropriate a. (This may be accomplished with the aid of a
table of random normal deviates, for example, [10].) Now this error of observation
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is added to the true radial velocity corresponding to the phase of the first observa-
tion and the result is the first of the synthetic observations of radial velocity. This
process is repeated N = 40 times to obtain the 40 observations which are plotted.
The lower part of figure 7 gives the plots obtained in the two cases shown in the
upper part of the figure. The only identifying material on the plot is a new random
number used for coding and for shuffling the plots.

The plot is used to determine the estimates of the elements by comparing it in
turn with each of a dense set of true velocity curves until the best fitting curve is
found. The author tried to make all decisions in the same way that they are usually
made, as described in the literature. In particular, whenever a circular orbit is
possible, it was adopted as the estimate.

The reader will realize that this sampling experiment is laborious and very time
consuming. It is still in progress. At the time of writing, all of the results obtained
referred to single line binaries (the spectrum of the brighter component only is
discernable on the spectrogram) and most of the results referred to K/u = 2. In
addition, some sampling experiments were made with K/v = 0, with K/v = 4
and Kla = 6. For K/u = 2 the same number 30 experiments were made for each
of the following 15 combinations of e and c

e wo

0 _
.1 0, 45, 90
.3 0, 30, 45, 60, 90
.7 0, 45, 90
.9 0,45,90.

The value of to was chosen at random separately for each of the 450 sampling ex-
periments performed. The reader will notice that for reasons of symmetry the
values of co considered range from 00 to 900 only.

The results of the study reportable now refer to the distribution of the estimate,
sayfi, of the eccentricity when the true period is known. Since the methods of ob-
taining the estimate fi do not depend, in any way, on the value of to nor of P, we
need consider as parameters onlyK/u, e, co and N. Table II shows the results referring
to the case K/u = 2 and N = 40. The particular columns of this table refer to
various combinations of the true eccentricity e and the true longitude of periastron
co. The rows of the main body of the table, that is, all rows except the last, give the
observed frequency of the different values of fi obtained. There are entries in the
last row in only the last six columns, referring to large values of the eccentricity.
These entries represent the frequencies of those cases where, even when the true
period was assumed known, it was impossible to make any estimate of the orbital
elements. Figure 8 shows one such case. Although table II lists these frequencies,
they are not taken into account in the further computations for the reason that we
are now discussing step (iii) in the determination of the catalogue elements. Step
(iii) is concerned with the determination of the elements K, e, co and to for those
stars which already (i) have been identified as binaries and (ii) for which a
period has been found. The particular sampling experiments referred to in the
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last line of table II are precisely those for which the variability of radial velocity
would not even be detected with 40 observations, much less with 10 observations
[this was checked by computing the criterion (4) for identifying a binary]. In fact,
the last line is in qualitative agreement with the probability #(K/o, e, o, n) of

TABLE II
FREQUENCY DISTRIBUTION OF THE ESTIMATED ECCENTRICITYf1 FOR VARIOUS
COMBINATIONS OF THE TRUE ECCENTRICITY e AND THE TRUE LONGITUDE

OF PERIASTRON w WHEN K/a = 2 AND N = 40 OBSERVATIONS

Truee 0 .1 .3 .7 .9

True co 0 45 90 0 30 45 60 90 0 45 90 0 45 90

0 15 14 10 10 7 4 6 2 5 2 1 0 0 0 0
.1 14 10 11 14 9 5 2 11 7 0 0 0 0 0 0
.2 1 3 7 2 5 9 8 10 9 0 5 2 0 0 2
.3 1 0 3 6 6 6 3 2 0 4 8 2 0 0

Q .4 1 2 1 2 5 4 1 4 1 0 2 0 0 0
E 5 1 1 1 1 1 2 5 4 2 0 2 0
* .6 2 1 0 6 3 9 1 2 1
X .7 1 1 1 6 7 4 1 1 3

.8 0 0 1 2 1 2

.9 1 0 0 2 3 6

Can't 9 6 2 22 21 16

041165

x
K *

0~~~~~~~~~

120o 240 I50 to'
0 ~~~~~~~~~~~0.* * 0

0. 0* * 0

FIGURE 8

A case where it was impossible (entered in table II as "Can't") to make any estimate of the
orbital elements.

Trueelements are: e = .9, c = 45°, K/a = 2, to/K =-0.14.

identifying that the binary is variable: the larger the eccentricity and, also, the
closer w is to 00, the more difficult it is to identify the binary.

The dependence of the frequency distribution of fi on the true eccentricity e is
strongly reflected in table II. On the other hand, with the possible exception of
e = .3, there is no noticeable dependence on the value of w. When a test was ap-
plied, no definite evidence of dependence on X was found. For this reason, further
study of the distribution of f, was based on the presumption that it is independent



430 SECOND BERKELEY SYMPOSIUM: SCOTT

of co. Consequently, further computations were based on the figures obtained by
adding together all of the columns of table II which refer to the same value of e.
These figures are shown in table III in the columns marked "Observed frequency."

As far as direct information about how the variability of the estimatefi depends
upon the true eccentricity e is concerned, the figures just described are the real evi-
dence obtained. Inspection of these figures shows that, especially when the value
of e is large, the estimate fi has surprisingly large dispersion. For example, when
e = .7, in 3 cases out of 73 the value of fi was zero. The empirical distributions of
fi change smoothly as e passes through successive values; this is in spite of a cer-

TABLE III

COMPARISON OF FREQUENCY OBSERVED IN SAMPLING EXPERIMENT
AND COMPUTED FROM APPROXIMATING FORMULA (7)

e ~~0 .1 .3 .7 .9

Obs. Comp. Obs. Comp. Obs. Comp. Obs. Comp. Obs. Comp.
Freq. Freq. Freq. Freq. Freq. Freq. Freq. Freq. Freq. Freq.

0 15 20.2 34 29.1 24 18.4 3 1.3 0 0.0
.1 14 6.2 35 40.0 34 44.5 0 5.3 0 0.3
.2 1 2.2 12 15.3 41 36.2 7 7.2 2 0.9
.3 0.9 4 4.5 23 24.5 12 8.4 2 1.6
.4 0.4 4 1.0 16 14.5 3 9.0 0 2.5
.5 1 0.2 6 7.4 11 9.3 2 3.1
.6 3 3.2 18 9.2 4 4.0
.7 3 1.0 17 8.6 5 4.8
.8 . 0.2 1 7.6 5 5.4
.9 1 5.7 11 5.7

1.0 1.4 2.7

Can't 17 59

Total 30 90 150 90 90

tain bumpiness in the particular columns. This suggests the possibility of using just
one formula, depending on e, to represent approximately the distribution of fi.
This formula is based on the following remarks.

Each of the empirical distributions of fi obtained has but one maximum and
extends, at least in principle, from zero to unity. This suggests that a reasonable
approximation to the observed distribution can be obtained by using the Pearson
type I distribution, say,

fl-1 ( 1 _ fi) m2-1

(7) P (fl) , )

The two parameters, ml and m2, are connected with the expectations of the first
two powers of fi by the following easy formulae

(E(f1) = M +m '

(8)
lf2 ml+ 1 (fl)
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Thus, if we knew the expectations of f, and of f', for any given value of e, the cor-
responding values of the parameters ml and m2 would be easy to find.

In order to study the dependence of E(fi) and E(fl2) on e, the average value of fi
and the average value of f2 were computed for each e. It was found that the de-
pendence on e can be represented by the following formulae

E (fIle, c, K/o = 2, N = 40) = 0.0567474 + 0.422982 e + 0.297820 e2,

. (f2lIe, w, K/v = 2, N = 40) = 0.010885 + 0.611834 e2.

U)

a

J /

o .2 4 .6 B ID

FIGURE 9

Approximation to the probability density of the estimated eccentricity f, as a function of the
true eccentricity when K/a = 2.

By substituting the values of these formulae into (8), a set of ml and m2 was com-

puted. The resulting curves are shown in figure 9, which gives the approximation
to the probability density of the estimated eccentricityf, when the true eccentricity
e is 0, .1, .2, . . . , 1.0. Figure 9, then, may be interpreted as representing approxi-
mately the dependence of the distribution of f, on the value of e. The goodness of
the approximation may be judged from table III which, in addition to the observed
frequencies of f', gives the frequencies computed using the above approximation.
While, in certain cases, the agreement between the observed and expected figures
in not very good, this should not be judged too severely because a very large num-
ber of frequencies was approximated at one time using only five parameters.
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4. Remarks on the distribution of eccentricity
We have let #(K/a, e, w, n) denote the probability that a binary with specified

elements is identified as variable, and then we let 4t(P, K/a, e, c, N, var.) denote
the probability that an estimate of the period is obtained. In addition, we let
4(Q P, K/a, e, w, N, var.) denote the relative probability density of the estimate
Q of the period and A(L, f, v, 7o!l1P, K/u, e, w, to, N, var., Q) denote the joint rela-
tive probability density of the estimates L, f, v and qo of the semiamplitude, the
eccentricity, the longitude of periastron and the radial velocity of center of mass,
respectively.

Now, if we denote the unknown distribution of the true elements by, say,
g(P, K, e, w, to) and the observable distribution of the catalogue elements by, say,
h(Q, L, f, v, qo), we have the relation

(9) h (Q, L, f,v, go) I

f ... fg,3PdPdKdedwd 0

where the range of integration is over the extreme limits of each variable. Equa-
tion (9) is concerned with the joint distribution of the five estimates Q, L, f, v
and ip. If all of the probability functions j, ,6, 4 and A were known then, since h is
observable, the solution of the integral equation (9) would provide the unknown
distribution g, that is, would rectify the catalogue distribution h. The denominator
of the right hand side of (9) is a constant, and is the probability that a binary
chosen at random will have estimates of its elements appearing in the catalogue.
This'probability may be used to rectify the total of the number of binaries listed
in the catalogue, that is, to obtain an estimate of the true total number of binaries
in the vicinity of the sun.

Integrating both sides of (9) with respect to any four of the five estimates,
Q, L, f, v and x1o, provides the probability density of the remaining estimate.
Thus, for example, the probability density of the estimate of the eccentricity is,
say,

ror 2 co

(10) H(f) h= jJfh (Q,L, f,v, no) dQdLdvdqo.fOCo o*-0

The preliminary results on the distribution of true eccentricity which it is pos-
sible to report now are based on the assumption that the true period is always
found (so that 4/ = 1 and Q = P) and refer to the case when K/v = 2. Since there
are several hundred stars which have been announced as spectroscopic binaries
but for which no period has been found, it should be emphasized that these pre-
liminary results are not to be taken as an estimate of the distribution of true ec-
centricity since they are still distorted by the unknown effects of failure to find a
period.

If we assume also that the distribution of the true elements may be factored
into, say,

(11) g (P, K, e,w, 4o) = G, (e) C2 (w) G3 (P, K, to),
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with G2(w) representing the uniform distribution, then we may use the results of
sections 2 and 3 to obtain a preliminary estimate of Gi(e). Putting (9) and all the
assumptions just made into (10) and integrating, we obtain for the distribution
of the estimated eccentricity when K/a = 2, say,

(12) H (f 2, n, N)

Gi(e) ( = 2, e, , n) Al(f = 2, e, N)d edw.

.Gi(e)f `(~-=2, e,w, n)dedco
We have made use of the fact that the relative probability density Al of fi is inde-
pendent of P, of w and of 0o.

Values of ,3(K/l= 2, e, w, n) may be read from figure 7 or table I while
Al(fI K/v = 2, e, N = 40) is illustrated in figure 9 and may be computed from
table III. Strictly speaking, H(f, K/a = 2, n, N) is not an observable distribution
because K is an unknown. However, a study of the observed distribution of the
catalogue eccentricity of single line binaries of spectral types 0, B and A (for which
a is large so that the case K/a = 2 is of interest)' revealed that the distribution off
for L = 5-15, 15-25, 25-35, . km/sec do not differ essentially. But the results
of the sampling experiment described in section 3 indicate that L - K, the error in
estimating K, is almost always nonnegative for small values of e and nonpositive
for large values of e. When K/a = 2, this effect is small although noticeable. On
the other hand, for K/a > 4, the error L - K is negligible. For this reason, and
because the number of stars listed in the catalogue is not large, we shall combine
the figures pertaining to all values of L for early type, single line binaries in order
to obtain the observed distribution of f for K/u = 2. The solid line in figure 11
shows this observed distribution of f.

Reasonable values for n and N seem to be n = 10 and N = 40 and we shall
adopt these in order to obtain some preliminary numerical results.

Figure 10 shows a number of possible solutions for Gi(e IK/l = 2), the prob-
ability density of the true eccentricity under the assumptions we have made.
Figure 11 shows the resulting distribution of fi, the estimated eccentricity as-
suming the true period known. The computed values of H(fi) were obtained by
substituting the numerical values of the corresponding Gi(e) into (12) and per-
forming the integrations numerically. Each of the trial functions Gi(e) shown in
figure 10 produces a satisfactory fit of the observed distribution. Remembering
that the observed distribution is poorly determined, especially for medium and
large values of the observed eccentricity, we cannot claim that any one of the sug-
gested solutions is "better" than the others. Some other probability densities
would fit as well or better; the particular trial densities illustrated were chosen
because of their distressing diversity.
We conclude that, even assuming there is no error in the period, we are not able

to rectify the catalogue distribution of eccentricity convincingly when K/u = 2.
1 A study of the relation between the standard error a and the rotational velocity of a star, now

in progress in cooperation with H. F. Weaver, indicates that with low dispersion spectrograms a
typical value of a for B stars is 10 km/sec.
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Possible solutions for the probability density of the true eccentricity e when Kla = 2
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The tremendous range in the possible solutions for GI(eI K/lo = 2) is due to the
large dispersion in the distribution Al of the estimatef,. It is anticipated that this
range will be substantially decreased when larger values of K/u are considered.
If so, the solutions for Gj(ej K/u = 4) and for GI(ej K/u = 6) may be of aid in ob-
taining Gi(e IK/u = 2).

That it is of some importance to determine which of the solutions for GI(e K/u =
2) is the correct rectification of the distribution of catalogue eccentricity is shown
by the fact that the estimates of the proportion of binaries catalogued for K/u = 2,
assuming that the true period is always determined, ranges from .43 to .86!
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