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1. Introduction
Let co denote a point or element of an arbitrary space Q, where a probability

measure II(2) is defined for every set 2 belonging to a certain additive class of
sets in Q, the H-measurable sets. The probability distribution in Q defined by H(z)
will be referred to as the probability field (H, Q). The points w will be denoted as
the elementary events of the field, while any set 2 corresponds to an event, the prob-
ability of which is equal to H(2;).
A complex valued H-measurable function

x = g (w)

constitutes a random variable, defined on the field (H1, Q). The mean value of x is
defined by the relation
(1) Ex = fg(w) dHI.

Throughout the paper, we shall always assume that, for every random variable
considered, we have

Ex =jg (co) d =O, E x I2=f I g () I 2dI<c

The first condition introduces some formal simplification, but does not imply any
restriction of the generality of our considerations, while the second condition is
essential. Two variables x and y are considered as identical, if El x - y 2 = 0.

Consider a complex valued function x(t, co) such that, for every fixed t belonging
to some specified set T, the function x(t, w) is a II-measurable function of co, and
thus defines a random variable x(t) on the field (II, Q). When t ranges over T,
we thus obtain a family of random variables, depending on the parameter t. On
the other hand, to any fixed elementary event co there corresponds a function

x (t) = x (t, ),

defined for all t belonging to T, and to any event 2 there corresponds a set of func-
tions x(t) having the probability II(2:). The function x(t) will be denoted as a
random function, defined on the field (II, Q2).

Throughout this paper, the set T will be assumed to be the real axis,
-X < t < + co. However, most of our considerations may easily be extended
to more general spaces.
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330 SECOND BERKELEY SYMPOSIUM: CRAMER

In the majority of applications, I will represent the time, and x(t) will then
denote some variable quantity attached to a system, the temporal development
of which is subject to random influences. With reference to this type of applica-
tions, the random function x(t), or the family of random variables x(t), will be
said to constitute a random or stochastic process.

According to (1), the mean value

r(t,u) = Ex(t)x(u)

exists for all t and u. The function r(t, u) is known as the covariance function of the
process. We always have

r (u., t) = r (t, u) , r (t, t) _ O

Consider the family L(x) of all random variables of the form

(2) clx (tl) + c2x (12) + . + cnx (tn) I

where the ci are complex constants. Closing the set L(x) with respect to conver-
gence in the mean, we obtain an extended set L2(x). The elements of L2(x) are ran-
dom variables expressible in the form (2), or as limits in the mean of random vari-
ables of the form (2). If the inner product of two arbitrary elements y and z of
L2(x) is defined by the relation

(y, z) = Eyz,

it is known, Karhunen [5], Cram6r [3], that L2(x) is a Hilbert space. We shall call
L2(x) the linear space of the process. If, for any t, we have

l.i.m. x (ta) = x (t),
t,,+t

we shall say that the process is continuous in the mean. A necessary and sufficient
condition for continuity in the mean is that the covariance function r(t, u) should
be continuous in every point of the line I = u. If this condition is satisfied, r(t, u)
is continuous for all t and u, and the space L2(x) is separable.

Integrals of the types

J1=Je(t)(t)t, J2=fJrg(t)dx(t),
a a

J =jfbg (t) x(t) dt, a2=fb t x()

where g(t) denotes a nonrandom function, can be defined for example as limits
in the mean of certain sequences of approximating sums formally associated with
the integrals. See, for example, Doob [4], Cramer [1], Karhunen [5], Loeve [6].
Both integrals are random variables with zero mean values, and we have

b b
(3) EIJiJ2=f jg(t) g(u) r(t, u)dtdu,

(4) E |J212 = l f g (t) g (u) d2r (t, u).

Suppose first that (a, b) is a finite interval. As soon as the double integral occur-
ring in the expression for E| J,j 2 exists (i = 1, 2), the corresponding integral Jf
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exists and possesses the ordinary formal properties of an integral. If the double
integral converges when extended over the whole plane, the corresponding Ji will
converge in the mean as a - c, b -- + -, and the limit will be defined as the
integral over (- -, o).

In the present paper, we shall first investigate the properties of certain additive
random set functions attached to a class of stochastic processes. We shall then de-
duce a theorem concerning the representation of a stochastic process by means of
integrals of the type J2, and show that this theorem includes several previously
known representations as particular cases.

2. Additive random set functions
In many types of applications, it is natural to consider the value x(t) assumed

by a random function at the instant t as built up additively by the successive in-
crements of the function during the development of the process up to the instant t.
In such a case we may conceive the process as an impulse process, the value of the
impulse received during the time interval (t, t + At) being Ax(t) = x(t + At) -
x(t). Thus the impulse corresponding to any time interval is a random variable
associated with the interval, or a random interval function.

For any finite half open interval I = Lt t2), this interval function X(I) is de-
fined by the relation

(5) X (I) = x (t2)-x (tl).

If I1, I2, . . X In are finite disjoint half open intervals, and I = I-, . . . + I,n,
this definition may be consistently extended by writing

(6) X (I) = X (h) + X (I2) + !. . + X (In).

It is natural to ask if the definition could be further extended, so that we could
define the impulse X(S) received, for example, during an arbitrary Borel set S of
time points. Such an impulse function X(S) should obviously possess the additive
property which is a direct generalization of (6), and we should even like to extend
this property in some reasonable way to the sum of an infinite sequence of dis-
joint sets.

It will be convenient in the first place to restrict our considerations to bounded
sets. In this connection, we shall lay down the following definition. An additive
random set function is a family of random variables such that:

1) For every bounded Borel set S of real numbers, X(S) is a uniquely defined
random variable.

2) If Si, S2, ... are disjoint Borel sets, such that S = S1 + S2 + ... is
bounded, then X(S) = X(Sl) + X(S2) + ... , where the series converges in the
mean.

As usual we assume EX(S) = 0 and El X(S) 12 < -. Our problem is now if,
given a stochastic process x(t), we can find an additive random set function X(S)
such that, whenever S is a half open interval I= (0, t2), we shall have X(S) =
X(I) as defined by (5).

Consider first the case of a bounded set I = 11 + 12 + . ., where the In are
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disjoint half open intervals, I,, = I. tn + hn). Writing

(7) X ( X VI) + X (12) +
we must then require that the series should converge in the mean. We have

(8) E X(I,.) EEX(I,.)X(I,)
p,m

n

\*rt u)

where

AI2,,*,r (t, u) = r (tI + kh, t, + hv)- r (t,,t, + h,) - r (t, + h,, 4v) + r (Q,, t) .

Suppose now that the covariance function r(t, u) is of bounded variation in every
finite domain D, in the sense that

N

(9) E 2*j r (t, u) j < C

for any finite sequences of half open one dimensional intervals ik and jk such that
the i*jk are disjoint two dimensional intervals belonging to D.

It then follows from (8) that the series 2X(I,) converges in the mean, so that
(7) defines a random variable X(I). We shall see below that this definition is
unique.

Under the condition (9), the covariance function r(t, u) determines a complex
valued additive set function R(W) defined for all bounded Borel sets W in the
(t, u)-plane, and such that

(10) R (i*j) = l2*,r (t, u)

for any pair of finite half open one dimensional intervals i, j. We have

R (+)-R(-) + i (R-(+)-R(-)),
where R(+), . are nonnegative additive set functions, which are finite for any
bounded Borel set W. For an unbounded W, the functions R(+), . may be in-
finite, and R may become indeterminate.

Let now S be a bounded one dimensional Borel set, and let el, E2, . . be a de-
creasing sequence of positive numbers tending to zero. We can then always find a
sequence of bounded one dimensional sets I,, I2, . . such that

(11) I. = i.1 + in2 +

where the ink are disjoint half open intervals, while

(12) 11 v I2 * D* ,

(13) R(+) (S*S) < R(+' (In*ln) < R(+) (S*S) + En,
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and similar relations for R(-), R(+) and R(-). Writing

Zn= X (In) = X(ia)

we obtain by some calculation, using (10) and (11),

El|ZmZ- Zn I 2=E | ,[ x (imk) -X (ink) ]

=R (I,,m* Im) -R (1I * I.) -R ( I* I-m) +R ( In* In).-

We have, however, according to (12) and (13),

R(IIm* I) -R(S*S) <E a2,
where q = inf (i, n), and hence it follows that the sequence {zn} converges in
the mean. A similar argument shows that the random variable l.i.m. zn is inde-
pendent of the choice of the approximating sequence {,I, the representation (11),
and the sequence {fEn. Thus if we write

X (S) = l.i.m. Z,, = l.i.m. E x (n)
nco "n- k-=

the random variable X(S) will be uniquely defined for all bounded Borel sets S.
Obviously X(S) = X(I) whenever S is a bounded half open interval I.

It follows easily from the definition that we have EX(S) = 0, and

EX (S,) X (S2) =R (S1*2) = fd2 r (t, u).
S1 S2

In particular,
E X (S) 2=R (S*S) = d2 r (t, u).

Hence we immediately obtain for any bounded and disjoint S1 and S2

EIX (S +S2) -X (S1) -X (S2)12= 0,
that is,

X (Sl + S2) = X (SI) + X (S2).
Suppose now S = Sl + S2 + ... , where S is bounded, and the Sb are disjoint.
Then,

X (S) = X (Si) + ***+ X (Sn-1) + X (Sn +**)X

EIX (S) - X (Si) - . . . -(X 2 = EIX (S, + .) j2

= R [(S,, + . . *) * (Sn + * )]

as the limiting set of (Sn + .. .)* (S. + .. .) is empty. Thus

X (Sl + S2 + . )=X (SI) + X (52) +**-

in the sense of convergence in the mean. We have thus proved the following theo-
rem.
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If the covariance function r(t, u) of the stochastic process x(t) is of bounded varia-
tion in every finite domain, in the sense expressed by (9), there exists an additive ran-
dom set function X(S), uniquely defined for all bounded Borel sets S, and such that
X(S) = x(t2) - x(ti) when S is a half open interval (tl, t2).

Conversely, suppose that an additive random set function X(S) is defined for
all bounded Borel sets, and is such that EX(S) = 0 and

EX (S1) X (S2) = jfd2 r (t, u)

where r(t, u) is of bounded variation in every finite domain. Writing

(14) x(t)= x I(to,t) I <t>t
I X I (t, to) II t< to,I

we have Ex(t) = 0, and the covariance function becomes

Ex (t) x (u) = r (t, u) - r (to, u) -r (t, to) + r (to, to).

The definition of the integral
J2 (S) = g (t) dx (t) = g (t) dX

can now be extended to any bounded Borel set 5, and we find that this integral is
an additive random set function such that EJ2(S) = 0 and

EJ2 (S1)J2(2) = g(t) g (u) d2r (t, u).

We shall now apply our results to some simple particular cases. Consider first
a process which is orthogonal to its increments, so that

Ex (t) [x (t+ h) -x (t) ] = 0

for all t and all h > 0. Writing EIx(t) 2 = F(t), where F(t) is a nonnegative and
never decreasing function, the covariance function becomes

(15) r (t, u) = Ex (t) x (u) = F (inf t, u),

and the R "distribution" is a distribution of real and positive mass on the line
t = u, such that the segment of the line consisting of the points (r, T) with T< t
contains the mass F(t). The corresponding set function

X (S) = fdx (t)

is defined for all Borel sets S having a finite upper bound, and is such that

EX (S1) X (S2) = f dF (t) .
SIS2

Thus in particular for two disjoint sets Si and S2, the random variables X(S1) and
X(S2) are orthogonal. Random set functions of this type have been used by Kar-
hunen [5].
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Consider finally a stationary process, that is, a process such that the covariance
function r(t, u) is a function of the difference I -u:

Ex (t) x (u) = r (t, u) = r (t-u).

It is then well known that we have

r (t) COX eitdF()
where F(X) is real, never decreasing and bounded. Let us suppose

f X2dF(X) < ,.

Then,
R (W) = ffd2r (t-u) = -ffr (t- u) dtdu

w w

=ffdtduX 2ei(t-u)xdF (X) .
w c

Thus the "density" of the R "distribution" at the point (t, u) is

- r"(t-u) = IfDX2 ei(t-u)xdF (X)

which is constant on every line t - u = const. Let, for example, S denote the rec-
tangle bounded by the lines t+ u = a, I + u = b and t-u= ±h, then it will
be seen that the "mass" in this rectangle is equal to

(b - a) X sin hXdF (X) .

On the other hand, the infinite rectangle t _ to, u < to carries the constant "mass"

r(t, t) = r(O) =f dF(X).

The corresponding random set function X(S) is such that

EX (S1) X (S2) -f r" (t-u) dtdu.
SI S2

3. The linear space of an additive random set function

Suppose that we are given an additive random set function Z(S), defined for all
bounded Borel sets S, and such that

EZ(S1)Z(S2) = ffd2p (A, A)
,S1 S2

where p(G, ,u) is of bounded variation in every finite domain. Denote by L(Z) the
set of all random variables of the form ciZ(Si) + . . . + cnZ(S"), where the Sk are
bounded Borel sets, and the Ck are complex constants, and let L2(Z) denote the
closure of L(Z) with respect to convergence in the mean. We define the inner
product of two arbitrary elements z and u of L2(Z) by the relation (z, u) = Ezu,
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and denote L2(Z) as the linear space of the set function Z(S). Like L2(x) in sec-
tion 1, L2(Z) is a Hilbert space.

For any g(X) such that

(16) J X (X) g u =ap XXtJA
-Co -CO bb --co al a2

is finite, the integral

(17) Z g(X)dZ

will be a well defined element in L2(Z), and we shall have

(18) EzjZ2=jfOX )g1(X) 92 d2p(X, ,u).

Consider now the set A2(P) of all measurable complex valued functions g(X), de-
fined for - - < X < -, and such that the integral (16) exists. Two functions gi
and g2 will be considered as identical, if

aoD co

JI gl( )g2 [l (,u) -g2 (,u) Id2p (X, A) =
-co -ao

If we define the inner product of two elements in A2(p) by the integral in the sec-
ond member of (18), the set A2(p) will have all the properties of Hilbert space,
except possibly the completeness property. In fact, it is obvious that (gl, g2) has
the ordinary bilinear and Hermite symmetric properties, and further

( g, g) =ffJ(J)g (?O)g (,u) d2p (X, IA) =E J g (X) dZ 2 0,

and (g, g) = 0 only when

J Cf( g(,) g(A)d2p(X, ) =O0
-aco - co

that is, when g(X) is identical with 0. It follows that we have the Schwarz in-
equality,

(g1, g2) =2< (gl, gl) (g2, g2)

If the space A2(P) is not complete, it can be made complete by adjunction, von Sz.
Nagy [7, p. 4], and we shall suppose that this has been done, so that A2(p) is a
Hilbert space.
To any function g(X) in A2(p) there corresponds by (17) a uniquely defined

element z in L2(Z), and it follows from (18) that we have (z1, z2) = (gl, g2) and
hence, defining the norms in the usual way,

(19) jIZ1 - Z211 = llgl - g211

An "ideal" element in A2(p) is a sequence of functions gi, g2, . . . convergent in
norm, and according to (19) the sequence z1, Z2, . .. of the corresponding ele-
ments in L2(Z) converges in the mean, and thus defines a unique limiting element z
in L2(Z). Consequently to every element in A2(p) there corresponds one element
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in L2(Z), uniquely defined by (17). The transformation is obviously linear and,
according to (19), isometric.
We shall show that, conversely, to every element in L2(Z), there corresponds

one and only one element in A2(P), so that (17) defines a one to one linear and
isometric correspondence between the two spaces. Suppose first that z = c,Z(S1) +
. . . + c^Z(Sn) is an element of L(Z). Then obviously the unique corresponding
element in A2(p) is the function cles,(X) + . . + c,es,,(X), where es(X) denotes
the characteristic function of the set S. Now any other element of L2(Z) is the
limit in the mean of a sequence zi, Z2, . . of elements in L(Z), and according to
(19) the corresponding elements gi, g2, ... in A2(P) will converge in norm, and
will thus define an element of A2(p) such that (19) holds. It finally follows from (19)
that this element is unique.

Obviously the elements Z(S) form a base of the space L2(Z), and similarly the
elements es(X) form a base of the space A2(P). It follows that whenever we are
concerned with a one to one linear correspondence between the two spaces, such
that Z(S) and es(X) are always corresponding elements, this will coincide with the
transformation defined by (17). We shall use this remark in the following para-
graph.

4. Integral representation of a stochastic process

Consider now a function g(t, X) such that, for every fixed real t, g(t, X) belongs
to A2(p). The integral
(20) x (t) =f g (t, X) dZ

_co

is then defined for every real t, and we have

(21) r (t, u) =Ex (t) x (u)= ffrg(t,g ) g (u, u) d2p (X, ,uA).

Conversely, if we know that the covariance function of a given stochastic process
is of the form (21), it can be shown that the random function associated with
the process can be expressed in the form (20). We have, in fact, the following the-
orem.

Let x(t) be the random function associated with a stochastic process such that
Ex(t) = 0 and the covariance function r(t, u) is given by the expression (21), where
p(X, A) is known to be a covariance function which is of bounded variation in every
finite domain, in the sense expressed by (9). Then there exists an additive random set
function Z(S) such that EZ(S) = 0 and

EZ(SOZ(S2) =f d2p(X, A),
Si S,

and such that (20) holds for every real t. Further, we have L2(Z) = L2(x) when and
only when there does not exist any element in A2(p) different from zero, which is
orthogonal to g(t, X) for all real t.

According to (21), the correspondence x(t) = g(t, X) defines a one to one linear
and isometric correspondence between the space L2(x) and the subspace of A2(P)
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spanned by the functions g(t, X) when the parameter t ranges through the whole
real axis.

Suppose first that the set of functions of X obtained from g(t, X) when I ranges
through the real axis forms a base of the space A2(p). Then the correspondence
defined by x(t) - g(t, X) will extend to the whole spaces L2(x) and A2(P). Let S be
any bounded Borel set, and let Z(S) denote the element of L2(x) that corresponds
to the function es(X) in A2(P). Then EZ(S) = 0, and by (21) we have

EZ(Sl)Z(S2) = f es (X) es2 (A) d2p (X, A) fd2p (X, A.)
81 2

It is also easily seen that Z(S) is a completely additive function of S, in the sense
of convergence in the mean. Thus Z(S) defines an additive random set function.
Since Z(S) is an element of L2(x), we have L2(Z) c L2(x). On the other hand, the
elements es(X) form a base of A2(p), and thus the corresponding elements Z(S) in
L2(x) form a base of the latter space, so that we have L2(Z) = L2(x). Thus the
correspondence x(t) = g(t, X) defines a one to one linear correspondence between
L2(Z) and A2(P), such that Z(S) and es(X) are corresponding elements. According
to the concluding remark of the preceding paragraph, the element x(t) in L2(Z) =

L2(x) corresponding to the element g(t, X) in A2(p) is then for every t given by the
relation (20).

In the case when the g(t, X) do not form a base of A2(P), we have to adjoin a
conveniently chosen set of functions h(u, X) in order to obtain a base, and the
proof can then be completed in the same manner as in the case treated by Kar-
hunen [5, p. 47]. It should be observed that, in this case, we have to perform an
extension of the basic probability field in order to prove the existence of Z(S), and
accordingly we have L2(Z) : L2(x).

The truth of the last assertion of the theorem follows now from the fact that a
nonzero element of A2(p) which is orthogonal to all the g(t, X) exists when and only
when the g(t, X) do not form a base of the space A2(P)-

5. Applications to some particular cases

Taking first g(t, X) = eilt, and supposing that p(X, IA) is of bounded variation
over the whole plane, we obtain the class of stochastic processes denoted by
Loeve [6] as harmonizable processes, and (20) becomes the spectral representation

x (t) =f eitxdZ

of a process belonging to this class. In this case, the functions eitX obviously form
a base of the space A2(P), and we have L2(x) = L2(Z).

Suppose, on the other hand, that p(X, j) in (21) is the covariance function of
an orthogonal process. (Compare section 2.) The relation (21) then reduces to

(22) r (t, u) = g (t, X) g (u, X) dF (X),
_co

and (20) gives the representation due to Karhunen [5] of a stochastic process hav-
ing a covariance function of the form (22). In the particular case when g(t, X) = eitx
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and F(X) is bounded, this reduces to the well known spectral representation of a
stationary process.

Consider in particular the case of a stationary process with an absolutely con-
tinuous spectralfunction F(X). Then (22) can be written in the form

r (t, u) = r (t- u) = J ei(t-u)xF/ (X) dX

= eitx FT(x0) * e iu VF () X.

where F'(X) and V'F'(X) are nonnegative. Since VF'()X) is quadratically integrable
over the real axis, it has a Fourier transform which we denote by g(T). Then
g(t + T) is the Fourier transform of eitXV/_7(X), and the Parseval formula gives

r (t, u) = f eitxx/F'(\X) eiuxoF/ (X)d)X= f g(t+ Tr)g(u+ T) dr.
f O _coco

Hence we obtain by the theorem of the preceding paragraph

_cox (t) jg(t+ r)dZ

where [5, p. 72] Z(S) is an additive random set function such that

EZ(S1) Z(S2) = m (S1S2),

where m denotes the ordinary Lebesgue measure of the product set S1S2.
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