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1. Introduction

The theory of evolution provides examples of stochastic processes which have
not yet been treated systematically. We find here many open problems whose solu-
tion promises new insights into the general theory.

There exists a huge literature on the mathematical theory of evolution and sta-
tistical genetics, but existing methods and results are due almost entirely to R. A.
Fisher and Sewall Wright.* They have attacked individual problems with great in-
genuity and an admirable resourcefulness, and had in some instances to discover
for themselves isolated facts of the general theory of stochastic processes. However,
as is only natural with such pioneer work, it is not easy to penetrate to the mathe-
matical core of the arguments or to discover the explicit and implicit assumptions
underlying the theory. In the following an attempt is made to formulate the basic
mathematical problems and to discuss their connection with other stochastic proc-
esses. Such a systematic approach leads automatically to more general formulations
which may be useful at least for a better understanding of the underlying assump-
tions.

We are concerned with mathematical models of population growth. Relatively
small populations require discrete models, but for large populations it is possible
to apply a continuous approximation, and this leads to processes of the diffusion
type.

By way of introduction we start with the simple branching process which became
popular in connection with its application to nuclear chain reactions, but which had
been previously used by Galton in a discussion of the survival of family names, and
by R. A. Fisher in his treatment of the survival of mutant genes. This branching
process describes the simplest possible populations: the individuals are of like
kind, and there is absolutely no interaction among them so that they are statisti-
cally independent. Thus, contrary to a widespread belief, the branching process
does not represent an isolated type of stochastic process and is remarkable mainly
because of its simplicity. For example, in the case of a growing population the proc-
ess in its later stages converges to a diffusion process regulated by the Fokker-
Planck equation describing the simplest growth (compare appendix II, and end of
section 5).

Serious difficulties arise if one wishes to construct population models with in-

This research was done under an Office of Naval Research contract at Cornell University for
developing probability theory.

1 See references [S], [12], and [13]. It is difficult to give useful references to original papers, since
these are mostly highly technical and inaccessible to nonspecialists,
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teractions among the individuals.? The situation grows worse if the population con-
sists of different types of individuals. Explicit examples of such populations with
various types of interactions between individuals are provided by various breeding
systems. Their treatment leads to Markov chains which are in general finite.
[4, chaps. 15, 16]. »

The populations with which we would like to deal in genetics are far too compli-
cated for a mathematical treatment, and it proved necessary to introduce artificial
simplifications. Thus, almost the entire theory is devoted to the case where the
population consists of only two types of individuals, called a- and 4-genes. Each
individual may have a certain number of descendants of either kind. We have
here a bivariate branching process with the added difficulty that the individuals
are not statistically independent. A mathematical theory of such bivariate branch-
ing processes is extremely desirable, but even a beginning is hard to get. For ex-
ample, there are three possibilities of extinction (only a-genes, only A-genes, or
both). If the elementary transition probabilities of the process are known, the
extinction probabilities can be calculated from an infinite system of linear equa-
tions, but these in general do not have unique solutions.

In fact, the bivariate branching process leads to such difficulties that apparently
not one single truly bivariate case has been treated in the literature. In the theory
of evolution this difficulty is overcome by the assumption of a constant population
size: if there are j a-genes, the number of 4-genes is 2V — 7, and thus it suffices to
study the univariate population of a-genes. Presumably this is a justifiable approxi-
mation in specific applications, but it is of interest to note that essential features of
the whole mathematical theory depend on this assumption. Dropping it will lead
us to an entirely new theoretical model (the practical applicability of which is not
discussed). .

In section 3 we discuss a discrete model of a population of fixed size of a- and
A-genes. The probability relations which connect the numbers of a-genes in two
succeeding generations reflect random mating and take into account mutation
pressure and selective advantages in a way which seems to correspond to the basic
assumptions of the accepted theories.?

In section 10 the assumption of constant population size is dropped and a truly
" bivariate model is constructed which takes into account selective advantages in a
more flexible way.

It is known* that an essential part of Wright’s theory is mathematically equiva-

2 A special problem arises in connection with differentiation according to age. If there are m pos-
sible age groups then the population may be classified into m classes and the process becomes an
m-variate process of the Markov type to which the remarks apply. This is an artificial device and
often it is preferable to insist in discussing only the total population size. However, in this case the
past history has after effects, and the process is univariate but not of the Markov type. In prac-
tice, this is a compelling reason to neglect effects of age differences, and we shall adhere to this
tacit convention throughout the paper.

3 However, our formalization leads to a ‘sampling variance’ which is somewhat larger than
the usually accepted value.

4 Apparently [14] this was first observed by Kolmogorov who had previously treated a particu-
lar problem of genetics as a diffusion problem. However, as early as 1922 R. A. Fisher was led toan
equation of the heat conduction type, and this was before Kolmogorov’s famous paper [7] on
stochastic processes. For Fisher’s method and references to the original papers compare [S, p. 88].
A variation of Wright’s arguments which leads directly to the diffusion equation was given by
Malécot [11].
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lent to assuming a certain diffusion equation for the gene frequency (that is, the pro-
portion of a-genes). This equation is discussed in section 7 and obtained in section
8 from the model of section 2 by a limiting process which is actually implicitly im-
plied in Wright’s theory. Now this diffusion equation is of a peculiar type and it
should be realized that the limiting process in question is but one in a family of
possible processes (depending on the ratios of mutation rates to population size).

In general (section 9) we obtain in the limit ordinary diffusion equations with
drift, and thus normal disiributions for the deviation of the gene frequency from
the equilibrium point. Presumably this corresponds to actual phenomena in nature.
However this may be, it is of mathematical interest that the singular diffusion
equation of Wright’s theory appears as a degenerate case of ordinary diffusion.

This diffusion equation (as well as others occurring in population theory) are
of a singular type and lead to new types of boundary conditions and mathematical
problems which have not yet been investigated.* Of significance is the fact that
(even in the case of the diffusion equation of Wright’s theory) a stable solution u(x)
can exist but nevertheless the actual solution may approach, not u(x), but a certain
fraction qu(x). The possibility of such an occurrence seems to have been completely
overlooked in the literature (section 7).

The same limiting process which leads from the model of section 3 to the diffu-
sion equation of Wright’s theory can be applied to our new bivariate model and
leads to a diffusion equation in two dimensions. It is very different from the uni-
variate diffusion equation, but the latter is contained in it (section 10). The solu-
tions of this new equation are not discussed, but it is to be observed that iz no
truly bivariale case does the gene frequency satisfy a diffusion equation (sections 6
and 10). In fact, if the population size is not constant, then the gene frequency is
not a random variable of a Markov process. Thus, conceptually at least, the as-
sumption of a constant population size plays a larger role than would appear on
the surface.

2. The branching process and Markov chains

The classical branching process is too well known to require treatment here,® and
we shall not use its special properties. However, we start from it to tie it in with
our notations, and to discuss its relation with the diffusion equation of section 5.

In each succeeding generation the population of the classical branching process
consists of like individuals, each of which may give birth to 0, 1, 2, . . . direct de-
scendants (that is, elements of the succeeding generation). It is assumed that the

corresponding probabilities po, 1, p2, . - . (with E pr= 1)are the same forall in- -

dividuals and, furthermore, that the individuals of any generations are statistically
independent of each other. Denote the number of individuals in the n-th genera-
tion by Z™. This is a random variable of a Markov chain, and the whole theory
hinges on the transition probabilities p; (the conditional probability that Z(*) = £
given that Z™ = j).

* Added in proof. A systematic theory, including the new boundary condition, is to appear in
the Annals of Math.

& Compare, for example, [4, chapter 11].
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An explicit expression for p; is cumbersome, but (as for many Markov chains)
the use of generating functions makes the required calculations possible. Putting

(2.1) | S (=) = pust,
k=0

the classical theory depends on the easily verified remark that (due to the assump-
tion of statistical independence)

(2.2) P = coefficient of #* in fi(x) .

From this it follows that if the original population size is r, then the generating
function of the population size Z( in the n-th generation is given by f5(x) where

23) A@W=f@, LE@=f{®] ..., fank)=/)f=].

The main point of interest to us is the fact that the definition of the process per-
mits us to calculate the transition probabilities p;; these, together with the initial
population size, completely determine all probability relations of the process. In
particular, the n-step transition probabilities p{y (giving the probability that if the
population size Z(™ is at any time j, it will » generations later amount to &), can
be calculated recursively from p{Y = pi,

(2.49) P =0 ot

As a further illustration consider the extinction probability €. that the popula-
tion size will even be reduced to zero if the initial population size is r. This case
can occur only if po > 0. In the terminology of Markov chains the population size 0
is an ‘absorbing state’ (or ‘trap’), which once it is reached becomes a permanent
state. It follows then easily [4, p. 334] that the extinction probabilities ¢, are a
solution of the infinite system of equations

(2.5) &= ;:pwe,+p,o.

The fact that p,, is the »-th coefficient in the power series for f(x) suggests investi-
gating the possibility of a solution of the form ¢ = A". With it the right hand
member reduces to f7(\), and hence (2.5) requires that A* = f(\), or

(2.6) A=fN).

Conversely, if \ is a solution of (2.6), then e, = A" is a solution of (2.5). Now
/= 1is always a root of (2.6), but if f’(1) > 1 there exists another root A\ < 1. In
this case, therefore, the solution of the system (2.5) is not unique. It follows from
the general theory (or the recursion formula for the probability of extinction within
n generations) that we are interested in the smallest solution of (2.5), and this
determines our extinction probabilities uniquely. We have thus derived the well
known basic theorem concerning branching processes from the general theory of
Markov chains.®

6 As a further example of the applicability of the general theory to the branching process let us
note that all states except 0 are transient so that P — 0 as n— o (k #0). A deeper theorem of
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Leaving the branching process we arrive at more general population models by
assuming appropriate transition probabilities p;z. The simplest generalization con-
sists in permitting the fertility to depend on the actual population size; in our no-
tation this means that the probability distribution {#:} changes from generation
to generation and depends on the instantaneous population size.

In theory the methods apply also to bivariate populations, but to describe the
actual state of the population we then require two integers. Accordingly the transi-
tion probabilities will now be of the form p(j, js; k1, k2): this is the (conditional)
probability that a generation will consist of &, individuals of the first kind and k.
individuals of the second kind, given that the corresponding numbers for the pre-
ceding generation are 7; and js. Everything becomes rather involved. For example,
the three types of extinction probabilities can be determined from infinite systems
of linear equations analogous to (2.5), but the solutions are not unique and are
hard to get even in the simplest cases. As was mentioned in the introduction, ap-
parently no truly bivariate model has ever been treated, and this should be a
challenge to mathematicians.

3. Discrete model with constant population size

With respect to a particular pair of genes, say ¢ and 4, each individual belongs
to one of the three genotypes (q, a), (a, 4), or (4, A), and we should actually
consider a trivariate population of & individuals. However, an accepted standard
simplification consists in introducing the genes themselves as elements of the popu-
lation so that we deal with a population of 2V elements which are either a or 4.
Here N is a fixed number.

For a first orientation let us begin with the simple random mating case disregard-
ing mutation pressures and selective forces. Mathematically speaking, the assump-
tion of random mating amounts to saying that the 2V genes of any generation are
formed in 2N independent trials: if the parent population consists of j a-genes and
2N — j A-genes, then each trial results in ¢ or 4 with probabilities

I 1 d
(3 . 1) p 7 2 N 1 q] 1 2 N 1
respectively. In other words, we have now a Markov chain with transition prob-
abilities given by the binomial distribution

(3.2) 1,).,:=(2£V> Pt

These, together with the initial population size, determine the entire process. We
have now the two ‘absorbing states’ 0 and 2NV which, once reached, are perpetu-
ated: in biological language these occurrences are called fixation. The probability e,
of a fixation at 0 (extinction of a-genes) if the initial number of a-genes is 7, is again
given by the system of equations (2.5), which is now finite. Its solution is easily
found to be ¢, = 1 — #/2N. The speed with which this fixation is reached can be

Doeblin [1] states that there exists a sequence A, — « such that A\;'p{’ converges to a limit a; >
0 which is independent of j. It is easily verified that in our case the sequence A, can be chosen
as \, = f"(1). It follows that the probability distribution of the normed variable Z,/\n converges. o
This interesting fact is contained in stronger results of T. E. Harris [6].
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judged from the largest non-trivial characteristic value of the matrix (p;). This
turns out to be 1 — 1/2N. This means that if @, is the probability of no fixation
within # generations, @41/, is approximately 1 — 1/2N. This is an agreement
with estimates of the ratio of decay obtained by quite different methods by Fisher
and Wright.” It also agrees with a result to be obtained from an approximating
diffusion equation (compare section 8).

We now modify the model so as to take into account mutations. We assume that
at the formation of each new generation each gene has the possibility to mutate,
that is, to change into a gene of the other kind. More precisely we assume that the
mutation

(3.3) a— A occurs with probability a,
A — a occurs with probability a..

Again we assume that the 2V genes are statistically independent. This means that
if a particular generation consists of j a-genes and 2V — j A-genes, the 2V genes
of the next generation are formed by 2V independent trials each of which results
in @ with probability

(3.4) p,-=ﬁ(1—a1>+(1—-27w) as
and in 4 with probability ]
(3.5) q,-=2—fﬁa1+(1.—§fw)<1—a2>.

With this new definition of p; and ¢; the transition probabilities p;; are still given
by (3.2).

We still have a simple Markov chain, but the process exhibits an entirely new
character. Thus, if a; > 0, a; > 0 there is no possibility of fixations. Instead, the
n-step transition probabilities p{’ [cf. (2.4)] approach a steady state probability
distribution {x:} which is given by the solution of the system of equations [obtained
from (2.4) letting n — ]

2N
(3.6) Te= D .

ye=1
Whatever the initial composition of the population, the probability that the n-th
generation is composed of % a-genes and 2V — % A-genes tends to x;. The dis-
tribution {x:} is called the steady state gene frequency distribution and is of greatest
interest. An explicit formula for it is not known, and most of the work consists in
deriving suitable approximations. .

Selective forces in nature convey advantages to one kind of gene and disad

vantages to the other. Qualitatively they act in the same direction as mutations
and it is theérefore possible, in a first approximation, to account for them in the
same way. At any rate, the usual models of genetic theories amount to assuming

7 Compare, for example, [S, p. 87] or [12, p. 16]. The Markov chain (3.2) was considered by
Malécot [9]. He tried to determine the first characteristic value approximately from the considera-
tion of an integral equation resembling (3.2). His approximationis1 — 1/(2¥ + 1). Formula (8.1)
gives the characteristic values of the more general chain of the text, and reduces to the present
case if a; = as = 0. That 1 — 1/2N is a characteristic value is easily verified by noting that
%, = k® — k is a characteristic vector.



DIFFUSION PROCESSES IN GENETICS 233

that the coefficients a; in (3.4) and (3.5) represent the combined influence of muta-
tion pressure and selective forces. Accordingly, we shall introduce no further im-
provement in our scheme.

It must be emphasized, however, that with a constant population size any de-
crease say of a-genes implies an equal increase of A-genes. If the population size
changes then the same ratio of the numbers of ¢- and A-genes may represent dif-
ferent compositions of the population and, strictly speaking, selective pressure can
not be a function of the gene ratios. Accordingly, any theory derived from the present
model (or an equivalent to it) depends essentially on the assumption of a constant
population size and the number of a-genes must not be identified with the a-gene
frequency in a variable population. Only a bivariate model permits to treat the lat-
ter, and such models lead to new types of equations (section 10).

Let the random variable Z( represent the number of a-genes in the #-th genera-
tion, and ¢, = Z™ /2N the corresponding gene frequency. At a time when Z™ = j§
the expected change of the gene frequency in the next generation is

3.7 E(Adn) = a2~ (a14a2) 3%
and the corresponding variance

1
(3.8) var (Ad,) = N 2iq;.

This quantity corresponds to the ‘sampling variance’ of S. Wright. His point of
departure is the expression (3.7), but the sampling variance is usually identified
with the expression obtained from (3.8) by putting a; = a2 = 0. The larger vari-
ance (3.8) takes into account that chance fluctuations are due not only to the ran-
dom mating process, but also to mutations and selective forces.

4. The general diffusion equation

Let Z(¢) be a random variable (such as gene frequency, population size, etc.) de-
pending on the time ¢ which we now agree to treat as a continuous parameter. The
stochastic process described by Z(#) is said to be of the Markov type if, roughly
speaking, future changes depend on the present state, but not on the past history
which led to this present state. All processes which we shall consider are of the
Markov type.®

The variable Z(f) may change in jumps: such is the case, for example, if Z(f)
represents the number of incoming telephone calls, or the size of a population as
long as we count individuals and do not introduce the usual continuous approxi-
mation. With discontinuous processes the probability of a change during a small
time interval (¢, £ + %) is small (of the order of magnitude %), but if a change oc-
curs, it is of finite magnitude. Opposed to such processes are processes of the diffu-
sion type where Z(¢) changes continually. In this case there is certainty that during
any time interval, however small, Z(#) undergoes some change, but for small time
intervals this change is practically sure to be small. More precisely, the probability
that |Z(¢t + k) — Z()| > e is of smaller order of magnitude than 4.

8 Compare footnote 1.

9 For this definition compare 2] where the equation is derived under more general conditions
than stated in the text. The whole theory, of course, is due to Kolmogorov [7]. It should be noted
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As in the case of finite chains, the whole process is determined by the initial
value of Z(¢) at time 0 and by the transition probability density. By this we mean
the function p(¢; 2, x) which gives the (conditional) probability density that
Z(to + t) = x given that Z(f)) = 2z at some fixed time £,. This is the continuous
analogue of ‘the transition probabilities p{’ of section 2. In the discrete case all
the p{% could be expressed in terms of the one step transition probabilities pj. It
is the most remarkable fact of diffusion theory that p(¢; 2, x) can be calculated
for all ¢ if only the infinitesimal mean displacement a(x) and the infinitesimal vari-
ance 2b(x) are known. These quantities are defined in analogy with (3.7) and (3.8)
as follows.

Suppose it is known that at some fixed time £, we have Z({;) = 2. The expected
value of Z(¢) at a later time {y + % is then

(4.1) E(Z(+m)] = f2p (h; 5, %) da
and the expected value of the increase (the so called mean displacement) is
(4.2) E(6Z(6)] = [ (x—2)p(h; 3, %) dx.
Similarly
(4.3) var [AZ (%) ] = f (2 = )2 (h; 3, 2) dx.

These quantities are functions of # and z, and for small 4 they must be of the order
of magnitude 4. It is only a mild regularity assumption that as 4 — 0

(4.4) %E[AZ(&J)]—W(Z)

%var [AZ (%) ] —2B(2).

These are the infinitesimal mean displacement and variance.
It was shown by Kolmogorov [7] that the probability density u(t, x) of Z(t) satis-
fies the diffusion equation (or ‘Fokker-Planck equation’)

-(4.5) (4, x) = {6 @) u(t, %) }oo— {a@)u ()}

(where subscripts indicate partial derivatives). Given the coefficients ¢(x) and b(x)
and the initial distribution %(0, x) of Z(0), the solution u(¢, x) of (4.5) is in gen-
erall® uniquely determined. In particular, if initially Z(0) = 2, then the distribution
u(t, x) of Z(t) coincides with p(¢; 2, x) so that, for every fixed z, the transition

that there exist other types of Markov processes. Furthermore, it is in the text tacitly assumed
that the transition probability depends only on the length of the time interval, but not on its posi-
tion; in the general case the coefficients of the diffusion equation depend on x and ¢.

10 We are here slurring over a delicate point of greatest interest from the point of view of differ-
ential equations. In physical diffusion theory the solution depends not only on the initial distri-
bution, but also on boundary conditions. By contrast, our equations are of a singular type with the
coefficient b(x) vanishing on the boundaries. This leads to a new phenomenon, namely natural
boundaries where no conditions need, or can, be imposed. In some cases there exists only one solu-
tion, in others there are many solutlons, but only one corresponding to our problem. The theory of
such singular equations is practically ferra imcognita and presents many interesting problems. It
will be seen that the theory of evolution leads to boundary conditions of an altogether new type
(compare section 7).
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probability p(¢; 2, ) is a solution of (4.5). In other words, the entire process is
determined by the two coefficients a(x) and 5(x).

Population growth is, strictly speaking, a discontinuous process, but for large
populations the continuous model becomes a reasonable approximation, provided
an appropriate time scale is used. In fact, it seems that this approximation comes
closer to realities than many other simplifying assumptions. Most models used in
evolution theory assume continuous growth, although this assumption may be
more or less hidden. It follows then that in the univariate case such a model is
mathematically equivalent to a particular choice of the coefficients a(x) and b(x).1
In particular, as has been noted in the introduction, an essential part of the re-
sults of S. Wright can be derived from a certain diffusion equation. We shall dis-
cuss this aspect in section 7, but a few preparations seem desirable.

5. Exponential population growth and the branching process

The simplest illustration of the possibilities of the method is provided by a
model which is the continuous analogue of the classical branching process and is
actually an approximation to it when the population is large, that is, in its later
phases.

We wish to describe a continuous population growth in which the individuals
multiply and are statistically independent of each other with a fertility function
independent of the total population size. In this case the infinitestimal mean dis-
placement and variance are necessarily proportional to the instantaneous popula-
tion size, and the diffusion equation (4.5) takes on the form

(5.1) / we (t, x) = Biau (¢, x) }oe — a {2u (, %) }<, 0<2< @,

where a and g are constants. Their numerical values depend on the choice of units,
and using appropriate scales on the /- and x-axes one can always achieve that
B=1,a=1, —1, or 0. The coefficient a measures the drift and is positive or
negative according as the population average increases or decreases.

The equation (5.1) contains implicitly all probability relations governing our
process and we proceed to verify that this model leads to sensible results and to
compare it to the branching process.

The following explicit solution of (5.1) is given for the sake of completeness
only. If the population size at time ¢ = O is £, and a 7 0, then!?

_ o £eat\1/2 2a (Exe®) 2 ceatia et
(52) u([) x)_B(ent—-l) ( X ) Il ‘6‘(6‘1!-_1)_ ‘

= —a(te®t4z) /B (et — had 1 o (Exect)1/2)2
Bl —1)2° (8¢t B( 1>;V!(V+1)! ; Pt s

11 This is, of course, true only if one disregards after effects due to variations in age etc., which
would make the process non-Markovian.

12 Compare [3] where more general models are treated, but no proofs are given. Equation (5.1)
is an example of a singular diffusion equation with a unigue solution, where no boundary condi-
tions can be imposed. (Compare footnote 10.) More curious is the equation (4.5) with b(x) = Bx,
a(x) = ax + v [which for » = 0 reduces to (5.1)]. Here uniqueness and various types of boun-
dary effects depend on whether » < 0,0 < » < 1, or » > 1 (unpublished results).
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The expected population size
(5.3) M) =E[Z ()] = fmxu (1, x) dx
0

can be obtained from (5.2), but it is simpler to note that easy manipulations on
(5.1) show that M’(t) = aM(¢), and hence

(5.4) M(t) =teot.

Thus the population average increases exponentially, as should be expected since
the rate of increase is proportional to the instantaneous population size. In a simi-
lar way one sees that

(5.5) var [Z(t)]=2§e“‘(e“‘—1). .

Finally, the probability that the population dies out before time ¢ is
(5.6) 5() =1— fwu (1, %) da = ¢ —etB(t-1)
0

and hence we find for the probability of uitimate extinction

%e—“/ﬁ if a>0,

(5.7 lim &(¢) = 1 4 a<0.

t—®

These results agree closely with the corresponding results for the simple dranch-
ing process of section 2. There too the extinction probability is of the form +%.
The generating function of the population size Z(® in the n-th generation is f¢(x),
where £ is the initial population size. As is well known (compare, for example,

(4] or [6]),

(5.8) E@®) = g

and

(5.9) var (Z®) = — 2 n(un—1)
puw—1)

where p = f'(1) is the expectation of the number of direct descendants and A =
() + f/(1) — f%(1) the variance.

These formulas are not only of the same form as (5.4) and (5.5), but the latter
follow from (5.8) and (5.9) as a limiting case for large populations.

To see this note that if in the branching process the population size is at any
time x, then the size of the next generation has mean ux and variance Ax. This
means that the quantities  — 1 and N\ have the significance of a and B in the
continuous process.

Consider now a branching process in which the population is very large, and let
us agree to measure the population in units of ¥ individuals. In the new units each
individual has weight 1/N and therefore the quantities p — 1 and \ are of the
order of magnitude 1/N. Accordingly we write

_a _B
(5.10) p—l=g, A=g.

We consider the process after a number of generations which is of the order of
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magnitude N. This amounts to introducing a time scale in which one generation
corresponds to a time interval At = 1/N, and an interval of length ¢ contains some
n = tN generations. With these units (5.8) becomes

(5.11) 5(1+%)‘”N£eu
and (5.9)

(5.12) ¢ <1+N)(1+N) 1+ 5) =1}~ Loy,

In other words, as N — o the formulas for the branching process go over into those
for the continuous process. That the same is true for the probability distributions
will be shown in appendix II.

6. Gene frequency in the bivariate case

As we shall see in the next section, the theory of S. Wright assymes a diffusion
equation for the gene frequency, that is, the proportion of a-genes in the popula-
tion. With a population of constant size this frequency is proportional to the num-
ber of a-genes. This is not so in general. In any realistic bivariate model the num-
bers of a- and A-genes will be negatively correlated, but if the population size is
not constant, the correlation coefficient will not be — 1. In this case the gene fre-
quency cannot depend on a diffusion equation, and indeed, is not subject to a Markor-
ian process. This point will be helpful for a general understanding of the theory
and may be illustrated by means of a model which is the extreme counterpart to
the case of a constant population size: when the numbers of a- and 4-genes are
uncorrelated.

Consider two statistically independent populations each subject to the process
described in the preceding section. Let the corresponding sizes be X (f) and Y (¢),
and the corresponding densities #(¢, ) and v(¢, y) respectively. The bivariate den-
sity of the pair [X (), Y (¢)] has then the density w(i, x, y) = u(t, x)v(s, ). Since
u(t, x) and v(¢, y) are solutions of equations of the form (5.1), it is easily seen that
w(¢, x, y) satisfies the equation,

(6'1) Wy (t) X, y> = Bl {xw (ty £ )’) }«‘"3+ ﬁ2 {yw (t) X, y) }w

- {xw(t:x:y) }2_ 0.2 {W(tyx:y) } v
which would have been derived directly from the general theory for the bivariate
case.

From w(t, x, y) it is in theory possible to calculate the probability distributions
of other random variables connected with the combined population. For example,
the total population size is S(f) = X(¢) + ¥ (¢), and the quantity corresponding
to the gene frequency is Z(f) = X (£)/S(¢). Their probability densities are

(6.2) fo’w(z, £ x—£)di

and

(6.3) = wéw(t,g,l 0<x<1,
[

respectively. It is readily seen that neither is a solution of an equation of a diffusion
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type. The reason is that neither S(¢) nor Z({) are Markovian. In fact, it is intui-
tively clear that a prolonged series of observations on S(¢) or Z(f) will permit bet-
ter predictions as to future developments than would the sole knowledge of the
present state; this, however, is but another way of saying that the past history has
an after effect.

7. The diffusion equation of Wright’s theory

As has been mentioned before, the theory of S. Wright is essentially equivalent
to the assumption'® that the gene frequency satisfies a diffusion equation of the
form '

(7T1) we(t2)=(Bx(1 —2)u(t,2) Joz — {[va— (Mm+v)x]u(t, 2}

The theory hinges on the assumption that the gene frequency satisfies some dif-
fusion equation, and on the particular choice of the coefficients b(x) and a(x). We
have seen that in a bivariate population the gene frequency does not satisfy a dif-
fusion equation unless the population size is constant. This, then, is theoretically an
essential assumption of the theory. Presumably, however, it is in practice satisfied
to a sufficient degree.

As for the coefficients, we shall derive them (section 8) by a passage to the limit
from the Markov chain of section 2. This method reveals the assumptions underly-
ing the theory and shows also what happens under other assumptions concerning
the ratio of mutation pressure to population size.

First, however, let us describe a curious phenomenon concerning the steady state.
If, as t — o, the solution %(¢, x) of (4.5) tends to a limit %(x), the latter must be
a solution of the ordinary differential equation!* '

(7.2) {6(*)u @) }ee— {a(x)ux)}.=0.

Various forms of solutions were discussed by S. Wright.

If our diffusion were of the regular type, we would be assured that whenever
(7.2) admits of a solution, the limiting relation u(¢, ) — u(x) takes place, so
that %(x) describes the later stages of the process. Unfortunately this is #ot so for
our problems, and mathematical problems of a new kind confront us.

Consider (7.1) in the simple case y1 = y2 = 0 (absence of mutation and selec-
tion pressures). We know that the discrete model in this case implies certainty of
ultimate fixation, and it would be unfortunate for the continuous model if the re-
sults did not agree. Actually in our case u(t, x) — 0, as desired. However, (7.2) has
the solution #(x) = C{x(1 — x)}, which is in reality not related to our problem.’

18 Tt should be understood that even for a specific biclogical population the coefficients in (7.1)
vary from place to place, that is, are functions of two additional geographic parameters. Geo-
graphic migrations constitute a new diffusion process so that Wright’s theory actually envisages a
compound diffusion process in a three dimensional phase space. In practice this process is simpli-
fied by discretizing it partially: this is done by means of the notion of population isolates, for
which the coefficients are fixed. Even in this case, however, additional terms are introduced to ac-
count for migration effects, so that the theory is much more complicated than presented in
the text.

14 That the integration constant occurring on the right side of (7.2) vanishes follows from the
fact that the left side represents the flow of probability mass at the origin.

1 Tt is true that this is not a probability density, but this fact was erroneously attributed to the
limited applicability of the continuous model near the boundaries, and it was assumed that u(x)
gives a reasonable approximation at least in the central part.
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Even if the solution of (7.2) is a probability density it is not legitimate to con-
clude that #(¢, ) — %(x). In general, there exists a fraction u such that

(7.3) u(t,x)—nm(t,x)y( (()c\ O<u<l.

The difference 1 — u gives the probability of ‘pure’ populations in the steady
state. At the beginning of the process probability mass flows out to the boundaries
2 = 0 and x = 1, but constant mutation lets part of this mass flow back into the
interval where it is once more subject to the diffusion process. The net effect is that
the masses concentrated at x = O and ¥ = 1 increase steadily to a saturation point
which is maintained in the steady state.

The actual determination of u presents a difficult problem and what we have
just described is a stochastic process of a type not yet studied and which deserves
attention.

8. Passage to the limit

We proceed to show how the coefficients in (7.1) can be obtained by a limiting
process from the discrete model of section 3.

We know that the probability distribution {x:} of the population size Z(® in
this model approaches a steady state distribution given by (3.6). The speed with
which p}z’ — x;, depends on the characteristic values Ao, A1, . . . , Aaw of the ma-
trix (p;). It will be shown in appendix I that

(81) (1—0.1—0.2) (ZN) (ZN),-v T=O, 1!"',2N-

[It is remarkable that A, depends only on the sum a; + a2, but a similar state-
ment is true also for the diffusion equation (7.1)]. Roughly speaking, Ao = 1 de-
termines the steady state distribution {xo}, and the next largest value determines
the speed of the convergence. In fact, it is known from matrix theory that p{2 can

be written in the form

(8.2) % = x4 @ No+ @aNo - . .+ oMy,

where the coefficients ¢, depend on j and £, but not on #. Since A\; > A2 > ... >
Ay it follows that p{3) — xi. decreases roughly as

(8.3) Ni= (1 —al—M)"(l—%)".

Here the first factor represents the influence of the mutation and selection pres-
sures, the second the ‘sampling variance.” Wright’s theory considers mainly the
case where the a; are of the order of magnitude of N, and we put

B2

(8.4) w=8 =t

We consider the 8; constant and study the asymptotic behavior of our model as
N — . (Other possibilities are described in section 9.)

To observe a tendency to equilibrium we require a number of generatlons which
is of the order of magnitude N. We, therefore, choose the time scale so that the
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time required for one generation becomes At = 1/N: a time interval of duration ¢
then corresponds to some ¢/At = N generations. For large populations we treat
both time and the gene frequency as continuous variables and put

n k
8. = =
(8.5) ¢ ¥ T =
In the new notations the mean (3.7) and variance (3.8) of the change in popula-
tion size correspond to the quantities occurring in equation (4.4). Hence,

(8.6) a(x) = lim LE(A) = 2= (Bi+82) 2

and similarly

(8.7 2b(x) = lim 1 var (A¢,) =32 (1 —x).
N Al

We get thus the coefficients in (7.1) with ¥ = % (this numerical value may be
changed at will by a proper choice of scales). \
It is noteworthy that® the solutions of (7.1) can be written in the form

(8.8) u(t, x) = Z e a,f (2),
analogous to (8.2). Here
(8.9) v=r{f+B+ir-1}.

It should be proved that our passage to the limit actually leads from (8.2) to (8.8).
This has not yet been done, but at least it is easily seen that

(8.10) lim N=e ",  t=nAt=_1,
N—® N

9. Other possibilities

The described passage to the limit which led to Wright’s diffusion equation (7.1)
is different from the familiar similar process in physical diffusion theory where the
ratio Ax/At tends to infinity rather than to a constant. It rests entirely on the
assumption (8.4). We shall now show that any modification of this assumption leads
to a nonsingular diffusion equation of the familiar type (to normal distributions).

A continuous approximation to the discrete model of section 3 is sensible only if
a1 and ag are small. Accordingly we shall put

(9.1) a1 = Bie, : as = fae.

We shall keep 8; and B, fixed and perform the passage to the limit e > 0, ¥ — .
In the preceding section we have solved the problem for the special case e = 1/N.
Since the units of measurement are arbitrary, there remain essentially only the
cases Ne— 0 and Ne— .

A glance at (8.1) shows that if Ne — O the influence of the coefficients a; be-
comes, in the limit, negligible; the process is asymptotically equivalent to the
case of a pure random mating without mutation and selection. We assume there-
fore that

(9.2) Ne— o .
16 Compare the thesis by S. Goldberg (not yet published) giving explicit solutions of (7.1).
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In this case the influence of the mutation pressure is predominant. Now this
pressure is directed towards the equilibrium point

a2 B2
®-3) F e BitB
It is to be expected that once this equilibrium point is reached, large deviation from
it will not occur. As a matter of fact, the gene frequency now tends in probability
to the equilibrium point, and the fluctuation is concerned with the deviations from
the equilibrium point measured in a scale in which they remain finite. In other
words, we shall replace the population size Z™ by the variable

n) — 1 1 n, ___BL~
9.4) YO =375 2"~ gt
where 6 > 0 is a scale unit still to be determined.

Since the speed of the convergence towards the steady state depends essentially
on a; and as, the number of generations required for continuous changes will be of
the order of magnitude 1/¢. Accordingly, we introduce a time scale in which each
generation requires time

(9.5) At = €.

If in any generation ¥™ = x then the expectation of the change ¥ (**D) — Y(n) =
Y+l — x turns out to be

(9.6) =% (a1 + a2) = — 2 (61 + B2) At.

In accordance with the definition (4.4) we get therefore for the linear coefficient
(9.7) a@)=—x(B+B). !
Similarly

1 1 8182
")y =— L0 i~y
(9.8) var (AY®) 2N62P:QJ 2N52. (Bi+ B2

Hence we get b(x) = 1 provided we choose § so that the last expression becomes
2At. Accordingly we put

(9.9) =t B1B2

T4Ne (Bi+Ba)t

In view of (9.2) this quantity tends to 0. We thus are led to a process Y (¢) with a
probability density satisfying the diffusion equation
(9.10) ue () x) = tse (1, x) + (Br+ B2) {20 (¢, x) } .

Here the range of x is the entire axis. For an initial value ¥(0) = 5 (correspond-
ing to a gene frequency Ba/(8: + B2) + &1), the solution of (9.10) is

Bi+B: 12 (BitBs) (x+ne—6rt81)
2«(1—-2—2%%)); eXP{_ 12(1—e—ew,+a.>:) f

9.11) % (s, x)=§

Equation (9.10) is an ordinary diffusion equation with a drift toward the origin,
and (9.11) is a normal probability density with mean and variance tending 0 and
1/(B1 + B:), respectively.
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10. A bivariate model

The purpose of this section is to generalize the discrete model of section 3 by
dropping the assumption that the population size is constant. This permits a more
flexible treatment of selection forces. Many schemes can be devised, but for illus-
trative purposes it is preferable to describe a particular model rather than to go
into vague generalities.

The composition of the population in the #-th generation is described by a pair
of integers (ji, j2) indicating the numbers of ¢- and A-genes, respectively. These
numbers are random variables to be denoted by X{™ and X{®. We wish to de-
scribe a natural scheme leading to explicit expressions for the transition proba-
bilities p(j1, j2; k1, k2) (that is, the probability that X (D) = kb and XY = &,
given that X = j;, X" = ji,).

In the model of section 3 the new generation is formed in 2V independent
trials. We want to take into account the possibility that, say, an a-gene dies with-
out contributing to the succeeding generation and without thus indirectly in-
creasing the (absolute) number of A-genes. Instead of keeping the population
size rigidly constant we can adjust the scheme so that only the expected popula-
tion size remains fixed. For that purpose we accept the following model.

If in a generation the totals of a- and 4-genes are j; and js, then the succeeding
generation is formed in N = a1j1 + o3z independent multiple trials as follows. Each
trial consists in first selecting an a- or an A-gene, with corresponding probabilities
o1j1/ N and o5js/N. If the result is an a-gene it has probability v. to die without further
influencing the next generation; if it survives, it has probability a1 to mulale inlo an
A-gene. These act in a similar way with corresponding probabilities v; and a..

In other words, each of the N = ¢15; + a3j2 trials has three possible outcomes.
It results in an a-gene with probability
(10.1) 1=

o

- (1 —a) + T ) ey

the outcome is 4 with probability
(10.2) pr =1 =) @+ T ) s

finally, the outcome is ‘no contribution to the new generation’ with probability

1 — p1 — po. Hence the transition probability is given by the trinomial distribu-

tion

(10.3)  (Guy jai oy o) = ik P (1= py— p2)
’ PR Eylkol (N — by — ka) !

N—ki1—ks

The essential difference between this scheme and that of section 3 is that in the
present case the population can increase indefinitely or die out. No special results
have been worked out for this new scheme, and we shall be satisfied with deriving
the diffusion equation to which it leads in the same way as the model of section 3
leads to Wright’s equation (7.1).

If in the n-th generation X{™ = ji, X{ = j,, then we have for the increments
AX; = X$n+1) — Xgn)

(10.4) E(AX;) = Npi — ji,
var (X,) = Np: (1 — pi) .
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New to the present case is only the covariance between the two increments,
(10.5) cov (X1, Xs) = —Npipe
(or a correlation coefficient — {p1p2/(1 — p1)(1 — p2)}V/? instead of —1 as in sec-
tion 3).
Since we are in the bivariate case, the diffusion equation will be of the form
gwit ot T IODICATIAL

2 N . (/
(10.6) w,(t, @, 9) = D { bij (&1, x2) w (t, 21, %) J 245

i,7=1

2 -
- z {ai(xy, x2) u (8, 21, 22) }fs"! .
=1

A special case is equation (6.1), where b3 = 0 because of the assumed independ-
ence of X(¢) and Y(¢). The coefficients in (10.6) (the infinitesimal mean dis-
placements and variances) are now to be obtained by a limiting process from (10.4)
and (10.5).

Again we denote the time between two succeeding generations by A = € and
measure the population in units of ¢7%. In section 8 we had e = 1/2N, but now N is
not a constant. As there we put

(107) a; = B:At, ) 1=1,2.
Fluctuations in population size will be slow only if the survival chances 1 — »;

are close to the inverses of ¢;, and we put in analogy with (10.7)

(10.8) § —p = LT BB i=1,2.

oy

In the new units the expected change of the number of a-genes during a time
interval of length At is

= At {—x1 (B1+ w1 — Bune) + x2Bzuse}

and hence
(1010) a; (xl, xz) = —X; (ﬁ, + M,‘) , i= 1, 2.
A similar calculation for the variances leads to
3 =1,.(1 _L>
(10.11) bas (ay, m2) = s (12—,
and to
X1X2

=1
(10.12) b1a (%1, %2) = Fos

We have thus a bivariate diffusion equation in which the coefficients are not
linear functions. If ¢; = 2 = 1 the expressions (10.10) and (10.11) reduce to those
in Wright’s theory except that in the latter x; 4 x, is replaced by 1. Even if we
put oy = o2 = 1, our model is more general than the diffusion equation (7.1). In
fact, with 0 = o2 = 1 the determinant bubs2 — b}, vanishes, and the introduction
~ of new variables £ = x; + %2, 7 = 2, — %2 will reduce the second order terms in



244 SECOND BERKELEY SYMPOSIUM: FELLER

(10.6) to a single second derivative. However, both variables still appear in the
linear terms. If o1 = 0o = 1, uy = s, then (10.6) reduces to the equation (7.1) of
Wright’s theory.

APPENDIX I. THE CHARACTERISTIC VALUES
OF THE MATRIX (3.2)

We want to verify formula (8.1) for A\, and, incidentally, calculate the charac-
teristic column vectors of the general matrix () defined by (3.2) with p;, ¢; given
in (3.4) and (3.5). For this purpose we have to show that forr = 0,1, ..., 2N
the system of linear equations

2N
(11.1) Zijxk=)\rxi
. k=0
admits of a nontrivial solution {xo, . .., Xon}.
Put for abbreviation
(11.2) ky=Fktk—1)...(k—v+1)
and note that
2N d" ,
(11.3) ;ijk(v)=d—w'(q]'+?jx)21v z=l= (2N) wp;.
We now prove that it is always possible to determine constants aq, a1, . . . , @,
(not all of them zero) so that
(114) X = a,k(,) + a,_lk(,_l) + .. + dlk + ap

is a solution of (11.1). This means that for the characteristic vector belonging to \,
the component x;, is a polynomial in k of degree at most r.

The assertion to be proved is that the @; can be chosen so as to satisfy the
2N + 1 equations

T

(11.5) 3N 0=\ sje.

y=0 y=0

Now both % and j,) are polynomials of degree » in 7, and it is possible to write

13

(11.6) Pi= D Conflo)

8=Q

where the ¢, are independent of 7. Equating the coefficients in (11.5) we get

(11.7) )\,a,=2a,.(2N)(,,)c,,,., t=0,1,..., r.
v=t

But

(11.8) Cry = (1 - a1 — a2)vl\7_y~'". -

so that (2N).c,, = A, and hence (11.7) is satisfied for » = r and arbitrary a..
Put @, = 1. Then (11.7) permits us to calculate in succession @, ;, @,_2, . . . and
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this process breaks down only if for some » < r one has A, = \,. In this case one
can put ¢, = 0, and thus we get 2V + 1 independent characteristic vectors.

APPENDIX II. THE PASSAGE FROM THE BRANCHING PROCESS
TO THE DIFFUSION EQUATION (5.1)

The results of section 5 show that a direct passage from the simple branching
process of section 2 to the equation (5.1) must be possible. We effect this passage
to the limit formally: it is not difficult to justify the steps, since the necessary
regularity properties of the generating functions f,(x) were established by Har-
ris [6].

We consider the case of large populations, that is, the later stages of a branching
process in which the mean number of descendants u = f’(1) > 1. We introduce
units for measuring time and population size, such that during ‘small’ time inter-
vals the fluctuations will be ‘small.” This requires that in the new units the quantity

(12.1) p=1+4¢
must be small. Accordingly we introduce new units in such a way that an individual -
in the old counting and the time of one generation correspond to
(12.2) Ax = At =€.
Since the population size will no longer be an integer, we pass from the generat-

ing function f(x) to the characteristic function f(¢*) or, in the new units, f(e®*).
Put

(12.3) '@ =x,
so that the variance of the number of direct descendants becomes
(12.4) 2= N+ pu— p?.
Then, as e— 0
(12.5) 1—f(*) =1 —e=)u+ i —e*2A+ 0 (e)
= —izpe — 32° A+ p) € + O (&)
and hence )
(12.6) log f(ei) =iez§z+e(z+%z202)+0(eﬂ)§.
Now put
(12.7) ¢ (¢, 2) = fa (),
where ¢ = ne. Then
(12.8) ¢ (t+e 2) = fulf(e¥)]

=¢(t,i1—elog f(e‘"))

— i 242 2
—¢[t, z+e(z+2 22q )-I—O(e)].
In the limit we are led to the differential equation

(12.9) 6.1, 2) =(z+§ 2201) 6. (1, 2).
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It follows that ¢(¢, 2z) is the characteristic function of a density #(f, ) which
satisfies the diffusion equation

(12.10) wilt, 2) =G loull 2) b (a0l 2) )

and the boundary condition #(¢, 0) = 0. Now (12.10) is a special case of (5.1),
and the boundary condition follows from the fact that in the branching process the
probability mass flowing out into the origin tends to zero.

Harris’ remark that in the branching process the distribution of Z*")u — % con-
verges holds also for our differential equation.
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