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1. Introduction

In a number of problems in multivariate statistical analysis use is made of
characteristic roots and vectors of one sample covariance matrix in the metric of
another. If 4* and D* are the sample matrices, we are interested in the roots ¢* of
| D* — ¢$*4*| = 0 and the associated vectors satisfying D*c* = ¢*A*c*. In
the cases we consider A* and D* have independent distributions. Each is dis-

q
tributed like a sum Z Y.y, where y, . . ., y, are independently normally dis-

a=1

tributed with common covariance matrix. In the case of A* the means of the vec-
tors are zero; in the case of D* the means may not be zero. We are interested in
the asymptotic distribution of the characteristic roots and vectors when the num-
ber of vectors defining 4* increases indefinitely and when the means of the vectors
defining D* change in a certain way. The form of the limiting distribution de-
pends on the multiplicity of the roots of a certain determinantal equation involving
the parameters. If these roots are simple and different from zero, the asymptotic
distribution is joint normal. If the roots are not simple, the asymptotic distribu-
tion is expressed in terms of “uniform distributions” on orthogonal matrices and
a normal distribution.

We shall first state our problem in a general form and show in what kinds of
statistical problems there is interest in these characteristic roots and vectors.

Suppose! x.(a = 1, ..., N) of p components is normally distributed independent-
ly of xg(a # B) with mean

(1.1) Ex.=B121a+ B2 22

and covariance

(1.2) o 8 (xa—Ex) (xa— Lx)' =X,

where z;. and 2,5, are vectors of fixed variates of ¢; and g; components, respec-
tively, and B, and B, are p X ¢; and p X ¢. matrices, respectively. We shall use
the notation N(Bz1. + B2z, X) for the distribution of xa.

Most of the research contained in this paper was done while the author was Fellow of the John
Simon Guggenheim Memorial Foundation g.t the Institute of Mathematical Statistics, Univer-
sity of Stockholm, and the Department of Applied Economics, University of Cambridge). The
work was sponsored in part by the Office of Naval Research.

1 Unless specifically indicated otherwise, a vector is a column vector; a prime indicates the
transpose of a vector or matrix. Vectors and matrices are indicated by bold face type.

103



104 SECOND BERKELEY SYMPOSIUM: ANDERSON

-On the basis of a sample (x1, 211, 221), - . . , (X, Ziv, Z2v) the usual estimate
of B= (BB, is

(1.3) B = 2xz<22 ) ,

a=1

where z. = (z1, 2;,) and E z z! is assumed to be nonsingular. The columns

a=1
of B, say by, are normally distributed with means (., the correspondmg columns
of B, and covariance

(1.9 £ =0 (b0 =( > 2,27) 'z,

a=1

where (E 2z, zﬁ): indicates the element of the inverse matrix in the #-th row
and v-th column.

Let Q! be the submatrix of(z zaz‘:)_l consisting of the last g, rows and ¢,
columns; this is also given by

(1.5) Ezzu 20, Zzhzla(zzla la) Z 2,2 2a

Then (B; — B2) Q(B2 — By)’ has a Wishart distribution with covariance matrix X
and ¢: degrees of freedom, denoted by W (X, ¢2). If g; < p, this distribution, called

9,
singular, is the distribution of E Yule where y, is distributed according to

u=1

N(0, ) independently of y, (# % v). The usual estimate of X is

(1.6) A* = i (xa—B2z2) (xa—Bza)' = Zx X —BE z,z/B’

a=1 a=1
divided by N — (g1 + ¢2). This matrix is distributed according to W(Z,

N — ¢ — g2) independently of B.
Many statistical problems, for example [3], [6], involve the roots of

(1.7) |B,QB,—$*A*| =0,

or the vectors, for example [1], [2], satisfying
(1.8) (B,QB,—¢*A*) c*=0

The p algebraically independent vectors c, satisfying {1.8) may be normalized by
(1.9) . c;’A*c;=n8,,, ,

where n = N — g1 — ¢2 and 8, = 1 and 8, = O for g # h. We say that the
solutions of (1.7) and (1.8) are the “‘characteristic roots and vectors of BQB; in
the metric of A*.” If we wish to test the hypothesis that the rank of B; is r against
the alternatives that it is greater than r we use the p — r smallest roots of (1.7).
If we assume that the rank of B; is 7 and we wish to estimate B; (or, equivalently,
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estimate the linear restrictions on B;) we make use of the vectors ¢* satisfying
(1.8) for the p — r smallest roots of (1.7).

In this paper we shall study the joint asymptotic distribution of the roots and
vectors defined by (1.7), (1.8), and (1.9) when n = N — ¢1 — ¢2— © and

N
;1;2 z 2! approaches a nonsingular limit. The asymptotic distribution of the
a=1
roots alone has been given by Hsu [8]. We find it convenient to make use of some
of the results in [8] to obtain the joint asymptotic distribution of roots and vectors;
however, the method used in the present paper could be used independently of [8].
We shall assume throughout the paper that ¢; = .

2. Reduction of the problem to canonical form

To simplify the following derivations we shall transform the matrices B;QB,;
and A* so that they have distributions with fewer parameters. Corresponding to
(1.7) and (1.8) in the sample, we have the population equations

(2.1) . |B;Q.B;— 72£| =0
and
(2.2) (B:Q.B:— 72£) vy =0,

where Q, =10. Let the roots of (2.1) be ri(n) = 7i(n) = . .. = 72(n) = 0. The
n ¥4

number of zero roots is the difference of  and the rank of B; for each % for which

0. is nonsingular (in particular for » sufficiently large). Let yi(n), . . ., v5(n) bea
set of corresponding solutions of (2.2) satisfying

(2.3) v,(n)Ey,(n) =35, .

Let ', = [yi(n), . . ., v»(n)]. Then we can make a transformation, for example
[7], so that A* is replaced by

(2.4) A= ; vy

where y} is distributed according to N(0,I) independently of yz (8  a), and
B2 Q.B, is replaced by

qe
(2.5) D,= D y*(n) g (n)
: —
where yi*(n) is distributed independently of yi*(n) (g # k) according to
N[v/nry,(n)e,, I) where 7,(n) is the nonnegative square root of 7j(n) and ¢, is a
vector with all components O except the g-th (for g < p) which is 1. The roots of
(1.7) are the roots of

and the vectors satisfying (1.8) and (1.7) are related to the vectors ai(»), . . .,
cp(n) satisfying
(2.7) (D,—¢AY c=0
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and _

(2.3) cAc,=nd,
by

(2.9) c;(n) =T,c, .

It should be observed that I', and 7%(#) depend on # because Q, depends on 7.
We shall first find the limiting distribution of ¢,(#) and ¢y(n) as # — « (that
is, as N — o). Let y, = y}*(n) — v/nry(n)e,. Then

ke
(2.10) D= lyo+ Var, () elly,+ vV, (n)e]’,
g=1
and y, is distributed according to N (0, I).
Let C, = [a(n), . . ., ¢p(n)]. Then (2.7) can be written
(2.11) DC:=ACo ,
where @, = [¢:(n)d;;] and ¢1(n), . . ., Pp(n) are the roots of (2.6) and (2.8) can
be written
(2.12) CIAC, =nl.
If
(2.13) X =c,
we have
(2.14) : 1.4 =X'X ,
n n n n
(2.15) 1D =X0X,.

We shall set out to find the limiting distribution of ®, and X, for 7,(»n) approach-
ing limits as # — «. To make @, and X, unique we require ¢;(n) > ¢2(n) > ...
> ¢,(n) and x,1(n) > 0. The probability is O of a D, and A4, for which X, and ®,
are not uniquely defined.

Throughout this paper we shall make use of the following special case of a
theorem of Rubin [9]:

RuBIN’s THEOREM: Let F,(u) be the cumulative distribution function of a random
vector u,. Let v, be a (vector valued) function of u,, v, = fu(u,), and let G,(v) be the
(induced) distribution of v,. Suppose hmF (u) = F (u) [in every continuity point

of F(u)] and suppose for every contmmty pomt uof f(u), hm fa (U) = f(u), when

- limu,=u . Let G(v) be the distribution of the random vector v = f(u), where u has

?h_e) distribution F(u). If the probability of the set of discontinuities of f(u) in terms of

F(u) is 0, then®
1imG,. (v) =G (v).

2 We could justify the limiting procedures by another method that consists of extending a
theorem of L. C. Young (‘‘Limits of Stieltjes integrals,” Jour. London Math. Soc., Vol. 9 [1934], pp.

119-126), concerning the limit of fg,.(u)dF,.(u), applying this to the characteristic function of
fa(#), and thus obtaining a restricted form of Rubin’s theorem.



CHARACTERISTIC ROOTS AND VECTORS 107

In our case the components of u, are linear combinations of the components
of the matrices 4, and D,; the components of v, are linear combinations of the
characteristic roots and the components of the characteristic vectors. The distri-
bution of u, approaches a limit and the function f,(u) approaches a limit (in the
above sense). We shall verify that the discontinuities of the limiting function are
of limiting probability zero. Thus we can deduce the asymptotic distribution of the
characteristic roots and (normalized) vectors by using the asymptotic distribu-
tion of 4, and D, and the limiting function.

3. Derivation of two special distributions

In order to derive the desired asymptotic distributions we need to obtain the
distributions of the characteristic roots and vectors (in the metric of I) of a sym-
metric matrix B in two special cases. Let the roots of

(3.1) |B—yIl =0
be Y1 = ¥2 = ... Z ¥, Let the characteristic vector satisfying

and Yh=1be h; G=1,...,p). If y1,..., ¥, are different h,, ..., h, are
uniquely defined except for multiplication of a vector by —1, and hih; = 0,
i# j.Let H= (hy, ..., hy;). Then BH = HW', where W' = (¢,,;). Let H' = G.
Then G satisfies

3.3) G'wG = B,

(3.4) G6=1.

These equations define W' and G uniquely if we require g;; = 0 except for a set
of B of measure zero. Since it is trivial to obtain the distribution of H and @
from that of G and ¥, we shall now obtain the distribution of G and W".

First we consider the case that the distribution of B is W(I, m) (m = p); that

is, the density is

3.5) C (m, p) |B| (m—»—1)/2¢ —tsB/2

where
P

(3.6)  C7V(m, p) = 2me/tqp@—1)/A HP A (m+1—9)]
i=1

and ‘“tr’”’ denotes trace. This is the distribution of

3.7) B=>Y uu,,
=1
where uy, . . . , U, are independently distributed according to N (0, I).

THEOREM 1. Let B have the distribution W (I, m). Then G and W, defined by (3.3),
(3.4), the restriction that ¥ is diagonal with diagonal elements in descending order



108 SECOND BERKELEY SYMPOSIUM: ANDERSON

and g;1 = 0, are independently distributed. The density of the diagonal elements of W is

r/2

» P
(3.8) H pimr D2 2 v
P i=1
2m/ 2 [TAT (3 (m+1=DIT (3 (p+1=10)]}

i=]1

P 4

X H H i —¥y)
=1 7=i¥1
foryi = ... Z ¥p > 0and is O elsewhere. The distribution of G is ‘“uniform.”
Proor. That the marginal density of ¢4, . . . , ¥, is (3.8) has been proved by
Hsu [5]. It remains to show that G is distributed independently of ¥ and “‘uni-
formly.” The “‘uniform” distribution of all orthogonal p-dimensional matrices is
given by the (normalized) Haar measure on the orthogonal group; that is, the
(normalized) Haar measure is the only probability measure on the group that is
invariant under the group operation on the right [4]. Since we require g; = 0,
our definition of ‘“‘uniform distribution” is the conditional distribution obtained
from the Haar measure by requiring g. = 0. For this part of the space the prob-
ability measure is 27 times the normalized Haar measure.
The measure on the space of u; defines a measure on the space of G, ga = 0.
Consider any measurable set H in the space of all orthogonal matrices. Let the

diagonal matrices with diagonal elements + 1 and — 1 be Ji, ..., Jo». Let H =
PY4

2 H;, where J;H;is a set in the space of G, g = 0. Define the measure of H as
i=1

the sum of the measures of J;H;. Now let us show that this measure is invariant
with respect to multiplication on the right. Let E; be the set in the space of uy
that maps into J;H;. Let H* be HP; that is, H* is the set obtained by multiply-
ing each element of H on the right by the orthogonal matrix P. Then H* =

E o= E H P . We now show that the measure of H?* is the same as H,. Let
H:= E H?;such that J;H}; is in the space gn = 0. Let E}; be the set in the
i

space U, that maps into J;Hj;. Then EE::.=P’E,~;that is, ZE‘;i is the set
i i

obtained by multiplying each (uj, . .., #s) by P’ on the left. The measure of
P’E; is the integral of the density of P'uy, . .., P'u, over E,. Since the density
of P'uy, ..., P'u, is the same as that of uy, ..., us, the measure of P'E; is

that of E;. Thus the measure of H* is that of H. This proves that the measure is
invariant with regard to the group operation on the right. Since there is only one
such measure on the group of orthogonal matrices with total measure 27, this is it.
The joint distribution of @ and G(g. = 0) has a density. This density does not
depend on G because the density at ® and G is the same as at ® and G* since G*
can be obtained from G by multiplication on the right by some orthogonal matrix P
and this is equivalent to transforming B to P’BP which has the same characteristic
roots as B. This proves the theorem.
Now suppose the density function of B = B’ is
(3.9) o —pp+1) /A2 —p/2 ¢ —trBY/2
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thatis, b;; ¢ =1,...,p;7=1,1+ 1,..., p) are independently and normally
distributed with means zero; the variance of b;; is 1 and that of 4;; ( < 7) is &.
Now define G and W (diagonal) by (3.3) and (3.4) with the understanding that
the elements of the first column of G are nonnegative. The ordered roots y; are not
restricted to being nonnegative.

THEOREM 2. Let the symmelric mairix B have the distribution witk density (3.9).
Then G and W, defined by (3.3), (3.4), the resiriction that W is diagonal with diagonal
elements in descending order and gn = 0, are independently distributed. The density
of the diagonal elements of W is

¢.10) 2w [Traog+1-01} e &% TT T we-va

=1 i=1 j=i+1

Jor yn = ... Z ¥, and O elsewhere. The distribution of the orthogonal malrix G is
uniform.
Proor. The proof that the marginal density of ¢, . . ., ¥, is (3.10) has been

given by Hsu [8]. The remainder of the proof is the same as for theorem 1 since
the density of P’BP for P orthogonal is the same as B.

4. An asymptotic distribution when all population roots are zero

A simple case of our main problem is the case where 72(n) = 0 for all g and #.
Then D, = D has a Wishart distribution with ¢ (= p) degrees of freedom which
does not depend on #. In this section we shall find the asymptotic distribution
of X, and @, in this special case.

In all of the asymptotic theory we use the result [8] that as n — o

1
(4.1) U=/ (4n—nl)

is asymptotically normally distributed with mean zero. The functionally inde-
pendent variables are statistically asymptotically independent and the variances
are given by ‘

(4.2) Euli=2, Cul=1 i#j.
The matrices X, and ®, are defined by
(4.3) % D=X®X,
: 1
(4.4) —-4 =XX
n

where x;1(n) = 0, @, is diagonal and the diagonal elements of ®, are labelled in
descending order. For each #, X, and ®, are defined uniquely except on a set of
probability zero.

1 R
Asn— o, - A, approaches the stochastic limit I and —11; D approaches the sto-
chastic limit 0. In the limit X, must satisfy
(4.5) I=XX,

.and @, must approach 0 stochastically.
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To obtain the full asymptotic theory we define new matrices W,, Z, and @,.
For any matrix X, we have an orthogonal matrix O, and a diagonal matrix A,
defined by

(4.6) XX, = 0,A,0,,

where the diagonal elements of A are ordered in descending size and 0,1(z) = 0.
Let

(4.7) G,=0Al%0, ,

where the elements of AY? are the positive square roots of the corresponding ele-
ments of A, (the roots are different from 0 when X,X, is nonsingular). Let

(4.8) W. = X.G;'.

This is an orthogonal matrix; that is,

(4.9) WoW,=1.

Let

(4.10) Z,= V/nW, (G,—1I.

Then

@W1)  K=WG=W,(I+W=2)=W.+— 2.
We notice that

(4.12) WoZ, = Z,W,,

because

(4.13) WoZo= /nW,W, (G,—D) = G,—I=G,—I'= \/n (G,—D) W.W,=Z, W, .
Now let us show that (4.9), (4.11), and (4.12) define W, and Z, in terms of X,

(except for a set of measure 0). We have

(4.14) X, =W, 0/A?0, .

Let W* be another matrix satisfying (4.9), (4.11) and (4.12), with possibly a
different Z,. Then

(4.15) wW¥X, = X,W*,

(4.16) X, W* = W*X, .
Equation (4.15) is

(4.17) W* W,0,AY%0, = 0,AY?0, W, W*.
From this we derive

(4.18) 0, W* W,0,AY? = AY20,W,W*O0, .
Let

(4.19) 0.W*W,0, = O*.

Then

(4.20) O*AY? = AVZ0* .
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The component equations are

(4.21) o%;8y% = Y%} .
This gives us
5V
(4.22) 0:’=6—1/§ G;i.
?

From (4.16) we derive
1/2

05
* o 1 ok
oii— 5172 0;-
1

(4.23)

If 8, # 8;, o}; = 0. Therefore, if the §; are all different

(4.24) o*=1,
and
(4.25) W= Ww.

Therefore, except for a set of measure zero of X,, (4.9), (4.11), and (4.12) define
W, and Z, uniquely. Let

(4.26) 0, = nd, .

Now let us substitute into (4.3) and (4.4). We obtain

’ 1 ’ ’
(4. 2 7) D = annwﬂ + W (Z,.@an + Wn@nZn) +% Zn@nZn )

(4.28) U,,=w,:zn+z;wn+7}7z;zn.
Together with (4.9), (4.12) and
1 )
(4.29) 'w,-l(n) +7—; z,-l(n)z(), ’L=_1,...,P,

(4.27) and (4.28) define ®,, W, and Z, uniquely for each .
For given W, = W, Z, = Z and ©, = © the limits of (4.27) and (4.28) ex-
pressing D and U in terms of W,, Z, and ®, are

(4.30) D= Wew,
(4.31) U=WZ+2W=2WZ.
If

(4.32) wa 20,

and 6; > 0, for ¢ > 7, then (4.9), (4.12), (4.30) and (4.31) define W, Z, and ©
uniquely in terms of D and U (except for a set of D and U of measure 0). Now
we wish to argue that if we take (4.9), (4.12), (4.27), (4.28), and (4.29) as de-
fining W,, (diagonal) @, Z, in terms of (nonrandom) D = D, and U,, the limit
of W,, ®, and Z, is the solution of (4.9), (4.12), (4.30), (4.31), and (4.32) as
n— o for D,— D and U,— U where D and U are such that the solution is
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unique (the exceptional D and U are of measure 0). A diagonal element of ®, is a
root of

1
(4.33) |D.—o(1+—=u.)| =0.
As n— =, this root approaches the root of
(4.34) |D—6I =0,

and this is an element of ® defined by (4.9) and (4.30). Z, is defined (equivalently)
by

(4.35) Z,= Vn(X,—W,) =X,0,VnI—-a;") 0,,
where the diagonal elements of A, are roots of

1
(4.36) WU,,—{-I— oI =0,
Let ¢.(n) be the i-th root of
(4.37) |U., — Il =0.
Then

1

(4.38) 6. (n) =1 +W Yi(n).
Clearly ‘
(4.39) lim Vr [1—8;2(n)] =} limy; (n) = 3¥;.

Since X,X, —1I and 0, is orthogonal, each element of Z, is bounded in the limit.

Thus the norm (any standard norm) of —-—1\/7 2,7, and the norm of —% (2,0, W, +

, 1
w.0.z,) + ~ Z,0,2, go to zero as n — ®. Thus each element of D, — W,0,W,

and each element of U, — 2W,Z,, goes to 0 as n — «. Consider the matrix function
(P, Q) = (D — W¥@*W*, U — 2W*'Z*), where W* and ®* satisfy our usual condi-
tions including (4.32). The inverse functions W*, ®* Z* (as functions of P and Q)
are continuous in the proper domain (except on the exceptional set). Hence, if the
norm of (P, Q) is sufficiently small the norm of (W* — W, ®* — @, Z* — 2)
must be arbitrarily small. If w;; > 0, then %} > 0 for norm of (P, Q) sufficiently
small. Then w; () for # sufficiently large is bounded away from 0, and for » suffi-
ciently large w;i(n) satisfying (4.29) must satisfy (4.32). Thus W,, ®, and Z, con-
verge to W, @, and Z defined by (4.30) and (4.31).

The limiting equations (4.30) and (4.31) define W, Z, and ® uniquely except
on a set of Lebesgue measure zero. The discontinuities can only occur on this set.
Now considering D and U, as random matrices we observe that the limiting distri-
bution of D and U, is absolutely continuous. Thus the conditions of Rubin’s
theorem are fulfilled. To obtain the limiting distribution of the random matrices
W,, Z, and ©, defined in terms of the random matrices D and U, we need only
find the distribution of W, Z and @ defined by (4.9), (4.12), (4.30), (4.31) and
(4.32), where U has the limiting distribution of U..

The distribution of W and @ is that of theorem 1. The conditional distribution
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of Z given W and @ is obtained from

(4.40) Z=1iwv.
Thus .
(4.41) 2iz|w) = iwgu=o0.
Let
(4.42) U= (u,...,u),
Z= (Zl, "'7217)’
W= (w,...,w).
Then
(4.43) Liz]| W) = 1WE(ua)) W .
Since £u%; = 2 and £u?; = 1 for i # §, and Luiur = O otherwise, then
(4.44) Euai =1+ e,
Cuu; = ¢j;

where ¢;; is a matrix with 1 in the 4-th row and j-th column and 0’s elsewhere.
Thus

(4.45) Clazf| W) = W, + e) W
= ;I + ijﬁ) .

Since U is normally distributed, the conditional distribution of Z is normal.
THEOREM 3. Let D have the distribution W(I, q2), q2 = p, and let A, be inde-

pendent of D, and have the distribution W (I, n). Define X, and ®, by means of (4.3),
(4.4) and the conditions that xx(n) = 0 and ®, is diagonal with diagonal elements

1
in descending order. Let n®, = @, and let X, = W, + v Z,, where WoW, =1

and WoZ, = Z,W,. The limiting distribution of ®,, W, and Z, as n— o is the
Jjoint distribution of ®, W, and Z such that the marginal distribution of the diagonal
matrix @ and the orthogonal matrix W is that of theorem 1 with m = q; and the con-
ditional distribution of Z given W and © is normal with mean 0 and covariances
given by (4.45).

6. An asymptotic distribution when all population roots are equal but differ-
ent from zero

Another special case that is easy to treat is the case of all roots of (2.1) being

equal but different from 0, say, r2(n) = ... = 72(n) = N\, > 0. Then
(5.1)  D,=F+ VnE,+n\l,
where
9s
(5.2) F=>yy.,
g=1

and E, is composed of elements

(5.3) Vi ¥ii 350 -
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We are interested in X, and @, (diagonal) defined by

11 ,
(5.4) TP+ =E A \I=X9X,,
(5.5) 1a-xx,

n

with x;,(#) = 0 and the diagonal elements of @, arranged in descending order.
Let

(5.6) Xn=Wn+—%Zny
where W, and Z, satisfy (4.9) and (4.12). Let

1
(5.7) (D,.=7\1J+—\7—; 0,,

where @,, is diagonal. Then (5.4) and (5.5) are

6.8 2F+—=E =Wtz 2) (M+—- e.) (Wt—z2)

=N+ =\ GW,+ W) +WeW,]

1 (4 (4 ! 1 (]
+ ; [Wn ®nZn + Zn @an + )\nZnZn] + ;13—/2 Zn@nZn !
(5.9) =Wtz 2) (Wt 2);
d. ; n = n \/ﬁ n n ,\/h' n
that is,
1 1 ’ _1__ ’
(5.10) ~a A,—nD) = WZ +ZW,) + \/;Z"Zn.
Multiply (5.10) by A, and subtract from +/» times (5.8) to obtain
1 1 ! _1;_ (4 (4
(5.11) v/ F+E — Y/ N@A, —nl) =WoOW + v We..z +zoeWw,)
+ 1 Ze.z .
n
Let
1
(5.12) U,.=—\7§(A,,—nl).
Then (5.10) and (5.11) can be written as
’ i __1_ ’
(5.13) U.= W2Z +ZW) + T 'Z,,
1 , A , 1,
(5.14) T F4+E —\U =W, oW + Vi wez+zoew)+ - zez,
where
(5.15) WiW, =1,

(5.16) Wiz, = Z,W,,
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1
(5.17) ‘wu(”)‘i‘wzn(’i)éo, i=1,...,p.

Thus for a given n, ®,, W, and Z, are defined as functions of U,, F = F, and E,.
The functions are unique and continuous except over a set of U,, F, and E, of
measure zero. The limit of the functions (as U, — U, F, — F, and E, — E) is the
solution to -

(5.18) U=W2+2ZW=2W2Z,
(5.19) E—\NU=Woew,
with W satisfying (4.32) and where N = lim \,. This argument is justified as in

n—rw
section 3. In particular, each diagonal element of ®, as a function of nontandom
F,, E, and U, is a root of

(5.20) | D= Bt Eat Vind— @t VD (M7= 0)] =0,

that is, of

(5.21) ‘(TiZF,.—i-E,.—-)\,.U,.)(I-i—Ti;U,.)_I—01‘ —o0.
Since ;
(5.22) (% F,.+En—xﬂv,,) (I+T>;U,. T LE-U,

the ordered roots of (5.20) approach the ordered roots of
(5.23) |[E—NU—6I =0.

As in section 4 we can argue that the elements of W,, ®, and Z, are bounded
for F,— F, E,— E and U, — U. Then the elements in (5.13) and (5.14) which
are multiplied by 1/4/%,1/% and 1/%%2 go to zero. The remainder of the argument
of section 4 applies.

We can now use Rubin’s theorem since the discontinuities of the mapping oc-
cur where there is indeterminacy and the set of E and U where this occurs is of
limiting probability 0. To find the limiting distribution of the random matrices
W., ®,, and Z, we need only consider the distribution of the random matrices W,
@, and Z defined by (5.18), (5.19) and (4.32) (with W orthogonal, ® diagonal with
diagonal elements in descending order), where the random matrices E and U have
the limiting distribution of E, and U,. Let

(5.24) E—-XNU=V.
The density of E and U is
(5 25) ke —(trE’/(4)\)+‘trU?/2)/2 = ke —tr{ (VHAT)2+ 20U} /(8N)

= ke —tr{VH2AUVIAU+2A0?)/(80)
= ke —tr{ATH2) (U+R/AH2) V)2 +[20/(A2+20) 1 V2}/(8N)
= ke —OHtr(U+[1/(A+2)]V)2/8 o —trV2/(4N2+8))

This marginal density of V¥ is normal, and the conditional density of U is normal.
The distribution of W and (2A? 4+ 4)\)~V/2@® is that of theorem 2. The conditional
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distribution of Z given W and @ is normal with mean
1

: (- Y= 1
(5.26) \g{zlw, o)=1WwgeU|w, 0}—%W( — V)_ o OV
The conditional covariance between two columns of Z is
(5.27) El1z2:~&(2:|W,0)][2;,—E(2;|W,0)]'|W, ®}
1 1 1 ! (4
= ;Wg;(u,-{-m v;) (Uj+m Uj) V%W
1 .
= —):_‘l'—4 (Iﬁgj+ij1-) .
THEOREM 4. Let
(5.28) ° D=3 ot VA VNE) Wot+ VEVig)'
g=1
where the p-dimensional veclors y, . . . , Yo, (g2 = p) are independently distributed

according to N (0, I); let A, be independently distributed according to W(I, n). De-
fine X,, and ®,, by means of (4.3), (4.4), and the conditions that x(n) = 0 and @y, is
diagonal with diagonal elements in descending order. Let ®, = /n(®, — \,I) and

X, = W.+ % Z,, where WoW, = I, and Wo.Z, = Z,W,. The limiting distribu-
tion of ®@,, W, and Z, as n— « is the joint distribution of ®, W and Z such that
the marginal distribution of (2N\2 + 4N\)~Y?2 times the diagonal elements of the diagonal

matrix @ and the orthogonal matrix W is that of theorem 2 and the conditional distri-
bution of Z given W and @ is normal with mean (5.26) and covariances (5.27).

6. An asymptotic distribution in the general case

Now we consider the general case of the population roots having different values.
We assume that the multiplicities do not depend on %, but the values may. Let

(6.1) [22(n) 8] = (M) 0 .... 0 0
I 0 N)I.... 0 0]
‘ 0 o .... x;.(n)lo‘
0 o .... o o
= A,

h
say, where \;(#)I is of order r; and 7,1y = p — E r; is the multiplicity of 0. Par-

i=1

tition X,, F, E, and U, similarly, to [r%(#)3,;]. Let

(6.2) X = Wm) o0 .... O +_1= Zu(n) Zix(n) . . . Zip+r ]
0 W) .... 0 Vn Zy(n) Zoa(n) ... 2441
L o L . J
0 0 R W;,+1(n)J LZh+1.1 Zi+1.2 - o o Zhgringr
1

=W,,+T/;Z,.
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where

(6.3) - Wi(n)Z:i(n) = Zi(n) Wi(n) .

As before, this defines W;(n) and Z;;(n) uniquely in terms of X.;(»). To make X,
unique in this case we now require that the elements of the first column of X;;(»)
be nonnegative.

Let
(6.4)
1
&, = M(n)l—l-w@l(n))‘ I i— ((: 2
0 2(n) +\/ﬁ®2(")---
1
0 0 R V% (n)1+7’7(~)h (n) . 0
0 0 0 ; @}.+1(n) .
Then
(6.5) D= F+ =Bt A =X@.X,,
1 1 ’
(6.6) ;L-A,,=—\7;U,.+I=X,.X,..

The submatric equations of (6.6) are

(6.1) = U ) +1 = 32X () X3 ()

=W, () W (1) +— = (Wi (0) Zis(n) + Zia ) W)
EDXACIADS

(6.8) %Uﬁ(n) = D" Xii (n) Xi; (n)
k

1 , ,
=n (Wi(n)Z;;(n) +Z;; (n) Wi(n) ]
1 / ..
+;;Zki(”)zkj(n)) i
The submatric equations of (6.5) are

(6.9) %Fﬁ;};zﬁ OERNOIED W ADENOEAE

h , 1 , 1
= 2 (Wi +z 2 ) (w1 e
X 8uW: (n) +\—}; Zii(n) )+ni Zi1i (1) @pas (1) Zypns (m)

= N () WL () Wi (n) +—p= (W () @, (2) + s (m) X
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h
X W, () Zis () +Zia W 1) 43 D 00 2000 Zus(w)

k=1

+Wi(n) ©;(n) Zi; (n) +Zi;(n) ©;(n) Wi (n) ]

A
’ 1 ’
+%ﬁ;Zu (n) O (n) Zi; (n) +172 Zyy1,i(n) Opy1 (1) Zhyr,:(n),
i#Zh+1,

1 7’
(6.10) > Fryrnn= ;xk.,.ﬂ (1) @i () Xip+1 (1)

h
= %[ EZI:JH-I (n) <)\k (”)I'{"% O (”) ) Zl;:h+l (n) +(Wl:+l (n)

k=1

+% Z;;+1:h+l (n) )@h+1 (n) (Wh+1 (n) +% Zy 141 () )]

h
= L Wis (1) @ns () Wi (1) + D M () Ziss (1) Zinsa () |

k=1

A
+—n:—/2 [ E Zini1(n) O(1) Zipi1(n) + W1 () @p41(1) Zyy 1441 (n)

k=1

+ Zht 1141 (1) Opt1 (1) Wh+1(n)] +;11_2 Zni1as1(1) Oni1 (1) Zis a1 ()
(6.11) L Fist—mEig(n) = 3 Xis () @4 (1) Xy ()
%

h ’ 1 ’ 1
= X (8l + Zuw)) (w0 I +—77 @) )
X( 5kjW,' (n) +% Zi; (n) )+'—:§ Zyi1,i (1) @piy (1) Ziyr,; ()

== DN ) W) Zis () + 00 2 () W )]

h
2] D M) 24 0) 24y ) + Wi ) @) 25 (n) 4255 (n) @5 (m)

k=1

1,
XW;n) |+ =] D Zstn) @ (1) 21 m) |
k=1

1 R
+ﬁZh+1,;(") 05+1(n) Zh 41,5 (1), i#i54, jFERET,
1 1 h+1 ,
(6:12) 2 Faneat o Eonra () = 2 Ko () @x () Knsa ()

h , , 1 .
- 2 (aaticn o ) ) (NI + = 00 } = Zuwa ) +
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1
+“‘\7’7 Zh+1:i(")% @h-}-l(”)(wh-{-l(") +'\_}; Zh+1.h+1(”))

h
MWL Zias ) + 5[ Wi 0,0 Zun ) + o 0w

h
X 249 Zina0) |+ i D 24 ) @40) Zuia(0) + Zins )
k=1

1,
X @441 (1) Wi (1) | + 5 Zha1i (0 Ona 00 Zuiars (), iseh+1.

For fixed F, E, = E and U, = U (in the proper domain) the above equations
define the orthogonal W.(n), Z;(n) and the diagonal ®;(n) uniquely (except for a
set F, E and U of measure zero) under the restrictions that the elements in the

first column of W; (n) +% Z,;; (n) are nonnegative and that the diagonal ele-

ments of the @;(x) are in descending order. Now subtract I from each side of (6.7)
and \;(n)I from each side of (6.9) and multiply (6.7), (6.8), (6.9), (6.11) and
(6.12) by v/n and (6.10) by z and let # — «. Using the fact that W,(n) is orthogo-
nal and (6.3), we obtain the limiting equations [for \;(n) — \;, E,— E, and
U,— U]

(6.13) Ui =2W.Z;,

(6.14) U; = WiZi;+ Zj;W;, 1#7,

(6.15) Ei; = WOW;+ 2\WiZ,;, iZh+1,
h

(6 1 6) Fh+1vh+l = W):+leh+1Wh+l+ ; )\kzl:rh+lzk’h+l ’

(6.17) E; = NWiZ;+ NZjW;, i#E L& k+ 1,

(6.18) Eippr = NWiZiny, i=h+1.

From (6.13) and (6.15) we obtain

(6.19) Ei— \NUi = WiOW;.

From (6.16) and (6.18) we obtain
A
1 ’ r
(6.20) Frvrnr— ; ‘)‘:Eixh+1Eirh+l = Wit1Os+1Whi1.

Then the fact that W; is orthogonal and the requirement that the elements of the
first column of W; be nonnegative define W;, Z;;, and ®; uniquely.

To show that W, Z;;, and @, defined by (6.13), (6.14), (6.17), (6.18), (6.19)
and (6.20) are the limits of the matrices defined by (6.7)-(6.12) is more compli-
cated than the similar demonstration in section 4. We shall only sketch this proof
briefly. First we should like to prove that the diagonal elements of @,(%), for
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example, converge to the characteristic roots of Eyy — MUy as F,— F, E,— E
~ and U, — U. From the equation

(6.21) %F,.+Ti;E,.+An—¢(—\—};Uu+I)|=o

we can show that the first r, elements of @, converge to A,. Then we need to show
that the largest root of (6.21) minus A\;(n) times +/# converges to the largest char-
acteristic root of Ey; — M\ Uyy. That can be argued from the determinantal equa-
tion

(6.22) ‘%F,,+%E,.+A,.—(%U"+I) (x, (n)1+§; ot)]

- 1111F,.+717Z[En—>\1(n)Un]+(An—)\1(”)I)—Tii ”(“\}7”"“)' =0.

In the second determinant above we can factor out v/# from the first r; rows.
Then as n — o there are r, sequences of roots each of which converges to a char-
acteristic root of Ey; — AUy, Similar arguments suffice for @,(n) (¢ = k4 1).
For @;,:(n) we can use a slightly more complicated demonstration.?

Next we wish to argue that the elements of Z;;(») are bounded as »— « (as
F,— F, E,— E, and U, — U). For convenience let us take the case of r; = 1.
Then the characteristic vector say ¢(n) associated with the largest root 6, satisfies

1 1 1 1
(6.23) [-7; Fn+W[En_ M) UL+ [An—M(n)]] —71701 (77 U,.-H)] c=0.

Then the components of ¢1(z) are

6.28)  cutn) =k [[] 120 —Nm] +o= b ],

=2

(625 crs (n) = & (n) = ke (), | i1,

where k(n) approaches a finite limit and %;(n) are bounded. Using the same rea-
soning for each characteristic vector (assuming r; = 1) we show that C, is a
diagonal matrix with bounded elements plus 1/+4/% times a matrix with bounded
elements. Thus X, = C;! is of the same form. Therefore, v/nx;j(n) = z,;(n)
(2 # §) are bounded. From

(6.26) = i ) +1= g 2%, (n)

=l (n) + 3 #% (n)
i
we see that v/zn[l — a%,(n)] = — wii(n) + /nali(n) is bounded. Thus z:(n) =
V/n[l — x;(n)] is also bounded. If ; # 1, essentially the same argument can be
carried out in terms of the partitioned matrices. Thus the norms of matrices such
as Ui(n) — 2W1(n)Z::(n) go to zero. The argument of section 4 shows that Z;:(n)
approaches Z;;, etc.

3 Since these arguments are similar to Hsu’s (8], it is unnecessary to go into more detail.
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We are now in a position to apply Rubin’s theorem. The discontinuities occur
where W, Z, and © are not defined uniquely and the measure of U, F and E where
this occurs is zero. Let the limiting distribution of the random matrices U,, F,
and E, be the distribution of the random matrices U, F, and E. Then the limiting
distribution of the random matrices W, (orthogonal diagonal blocks), Z, and @,
(diagonal) defined by (6.7)-(6.12) is the distribution of W (orthogonal diagonal
blocks) Z, and ® (diagonal) defined in terms of the random matrices U, F, and E by
(6.13), (6.14), (6.17)—(6.20). The distribution of E;; — N\Uy;, ¢ # &+ 1, is that
of section 5. Hence, the distribution of W; and ®; is that given there. Since
E;; — MU.iiisindependent of Ej; — N\;Uj;, ¢ % 7, the matrices W;and @;,: =1, .. .,
h are independent. The conditional distribution of Z;; given W; is also that of sec-
tion Swith A=\, ® =0;, W= W;and p = r,.

Now, consider (6.20). An element of Eippiis e = vVAye (n+ - - .+ ria +
1Sg=n+...+r; p—mn+1=k=p); an element of Fh+1h+1 is

S’ = E YigYi'y - Thus an element of Fjp1,441— E ~ EipiEint1 152 YigYk's

g=1 i=1
P 9
- E VigVi'g = E VigY'g . This matrix of order 7,;, has the distribution
9=1 a=p—-rh+1+1

W(I, g2 — p + 1) and is independent of E;, ¢ # A+ 1, and Ej;, i # j. The
distribution of Wiy1, ®Onp1 and Zaiipe is that of section 4 with W = Wiy, ® =
O, Z= 2, p=npand m = g2 — p + na.

The matrices U;; and E;j, i # j, are independent of the other submatrices (ex-
cept E;; = Ei; and U;; = Uj;). From (6.14) and (6.17) or (6.18), we obtain

(6.27) Eij — NU; = (M — \)WiZ,; .
The conditional distribution of Z;; given W; is that of

1
(6.28) =% Wi (B —N\U5) -

An element of E;; is
(6.29)  eyr= VAYyy+ VAYr, Nt Fna+lsgsnt o+,

... +riatl1sfsnt+...+r;.
Thus an element of E;; — \;U;; is normally distributed independently of the other
elements with zero mean and variance \; + \; + A%. The conditional distribution .
of Z,; given W, is normal with mean 0 and covariance between two elements is

(6.30)&{ 2573,y | Wi} = 54 E'wyk (ers — Njthig) Wik (i — Njthay?)

)‘1)2 ok’

i= A )’E""E’?w‘S v 8z 0w (N N5+ N3)
37 kK

= 5!! oo’
Thus the variance of 2y is (A; + s + A2)/(N\: — A;)? and the covariances are zero.
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The conditional distribution of Z;; is similar except that ¢ and j are interchanged.
Z;; and Z;; are independent of the other matrices. Now consider the conditional
covariance between an element 2, of Zi,- and zgy of Zj;. It is

(6.31) L{ 3552, | Wi, Wj} =1 _)\1)2 Zw (exs — Njthrs)

(1)
x.watk, Cepnr — Netgrr)

Y +)\,+)\ )\,Ew(-) ()

ok Wo'r' By Op’
(A=) .k’
NENFNN G D
TN
We can indicate the conditional covariances between the columns Z =
(215 . - . 5 2p) in matrix form. If g, f < 7, the conditional covariance between z,
and z; is

(6.32) &lz,z;|0, W} =

(o1
T 4(16,,+w‘,"w§‘)) 0 .. 0
MA A4
0 e Lo .0
M
0 0 M ol
ne

Ifg<randrn+ 1= f=n- r, the conditional covariance is

(6.33) g{z,z}](-),W}=( 0 0...0
M+ M 9 (0
Wwf wv 0 -« s e 0
\ 0 0...0
THEOREM 5. Let
(6.34) D,= E [yo+ Var, () e]lys+ Var, (n)e]’,

g=1

where the p-dimensional vectors yu, . . . , Yq, (g2 = p) are independently distributed
according to N0, I) and my(n) = VN@m)—vVAyn+ ... +ria+1=5g=
nt .. FrgM>N,E<jGi=1,..., k4 1);Mp(n) = 0. Let A, be inde-
pendently distributed according to W (I, n). Define X, and ®, by means of (4.3), (4.4)
and the conditions that %ge 4 ...4rias1(0) 20, n+ ... +ria+1=g=
n+ ...+ r, and ®, is diagonal with diagonal elements in descending order. Let
each of X, and ®, be pariitioned into (k + 1) submatrices of r, . . . , 7441 rows and
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Tl + « + y Tay1 COlumns. Let @, be defined by (6.4) and W, and Z, defined by (6.2),
(6.3) and Win)'Win) =1 The limiting distribution of ©,, W, and Z, is tha!
of ®, W and Z similarly partitioned, which can be described as follows: The matrices
®;, W,, Z,; are independent of ®;, W;, Z;; (i # j); the distribution of ©;, W; and
Z, i # b+ 1, is that of ®, W and Z given in theorem 4 with p = r;; the distribution
of Oni1, Wair and Zuiinyr 15 that of ®, W and Z given in theorem 3 with p = ray,
m = gs — p + 7uy1; the conditional distribution of Z given @ and W is normal; the
conditional expectation of Z;; (i 5 §) is O; the conditional covariance matrix of z, and
2, nt ... +ria+1=5g f<n+...+r, consists of nondiagonal blocks
of zeros and the i-th diagonal block is

1 ) ()’
35 +wi w)

2N+ 4
and the j-th diagonal block (§ # 1) is
NN+
ee —J)\j) 7 10t
the covariance matrix of 2, and z;, n+ ... +ria+1<gs<n+...4+r,

n+.. . Fra+125fSn+... 4 (@ #7) consists of O's except the j-th i-th
block which is
z\,_-l- )\j+__7\~;7\,' (5. )’

O —apye 07 W

7. The asymptotic distribution of characteristic roots and vectors

The columns of the matrix C, defined in section 2 are the characteristic vectors
of D, in the metric of 4,. We choose C, so that the elements of the first row of C;:(»n)
are nonnegative. Let

(7.1) C,= (Cyu(n) Cis(n) oo Crps1(m)
Cz (n) Cz (n) oo Copr(m)
Ch+1,.1 (n)  Chyr2(n) coo Ghyrnr(n) ) »
_(Viw) 0 ... O _L(Y11(”) Y12 (n) voe Yippa(n)
= +
0 Vin) ... 0 VE| V) Yaum) ... Youu()
0 o ... Vh+1(")J [Yh;m(") Yh.+1,2(") . Yh+1-h+1(ﬂ)J
1
=Vn+7; Y, ’
where
(7.2) Vim)Vitn) =1,

(7.3) Vin)Yi(n) = Yii(n)Vi(n) .
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Let
(7.4) C.= X1,

If X, = J.C;%, then C, = C,J., where J, is a diagonal matrix with diagonal ele-
ments +1 and — 1. Now define ¥, and ¥, in terms of C, as V, and ¥, are in terms
of C,. First let us show that for nonrandom W,— W, Z,— Z (which define
X.,—X),V,—> W and ¥,— —Z’. We have

(1.5) G = V+VrY <W+\/Z) @+vﬁwz ‘W
=(1-= Wizt W) — .. .)W,Z

_W—w—wzw +—(WZ)
for » sufficiently large. The ¢-th diagonal block of (7.5) is
(1.6) Vs () +—5= ¥ (n) = Wim) == Wi (1) Zus ) Wi () +2 T )
=W (n) === Zis(n) +5 T (m),

where the elements of T;;(n) are bounded. Multiplying each side of (7.6) on the
left by its transpose, we obtain

€7.7) 1+%W2 ) ¥ii (n) +¥is ) Vi (n) ] +%?2.- (n) ¥s: (n)

=I—% [W; (n) Zi; (n) +Zi; (n) Wi (n) ] +;1t. Sii(n) .

Subtracting I from both sides, multiplying by V:(z) and using (7.3) and (6.3),
we find

€7.8) Yii(n) = =Vi(n) Wi (n) Zi; (n) +— \/ Vi(n)R;(n).
We can show (by means of an argument similar to that used in section 4) that the
elements of V;(n)R.(n) = Siu(n) — Vi(n)Yi:(n)Y:ii(n) and of R;(n) are bounded.

Inserting (7.8) in (7.6) we obtain

(1.9) Tim) =(Wim) == Zu ) + 2 T () ) (T Wi () Zis ()

+aR(m)) =Win) +10s(m)

for » sufficiently large. It is clear from this that V;(#) — W; and from (7.8) that
Y:(n) —» —Z;; (as W,— W and Z,— Z). A nondiagonal block of (7.5) is

(110)  D=Fisn) = == Wi () Zig (m) Wy m) +5 Tig ().

Clearly, Y,j(n) > — WiZ;W,.
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C. and C, are different (for fixed W, and Z,) only in that columns of one are
multiplied by —1 to obtain columns of the other. However, for # large enough the
sign of the elements of the first row of C;:(n) are those of Wi(n) [= V.(n)], which
are all positive (if the elements are different from 0). Thus C. = C, for » large
enough. Therefore, for nonrandom W, — Wand Z, — Z, V, > W', Y.:(n) > — Zi;
and Y;;(n) = — W;Z;;W;. The discontinuities of the limiting transformation have
limiting probability 0. Thus the limiting distribution of the random matrices @,V
and Y, is the distribution of the random matrices ®, V= W', ¥ = —W'ZW
where the distribution of ®, W and Z is given in theorem 5.

The distribution of @ and ¥’ = W has been given explicitly. From the condi-
tional distribution of Z let us find that of ¥. Consider first ¥,;, ¢ = A+ 1

’ 1 ’
1
STonE O
The covariance between two elements of Y;;, say ¥a and yae’ is
1 DINC
m (8aa’ Oup’ + W.(;b)' '0((:’;;) .

The matrix ¥5y1,541 is normal with mean 0 and covariance given above (for \; = 0).
Now consider ¥;; = —W.Z;W; and Y;; = — W;Z;;W;. The joint conditional
distribution is normal with zero means. The variance of the elements in ¥;; is
s+ N+ A)/(\ — \)? and that of the elements in ¥j; is (A; 4 X\; + A}/
(A\: — \;)% The covariance between elements in ¥;; is O as are those between ele-
ments in ¥;;. The covariance between an element yqs in ¥;; and yo% in ¥; is
_MENMNENN G G

)
—‘()\:‘_kj)z Vab’ Va'p «
THEOREM 6. Let

D= lyo+ Var,m)ellys+ vVar, (n)g)’,
g=1

where the p-dimensional veclors vy, . . ., Yo, (g2 = p) are independently distributed
according to N0, I) and 7,(n) = VN(m) >Ny n+ ... +ria+1=g=
nt .o Fro >N i<i@E =0 ..., k4 1); Mpa(n) = 0. Let A, be inde-
pendently distributed according to W(I, n). Define C, and ®, by means of (2.11),
(2.12) and the conditions that ¢y ... 4rici+1sM) 20, n+ ...+ ria+ 1=

gsn+...+rn@G=1,...,h+ 1) and ®, is diagonal with diagonal elements
in descending order. Let each of C, and ®, be partitioned into (h + 1)2 submatrices
of 11y . -« Tays rows and 11, . . ., Thya columns. Let ©, be defined by (6.4) and V,

and Y, be defined by (7.1), (7.2) and (1.3). The limiting distribution of @,, V, and
Y, is that of ©, V and Y similarly partitioned, which can be described as follows: The
mairices ©;, Vi, Yi; are independent of ®;, V;, Y;; (i # 7); the distribution of @; and
V. is that of ® and W given in theorem 4 with p = r;, i = h+ 1, the conditional
distribution of Y; given ©;and V; is normal with mean (2\; + 4V ®;; the distri-
bution of Ony1, Vi is that of ® and W given in theorem 3 with p = tuy, m =
g2 — p + ranr; the conditional distribution of Yay1, w1 is normal with mean 0; the
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conditional distribution of Y given ® and V is normal; the conditional expeclation of
Y, i # §, is O; the conditional covariance matrix of y, and y;, nn+ ...+ ri +
1 <g,fsn+...4riconsists of nondiagonal blocks of zeros and the i-th diagonal
block is

1 k) 1
Toor+ 057 08)

2n+4
and the j-th diagonal block (j # 1) is
Nt AN
()\ __}\J)g Iaﬂ/t

the covariance matrix of y, and yf, n+...+rna+1¢g=n+... +ryn+
Ariat+ 1l SfEn4 . A (G §) consists of O's except the j-th, i-th block
which is
MANEAA G
CYE SRR

Now let us consider the asymptotic distribution of Cy = I',C,. Let T satisfy
(7.12) B; lim Q,B,l' =XTA.

n—®
If the diagonal elements of A are all different and if vy; 2 0,7 = 1,..., p, then
the restrictions y1; > 0, and y;Zy; = 1 determine I'" uniquely. If the same re-
strictions are placed on each I', then I', — I" as # — ® because the set of char-
acteristic vectors is a continuous function of @, (which approaches the limit,
lim Q,). If the diagonal elements of A are not all different, then another in-

n—rcw
determinacy is involved. Partition I' in the manner that the matrices in sec-
tion 6 were partitioned;

(7.13) = /T'n «oo Tra+1

| PSS ) SR EWETAN

Let O be an orthogonal matrix of the form

(7.14) 0=(0,0 ..0
0 0,... 0
lo 0 ... Owd.

We require that
(7.15) rsr=I.

Then I'O also satisfies (7.15); that is, there is an indeterminacy of such an orthogo-
nal transformation. This indeterminacy can be removed by putting restrictions
on I' (such as requiring that the first column of I lie in a certain 7, — 1 dimen-
sional hyperplane, the second in a certain 7, — 2 dimensional hyperplane, etc.,
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with an element in each column having a specified sign). For all # greater than some
particular integer, the same restrictions can be imposed on I',. With these restric-
tions imposed, I', — I.

Then
O = 1y

(7.16) C;=rC,=rV,+_-r¥,.
Let
(7.17) Vi =TWVa,
(7.18) Yi=T.,Y,;
then

¥ %* l *
(7.19) C:=V:+-7. Y.

Va and Y5 are functions of V, and ¥,. As #— o, the functions approach limits;
that is, for fixed V, = Vand ¥, =Y, Vo> IV = V* say, and Y;—T'Y = ¥*
say. Thus by Rubin’s theorem the limiting distribution of the random matrices
V¥and Y)is that of I'V = V*and I'Y = Y*

The distribution of ¥* is that of I'V. The distribution of ® is given in section 6.
The conditional distribution of ¥* given V* and ® can be found from that of Y.
We have

h+1

(1.20) g{Yis|e, V= > rugi{¥ule,v)

=T, 1 Ve
P ’ - 112()\]_'_2) P B ]

Y0, V=0

The conditional covariances are easily obtained from theorem 6. Let y? be the
a-th column of Y*. Then the conditional covariance matrix of this vector for
asnis

(7.21)

JER+L;

(6)] (1) ’
T W +—Z(I+v ) 0 ... 0|
M+ A+ A2
0 ‘ —_—I ... 0
(AM—A) 2
As
0 0 Y
1 (0, " KIN +>\ + Ay
=g d+ey )n+§ ~5y Tl
where
(7.22) ;= (Tu

Tht1.i/ -
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If a % a* and g, a* £ n,, the conditional covariances between y, and y,. are

1 L
(7.23) ml‘lv,(,i)vil) I.
Ifa<rnandn+ 1= a* = r + ry then the covariances are
(7.24) 0 0...0\I
MtENt+ MA@ (v
-— (M——)Tg)T Vax Vg 0...0
0 0...0
0 0...0)
M+ A+ M '
—_ _—1(-:1 -2_—*;‘2) 12 2 I'zv‘(,:) U,(,l) I;.

THEOREM 7. Let the p-dimensional vectors xa(a. = 1, . . . N = p) be independently
distributed according to N(Bizia + Bazea, ), where the mairix of vectors (zia, Z30)
is of rank p and z1. has q components and z:. has qa components. Let B, =

[By(n),Bs(n)] be defined by (1.3); let Q. =%Q,, be defined by (1.5) where n =
N — g1 — q2; let A7 be defined by (1.6). Let @, be a diagonal matrix whose diagonal

elemenis are the roots of (1.7) arranged in descending order of size. Let Cq = [ci(n),
<+, 6p(n)] be composed of the corresponding vectors satisfying (1.8) and (1.9). Let

2(m)[ri(n) = . . . = 7i(n)] be the roots of (2.1). We assume Q. approaches a non-
singular limit in such a way that 1,(n) = VX)) > VA, n+ ...+ ria+ 15
g€ n+ ... Fri Mz N, i<jGi=1,..., 4+ 1), M) =0. Let T be a

matrix satisfying (7.12) and (7.15) where A is the limit of (6.1), and satisfying other
restrictions to make T wuniquely defined. Let Tn = [yi(n), ..., ¥o(n)] be com-
posed of vectors satisfying (2.2) and (2.3) and the additional restrictions on T (for n

sufficiently large). Let @, be defined by (6.4). Let C = Vo + —\—i; Yy, where

(7.25) LWVi=V,= (Vi) 0 ... 0
0 0 oo Varr () ),

Vin)Vin) = I, the elements of the first row of Vi(n) are mnonnegative and
Vin)Yi(n) = Yi(n)Vi(n), where Y:i(n) is the i-th diagonal submairixz of T5'Y; =Y.
As n— o, the limiting distribution of ®,, Vy and Y, is that of ®, T'V and Y*, simi-
larly partitioned, which may be described as follows: The marginal distribution of ®
and V is such that ©;, V; is independent of ®;, V; (i % §); the marginal distribution
of ®;, Vi is that of ®, W given in theorem 4 with p = r;, i 7 h + 1; the distribution
of Ony1, Viyr is that of ©®, W given in theorem 3 with p =7y, m = g2 — p + Tay1;
the conditional distribution of Y* given ®, V is normal; the conditional expectation of
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o submatrix Y7%; is given by (7.19); the conditional covariance matrix of y:,‘ and y¥y,
71+...+f{—1+ 1ég,f§f1+ . ..+71,1:$

1 D G 52 9 WD WD ¢
(726) 2—m[r v})vs)I‘ +6afr1rz] +5a/§ : + ]:_)2 FJFJY
1#1

the conditional covariance between Y; and Y;, n+ ... +ra+1=<g=<
r1+...+ri,r1+...+r,_1+ 1sfsn4+...+Fri(@G=])),1s

(727) N "l'xl"i'k kJ (J) (1)

= i v, T

where T is defined in (7.22) and vl? is the g-th column of V.

A special case of considerable interest is the case of r, =1, ¢ £+ 1 and
th+1 = p — k. Then Y,; consists of one element for ¢, j # 424 1. In this case
V.= 1 for i k 4+ 1. We can easily express the conditional distribution of ¥
given V.1 by integrating out 6y, ..., 6. The marginal distribution of 6; is
N@©, 222+ 4\,) and the conditional distribution of y; is N[6./(2\; + 4),
1/(\; + 2)]. 6; and y;; are independent of the other variables. The marginal dis-
tribution then of y;; is N (0, 1/2).

In this case £{¥*|Vis1} = 0. The conditional covariance between y; and y}’
as<his
(7.28) ey ”+§xa+>\,+x, rr.
. yaya 2.l — Mha—np2 77
i*a

The conditional covariance between y} and g}, ¢ # ¢*, a,a* S h is

, P W O ’
(7.29) ClyayulVin) = —%}:Fmra-
()\a x(W)
The conditional covariance between yyand yi.,a S b,k + 1 S a* £ p, is
(7.30) EYiynlVini) ~—rh+1v°'“’r

The conditional covariance between y} and yiv, 2+ 1 S g, a* < p, is

(71.31) gyl Viss} = 30hs Udun + 05 0340 1 +E T o

1=l
Clearly,if r;,=1,i=1,...,k+ 1= p, then ¥V, =1, and the llmiting dis-
tribution of @, and Y, is such that the marginal distribution of Y* is normal
with mean O and covariances derived from above.
8. Remarks

8.1. Useof N and n = N — ¢. Insection 2 we defined Q, as —1— Q.. The asymptotic

‘ dlstnbutlons obtained are exactly the same if one uses — Q,. for the roots of

le Q.B; — p2X| are multiples by #n/N of the roots of (2 1). These roots con-
verge also to Ay, . . ., Mg, respectively, and for each » the multiplicities are the

same in the two cases. Using N Q.. changes the definition of the sample roots again
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by a factor of #/N. We might also define A* in terms of IV instead of # and nor-
malized ¢} in terms of NV instead of #. Asymptotically the effect of using & instead
of » disappears. Rubin’s theorem can be used to prove each such statement rigor-
ously.

8.2. The limiting probabilities. It is interesting to see for what sequences of sets
in the space of the characteristic vectors the limiting probabilities are defined. As
a simple example, suppose p = r; = 2 and £ = I. We shall consider a sequence
of sets for one vector c; and another sequence for ¢; defined in the same plane.
Consider a segment on the unit circle in the right half plane. The regions for ¢, con-
tain this segment and as » — « the regions converge to the segment. The bound-
aries converge as 1/4/n. Consider the segment of the unit circle in the right half
plane composed of the points which are 90° from the points in the other segment.
There is a corresponding sequence of regions which close down on this segment as
n increases. The limiting probabilities are defined for these sequences.

8.3. Cases of special interest. Two cases of the model discussed here are of par-
ticular interest. The one occurs when the “fixed variate” vectors z. (in section 1)
are composed of dummy variates; that is, variates that are 0 or 1 (see [1], for ex-
ample). These can be chosen so that Bz, = pi, a = N1+ ...+ Nia + 1,...,
N+ ...+ N;: Wi+ ...+ N, = N). The first N, x, are observations from
the first population, etc. If we require that N; = kN as N — «, then the multi-
plicities of the roots of (2.1) are unchanged as N — .

It can be shown that if V/#[r3(n) — r2(n)] > 0asn— o, n+ ...+ 71+
12gfSn+...+r,i=1,...,h+ 1, then ®, W,, and Z, (also ©,, V7,
and ¥?) can be defined in the manner of this paper and have the same limiting
distribution as given here. Thus we can weaken our conditions slightly. If N, =
%.N to within rounding error in the case mentioned above, the same theory applies.

If the fixed variate subvectors z;, are not composed of dummy variates, in gen-
eral the nonzero roots of (2.1) will be simple for all » and in the limit. Then the
theory at the end of section 7 applies.
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