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1. Introduction
In a number of problems in multivariate statistical analysis use is made of

characteristic roots and vectors of one sample covariance matrix in the metric of
another. If A* and D* are the sample matrices, we are interested in the roots qb* of
D*- *A*1 = 0 and the associated vectors satisfying D*c* = O*A*c*. In

the cases we consider A* and D* have independent distributions. Each is dis-
q

tributed like a sum yyay' where yi, . . ., yq are independently normally dis-
a=

tributed with common covariance matrix. In the case of A* the means of the vec-
tors are zero; in the case of D* the means may not be zero. We are interested in
the asymptotic distribution of the characteristic roots and vectors when the num-
ber of vectors defining A* increases indefinitely and when the means of the vectors
defining D* change in a certain way. The form of the limiting distribution de-
pends on the multiplicity of the roots of a certain determinantal equation involving
the parameters. If these roots are simple and different from zero, the asymptotic
distribution is joint normal. If the roots are not simple, the asymptotic distribu-
tion is expressed in terms of "uniform distributions" on orthogonal matrices and
a normal distribution.
We shall first state our problem in a general form and show in what kinds of

statistical problems there is interest in these characteristic roots and vectors.
Suppose' x.(a = 1, . . . , N) of p components is normally distributed independent-
ly of x,s(a $4 #) with mean
(1.1) gxc, = Bizia + B2z2a
and covariance
(1.2) (X.-,x.) (Xa- Ox.)
where Zil and Z2a are vectors of fixed variates of qi and q2 components, respec-
tively, and B1 and B2 are p X q, and p X q2 matrices, respectively..We shall use
the notation N(Blzla + B2Z2., 1) for the distribution of xa.

Most of the research contained in this paper was done while the author was Fellow of the John
Simon Guggenheim Memorial Foundation (at the Institute of Mathematical Statistics, Univer-
sity of Stockholm, and the Department of Applied Economics, University of Cambridge). The
work was sponsored in part by the Office of Naval Research.

1 Unless specifically indicated otherwise, a vector is a column vector; a prime indicates the
transpose of a vector or matrix. Vectors and matrices are indicated by bold face type.
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On the basis of a sample (xl, z,l, Z21), ... (XN, Z1N, Z2N) the usual estimate
of B = (BlB2) is

(1.3) B= ± xz'(~zaz:>',
N

where Z = (ZlaZ2Q) and z zz is assumed to be nonsingular. The columns
a- 1

of B, say b,, are normally distributed with means ., the corresponding columns
of B, and covariance

(1.4) (b - ) (b.- Z vI

where ( ZaZa indicates the element of the inverse matrix in the u-th row

and v-th column.
Let Qr- be the submatrix of(E ZaZa>1 consisting of the last q2 rows and q2

columns; this is also given by
N N N-

(1.5) Q E ~Z/2az2 Y Z2al Z Z/.z) ZlaZ2
a=l 2a1 la= I

a-1

Then (B2 - B2) Q(B2 - B2)' has a Wishart distribution with covariance matrix 2:
and q2 degrees of freedom, denoted by W(X, q2). If q2 < p, this distribution, called

q2

singular, is the distribution of ) YuY where yu is distributed according to
u 1

N(0, 1) independently of yv (u . v). The usual estimate of 2; is
N N N

(1.6) A*= E (xa-Bza) (xa-Bza)'= Sxx -B z zaB'
a=1= a=l

divided by N - (q, + q2). This matrix is distributed according to W(1,
N -q- q2) independently of B.
Many statistical problems, for example [3], [6], involve the roots of

(1.7) B2QB' - *A* =0 ,

or the vectors, for example [1], [2], satisfying
(1.8) (B2QB'-qb*A*) c* =0

The p algebraically independent vectors c, satisfying (1.8) may be normalized by
(1.9) c*A*C= n hX

where n = N - - q2 and 5gg = 1 and 5gh = 0 for g # h. We say that the
solutions of (1.7) and (1.8) are the "characteristic roots and vectors of B2QB2 in
the metric of A*." If we wish to test the hypothesis that the rank of B2 is r against
the alternatives that it is greater than r we use the p - r smallest roots of (1.7).
If we assume that the rank of B2 is r and we wish to estimate B2 (or, equivalently,



CHARACTERISTIC ROOTS AND VECTORS 105

estimate the linear restrictions on B2) we make use of the vectors c* satisfying
(1.8) for the p - r smallest roots of (1.7).

In this paper we shall study the joint asymptotic distribution of the roots and
vectors defined by (1.7), (1.8), and (1.9) when n = N - qi - q2-+ - and

zaz. approaches a nonsingular limit. The asymptotic distribution of the
n

roots alone has been given by Hsu [8]. We find it convenient to make use of some
of the results in [81 to obtain the joint asymptotic distribution of roots and vectors;
however, the method used in the present paper could be used independently of [8].
We shall assume throughout the paper that q2 _ p.

2. Reduction of the problem to canonical form

To simplify the following derivations we shall transform the matrices B2QB2
and A* so that they have distributions with fewer parameters. Corresponding to
(1.7) and (1.8) in the sample, we have the population equations

(2.1) XB2QB2-r2Nj =0
and

(2.2) (B2Q.B2-T2) = °

whereQn =-Q. Let the roots of (2.1) be Tl(n) _ rT(n) _ ... _ T(2(n) _ 0. The
n 2

number of zero roots is the difference of p and the rank of B2 for each n for which
Qn, is nonsingular (in particular for n sufficiently large). Let yi(n), ... , r'(n) be a
set of corresponding solutions of (2.2) satisfying

(2.3) r, (n)X.Y(n) = -

Let rF = [y1(n), ... , y,(n)]. Then we can make a transformation, for example
[7], so that A* is replaced by

(2.4) A. yo*y*g,
where y,s is distributed according to N(O, I) independently of Y.* (, a), and
B2QnB2 is replaced by

qt

(2.5) D. y** (n) y**'(n)
0=1

where eg*(n) is distributed independently of y*h*(n) (g w- h) according to

N[RnTg(n)E,,, I] where Tg(n) is the nonnegative square root of r2(n) and zg is a
vector with all components 0 except the g-th (for g p) which is 1. The roots of
(1.7) are the roots of

(2.6) ID.-,An =0 ,

and the vectors satisfying (1.8) and (1.7) are related to the vectors cl(n), . . . ,

cp(n) satisfying
(2.7) (Dn-,A*) c =0
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and
(2.8) c'A ch = nf

by
(2.9) c* (n) = rncg .

It should be observed that rn and Tr(n) depend on n because Qn depends on n.
We shall first find the limiting distribution of cg(n) and Og(n) as nX (that

is, as N - ). Let yg = y*(n) - VnrT(n)Pg. Then

q2

(2.10) D. = [yg + VnTXrg,(n) 0][yg+ V\nTg(ne]'eg
g=1

and yg is distributed according to N(O, I).
Let Cn = [ci(n), . . c(n)]. Then (2.7) can be written

(2.11) DnCn*= AnCn*n,
where 4. = [bi(n)bij] and 41(n), . . .., 0(n) are the roots of (2.6) and (2.8) can
be written
(2.12) C.ASCn= nI.

If
(2.13) Xn =C,7l
we have

(2.14) -An =X'Xft,
nn

1
(2.15) -Dn =X4Xo -

We shall set out to find the limiting distribution of 4' and Xn for Tog(n) approach-
ing limits as n -X a. To make 4n and Xn unique we require 41(n) > +2(n) > ...

> 4p,(n) and xii(n) > 0. The probability is 0 of a Dn and An for which X, and 4fn
are not uniquely defined.

Throughout this paper we shall make use of the following special case of a
theorem of Rubin [9]:

RUBIN's THEOREM: Let Fn(u) be the cumulative distribution function of a random
vector uf. Let Vn be a (vector valued) function of Unf Vn = fn(un), and let Gn(v) be the
(induced) distribution of vn. Suppose lim Fn (u) = F (u ) [in every continuity point

n-* -

of F(u)] and supposefor every continuity point u of f(u), lim f. (unt) = f (u) , when

lim unt = u . Let G(v) be the distribution of the random vector v = f(u), where u has

the distribution F(u). If the probability of the set of discontinuities off(u) in terms of
F(u) is 0, then2

limG. (v) =G (v).
n-* o

2 We could justify the limiting procedures by another method that consists of extending a
theorem of L. C. Young ("Limits of Stieltjes integrals," Jour. London Math. Soc., Vol. 9 [1934], pp.
119-126), concerning the limit of f9n(u)dFn(u), applying this to the characteristic function of
fn(Un), and thus obtaining a restricted for'm of Rubin's theorem.
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In our case the components of u. are linear combinations of the components
of the matrices A, and Dn; the components of v,, are linear combinations of the
characteristic roots and the components of the characteristic vectors. The distri-
bution of un approaches a limit and the functionf"(u) approaches a limit (in the
above sense). We shall verify that the discontinuities of the limiting function are
of limiting probability zero. Thus we can deduce the asymptotic distribution of the
characteristic roots and (normalized) vectors by using the asymptotic distribu-
tion of A, and Dn and the limiting function.

3. Derivation of two special distributions
In order to derive the desired asymptotic distributions we need to obtain the

distributions of the characteristic roots and vectors (in the metric of I) of a sym-
metric matrix B in two special cases. Let the roots of

(3.1) |B- &I =O

be {& >. 462 _ ... _ ',p. Let the characteristic vector satisfying

(3.2) Bh= Ch,
and h'h = 1 be hi (i = 1, . . ., p). If ,1, ..,, are different hi, . h.,hp are
uniquely defined except for multiplication of a vector by -1, and h'h = 0,
i F- j. Let H = (h1, ... , h,). Then BH = HW, where v = (4X6ij). Let H' = G.
Then G satisfies

(3.3) G'WG= B,

(3.4) G'G =I.
These equations define v and G uniquely if we require gil > 0 except for a set
of B of measure zero. Since it is trivial to obtain the distribution of H and v
from that of G and ', we shall now obtain the distribution of G and W.

First we consider the case that the distribution of B is W(I, m) (m _ p); that
is, the density is

(3.5) C(m, p) B (m-pl)/2e-trB/2

where
p

(3.6) C-1 (m, p) = 2mP/27rp(p-1)/4rJIr [a (m+ 1-i)]
i=l1

and "tr" denotes trace. This is the distribution of

(3.7) B UfUf
f-i

where ul, ... , u,- are independently distributed according to N(O, I).
THEOREM 1. Let B have the distribution W(I, m). Then G and IF, defined by (3.3),

(3.4), the restriction that W is diagonal with diagonal elements in descending order
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and gil > 0, are independently distributed. The density of the diagonal elements ofv is

(3.8) 1p/(-1)/2e- Oi/2

2pm/2 Jr[I (m+1-i)Ir[FL(p+1-i)] I

P P

X rI r (4,i CA)
i=l j=i+l

for f, > . . .> 4p > 0 and is 0 elsewhere. The distribution of G is "uniform."
PROOF. That the marginal density of 4,1, ..., 4p is (3.8) has been proved by

Hsu [5]. It remains to show that G is distributed independently of v and "uni-
formly." The "uniform" distribution of all orthogonal p-dimensional matrices is
given by the (normalized) Haar measure on the orthogonal group; that is, the
(normalized) Haar measure is the only probability measure on the group that is
invariant under the group operation on the right [4]. Since we require gil > 0,
our definition of "uniform distribution" is the conditional distribution obtained
from the Haar measure by requiring gil _ 0. For this part of the space the prob-
ability measure is 2P times the normalized Haar measure.

The measure on the space of uf defines a measure on the space of G, gil > 0.
Consider any measurable set H in the space of all orthogonal matrices. Let the
diagonal matrices with diagonal elements + 1 and - 1 be J1, . . . , J2P. Let H

2P
E Hi, where JiHi is a set in the space of G, gil > 0. Define the measure of H as
i=l1

the sum of the measures of JiHi. Now let us show that this measure is invariant
with respect to multiplication on the right. Let Ei be the set in the space of uf
that maps into JiHi. Let H* be HP; that is, H* is the set obtained by multiply-
ing each element of H on the right by the orthogonal matrix P. Then H*=

H*= z HIP. We now show that the measure of H* is the same as Hi. Let

H* =! H!. such that J1H*1 is in the space gil > 0. Let E*ij be the set in the

space Uf that maps into JiH',. Then E!.=P'Ei; that is, SEI. is the set
i i

obtained by multiplying each (ul, . . ., u,) by P' on the left. The measure of
P'E, is the integral of the density of P'ul, . . ., P'um over Ei. Since the density
of P'ul, . . . , P'u,,, is the same as that of ul, . . . , ur, the measure of P'E, is
that of Es. Thus the measure of H* is that of H. This proves that the measure is
invariant with regard to the group operation on the right. Since there is only one
such measure on the group of orthogonal matrices with total measure 2P, this is it.
The joint distribution of 0 and G(gii _ 0) has a density. This density does not
depend on G because the density at 4 and G is the same as at 4' and G* since G*
can be obtained from G by multiplication on the right by some orthogonal matrix P
and this is equivalent to transforming B to P'BP which has the same characteristic
roots as B. This proves the theorem.
Now suppose the density function of B = B' is

(3.9) .7r ~~~-P(P+1)/42 -p/2e-trB2/2
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that is, bij (i = 1, . . ., p; j = i, i + 1, . . . , p) are independently and normally
distributed with means zero; the variance of bi is 1 and that of bij (i < j) is -.
Now define G and W (diagonal) by (3.3) and (3.4) with the understanding that
the elements of the first column of G are nonnegative. The ordered roots ,t' are not
restricted to being nonnegative.

THEOREm 2. Let the symmetric matrix B have the distribution with density (3.9).
Then G and Mr, defined by (3.3), (3.4), the restriction that vis diagonal with diagonal
elements in descending order and gil > 0, are independently distributed. The density
of the diagonal elements of W is

(3.10) 2-p/2j [2 p -)] Pei/2-ly (+_+
i=l ~~~~~~~~i=l=+

for 4t1 _ ..._ p and 0 elsewhere. The distribution of the orthogonal matrix G is
uniform.

PROOF. The proof that the marginal density of ', ... , p is (3.10) has been
given by Hsu [8]. The remainder of the proof is the same as for theorem 1 since
the density of P'BP for P orthogonal is the same as B.

4. An asymptotic distribution when all population roots are zero

A simple case of our main problem is the case where Tr(n) = 0 for all g and n.
Then Dn = D has a Wishart distribution with q2 ( p) degrees of freedom which
does not depend on n. In this section we shall find the asymptotic distribution
of X. and 4bn in this special case.

In all of the asymptotic theory we use the result [8] that as n -+ o

(4.1) U.n= (A. -nl)

is asymptotically normally distributed with mean zero. The functionally inde-
pendent variables are statistically asymptotically independent and the variances
are given by
(4.2) Cui = 2, gui, = 1, i j.

The matrices Xn and 4On are defined by
1

(4.3) -D =X4'Xn.
n

1
(4.4) -A. =X'X,,

n

where xii(n) _ 0, On is diagonal and the diagonal elements of 4', are labelled in
descending order. For each n, Xn and 4', are defined uniquely except on a set of
probability zero.

1 1As n ,- An approaches the stochastic limit I and - D approaches the sto-
n n

chastic limit 0. In the limit Xn must satisfy
(4.5) I = X'X,

and ,n must approach 0 stochastically.
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To obtain the full asymptotic theory we define new matrices Wn, Zn and 0e.
For any matrix X, we have an orthogonal matrix °n and a diagonal matrix An
defined by
(4.6) X Xn = O.AnOn,
where the diagonal elements of A are ordered in descending size and o?,(n) > 0.
Let
(4.7) G.= °OA/20

where the elements of an/2 are the positive square roots of the corresponding ele-
ments of An (the roots are different from 0 when XnXn is nonsingular). Let

(4.8) Wn = XnG[-1 .

This is an orthogonal matrix; that is,

(4.9) W, Wn = I

Let

(4.10) Zn ViWn(Gn-I) .

Then

(4.11) Xn WnGn= Wn(I+ Wn Zn) = Wn+ Z. -

We notice that

(4.12) WnZ = Zn Wn.
because

(4.13) W,ZnZ VWnWn (G n-I) = Gn-I= Gn-It= / (Gn-I) WnWnZnWn-

Now let us show that (4.9), (4.11), and (4.12) define Wn and Zn in terms of Xn
(except for a set of measure 0). We have

(4.14) Xn=W AOnan/2On
Let W* be another matrix satisfying (4.9), (4.11) and (4.12), with possibly a
different Zn. Then

(4.15) W* Xn = XnW

(4.16) XnW* = W*X
Equation (4.15) is

(4.17) W*/WnO AOj2On = On,n/2OnWnW*
From this we derive

(4.18) OnW* WnO,Ai/2 - A/2OnW.'W*O.'
Let

(4.19) OnW* WnOn = 0*

Then

(4.20) O*ni/2= an/20*'.
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The component equations are

(4.21) -=

This gives us
1/2

(4.22) 1/2 °i-

From (4.16) we derive
61/2

(4.23) _0i

If Si 5d Sj, o*'j = 0. Therefore, if the bi are all different

(4.24) 0* = I,
and

(4.25) W*= W.

Therefore, except for a set of measure zero of X,,, (4.9), (4.11), and (4.12) define
W,, and Zn uniquely. Let

(4. 26) 0n=fl4nn-

Now let us substitute into (4.3) and (4.4). We obtain

(4.2 7) D = W.nOWn+ i (ZnOnWn + WnOnZn) + ZnOnZn,/n- n

(4.28) Un=W.Zn+Z'Wn+ T;ZnZn.

Together with (4.9), (4.12) and

(4.29) wil (n) + zil (n) _ 0, i= , . . .,

(4.27) and (4.28) define 0n, Wn and Zn uniquely for each n.
For given W,, = W, Zn = Z and En = 0 the limits of (4.27) and (4.28) ex-

pressing D and U in terms of Wn, Zh and En are

(4.30) D = W'OW,

(4.31) U= W'Z+ Z'W = 2W'Z.

If

(4.32) wil_O,

and Es > Oj for i > j, then (4.9), (4.12), (4.30) and (4.31) define W, Z, and 0
uniquely in terms of D and U (except for a set of D and U of measure 0). Now
we wish to argue that if we take (4.9), (4.12), (4.27), (4.28), and (4.29) as de-
fining Wn, (diagonal) On, Zn in terms of (nonrandom) D = Dn and Un, the limit
of Wn, O,n and Zn is the solution of (4.9), (4.12), (4.30), (4.31), and (4.32) as
n -k - for Dn -* D and U,, -4 U where D and U are such that the solution is
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unique (the exceptional D and U are of measure 0). A diagonal element of 0n is a
root of

(4.33) Dn- 9(I+ IUn) =0.
As n x, this root approaches the root of

(4.34) ID- OI| = 0,

and this is an element of 0 defined by (4.9) and (4.30). Z,n is defined (equivalently)
by
(4.3 5) Zn.= Vn(Xn-Wn) =Xn. V°n (IA)-An On,

where the diagonal elements of An are roots of

(4.36) v-Un +I- ail =0.
Let 4'i(n) be the i-th root of

(4.37) |Un 0-I=0.
Then

(4.3 8) bi (n) =I1+ i(n).
Clearly

(4.3 9) lim -V [ 1- e-/2 (n) ] =alim#1i (n) =4,ji.

Since XnXn --+I and On is orthogonal, each element of Zn is bounded in the limit.
1, 1 'nWThus the norm (any standard norm) of a ZnZn and the norm of \i (Z.EnWn +

W,e0nZn) +-Zn0nZn go to zero as n . Thus each element of Dn-W nWn

and each element of Un - 2WnZn goes to 0 as n - . Consider the matrix function
(P, Q) = (D - W*`0*W*, U - 2W*'Z*), where W* and 0* satisfy our usual condi-
tions including (4.32). The inverse functions W*, 0*, Z* (as functions of P and Q)
are continuous in the proper domain (except on the exceptional set). Hence, if the
norm of (P, Q) is sufficiently small the norm of (W* - W, 0* - 0, Z*- Z)
must be arbitrarily small. If wil > 0, then wel > 0 for norm of (P, Q) sufficiently
small. Then wil(n) for n sufficiently large is bounded away from 0, and for n suffi-
ciently large wii(n) satisfying (4.29) must satisfy (4.32). Thus Wn, On and Zn con-
verge to W, 0, and Z defined by (4.30) and (4.31).

The limiting equations (4.30) and (4.31) define W, Z, and 0 uniquely except
on a set of Lebesgue measure zero. The discontinuities can only occur on this set.
Now considering D and Un as random matrices we observe that the limiting distri-
bution of D and U. is absolutely continuous. Thus the conditions of Rubin's
theorem are fulfilled. To obtain the limiting distribution of the random matrices
Wn, Zn and On defined in terms of the random matrices D and Un we need only
find the distribution of W, Z and 0 defined by (4.9), (4.12), (4.30), (4.31) and
(4.32), where U has the limiting distribution of Un.
The distribution of W and 0 is that of theorem 1. The conditional distribution
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of Z given W and 0 is obtained from
(4.40) Z= WU.

Thus
(4.41) g{zIW} = 2Wg2 =O .

Let
(4.42) U= (ui,. . .u)

Z= (Z1,* , Zp),
W = (W1,. , W..).

Then

(4.43) gt zizi I WI =41 We(C* )wW.

Since guWi = 2 and Wi4j = 1 for i #]j, and tuiJUkl = 0 otherwise, then

(4.44) I+ rii,

guuiU =£j

where ei, is a matrix with 1 in the i-th row and j-th column and O's elsewhere.
Thus

(4.45) -IzizXI W) = 4w(Ibij+ £ji)W/
= XVa ij + wjW') .

Since U is normally distributed, the conditional distribution of Z is normal.
THEOREm 3. Let D have the distribution W(I, q2), q2 _ p, and let A,, be inde-

pendent of D, and have the distribution W(I, n). Define X,, and 4,, by means of (4.3),
(4.4) and the conditions that xii(n) _ 0 and 4'n is diagonal with diagonal elements

1
in descending order. Let n4b,, = 0, and let X,, = W, + VS; Z,, where W, W,, = I
and W,Z. = ZtW,,. The limiting distribution of 0, W,, and Z,, as n-aoz is the
joint distribution of 0, W, and Z such that the marginal distribution of the diagonal
matrix 0 and the orthogonal matrix W is that of theorem 1 with m = q2 and the con-
ditional distribution of Z given W and 0 is normal with mean 0 and covariances
given by (4.45).

5. An asymptotic distribution when all population roots are equal but differ-
ent from zero

Another special case that is easy to treat is the case of all roots of (2.1) being
equal but different from 0, say, Tr2(n) = ... = T2(n) = ,, > 0. Then

(5 .1) Dn = F+ -VnEn+ n AnI X
where

q2

(5.2) F = Y0yg,
g-1

and E,, is composed of elements

(5.3) d n ii+ Yii) -
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We are interested in Xn and 4'n (diagonal) defined by
1 1

(5.4) 1 F+ aE.+ XnI =XninOn

1
(5.5) -A. =Xn'X7n

with xii(n) _ 0 and the diagonal elements of On arranged in descending order.
Let

(5.6) X. = Wn+ Zn,

where W,, and Z, satisfy (4.9) and (4.12). Let

(5.7) O n

where 0n is diagonal. Then (5.4) and (5.5) are

(5.8) -F+ 1En+ X.I= W"+ Zn) (I+ 0.)(Wn+ Z.)

n / n nn+ nn+ eW]

+ n[W.0Zn + ZnOnWn +)nZZnn + W3/2 Zn nZnI

(5.9) -A.(Wn+ Z.)' (Wn++ Zn);
that is,
(5.10) -; (A -nI) = (WKZ,+Z,W,) +-7,ZnZn

Multiply (5.10) by Xn and subtract from v/n times (5.8) to obtain

(5.11) 4FF+En- I. X. (A. -fnI) =W.ZnWn+T 4+[WnenZn+ZWnI
+ Z., 19 Zn

Let

(5.12) U. = -4= (An- nI)-

Then (5.10) and (5.11) can be written as

(5.13) Un = (WZ,+ ZnW, +

(5.14) ZWF+E.-kU.=WKOW,+ v/H[W.lO +Z ,OnWn] +- Z.0,Z ,

where
(5.15) W, W, = I,

(5.1 6) Wn'Z_ = Z.'Wn
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(5.1 7) w1l (n) + zi (n . .

Thus for a given n, 0,, W,, and Z,, are defined as functions of U., F = Fn and En.
The functions are unique and continuous except over a set of U,, Fn and En of
measure zero. The limit of the functions (as U,, -+ U, F,, -n F, and E,, -n E) is the
solution to

(5.18) U= W'Z+ Z'W = 2W'Z,

(5.19) E - XU=W'OW,
with W satisfying (4.32) and where X = lim X,,. This argument is justified as in

section 3. In particular, each diagonal element of 0,, as a function of nonrandom
F,, E,, and U,, is a root of

(5.20) F.F +E.+ -\nX1- (U. + V/iO 0. + \In 0)| =°'

that is, of
(5.21) ( A F. +En- x,un) (I+ - U.) -oI = °.

Since

(5.22) (-=Fn +En -XnUn)(I+ 8/iUn.)-+E-XU,
the ordered roots of (5.20) approach the ordered roots of

(5.23) jE - XU -OIj = 0.

As in section 4 we can argue that the elements of W., O,, and Zn are bounded
for F, -n F, E,, -n E and U,, -÷ U. Then the elements in (5.13) and (5.14) which
are multiplied by 1/v4i, l/n and 1/n3/2 go to zero. The remainder of the argument
of section 4 applies.
We can now use Rubin's theorem since the discontinuities of the mapping oc-

cur where there is indeterminacy and the set of E and U where this occurs is of
limiting probability 0. To find the limiting distribution of the random matrices
W,,, 0,,, and Z,, we need only consider the distribution of the random matrices W,
0, and Z defined by (5.18), (5.19) and (4.32) (with Worthogonal, 0 diagonal with
diagonal elements in descending order), where the random matrices E and U have
the limiting distribution of E,, and U.. Let

(5.24) E -XU = V.
The density of E and U is
(5.25) k e trE2/(4x) +trU2/2)/2 = ke-tr( (V+X U)I+2 U)A/(8X)

= ke -trl VI+2?XUV+XU2P+2XU2 /(8X)

= ke-tr( (X2 + 2X) ( U+ [/(X2+ 2A) V) I + [ 2A/(A 2+ 2X) I VI) /(8 )

= ke -(X+2)tr(U+[1/(X+2)]V)2/8e-trV/(4XI+8X)

This marginal density of V is normal, and the conditional density of U is normal.
The distribution of W and (2X2 + 4X)-1/20 is that of theorem 2. The conditional
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distribution of Z given W and 0 is normal with mean

(5.26) g{ZI W, e}=JWC{UJ W, e}=w(-x+2 V)=-2(X+2) eW-

The conditional covariance between two columns of Z is
(5.27) Ct [zi-t(zijW, 0)][zj-c(zjlW, @)]'W, e}

=W(ui+2+; Vi)(Uj+2+X Vj) IV{W,
2 >- 4(Ibij+Wii).

TIHEOREM 4. Let
q2

(5.2 8) Dn= (Yg + nVX to) (Ye + VnN/VnCg)

where the p-dimensional vectors yi, . .y,y2 (q2 > p) are independently distributed
according to N(O, I); let An be independently distributed according to W(I, n). De-
fine Xn and 0. by means of (4.3), (4.4), and the conditions that xil(n) > 0 and 4bn is
diagonal with diagonal elements in descending order. Let On = v;(4,n- XnI) and

X.= W. +
1

Z,, where WIW. = 1, and W,Z,, = WWn. The limiting distribu-
tion of O,,, Wn and Zn as n -- o is the joint distribution of 0, W and Z such that
the marginal distribution of (2X2 + 4X)-1/2 times the diagonal elements of the diagonal
matrix 0 and the orthogonal matrix W is that of theorem 2 and the conditional distri-
bution of Z given W and 0 is normal with mean (5.26) and covariances (5.27).

6. An asymptotic distribution in the general case

Now we consider the general case of the population roots having different values.
We assume that the multiplicities do not depend on n, but the values may. Let

(6.1) [r2 (n) b,j] = fAi(n)I 0 0O
10 X2 (n)I ..... o 0

o o .... Xh(n)Io0
1 o 0 .... 0 o

An,
h

say, where Xi(n)I is of order ri and rh+1 = p - ri is the multiplicity of 0. Par-
i-i

tition X", F, En and U. similarly, to [rT(n)5i,I. Let
(6.2) X r(Win) 0 .... 0 1 'Zl(n) Z12(n) ... Zlh+l

0 W2 (n) .... 0 "'i Z21 (n) Z22 (n) ... Z2,h+l |

0 0 .; . . 1V+l(n) (Zh+l.l Zh+1,2 ... Zh+l,h+lJ

=Wn,+ -Zn
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where

(6.3) Wi(n)Z,i(n) = Zii(n)Wi(n).

As before, this defines Wi(n) and Zii(n) uniquely in terms of Xii(n). To make X,
unique in this case we now require that the elements of the first column of Xi(n)
be nonnegative.

Let

(6.4)

4= XI(n)I+,01(n) 0 ... 0 0

0 X2 (n)I+7=02(n)... 0 0

o o .. Xh (n)I+-4=0h (n) 0
O O *-- ° n eh+l(ff) .\/n0 0 .. 0- h1n

Then

(6.5) -D. =-F±F+ -;En+ A=X,,4,X, .

I 1-(6.6) -A,= U .+I=XtXn.

The submatric equations of (6.6) are

(6.7) Uii (n) +I = zXi (n)Xji (n)

= W.(n) W (n) + 4-[Wi(n)Zii(n) + Zii(n) Wi(n)]

+ n Zji (n) Zji (n) .

(6.8) Ui, (n) = X,i(n)Xkj(n)

=/[W'(n)Zij(n) +Zji (n) Wj (n)]

+ - Z;i (n) Zkj (n), i j

The submatric equations of (6.5) are

I Ic(6-9) n Fij+ n=Eii (n) + Xi (n)I= 1: X;i (n) 4k (n) Xki (X)

nVn= k~V
=X (n)kiWi(n)W+ + Zki(n))(k (n)I+0Ok (n)X

X( kiWi (n) + ,/ Zi n) + nii Zh+l,i (n) 0h+1 (n) Zh+,,i (n)

XiW(n) Wi (n) Wi (n) + W,,'W(n) 0 iWi (n) + Xi (n) X



II8 SECOND BERKELEY SYMPOSIUM: ANDERSON

X [W. (n)Z.i(n) +Zii(n)Wi(n)]}+n[ Xk(n)Zki(n)Zki(n)

k-i~~~~~~~~~-
+ W. (n) e i (n) Zii (n) +Zii (n) 0 i (n) Wi (n) I

+ n3/2 Zki (n) Ok (n)Zki (nt) + n-24+l i (n) Oh+l (n) z;+lA'zn) X

1~~~-

(6.10) -Fh+l,h+l =X,h+1(n) bk (n)Xk,h+1 (n)
n ~~~~k

h~~~~~~~~~~~

= -[FZk,h+l (n) (\k (n) I+ Ok (n) ) Z;,h+l (n) + (Wh+i (n)

+ 4aZ+lsh+l (n) )Oh+l (n) (wh+l (n) + Zh+l,h+l (n) )

=-[Wh+1 (n) Oh+l (n) Wh+l (n) +I Xk (n) Z;,h+l (n) Zk,h+l (n)]

+3/2 [ ZkIh+l(n) 0k(n)Zk,h+l(n) + Wh+l('n) h+l(n)Zh+l,h+l(n)

+ZA+1,h+I(n) eh+I (n) Wh+1(fn)] 1'+,h+l(n) Oh+l(n)Zh+l,h+l(f)

(6.11) -Fij+ Eij (n) = X (n)4k (n)XkJ(n)

= ,(jkiWi(fl)+74Zkt(f))(\xk(flI 1\=e()

x(5k,Wj(n) + ;v ZkJ(n) )+n-2Zk+l.ifl() Oth+l (n) ZA+l,, (n)

=-\; LX. (n) 1V(n)Zij(n) + X1(n)Zi (n) W,(n) ]

+n[xk(n)zinZkJn +W(n) k (n)Zij(n)+Z;(n)0,(n)

1 1 1k

(6.12) - Fi,h+1 +-=Ei,h +1 (n) = zXXi(n) 4>k (n)Xk,h+i (nf)

= e( iWik(n)+iWn)Zk+(n))(Xk (n)I+ -k=Wk(n)O) nZk)h+x(n) +

k-- i
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+ - Zh+1,i(n)! Oh+(n)(Wh+1(n) + Zh+l,h+l(n)

= 1n Xi(n)Ws(n)Zi,h+l(n) +±[[W$(n)Oi(n)Zi,h+l(n) + z X,(n)
n ~~~~~~~k-i

X Zki (n) Zk,h+ I (n)]+ 3/-2 [ EZki (n)ok (n) Zk,h+ 1(n) + Zh+1,i (n)
k=i

x eh+l (n) Wh+ l(n) ]+ n2 Zh+l,,i (n)0h+l (n) Zh+l,h+l (n), i5- h + 1

For fixed F, En = E and Un = U (in the proper domain) the above equations
define the orthogonal Wi(n), Zi(n) and the diagonal 0i(n) uniquely (except for a
set F, E and U of measure zero) under the restrictions that the elements in the

first column of Wi (n) + - Zii (n) are nonnegative and that the diagonal ele-

ments of the Oi(n) are in descending order. Now subtract I from each side of (6.7)
and Xi(n)I from each side of (6.9) and multiply (6.7), (6.8), (6.9), (6.11) and
(6.12) by -Fn and (6.10) by n and let n -* c. Using the fact that Wi(n) is orthogo-
nal and (6.3), we obtain the limiting equations [for Xj(n) -1 Xi, E- E, and
Un - U]
(6.13) Uii = 2 WiZii,

(6.14) Uij= wizii+zXiiw, i#j,
(6.15) Eii -= wiiwi + 2XiWiZii h + 1,

h

(6.16) Fh+l,h+l =WA+10h+Wh+l+ XkZk,h+lZk,h+l,
k=1

(6.17) Ei; = XiW:Zij + ,Z,iWj, i $ j; i, j 9 h+ 1,

(6.18) Ei,h+l = XiWiZi,h+l, i h + 1.

From (6.13) and (6.15) we obtain
(6.19) Eii-XiUii= Wi'iWi.
From (6.16) and (6.18) we obtain

(6.20) Fh+ls h+1 Ei,h+lEi,h+l = Wh+10h+Nh+l
Xi

Then the fact that Wi is orthogonal and the requirement that the elements of the
first column of Wi be nonnegative define Wi, Zij, and 0i uniquely.

To show that Wi, Zij, and 0i defined by (6.13), (6.14), (6.17), (6.18), (6.19)
and (6.20) are the limits of the matrices defined by (6.7)-(6.12) is more compli-
cated than the similar demonstration in section 4. We shall only sketch this proof
briefly. First we should like to prove that the diagonal elements of 01(n), for
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example, converge to the characteristic roots of El, - X1U11 as F,, -n F, En-- E
and U,, -> U. From the equation

(6.21) |F.+±-= En+± An-¢' (--=U+±I)| =0
in Vnfl \VW

we can show that the first r, elements of 4p,, converge to Xl. Then we need to show
that the largest root of (6.21) minus Xl(n) times /n converges to the largest char-
acteristic root of El, - XlU1j. That can be argued from the determinantal equa-
tion

1 1

(6.2 2) -F. + En+ A.n-( U +I)(X1(n)I+ =I)|
= F±+ 1 [En-Xl(n)Uj +(A.Xl (nI)- 0( 1Un+I)1=0.

In the second determinant above we can factor out oVn from the first ri rows.
Then as n -* o there are r, sequences of roots each of which converges to a char-
acteristic root of E1 - XUui. Similar arguments suffice for El(n) (i F4 h + 1).
For 0h+l(n) we can use a slightly more complicated demonstration.3

Next we wish to argue that the elements of Zij(n) are bounded as n - (as
F. -+ F, E. -n E, and U. - U). For convenience let us take the case of ri = 1.
Then the characteristic vector say cl(n) associated with the largest root 01 satisfies

(6. 2 3) [-F.+ -[En- Xi (n)U.]+ [An- Xi (n)I]- = , ( = U,,+I)] c= O-

Then the components of cl(n) are

(6.24) cil (n) =k (n) rjt [ 7r2 (n)-Xi (n) ]+ -,ki (n) ]

(6.25) c(i (n) = k (n) ki (n),

where k(n) approaches a finite limit and ki(n) are bounded. Using the same rea-
soning for each characteristic vector (assuming ri = 1) we show that C. is a
diagonal matrix with bounded elements plus 1/Viz times a matrix with bounded
elements. Thus X, = C;7 is of the same form. Therefore, Vnxij(n) = z;j(n)
(i 0 j) are bounded. From

(6.26) n i (n) + I = xi (n)

= XL (n) +E X2, (n)
ioi

we see that /[l - x2ii(n)] =-uii(n) + vix2ij(n) is bounded. Thus zii(n) =
V-n[l - xii(n)] is also bounded. If ri # 1, essentially the same argument can be
carried out in terms of the partitioned matrices. Thus the norms of matrices such
as Uii(n) - 2W1'(n)Z1j(n) go to zero. The argument of section 4 shows that Zii(n)
approaches Zii, etc.

Since these arguments are similar to Hsu's [81, it is unnecessary to go into more detail.
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We are now in a position to apply Rubin's theorem. The discontinuities occur
where W, Z, and 0 are not defined uniquely and the measure of U, F and E where
this occurs is zero. Let the limiting distribution of the random matrices Un, F,
and E,, be the distribution of the random matrices U, F, and E. Then the limiting
distribution of the random matrices W. (orthogonal diagonal blocks), Z,, and 0E
(diagonal) defined by (6.7)-(6.12) is the distribution of W (orthogonal diagonal
blocks) Z, and 0 (diagonal) defined in terms of the random matrices U, F, and E by
(6.13), (6.14), (6.17)-(6.20). The distribution of Eii - XiUi, i F6 h + 1, is that
of section 5. Hence, the distribution of Wi and Oi is that given there. Since
Eii- X1iUii is independent of Ejj- XjUj,, i # j, the matrices Wi and 1i, i = 1, ....
h are independent. The conditional distribution of Zii given Wi is also that of sec-
tion 5 with X = Xi, 0 = Oi, W = Wi and p = ri-

Now, consider (6.20). An element of Ej,h±j is egk = '/Xiyk, (ri + **. + ri_- +
< g r + ...+ ri; p-rh+1+ 1 < k _P); an element of Fh+1,h±+ is

92 h 1 q2

fkk' = YkYkY', Thus an element of Fh+1,h+-I X Ei,h+lEi,h+l isS Ykgyk'g
0=1~~~~~~ ~ ~~~i=

E
=

p-rh+ 1 g2

- ) ykgYk'o = YYkoykY' . This matrix of order, r7h+ has the distribution
g=l g `ho +1

W(I, q2 - p + rh+1) and is independent of Eii, i h + 1, and Eij, i Pd j. The
distribution of Wh+±, Oh+, and Zh+,,h+l is that of section 4 with W = WA+1, 0 =
0h+1, Z = Zh+l,h+l, P = rh+l and m = q2 - p + rh+1i

The matrices Uij and Eij, i 0 j, are independent of the other submatrices (ex-
cept E,i = Ei' and Uji = Uij). From (6.14) and (6.17) or (6.18), we obtain

(6.27) Eij- XjUij= (Xi- X)WiZij.

The conditional distribution of Zij given Wi is that of

(6.28) X - Wi (Ei - XjU1i) .

An element of Ei1 is

(6.29) egf V/X1y1f+ VXiyf , r+. . .+ r-+ 1 g ri+... + ri,

Thus an element of Eij - XjUij is normally distributed independently of the other
elements with zero mean and variance Xi + Xj + X)2. The conditional distribution
of Zij given Wi is normal with mean 0 and covariance between two elements is

1 i(6.30) gtz{f zg1f WIWi2= (ekf - XJUkf)wgk(ek1f- XjUk'f')

=(X- X) 2 WokUQk' 8ff' 5kk' (Xi + Xk+ X )

Aff~~~' (°°;(++j+jX2))

Thus the variance of zgf is (Xi + Xi + X2)/(Xi - Xj)2 and the covariances are zero.
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The conditional distribution of Zji is similar except that i and j are interchanged.
Zij and Zji are independent of the other matrices. Now consider the conditional
covariance between an element zf1 of Zij and zXof' of Zji. It is

(6.3 1) g t zfZ0 'f ' | Wi, W, } = (X - X) 2 k,kWOk (ekf - XiUkf)

XWgIk (ef'k'- XiUf'k')

Xi+ Xj+ 2ixj wW(y) Ij(1ii-Xj) gWk WO k Skf' Sfk'
(Xi xj) ~k,k'

+ +fWg( f -

We can indicate the conditional covariances between the columns Z=
(z1, . .. , z,) in matrix form. If g, f _ r1, the conditional covariance between z.
and zf is
(6.32) gzz,z , WI=

TX + 4(IC°f+i)W )' . .. o

o ~~~~Xi+X2+. .
° (Xl - X2)

IB6of ..

*

O O X'1 I Sof.
If g _ ri and r1 + 1 _ f _ ri + r2, the conditional covariance is

(6.33) e{ZI z7,zW} =W 0 0 ... 0r

X1+X2+X1X2 (2) (C)' ° .

WW0 0 ... 0,

THEOREM 5. Let
q2

(6.34) D.= [yO+ \ln To (n)Eo]Iyg+ \VnTo(n)F]',

where the p-dimensional vectors yi, y.. , y,2 (q2 2 p) are independently distributed
according to N(O, I) and r( (n) -=Vi, r1 +*** + ri_- + 1

_ g <

r + . . . + ri;1Xi > Xi,i <j(i, j = 1, . . ., h+ 1);Xh±+(n) = 0. Let A. be inde-
pendently distributed according to W(I, n). Define Xn and n by means of (4.3), (4.4)
and the conditions that xg,r1+... + r-I +i(n) > 0, r1+ . . . + ri_1+ 1 < g <
r, + . . . + ri, and 0,, is diagonal with diagonal elements in descending order. Let
each of Xn and On be partitioned into (h + 1)2 submatrices of ri, . . . , rh+l rows and
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r1,... rh+4 columns. Let On be defined by (6.4) and Wn and Zn defined by (6.2),
(6.3) and Wi(n)'Wi(n) = I. The limiting distribution Of On, W. and Zn is that
of 0, W and Z similarly partitioned, which can be described as follows: The matrices
0i, Wi, Zii are independent of Oj, Wj, Zjj (i F6 j); the distribution of Oi, Wi and
Zii, i F$ h + 1, is that of 0, Wand Z given in theorem 4 with p = ri; the distribution
of Oh+l, Wh+j and Zh+1,h+l is that of 0, W and Z given in theorem 3 with p = rh+j,
m = q2 - p + rh+1; the conditional distribution of Z given 0 and W is normal; the
conditional expectation of Zij (i F$ j) is 0; the conditional covariance matrix of z, and
z1, ri + + rj_- + 1 < g, f _ r1 + . . + ri, consists of nondiagonal blocks
of zeros and the i-th diagonal block is

1~~~~ (~.)'2 U+bf# +Wf Ws )

and the j-th diagonal block (j Fd i) is

Xi+ Xj+ xj bf
(X1i-X)2'6

the covariance matrix of z, and z, r++ + ri_- + 1 _ g _ r1 + . . . + ri,
r1 + . . . + rji- + 1 _ f _ ri + . . . + r, (i #4 j) consists of O's except the j-th i-th
block which is

(XiX+ ) 2-JW U

7. The asymptotic distribution of characteristic roots and vectors

The columns of the matrix Cn defined in section 2 are the characteristic vectors
of Dn in the metric of An. We choose Cn so that the elements of the first row of C2i(n)
are nonnegative. Let

(7.1) C.= rC,,(n) C12(n) . . . C1,h+1(n)
|C21 (n) C2'2 (n) . .. C2.h+l (n)

Ch+l.l (n) Ch+1,2 (n) . . . Ch+±,h+1 (n) J

_V1(n) 0 ... 0 . Y n Y12(n) .. Yl,h+l(n)
O V2(n) ... 02nY (n) Y22(n) ... Y2,h+l(n)

0 0 .. Vh+Al(n) (Yh+1,1(n) Yh+1,2(n) * * Yh+l,h+l(n)J

.\n-
where

(7. 2) Vi(n)V'(n) = 1,

(7.3) V$(n)Yii(n) = Yij(n)V1(n)
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Let
(7.4) tC = Xn' .

If X,. = JnCn-1, then Cn = C.J., where J,n is a diagonal matrix with diagonal ele-
ments + 1 and -1. Now define V,, and Yn, in terms of Cn as V,, and Yn are in terms
of Cn. First let us show that for nonrandom W,, -k W, Zn- Z (which define
Xn X), f',V-* W' and Yn -Z'. We have

/ 1 '12 1 '
n75n+ 4 n=(W. + V/-Z-) = (I+ W')

=K(I-77= WnZn + (W.Zn) )

= pWnZnWn+ 2WnZ)Wn

for n sufficiently large. The i-th diagonal block of (7.5) is

(7.6) Vi (n) -n)= W(n) - W.'W(n)Zii(n) W.(n) +- Tij(n)~~~~~~Wn

=W,(n) - -n Z, (n) + nTi'(n),

where the elements of Tii(n) are bounded. Multiplying each side of (7.6) on the
left by its transpose, we obtain

(7.7) I+ / [V, (n) ii(n) +Y1i(n)Vi(n)I +- Yii(n)Yii(n)

=I- wWi (n)Zi (n) + Zii (n) W,'(n) I + n- Sii (n) .
n

i n~~~

Subtracting I from both sides, multiplying by Vi(n) and using (7.3) and (6.3),
we find

(7.8) Yii (n) = -Vi(n) Wi(n)Zii(n) + \/n Vi(n)Ri(n).

We can show (by means of an argument similar to that used in section 4) that the
elements of Vi(n)Ri(n) = Sii(n) - Vi(n)Y'j(n)Yjj(n) and of Ri(n) are bounded.
Inserting (7.8) in (7.6) we obtain

(7 .9) Pi (n) = (W,, (n) - gn Zii (n) + nTij (n) ) (I+ '
Wi (n) Z'i (n)

+ nRi(n) ) W (n) + nQi(n)

for n sufficiently large. It is clear from this that Vi(n) Wiand from (7.8) that
Yii(n) -Zii (as Wn - W and Zn -* Z). A nondiagonal block of (7.5) is

(7.10) -Y1ij (n) = - - W,(n)Zij(n) W,(n) + n Tij(n)

Clearly, fjj(n)-WZ-jWZj.
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C, and C. are different (for fixed W,, and Zn) only in that columns of one are
multiplied by -1 to obtain columns of the other. However, for n large enough the
sign of the elements of the first row of eii(n) are those of Wi'(n) [= Vi(n)], which
are all positive (if the elements are different from 0). Thus CR =C, for n large
enough. Therefore, for nonrandom WK -- W and Zn -- Z, Vn - W', Yii(n) - Zi-
and Yij(n) - i- WiZijWj. The discontinuities of the limiting transformation have
limiting probability 0. Thus the limiting distribution of the random matrices ORVn
and Yn is the distribution of the random matrices 0, V = W', Y= -W'ZW
where the distribution of 0, W and Z is given in theorem 5.

The distribution of 0 and V' = W has been given explicitly. From the condi-
tional distribution of Z let us find that of Y. Consider first Yii, i F- h + 1

(7.11) ,ClYiiI, W) =-g{ZilI, W) w'o
12 (Xi+2 i.

The covariance between two elements of Yii, say Yab and Ya'b' is

2 + 4 ( 'ba bb' + Vab'Va'b)-
The matrix Yh+l,h+l is normal with mean 0 and covariance given above (for Xi = 0).
Now consider Yij= - WiZ,jW,' and Yji= - WZjiWI. The joint conditional

distribution is normal with zero means. The variance of the elements in Yij is
(Xi + Xj + XA)/(Xi- Xj)2 and that of the elements in Yji is (Xi + Xi + XI)/
(Xi - Xj)2. The covariance between elements in Yij is 0 as are those between ele-
ments in Yji. The covariance between an element Yab in Y,j and Ya'b' in Yji is

'Xi+xj+ Xi (i0G (j)
(X - Xj) 2 vab' Va'b.

THEOREM 6. Let
g2

D.= y[y0+ \/n rT (n) 0Hy, + \Vn rT (n)e]',
,o=1

where the p-dimensional vectors yi, . .Y,y,2 (q2 > p) are independently distributed
according to N(O, I) and rT(n) = V\ i(n- -\/X, ri + . . . + ri-1 + 1 _ g _
ri + . . . + r,; Xi > Xj, i < j (i, j = r, ., h+ 1);XA+1(n) = 0. Let A. be inde-
pendently distributed according to W(I, n). Define CR and 0Rn by means of (2.11),
(2.12) and the conditions that cr,+. +ri- + ,,(n) > 0, ri + . . . + ri-I + 1 _
g _ ri + . . . + ri (i = 1, . .. , h + 1) and 4R is diagonal with diagonal elements
in descending order. Let each of CR and 4R be partitioned into (h + 1)2 submatrices
of r1, . . , rh+1 rows and r1, , rh+1 columns. Let 0e be defined by (6.4) and VR
and YR be defined by (7.1), (7.2) and (7.3). The limiting distribution of 0En Vn and
YR is that of 0, V and Y similarly partitioned, which can be described as follows: The
matrices 0i, Vi, Yii are independent of Oj, V,, Yjj (i $6 j); the distribution of 0i and
Vi is that of 0 and W given in theorem 4 with p = ri, i $ h + 1, the conditional
distribution of Yii given Oiand Vi is normal with mean (2Xi + 4)-1Vii; the distri-
bution of 0h+1, Vh+1 is that of 0 and W given in theorem 3 with p = rh+i, m =

q2 - p + rh+1; the conditional distribution of Yh+l, h+1 is normal with mean 0; the
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conditional distribution of Y given 0 and V is normal; the conditional expectation of
Yij, i wd j, is 0; the conditional covariance matrix of y, and y, ri + ... + ri-1 +
1 _ g, f _ r, + ... + ri, consists of nondiagonal blocks of zeros and the i-th diagonal
block is

2Xj+ 4 (I uf+ Vf vg)

and the j-th diagonal block (j $ i) is

-2

-X_ j) 2Il I 822;

the covariance matrix of yg and y, ri + . . .+ri- + 1 _ g _ ri + . . . + ri, r1 +
+ rj_i + 1 _ f _ ri + . . . + rj (i $ j) consists of o's except the j-th, i-th block

which is

Xi+ As+XXjVV2
Now let us consider the asymptotic distribution of Cn = 7nCn. Let r satisfy

(7.12) B2 lim Q0B'r = IrA.
If the diagonal elements of A are all different and if -ylji 0,] = 1,... ,p, then
the restrictions ylj > 0, and TIZyj = 1 determine r uniquely. If the same re-
strictions are placed on each r, then r r as n - because the set of char-
acteristic vectors is a continuous function of QO (which approaches the limit,
limrn ). If the diagonal elements of A are not all different, then another in-
n-4co
determinacy is involved. Partition F in the manner that the matrices in sec-
tion 6 were partitioned;
(7.13) ][In ...rl,h+l

rh+ 1. . . . rh+l,h+l/

Let 0 be an orthogonal matrix of the form

(7.14) 0= 01 0 .*.. 0

0 02... 0

0 . ..0h+lJ
We require that

(7. 15) rlyx I

Then rO also satisfies (7.15); that is, there is an indeterminacy of such an orthogo-
nal transformation. This indeterminacy can be removed by putting restrictions
on r' (such as requiring that the first column of r' lie in a certain ri - 1 dimen-
sional hyperplane, the second in a certain r1 - 2 dimensional hyperplane, etc.,
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with an element in each column having a specified sign). For all n greater than some
particular integer, the same restrictions can be imposed on IF. With these restric-
tions imposed, r, -4 r.

Then

(7 .16) Cn=rCn=rYn+u rYn
Let

(7.17) Vn = rnVn,

(7.18) Yn = rnYn
then

(7.19) Cn=Vn+ 1

V* and Y* are functions of Vn and Yn. As n co, the functions approach limits;
that is, for fixed Vn = V and Yn = Y, V* IV = V*, say, and Y-* rY = Y*,
say. Thus by Rubin's theorem the limiting distribution of the random matrices
V: and Yn* is that of rV = V* and rY = Y*.
The distribution of V* is that of rV. The distribution of 0 is given in section 6.

The conditional distribution of Y* given V* and 0 can be found from that of Y.
We have

(7.20) C I Yij I 0, v=I1' rik I{ Yki I0, v2 ) V

g {rif,hl |I,V} = 0 .

The conditional covariances are easily obtained from theorem 6. Let ya* be the
a-th column of Y*. Then the conditional covariance matrix of this vector for
a _ r, is

(7.21) 1 (IvW v(1)) .0r
2 X+4- +Va Va ) ... 0 V

X1+ X2+2I 0

0 0 ...

= 2+-ri (I+ Va Va )r'+ E (*-,X .)2 rjri,2Xj+4
where
(7.22) ri= ri.

,rh+l,ij
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If a #4 a* and a, a* < ri, the conditional covariances between Ya and Ya are

1 (1) Ci)',(7.23) 2X IF F.a*Va rl

If a _ r, and r1 + 1 . a* < r, + r2, then the covariances are

(7.24) r0o 0 ... O r'

(724+ X2+ X1X2 (2) (I)'0°

0 0 0

o o ... oJ
Xi+X2+XIX2 (2) Wi'
(X-1 X2) 2 r2Va* Va rF.

THEOREM 7. Let the p-dimensional vectors Xa(a = 1, . . N _ p) be independently
distributed according to N(Bizia + B2z2., ;), where the matrix of vectors (ziax, z'a)
is of rank p and zla has qi components and Z2a has q2 components. Let Bn =

[Bi(n),B2(n)] be defined by (1.3); let Qn =-Qn be defined by (1.5) where n =

N - qi - q2; let A*n be defined by (1.6). Let On be a diagonal matrix whose diagonal
elements are the roots of (1.7) arranged in descending order of size. Let Cn* = [cl(n),

cp(n)] be composed of the corresponding vectors satisfying (1.8) and (1.9). Let
'r1(n)[Tr2(n) > .. .> 4,(n)] be the roots of (2.1). We assume Q approaches a non-

singular limit in such a way that rT(n) = v/Xj(n)- x/\ki, rI + . . . + ri-i + 1 <

g _ ri + ...+ ri, Xvi > Xi, i < j (i, j = 1, . . . , h + 1), 1Xh+,(n) = O. Let r be a

matrix satisfying (7.12) and (7.15) where A is the limit of (6.1), and satisfying other
restrictions to make r uniquely defined. Let rn = [yi(n), , y,(n)] be com-
posed of vectors satisfying (2.2) and (2.3) and the additional restrictions on r (for n

sufficiently large). Let 0e be defined by (6.4). Let C: = Vn*+ .Y* where

(7.2 5) rn2V: = V. = (V, (n) 0 ... 0

I 0 V2(n) ... 0

0 0 .* Vh+l(n),

V'(n)Vj(n) = I, the elements of the first row of Vi(n) are nonnegative and
V (n)Yii(n) = Y1i(n)Vi(n), where Yii(n) is the i-th diagonal submatrix of rn-FYn* = Yn.
As n , the limiting distribution of On, V* and Y* is that of 0, rv and Y*, simi-
larly partitioned, which may be described as follows: The marginal distribution of 0
and V is such that 0s, Vi is independent of 0j, V, (i 1j); the marginal distribution
of Oi, V' is that of 0, W given in theorem 4 with p = ri, i # h + 1; the distribution
of h+b, Vh,+j is that of 0, W given in theorem 3 with p = rh+l, m = q2 - p + rh+1;
the conditional distribution of Y* given 0, V is normal; the conditional expectation of
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a submatrix YV, is given by (7.19); the conditional covariance matrix of YD and y*',
r + .+ + 1 _ g,f < r + ...+ r, is

(7.26) 2X+4[riv v(i) ri +5,r1ri] + B,I+f ( + ) r,
i#i

the conditional covariance between yu and yf', r, + ... + r_j + 1 . g <
rl+. . .+s,rl+ . .+rj_l+1 _f _ r+ . .+rj (i j), is

Xi+xj+Xix (.j) (i)'(7.2 7) (X X+j) 2 ]priv Vg ri

where I'i is defined in (7.22) and v() is the g-th column of Vs.
A special case of considerable interest is the case of ri = 1, i 0 h + 1 and

rh+l= p - . Then Yi consists of one element for i, j $ h + 1. In this case
Vi = 1 for i $1 h + 1. We can easily express the conditional distribution of Y
given Vh+l by integrating out 01, . . . , Oh. The marginal distribution of 0s is
N(O, 2XM + 4Xk) and the conditional distribution of yii is N[Oi/(2Xi + 4),
l/(Xi + 2)]. Oi and yii are independent of the other variables. The marginal dis-
tribution then of yii is N(O, 1/2).

In this case e{ Y* I VA+l = 0. The conditional covariance between y and y',a
a _ h is

h+1
i

2

(7.28) aYa 2 + E j_ 2 riri

j#a
The conditional covariance between Ya* and ya**, a id a*, a, a* _ h is

(7.29) g{yayO*)Ijvh+l} = - (X. ;2aa*ura-

The conditional covariance between ya* and ya**, a _ h, h + 1 _ a* _ p, is

(7.30) a{ Yya* Vh+1} =arh+lVo*ra .

The conditional covariance between Ya and y*, h + 1 < a, a* < p, is

(7.3 1) y{* Vh*Iv ]+}=(1r a+l(I&aa*+vV* Va )rl+1 + rXj r , a
i=1

Clearly, if r1 = 1, i= 1, . .. , h + 1 = p, then V,, = I, and the limiting dis-
tribution of 0E and Y,* is such that the marginal distribution of Y* is normal
with mean 0 and covariances derived from above.

8. Remarks -

8.1. Use ofN and n = N - q. In section 2 we defined Q,, as - Q.. The asymptotic
n

distributions obtained are exactly the same if one uses Q,, for the roots of

IB2 N Q,,B2- p2 are multiples by n/N of the roots of (2.1). These roots con-

verge also to Xi, . ., 1, respectively, and for each n the multiplicities are the
i

same in the two cases. Using Q,, changes the definition of the samp'le roots again
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by a factor of n/N. We might also define A* in terms of N instead of n and nor-
malized c* in terms of N instead of n. Asymptotically the effect of using N instead
of n disappears. Rubin's theorem can be used to prove each such statement rigor-
ously.

8.2. The limiting probabilities. It is interesting to see for what sequences of sets
in the space of the characteristic vectors the limiting probabilities are defined. As
a simple example, suppose p = ri = 2 and : = I. We shall consider a sequence
of sets for one vector ci and another sequence for C2 defined in the same plane.
Consider a segment on the unit circle in the right half plane. The regions for cl con-
tain this segment and as n -X c the regions converge to the segment. The bound-
aries converge as l/v/n. Consider the segment of the unit circle in the right half
plane composed of the points which are 900 from the points in the other segment.
There is a corresponding sequence of regions which close down on this segment as
n increases. The limiting probabilities are defined for these sequences.

8.3. Cases of special interest. Two cases of the model discussed here are of par-
ticular interest. The one occurs when the "fixed variate" vectors zQ (in section 1)
are composed of dummy variates; that is, variates that are 0 or 1 (see [1], for ex-
ample). These can be chosen so that Bza = /Ai, a = N1 + . . . + Ni-i + 1, ....
N1 + . . . + Ni (N1 + . . . + N, = N). The first N1 Xa are observations from
the first population, etc. If we require that Ni = kiN as N -x c, then the multi-
plicities of the roots of (2.1) are unchanged as N -* c.

It can be shown that if N/n[r2(n) - r2(n)] -+ 0 as n -+ c, ri + ... + ri-1 +
1 < g, f _ r, + . . + ri, i 1,..., h+ 1, then 0, W., and Zn (also 0n, V*n,
and Y*) can be defined in the manner of this paper and have the same limiting
distribution as given here. Thus we can weaken our conditions slightly. If Ni =
kiN to within rounding error in the case mentioned above, the same theory applies.

If the fixed variate subvectors Z2a are not composed of dummy variates, in gen-
eral the nonzero roots of (2.1) will be simple for all n and in the limit. Then the
theory at the end of section 7 applies.
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