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1. Introduction

The problem of “optimum’ tests has two aspects: (1) the choice of a definition
of “optimum,” and (2) the mathematical problem of constructing the test. The
second problem may be difficult, but at least it is definite once an “optimum” test
has been defined. But the definition itself involves a considerable amount of arbi-
trariness. Clearly, the definition should be ‘“reasonable’” from the point of view of
the statistician (which is a very vague requirement) and it should be realizable,
that is, an “optimum’ test must exist, at least under certain conditions (which is
trivial). Furthermore, even a theoretically “best” test is of no use if it cannot be
brought into a form suitable for applications. When deciding which of two tests
is “better” one ought to take into account not only their power functions but also
the labor required for carrying out the tests.

The problem of “optimum” tests was first stated and partially solved by Ney-
man and E. S. Pearson. They, and most later writers, considered the parametric
case, where the distributions are of known functional form which depends on a
finite number of unknown parameters. A survey of the present status of the theory
of testing hypotheses in the parametric case, with several extensions, will be found
in a recent paper of Lehmann [3]. For the nonparametric case, where the functional
form of the distributions is not specified, the problem has been attacked only re-
cently. Wald’s general theory of decision functions (see, for example, [8]) covers
both the parametric and the nonparametric case, but its application to specific
problems is often far from being trivial. The first (and at this writing only) publi-
cation which explicitly solves the problem of constructing tests of certain non-
parametric hypotheses which are optimum in a specified sense is the paper of Leh-
mann and Stein [4] which appeared in 1949.

Many of the definitions formulated in parametric terms can easily be extended
to the nonparametric case. I shall here mention some of these extensions which
will be used in this paper.

Let @ be a set of probability functions P(4) = Pr{X €A} of a random vari-
able (usually a vector) X. Let w be a subset of 2, and let H be the hypothesis that
P is in w. A test is determined by a function ¢(x), 0 < ¢(x) < 1, measurable
with respect to P, which is interpreted as the probability of rejecting H when
X =ux. If ¢(x) can take only the values 0 and 1, it is the characteristic function
of a set which is commonly known as the critical region. The probability that the
test ¢ rejects H when P is the true distribution equals

Er () = [¢(2)dP(x)
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and is called the power function of the test ¢ (defined over Q). The least upper
bound of Ep(¢) for all P in w is called the size of the test ¢ (with respect to w).

Let Py be a probability function in @ — w and H; the hypothesis that P = P,.
If ¢ is of size « and

¢)) Ep,(¢) = Ep, (¢') for all tests ¢’ of size a ,

¢ is called a most powerful test of size a for testing H against H. If (1) holds for
all P;in a set w;, then ¢ is said to be uniformly most powerful with respect to w;.

The function
B(P) = SI;p Ep(¢),

where the supremum is taken with respect to all ¢ of size a, is called the envelope
power function. If w, is a subset of 2 — w, then a test which minimizes

sup {8 (P) —Ep(¢) }

PEwy

with respect to all tests of size a is called most stringent against the set of alterna-
tives wr.

A test ¢ is called similar of size a for testing H if Ep(¢) = a for all P in w. The

_definitions of a most powerful similar and a most stringent similar test are obvious.

Restrictions other than similarity are sometimes imposed on tests (see, for ex-
ample, section 3). Other types of tests will be considered in section 4.

If Q is a set of absolutely continuous functions P(4) and f(x) denotes the density
of P(4), it will sometimes be convenient to refer to @ as a set of densities f and
to write Ey(¢) for Ep(¢). This will cause no confusion if we agree to regard two
densities as equal when they are densities of the same function P(4).

This paper presents a survey of known and some new results on “optimum”
nonparametric tests. Section 2 on most powerful and most stringent tests is based
on the paper of Lehmann and Stein [4]. In section 3 most powerful rank order tests
are discussed. The final section deals with some tests which have optimum prop-
erties with respect to an extensive class of alternatives.

2. Most powerful and most stringent tests

I shall here outline some results of Lehmann and Stein [4]. For the sake of
brevity I shall confine myself to a special but typical case.

Let ¥ be a Euclidean space of N = #n; + . . . + n; dimensions. The points of X
will be denoted by

X= (%11, -+ ) Fingy X21y o v s Xdngy oov s Tkly -+ 5y Thmy) -

Let o’ be the set of probability densities f(x) (in the ordinary sense) over X which
are invariant under any permutation within (%, . . ., %), G =1,..., k). Let
H’ be the hypothesis that f(x) is in «'.

Many common statistical hypotheses imply invariance of this type. For in-
stance, the hypothesis that two independent random samples came from the same
population implies invariance of the distribution under all permutations of the
variables (in this case £ = 1).
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Let W be the subset of ¥ where x;; #Z xaif g2k, i = 1,..., k). Since we
are dealing with probability densities, we need consider only points in W. For any
x in W denote by T'(x) the set of points obtained by permuting (xq, . . . , %) in
all possible ways,for< = 1, . . ., k. Each set T(x) consists of exactly M = n,! . . .
ni! points.

A test ¢(x) which satisfies the condition

D, ¢ () =Ma

z/€ T (x)

for all x in W has been called a test of structure S(a) by Scheffé [7] and Lehmann
and Stein [4].

It is easily shown that a test of structure S(a) is similar with respect to «’ and
of size a.

Let H, be the hypothesis that f(x) = g(x), a probability density over X not
in «’. For each x in W denote the points of T'(x) by «, . . ., x® in such a way
that '

gED) 2z @™z ...z g@").

For every x in W let
( 1 if g(x) > g (x(+MaD)
(2) ¢ (x) = id(x) if g(x) =g (xtMa])
0 if g(x) < g(x0tia)),

where [Ma] is the largest integer < Ma and e(x) is uniquely determined by the
condition

M
E ¢ (x(0) =Ma.
i=1

It is easily seen that 0 < a(x) < 1, and that ¢(x) is measurable. Hence ¢(x) is a
test of structure S(a).

Lehmann and Stein [4] show that ¢(x) is a most powerful test of H’' against H,.

For certain rational values of a we have a(x) = 0 almost everywhere, and ¢ (x)
reduces to the characteristic function of a critical region.

Now let H be the hypothesis that f(x) is of the form

kP
f(x) = H I-_Ifi(xi:i)-

=1

This type of hypothesis is frequent in applications. H implies, but is not equivalent
to H'.

1t follows from a result of Feller [1] (see also Scheffé [7]) that any similar test of
H is of structure S(a). (In fact, this holds even for much more restricted hypotheses
than H, for instance a parametric set of distributions each of which differs arbi-
trarily little from a normal distribution.) On the other hand, since E,(¢) = E,(¢")
for any test ¢’ of size a with respect to «’, this inequality is a fortiori true for all ¢’
of structure S(a). It follows that ¢ is a most powerful similar test of H against H;.
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For example, let 2 = 1, #; = », and

3) §) =g (5, w3, ) = [ [ pgm et Gi—sin,

g ™

i=1

where ay, . . ., ¢, are given numbers, not all equal. If u > 0, the most powerful test .
¢ of H can be expressed by (2) with g(x) replaced by L = E (a;—a) (%, — %),

where ¢ = E a;/n, = E x;/n . Hence the test is uniformly most powerful
(uniformly most powerful similar) for testing H'(H) against the set of alternatives
g(x) with 4 > 0, » and ¢ arbitrary.

Lehmann and Stein also give a method which in certain cases enables one to
find a most stringent (most stringent similar) test of H'(H) against a set of alterna-
tives. The method will be described in section 4 in connection with a related prob-
lem. In the last example the most stringent test against g(x) with u > 0, v and ¢
arbitrary is found to be the test (2) with g(x) replaced by |L]|.

It is remarkable that essentially the same test was earlier proposed by Pitman
[6] on intuitive grounds.

To apply this test one requires the distribution of

L=27 (¢;—a)(x,,— &)

in the population of equally probable permutations (x,, . .., ) of the fixed
sample values x;, . . ., x,. The exact distribution is very cumbersome to deter-
mine unless # is small. Wald and Wolfowitz [9] and Noether [5] have shown that
under certain conditions on the ¢, and «x,, L is asymptotically normal. Pitman [6]
has suggested an approximation which amounts to applying the standard ¢-test.
Exact conditions under which either approximation is valid are unknown. Practi-
cally nothing is known about the power function of the test. Similar remarks apply
to other tests of this type.

The results of Lehmann and Stein also apply to generalized densities with respect
to a measure which need not be Lebesgue measure (so that discrete distributions
are covered) and to types of invariance other than invariance under permutations.

3. Most powerful rank order tests

In some statistical problems the numerical values of the observations are not
given and nothing but the relative size, or rank order, of the observations in certain
parts of the sample is known. In other problems one may want to have a test which
is invariant under any order preserving transformation in certain parts of the
sample. In either case one is confined to a class of tests which can be called rank .
order tests.

Let, as before, X be the Euclidean space of points

= (X1, ooy Xingy o« - 5 XkLy « « 5 Xkrie)

and W the subset of X where x;;, # x5 if g # h. Denote by P(A4) the probability
function of a random vector X whose values are in ¥. We shall assume that
PW)=1.
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Let  be any set of probability functions P(4) of X which are invariant under
all permutations within (X, . .., Xi), 6 = 1, ..., k). Let H be the hypothesis
that P(4) is in w.

For any point z in W, the coordinate x;; is said to have rank r;; with respect to
(%1, - - -, %in,) if exactly 7;; — 1 coordinates x ., (with ¢ fixed) are less than x;;. Let
R be the permutation

R=(fll;~'-;’lnn~")rk1;-"7’76711;))

and let S(R) be the set of all x in W for which «;; hasrank r;; (= 1,.. ., n;;
i=1,...,k.

The set W is the union of the M = #,! . . . ;! disjoint sets S(R). Let P[S(R)]
be briefly denoted by P(R). If P is in w, we have P(R) = 1/M for all R. Hence
any union of m sets S(R) is the critical region of a similar test of size m/M with
respect to w. A test of this type will be referred to as a rank order test.

Let H, be the hypothesis that P(4) = P1(4), a probability function of X not

in w.Denote the M permutations R by Ry, . . . , Ry in such a way that
Py (R) = Py«(Rj) ifi=1,...,m; j=m+1,...,M.
Clearly, (Ry, - . . , Rn) determines a rank order test which is most powerful for

testing H against H;.
‘ Suppose that P1(A4) is absolutely continuous with probability density g(x). Then
P (R) = x)dx = xg)dx
'®) = [ g@dz= [ g(xa)dz,
where S(I) is the set
x11<-~'<xln17"')xkl< "'<x-k‘ﬂk

and xr is obtained from x by applying the permutation R to the second subscripts
of the coordinates.
Suppose, moreover, that w contains an absolutely continuous distribution with

density
k By
f@ =TT IT /.
i=1 j=1

Xe, ..., XD

nj

Let

have the probability density
n,'Hfl(x,) if xn<... <x,,'.
=1

and zero elsewhere; that is, the X are the order statistics associated with the
distribution

ﬁfz‘(xi) .

=1
Let
Xo= (X ., x® L xW L x ey

1 ? In, ? k1 2 kny,
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Then we can write

= g (xz)
PiR) = sty f (xg) /(=) dx.
= 1 g(xg) e .
_A—{ z,< - ""1;1 f o ’/Z;u< f (xR) g o ,I:Il 1 (x'.i) dx”%
or

(X%) |
MP,(R) =E{§—(X,o:—)}

Thus we can express M P;(R) as the expected value of a function of the order
statistics, permuted according to R, the function being the ratio of the two proba-
bility densities involved.

As an example, let & = 1, let g(x) = g(x, y, », ¢) be defined as in (3), and let
f(x) = g(x, 0, v — au, o). After some simplification we obtain

nl Py (R) = ¢ O/ 3 g eai(«;-;)x,‘{')}

)

where 8 = u/cand XM < ... < X are the standard normal order statistics.
Whereas the most powerful (similar) test depends only on the sign of u, the most
powerful rank order test depends on the value of §. Also the evaluatlon of P(R) '
presents considerable difficulties. We have
nlPL(R) =14 8 (R) + 0(8?),
where

ca(R) = E (a; — a)EX(") .
1=]1
Hence the rank order test which is most powerful against & positive and “‘small” is
based on the statistic ¢;(R), large values being significant. This kind of rank order
test is essentially equivalent to one described by Fisher and Yates [2], where a
table of EX{ is given.
The distribution of

E (6, —&)EX®
VY (a,— 023 @xp)?

when H is true can be approximated by the probability density

B(3.%50) =, —1ssst.

This approximation was suggested by Pitman [6] for statistics of a similar type and
is apparently implied by Fisher and Yates [2]. The approximation appears to be
satisfactory even for moderate values of # provided the e, satisfy certain condi-
tions.

It would be desirable to determine the most stringent rank order tests against
6 > 0 and & = 0, provided the test criteria are computable. It would also be in-
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teresting to compare the power of the c;-test with that of the most powerful rank
order test for an arbitrary positive value of 8.

4, Tests with optimum properties with respect to nonparametric alternatives

So far we have considered nonparametric tests which have optimum properties
with respect to simple or parametric alternatives. On the other hand, in a problem
where the functional form of the distribution is not specified by the null hypothesis
one often may want to have a test which is “optimum” with respect to a set of
alternatives which itself is nonparametric. Only in rare cases do there exist tests
which are uniformly most powerful against a nonparametric set, and most stringent
tests do not seem to be readily applicable to many types of nonparametric alterna-
tives. (An example of a uniformly most powerful and a most stringent test against
a special type of nonparametric alternative was given by Lehmann and Stein
4, p. 381.)

The tests to be considered in this section are based on the minimax principle
which underlies Wald’s theory of decision functions.

Let Q be a set of probability functions P, w a subset of Q, H the hypothesis
that P is in w. The set of alternatives is Q@ — «w.

We still confine ourselves to tests which are of size a for testing H, and by a test
we shall always mean a test of size a for testing H.

Suppose there is given a nonnegative weight function W(P), defined for all P
in @ — w; it may be interpreted as expressing the loss caused by accepting H when
the true distribution is P. The expected loss when P (in @ — w) is the distribution
and test ¢ is used is W(P)[1 — Ep(¢)] and is called the risk. The maximum risk
associated with test ¢ is

R(¢) = sup W(PP)[1—Ep(4)].
PE Q2w

We assume that there exists a ¢ for which R(¢) is finite.

A test ¢ which minimizes the maximum risk, so that R(¢) < R(¢’) for all ¢’ of
size @, will be called a test of minimax risk with respect to the weight function
W(P). This is the immediate extension to the nonparametric case of a test con-
sidered by Lehmann [3].

In statistical practice it is often impossible without undue arbitrariness to assign
a numerical weight W(P) to any alternative. But in many cases one will be able to
decide of any two alternatives P;, P; whether they should be assigned equal
weights or which of them should have greater weight. This leads to a partition of
Q — w into disjoint sets ©(d), where d is a real parameter such that d < d’ implies
that the P in ©(d) have smaller weight than the P in ©(d’), and all P in ©(d) have
equal weight. :

If a weight function W(P) is given and {Q(d)} is a partition of & — w such that
W (P) is constant over each set Q(d), we shall say that {Q(d)} is a partition in-
duced by W(P). [2(d) need not consist of all P for which W(P) equals a con-
stant value.] The same weight function induces more than one partition, and the
same partition is induced by more than one function. In particular, a partition
induced by W (P) is also induced by any strictly monotone function of W(P).



go SECOND BERKELEY SYMPOSIUM: HOEFFDING
Let 2(d) be a partition of 2 — w, and suppose there exists a test ¢ such that
inf Ep(¢)2 inf Ep(¢')
PE Qld) Pc 2(a)

for all ¢’ and all Q(d). Then ¢ will be referred to as a test! which maximizes the mini-
mum power (uniformly) with respect to the partition {Q(d)}. Such a test may be
regarded as satisfactory provided its minimum power over Q(d) increases with d.

A test which uniformly maximizes the minimum power does not always exist.
If it exists, it is “optimum” in a stronger sense than a test of minimax risk, as is
shown by the following theorem.

THEOREM 1. If a test maximizes the minimum power with respect to the partition
{Q(d)}, it has minimax risk with respect to any weight function which induces this
partition.

The proof follows from the relation

R(¢) =sup sup W(P)[1 —Ep(¢)]l =sup Wa[1l — inf Ep(¢)],
d p€E Q(a) d PE Q)

where W, denotes the constant value of W(P) on Q(d).

Theorem 1 is analogous to a theorem of Hunt and Stein (quoted by Lehmann
{3, theorem 8.2] from an unpublished paper) which can be stated as follows: If a
test maximizes the minimum power with respect to a partition induced by the en-
velope power function, then the test is most stringent. It follows incidentally that
the test has minimax risk with respect to any weight function which is a nonde-
creasing function of the envelope power function.

If ¢4 denotes a test which maximizes the minimum power over Q(d) and ¢4 = ¢
is independent of d, then ¢ clearly maximizes the minimum power uniformly with
respect to {Q(d)}.

A method for finding a test which maximizes the minimum power over a given
set when the distributions are absolutely continuous was given by Lehmann [3, the-
orem 8.3). It is stated in parametric terms but can be immediately extended to
the nonparametric case as follows.

THEOREM 2. Let wo and w, be two sets of probability densities f(x) with respect to
a fixed measure p. Suppose additive classes of sets have been defined over wo and w,

and let \; be a probubility measure over w; which assigns measurel to a parametric
subset of w; (1 = 0, 1); then

hi(@) = [ 7@ a0, i=0,1,

are probability densities with respect to u. Let ¢ be a most powerful test of size a for
lesting the simple hypothesis ho against the simple alternative hy. Let B be the power
of ¢ against hy. Then if

Ej(d)) <a for alle wo
and

E/p) = B for all f€w;,

1 Since tests of this type frequently occur, it would be desirable to have a shorter name for them.
One might call them tests of maximin power with respect to {Q(d)}.
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we have for all ¢' of size =< a
inf E; (¢) 2 inf E; (¢') .
f€mn FAS
As an example, let g(y) denote any density with respect to a fixed measure » on
the real line such that »{(y < 0)} > 0 and »{(y > 0)} > 0, let u be the n-th
power of », and let Q be the set of all densities with respect to u of the form

(4) (@) =g@) ... @),
where .
cO = [ gmamzay,

¢ a fixed number, 0 < ¢ < 1. Let w be the subset of @ where G(0) = ¢, and let Q(d)
be the subset of @ — w where G(0) = ¢+ d, (0 <d =1 —g).

The problem can also be interpreted as one of testing whether the g-quantile
of g(y) is zero against the alternative that it is less than zero.

Let b be a positive constant, /1 and I; the intervals -6 < y £ 0and 0 < y < b,
where b is so chosen that »(I;) > 0, v(I3) > 0, and let

/gt dNaE (1 — g —d\aE) _
fd(x)_l:‘[(v(h) (V(I‘z) ) ' 0dsl-g,

where ¢;(y) is the characteristic function of I, ( = 1, 2).

It is easily verified that f; is in Q(d), (d > 0) and f, is in w.

Let A\; be the measure over Q(d) which assigns measure 1 to the one point set
{fa} and measure O to @(d) — {fa}, and Ao the corresponding measure over w.
Applying theorem 2 with wo = w, w1 = Q(d) we have ko = fo, b1 = fy4. By Neyman-
Pearson’s lemma, a most powerful test of size a for testing fo against f, is

(1 (>k
(5) 6 =1{aif D cx)| =
0 <k

where ¢(y) = 1 or 0 according as y £ O or y > 0, and the constants %, ¢ (% an in-
teger, 0 £ a < 1) are determined by the condition that ¢(x) be of size a. This is
the well known sign test.

The power of ¢ for any f in @ depends only on G(0) and hence is constant over
Q(d). The conditions of theorem 2 are satisfied. Since the test is independent of d, it
maximizes the minimum power with respect to {Q(d)}. The power of ¢ increases
with d.

If the size a is so chosen that @ = 0, the test ¢ is essentially unique. This fol-
lows from the fact that for any test ¢’ which differs from ¢ on a set of positive u-
measure we can choose b so large that

Ey (¢') < En(9) -

Now let Q be the set of all densities of the form (4) with no restriction on G(0),
let w be the subset with G(0) = %, and let Q(d) be the set where |[G(0) — &| = d,
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(0 < d £ 3). Let fu(x) be defined as before, with ¢ = 3, —4 < d < . Let A\, as-
sign measure 1 to f; and to f_s, measure 0 to Q(d) — {fs, f-a}. Let Ao assign meas-
ure 1 to fo, measure 0 to w — {fo}. Then ko = fo, b1 = (fa + f—a)/2. The test which
maximizes the minimum power with respect to {Q2(d)} is found to be of the form

(5) withE c(x;) replaced by| E c(x;) — n/2 ! .

The test can be interpreted as a test of whether the median of g is zero against
the alternative that it is different from 0. If g is normal with mean p and stand-
ard deviation ¢, |G(0) — %| is an increasing function of |u/¢|, so that the power
of the test can be directly compared with that of Student’s test.

It has yet to be investigated whether the tests here discussed can be applied to
more complicated nonparametric problems, or whether different types of tests will
be required. '
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