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1. Introduction
This paper is concerned with certain technical aspects of Wald's theory of

minimax risk and cursory familiarity with that theory, such as may be had by read-
ing the introductory sections of [1] and [16], is accordingly assumed.

In the present stage of this theory it seems appropriate to invest some activity
in the exploration of minimax problems of an intermediate level of generality. We
in particular thought it might be fruitful to explore the problem of estimating a real
parameter 0 where the loss as a function of 0 and the estimate g is of the special
form

(1 . 1 ) ~W(g, 0) = (O) (g 0)2 ; X(0) > O -

Restriction to a single parameter is of course a convenience of the moment, for it
would be surprising if any results obtained here could not be extended directly to
quadratic forms. Interest in (1.1) is aroused by the power series consideration that
any smooth nonnegative risk function can be expressed approximately in that
form. We were further motivated to study (1.1) because a few very general results
concerning it (given in section 2 below) led us to hope that we might discover a
considerable body of theory at that level of generality. But thus far we have pro-
gressed beyond the results of section 2 only in two special contexts. The first of
these special contexts (treated in section 3) is that in which 0 is a parameter of
translation and X is constant. It is shown that such decision problems are closed,
have minimax solutions with the symmetry which would be expected, and which
are explicitly computable in terms of conditional expectations. There is every
reason to believe that these results can be extended to many other loss functions
for which the loss depends only on g - 0.

The second special context in which we have studied (1.1) (treated in sections
4 and 5) pertains to families of distributions on the real line of the form :(T) exp [XT]
d4,(x), with 0 = E(x|r), called exponential families. These exponential families
are more versatile than would appear at first glance, as is explained early in sec-
tion 4. If for one of these families X(0) is so chosen that X(0) V(x I 0) = 1 and if 4. is
such that the range of T can be the whole real line, then x is an admissible minimax
estimate of 0 if the range of T is indeed taken to be the whole real line. If, further,
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54 SECOND BERKELEY SYMPOSIUM: GIRSHICK AND SAVAGE

4, is confined to a finite interval of the real line, then (as is shown in section 5) under
a very general assumption about the cost of observations, the minimax sequential
estimate of 6 is one of constant sample size and Nature's least favorable distribu-
tion for 0 is rectangular over the finite interval.

2. Properties of Bayes estimates for quadratic loss functions

Let dF(x 60) be a family of probability measures on a space X, depending on a
real parameter 6. The problem is to estimate 6 on the basis of an observation on x
when it is known that the a priori distribution of 0 is G(6), where G(6) is a prob-
ability measure on the real numbers.
An estimate of 6 is a real valued measurable function g on X which associates

with every sample point x a value g(x). Let W[g(x), 6] be the loss to the statistician,
if 6 is the true parameter, x the observed sample points and g the estimate em-
ployed. The function W is a nonnegative measurable function of g and 0. For any
choice of g and for any G, the risk Ro(g, 6) and the expected risk R(g, G) are de-
fined by

(2.1) Ro(g, 6) = fW[g(x), 6]dF(xf6) = E{W[g(x), 61161

(2.2) R(g, G) = fRo(g, 6)dG(6) = EG[Ro(g, 6)] = EG{W[g(x), 61-

An estimate g* minimizing R(g, G) for a given G is, following Wald, called a
Bayes estimate for that G. Wald shows that g*, if it is Bayes for G, satisfies

(2.3) r[g*(x), x] = inf r(h, x),
where
(2.4) r(h, x) = EG[W(h, 0) xI,

and that if g* satisfies(2.2) it is Bayes for G. This characterization is immediately
clear if R(g, G) is expressgl in the form

(2.5) R(g, G) = E {rI[g(x), x]} = EG{EG[W(g[x], ) x] I
and provided it is assumed, as it shall be for the rest of this section, that conditional
expectation with respect to x is a bona fide expectation.

While (2.3), measurability difficulties notwithstanding, gives a general method
for constructing Bayes estimates, specific properties and characterizations of such
estimates are generally difficult to obtain except for relatively simple types of loss
functions. Of these, the quadratic loss function defined by (1.1) appears, for reasons
given in section 1, to be of special interest and the characterization of the Bayes
estimates arising from it is the subject of this section.

Let

(2.6) r(h, x) = EGAX(6) (h - 0)21 X]

For a given G and for a given sample point x, r(h, x) may be finite for no real h. If
the set AG c X for the elements of which r(h, x) = co for all h has positive proba-
bility, then it is clear from (2.5) that R(g, G) = co for all g, that is,
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THEOREm 2. 1. A necessary' condition for the existence of a g for which R(g, G) <
at is that P(xEAG) = 0, or equivalently P[min r(h, x) = ] = 0.

If xEX - A G, then r(h, x) is finite for some h, but if W is of the form (1.1) more
can be said, namely,
THEOREm 2.2. For each x, r(h, x) < - either for no h, for exactly one h, or for

every h. The second case implies E[X(0) x] = - , and the third E[X(0) I x] < - .
PROOF. In the first place, the following argument orally communicated to us

by David Blackwell shows that if a < b and r(a, x) < oo and r(b, x) < -, then
r(h, x) < co for all h.

Since X(0)(h - 0)2 is a convex function of h, we have for all h in the closed
interval (a, b)
(2.7) X(0) (h-(0)2< -h)(0) (a- 0)2+ X)a) (0) (b- 0)2,
and hence

b-hk h- a
(2.8) r(h, x) - rb(a,x)+ b - r(b,x),

so that r(h, x) is finite for all h in (a, b). Now let hi 5 0 be in (a, b) and let h2 be
any arbitrary value of h different from hi. Then, since

(2.9) (hl-h2)2 + 2(h - h2) (h2 -0) . (h1 - 0)2,

(2.10) E{[(h -h2)X(0) + 2(h2 - 0)X(0)]IxI < - -

Setting h2 = 0,

(2.11) E{[hiX(0) - 20X(0)]jx} < oo

Hence E[X(0) x] < co and therefore E[OX(0) I x] < co. The finiteness of E[02X(O) |x]
now follows from the finiteness r(hi, x). Thus r(h, x) < co for all h.

Next if r(a, x) < co and E[X(0) I x] < co then r(h, x) < co for all h.
Since X(0) > 0, Schwartz's inequality yields

(2. 12) IE[X(0) (a- ) x] I _ E[X(0) -aj-| |x] _ r(a, x)E[X(0) I x] < c

It follows therefore that E[OX(0) Ix] < c since

(2. 13) E[OX(0) x] = E{ [X(0)a - X(0)(a - 0)] x}

The finiteness of E[02X(0) I x] follows from the finiteness of r(a, x). Thus r(h, x) < co

for all h. Finally, if r(h, x) < co for all h, E[X(0) I x] < co. This follows directly
from the proof of Blackwell's result mentioned above.

I That the condition is not sufficient is easily seen from the following example:

Let W(g, O)= (g -8)2; 1 181< .

X= {x; 0<x<11.
dF(xl1) = 181 for 0 < x . 101-1,

= 0 elsewhere.

dG(8) = 2-10-2 for 1< 181 <

= 0 elsewhere.

Then g*(x) = 0 while R(g*, G) = , as can easily be verified.
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From theorem 2.2 we see that for all xEX - AG if E[X(O)Ix] < co, or equiva-
lently if r(h, x) exists for at least two values of h, then r(h, x) exists for all h and,
moreover, IE[OiX(O)Ix]I < c for i = 0, 1, 2. Hence r(h, x) can be written as

(2. 14) r(h, x) = h2E[X(0) I x] - 2hE[OX(O) I x] + E[62X(O) I x]
which, for a given x, is a quadratic function of h and therefore has a unique mini-
mum at h = h* where2
(2.15) E(E[OX() |x]'

E[X(0) Ijx]
a measurable function of x on the measurable set where E[X(O) x] < co. Thus we
have established the following
THEOREm 2.3. If G admits any estimate of finite expected risk then it admits a

Bayes estimate, and essentially only one, defined thus:

(2.16) h* (x) = 0 , if r (h, x) = o for all h

= h0, if r (h, x) < c only for ho

E [ OX (O) xi if r (h, x) < o for all h

THEOREm 2.4. If for a given a priori distribution G(O), the expectation of X(O)
exists, then the Bayes estimate h*(x) is biased, or the expected risk is zero.3

PROOF. The existence of E[X(O)] implies the existence of E[X(O) x] for almost
all x. Thus h*(x) is given by (2.15). Assume that h*(x) is unbiased. That is

(2.17) E[h*(x)j] = Ofor all a .

Consider a probability measure H defined by

(2.18) dH (0) = X (O) dG(O) X (O) dG (O)
fX(O)dG (6) E[ )

Then h*(x) is given by

(2. 19) h*(x) = EH(O I x) = EH[O h*(x)],

as can easily be verified from the definition of conditional probability. But equa-
tion (2.19) in conjunction with (2.17) implies that h*(x) = 0 with probability one,
according to a theorem by J. Doob which will appear in his forthcoming book on
the theory of probability.4

If E[X(0)] does not exist then theorem 2.4 no longer holds, as can be seen from
the results in section 5.

2 This form of the Bayes estimate with X(O) = 1 was independently obtained by J. L. Hodges,
Jr. and E. L. Lehmann [5].

3 This theorem is an oral communication from David Blackwell.
4 If the second moments of h* and 0 are assumed to exist then Doob's theorem follows imme-

diately from the fact that E(Oh*) = E(h*)2 = E(02) which implies that E(h* - 0)2 = 0 with
probability 1.
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3. Minimax estimates for a quadratic loss functioti in the case of distributions
depending on a location parameter

While Bayes estimates, as a class, possess important properties [15], in any given
situation the assumption of the existence of an a priori distribution may not be
valid, or if such a distribution exists, it may be unknown. In such cases, a procedure
for selecting an estimate, which has certain merits, is the minimax procedure. The
minimax method of decisions is due to A. Wald [14] and is mathematically closely
akin to the theory of zero sum two person games, developed by J. von Neumann
[7], [8].
An estimate of a parameter 0 of a family of probability measures dF(x I 0) on a

space X is called minimax for a given loss function W[g(x), 0] if sup R(g*, G) =
G

inf sup R(g, G) where G ranges over the set of all probability measures on the real
g G
numbers, g ranges over all estimates on X and R(g, G) is given by (2.2).

It is well known and almost obvious that for any R

(3.1) inf sup R(g, G) _ sup inf R(g, G) .
g G G g

Under rather general conditions (see, for example, [16]) equality obtains in (3.1),
or even more, there may actually exist a G* such that

(3.2) sup R(g*, G) = R(g*, G*) .
G

Under such circumstances R is called closed and G* if it exists is known as Nature's
least favorable distribution.

Another concept introduced by Wald, which is of statistical importance, is that
of the admissibility of an estimate. An estimate g* is called admissible if there
exists no uniformly better estimate, more exactly, if there exists no other estimate
g such that Ro(g, 6) :5 Ro(g*, 0) for all 0 with the inequality holding for at least
one 6, where Ro is the risk as defined in (2.1).

Neither a Bayes nor a minimax estimate need necessarily be admissible unless
they are unique. However, it is easy to show that if g* is Bayes with respect to an
a priori distribution G, and if there exists a uniformly better estimate g, then g is
also Bayes with respect to G and the inequality Ro(g, 0) < Ro(g*, 0) will hold only
on a set 0 of G measure zero.,

In this section we consider a class of estimates of a location parameter which
have certain optimum properties and prove that these estimates are minimax and
closed with respect to the risk function X[g(x) _ 0]2, where X is a positive constant
which may as well be and will be taken as unity.
To describe the family of distributions and class of estimates formally, let x =

x, ... , x,,} denote a point in the cartesian n-space X, and adopt the convention
x + vo = {xi + 0, ... , x,, + 0 }. The translation families are characterized by the
identity,
(3.3) dF(x I 0) = dF(x - vOj°).

6 If g also is not admissible then another Bayes estimate g' can be found which is uniformly
better than g and so forth. In an unpublished result, Wald shows that under some conditions
there exists a sequence of estimates which converges to a limit which is an admissible Bayes esti-
mate.
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One dimensional translation families need no introduction to this audience. As for
n-dimensional ones, they arise (though not in full generality) as cartesian products,
that is, distributions of n independent observations.

The function u(k) will be said to possess the translation property if u(x + vk) =
u(x) + k for all real k. For any function f(x), the symbol Eo[f(x)] will stand for
E[f(x) Ij = 0].
THEOREm 3.1. If u(x) has the translation property, Etf[u(x) - 0] 0 = Eo f[u(x)] I

for arbitrary f. In particular the bias and variance of u are independent of 0.
If u(x) is any estimate with the translation property and finite bias, let

(3.4) z(x) = x -u(x),

(3.5) u*(x) = u(x) - Eo[u(x) I z(x)].
THEOREm 3.2. The estimate u* derived from u:
1. Has the translation property,
2. Is unbiased,
3. Has as small a variance as any estimate having the translation property,
4. Is independent of the choice of u, provided some u has finite variance,6 except for

sets of probability O for all 0.
PROOF.
1. Obvious from invariance of z(x).
2. From 1 and theorem 3.1, the bias of u* is constant and equal to

(3.6) Eo(u*) = Eo(u) - Eo[Eo(u Iz)] = 0.

3. If t has the translation property

(3. 7) V(t) V(t - u*) + V(u*) + 2Eo[(t - u*)u*]

Now t - u* depends only on z, therefore

(3.8) Eo[(t - u*)u*] = EoEo[(t - u*)u*lz]
= Eo[(t - u*)Eo(u*Iz)] = 0.

4. By (3.7) and (3.8) it is clear that two really different estimates cannot have
the variance V(u*), provided V(u) is finite.

COROLLARY. E{[t(x) - 0]21 } = Eo[t2(x)]i+ E2[t(x)] _ Eo[u*2(x)I.
THEOREm 3.3. The estimate u*(x) is a minimax estimatefor the riskfunction under

consideration if any u has finite variance. If not, the minimax value of the problem is
infinite. The problem is closed in any event.

In view of part 4 of theorem 3.2, it is sufficient to prove the result for a particu-
lar choice of a function u(x) possessing the translation property, say for definite-

n

ness7 x = E xi/n

6This proviso could presumably be removed, but this seems worth no effort at the moment.

7Strictly speaking, u must have finite bias so that if x fails in this respect, some other u would
have to be substituted in the subsequent argument.
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Before actually proving this theorem it is expedient to prove some results for
more general loss functions of the form

(3.9) W[g(x), 6] = W[g(x) -] .

Letting s(x) = g(x) - i, the risk Ro(s, 0) may conveniently be expressed as a
functional p of s and 0, thus,

(3. 10) p(s, 0) = JW[s(x + vO) + i]dF(x) .

We shall sometimes write p(s, 6, F, W) to indicate p's dependence on the risk func-
tion W and on the measure under consideration. On the other hand, symbols W
and W(6) will sometimes be used as abbreviations for W[s(x + vO) + x].

Let S be the set of real valued measurable functions on X, and q be the sub-
set of S such that for f E q,

(3.11) f(x+ vk) =f(x),
for all real k. Note that for fE , p(f, 6) in (3.10) is independent of 6 and may
justifiably be written as p(f).

Let

(3.12) V = V(F, W) = inf sup p(f, 0, F, W) = inf p(f, F, W),
f8 f

(3.13) V = V(F, W) = inf sup p(s, 0, F, W),
s 0

(3.14) V = V(F, W) = sup inf fp(s, 0, F, W)dG(0),
G s

forfE , sES.
Since t9 is a subset of 5, it follows from (3.12) and (3.13) that V > V, and from

elementary game theoretic considerations, V > V. The general minimax problem
under discussion can now be formulated as that of finding conditions under which
V = V. While we believe that this result holds under quite general conditions, we
have thus far succeeded only in proving some lemmas leading to theorem 3.3, and
theorem 3.4 below.

It is not true that V = V, much less that V = V without any restrictions at all
on the form of F, or of W in (3.9). The following example shows the sort of pathol-
ogy which can occur even for a convex W, if it is monotonic.

Let X be one dimensional so that x = x, and the elements of q are real con-
stants. Define

(3.15) W(6)= a for 0 > 0,
= 0 for 6 < 0 ,

(3.16) dF(x) = x-2dx for x > 1,
=0 forx<1.

Now, since for all f

(3.17) p (f) =f (x+ f) x-2dx=cX
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where m = max (-f, 1), it follows that V= m* On the other hand, for any
a > 1, let s(x) = -a|x|, then

(3.18) p (s, 0) = W(x-aI x+ ) x-2dx,
where

(3.19) W(x-alx+ al) = -(a-l)x-aO if x _ -0,
= (a +l)x + a0 if x _ -0.

This function of x attains an absolute maximum of -0 at x =-0 and it is nega-
tive except in the interval - aO/(a + 1) to - aO/(a - 1) for nonpositive 0.
Therefore

(3.20) p(s, 0) =0 for 0_>0,
<f-.O/(a-l) 2

Ox-2dx 2 for 0< 0.a6/(a+ 1) a

Thus we have an example where V = c, V = V = 0 and W(0) is convex.

LEMMA 1. Let F and W be such that for every e > 0 there exists a F' and a W'
satisfying the conditions8

1. F'(S) _ F(S) for every S c X,
2. W'(6) _ W(O) for every 0
3. V(F', W') > V(F, W) -
4. V(F', W') = V(F', W'),

then V(F, W) = V(F, W).

PROOF. Consider

(3. 21) V(F, W) _ V(F', W') = V(F, W) -f

LEMMA 2. Let W be bounded, say by W0, and let F be such that for some m > 0,
FIxlj|x > m} = 0, then V(F, W) = V(F, W).

PROOF. For every f > 0 and T > m, there exists an s such that

(3.2 2) V+2eT f dOfW [ s (x +,O) + xi dF (x)

= fdF (x)f W [ s (x +v0) + xi dO,

by Fubini's theorem. Now

T T-z -T-x T

(3.23) W [ s (x +vO) + x] d WdO+ f WdO+fWd
TT -T -T T

=f W{s[x+v(,p- )I+ d. f+JfTxWd0+fT Wd0
T _-T T-x

8 The measures F considered in this context though bounded need not be probability measures,
that is, of total measure 1.
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and

(3.24) 2fTf ITJ Wd f+
T

Wd dF (x) _ T°fii dF (x)
-T T-z

< mWoF (X)
= T

Therefore

(3.2 5) V+edW I s [ x mWoF(X]+xId)-T

>_ inf WI s [x +v (p- ) I + x I d50 - _WoF (X).if fs[+(p-)+}do-T

Letting T - o and observing that s[x + v(v - 5)I E q for all (p, we see that
V > V, and the lemma is proved.
THEOREm 3.4.9 If W is bounded then V = V.
PROOF. Let Wo be an upper bound for W. For any e > 0 there is an m so large

that F[(x I |? I > m)] _ e/Wo. Define dF'(x) = dF(x), for | x m and dF'(x)=
0, for |x| > m. Then, according to lemma 2, V(F', W) = V(F', W). On the
other hand

(3.26) V(F, W) = inf p(f, F, W) _ inf p(f, F', W) + f = V(F', W) + E.
f f

Therefore, lemma 1 applies to prove the theorem.
LEMMA 3. Let X be one dimensional, y a probability measure on X, dym(x) =

d-y(x) for |x|I m and dym(X) = 0 for |x| > m. Let W[s(x + PO) + x] =
[S(X + vO) + X]2. Then V(,y, W) monotonically approaches V(-y, W).

PROOF. By definition

(3.27) V (-ym, W) = inff (f+x) 2dy (x),
f m

so that
a2 (in)(3.28) V(y, W) = a2(m)

where ai (m) = J xidy (x) , i = 0, 1, 2, and provided that m is large enough
-m

so that ao(m) 9 0.
Case 1. V(y, W) < -. In this case, in notation parallel to that used above,

(3.29) V(Y, W) = a2-aal .

But by the Lebesgue convergence theorem lim ai(m) = ai. Therefore case 1 is

established.
Case 2. V(y, W) = . In this case, a2(m) -. m* Since ao(m) approaches but

does not reach 1 there is an mo such that 1 > ao(mo) > 2 and an arbitrarily large
m > mO such that ao(m) > ao(mo). Consider the measure #3m = ym - ymo.

[al(m)-almo 2

(3.30) V 3m, W) = a2 (m) -a2 (mO)-a- (m))-a(m) =

9 Under some additional restrictions A. Wald [13, pp. 318-320] proved the slightly weaker re-
sult V = V.
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and since ao(m) - ao(mo) < 12
(3.31) a2(m) > 2[al(m) -a(mO)]2
Therefore
(3 . 32) a2(m)- la2(m) > -[al(m) - 4ai(mO)1]2 -6a2(mO)

Let a2(m) > 2P2, and T _ 41 al(mo)J. Then
(3.33) a2(m)-4al(m) _ 2r- T if {ai(m) _ T,

> -[T-41 al(mo) I]2 - 6a2(mO) if |ai(m) > T.

Therefore a2(m)- 3a2(m)/2 approaches infinity with a2(m) and consequently
V(ym, W) = a2(m)- a2(m)/ao(m) -- c. Finally the monotonicity is immediate
from (3.27).

Return now to the proof of theorem 3.3, where, with the new notation W =
[s(x + vO) + x]2, and the expectation symbol E used below stands for Eo. Let z =
x -vx. Note that E[s(x)Iz] = E[s(z - vi)|z], and since forffEq,f(x) =f(z),
(3.34) E[f(x)s(x) z] = E[f(z)s(x) z] = f(z)E[s(x) Iz].
Moreover, the conditional expectation E[s(x) z] can, in this case, be so con-
structed as to be a probability integral for almost all z [4, p. 210, exercise 5] so

that we can write,10

(3.35) E[s(x) z] = E[s(z + vx) z] = fs(z + vi)d-y,(i)

Case 1. E(il z) < c for almost all z. In this case, let

(3.36) fo(x) = fo(z) = E(x z)

and

(3.37) w(z) = E[(fo+ i)2Iz] = E(i2lz) -fo(z)
- inf E[(r + x)21 z] = inf f(r + i)2dy,(x)

7 r

Now

(3.38) p(f+ fo) = E{E[f(x) + fo(x) + il2IzI = E[w(z) + f2(z)],
so that

(3.39) V = p(fo) = E[w(z)],
whether V is finite or not. (This result also follows from theorem 3.2.)

Let m be a positive number and define a measure Fm(x) = F(x) for I m
and Fm(x) = 0 for I > m. Let h(x, m) be the characteristic function of the
set {x|I il _ m}, and let
(3.40) fm(z) E [h (x, m) * I z]

E [h(x,rn) I zi
where meaningful, and fm(z) = 0 elsewhere. Further, let

(3 .41) wm(z) = E[h(x, m)(fm + j)21zI = E[h(x, m)xVIz] = f2(z)E[h(x, m)].
10 This restriction could be foregone and would have to be if the work were much generalized.
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Then by an argument similar to that employed above,

(3.42) V(Fm, W) = p(fm, Fm, W) = E[wm(z)],
and

(3.43) wm( z) = inf E [h (x, m) (r +jx) 21 ZI =inff (r+x) 2dzG (i) .
r r -m

Now, by lemma 3, lim w.(z) = w(z), wm(z) is a nonnegative and nondecreasing
m-ea

function of m. Consequently, the Lebesgue theorem on integration of monotone
sequences applies [12, theorem 12.6] to yield lin V(Fm, W) = V(F, W).

Now, by lemma 2, V(Fm, W) = V(Fm, W) so that condition 3 of lemma 1 is
satisfied. The remaining conditions of lemma 1 are satisfied as well and thus the
theorem is established for case 1 whether V is finite or not.

Case 2. E( z) = - on a set z of positive probability. At such values of z,
w.(z) - o by lemma 3 so that V(Fm, W) -- co. Therefore, co = V(F, W)
lim V(F., W) and the proof of theorem 3.3 is completed.

We conjecture, but as yet have been unable to establish, that the minimax
estimate x- Eo(I x -vx) derived here is unique for almost all x and hence is
admissible.

Let dF(x - 0) = rH f(xi - 0)dxI* . dx,n dG(0) = d0/(2T), (-T < 0 .T)
i=1

and W[u(x) - 0] = [u(x1, . . ., x,,) - 012. Then the Bayes estimate u*T(x, . . *, x,)
= E( Ixi, x, ). If we let T-+ co we get generally

foffrl f(xi-0) dO

(3.44) u*= lim UX= - -.
T--(D OD n

JffHf(xi-0) d
fO

i=

Setting yi xix-xi, i 2 . . .Xn and letting 0 = xil- 4,

f'of (V') f (y,+4) d4

(3.45) _X* I=xl -

ff (4') f (y, +4) d4'

= x -Eo (x X2- Xl, ., X - xi)
Thus u* is a minimax estimate of the type considered in this section. It will actu-
ally exist, provided some translation estimate has finite variance.

The estimate u* given by (3.44) was originally introduced by E. J. G. Pitman
[111 who showed, among other thing's, that it is of minimum variance in the class
of estimates possessing the translation property. That the minimax estimates
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under consideration are not necessarily maximum likelihood estimates is exempli-
fied by the Cauchy family

(3.46) f (x-O) = -[1+ (x1 )2]'
where for n > 2, u* is a symmetric rational function of the xi (no neat expression
for it has as yet been obtained by us), while the maximum likelihood estimate is
irrational.

It should be pointed out that there is a slight modification of translation families
which might be called multiplicative. The following example will serve in lieu of a
formal definition. Consider the estimation of the scale parameter 0 in the family
of incomplete r functions:

(3.47) f (x, 0) = Xn-le -x/e
P (n) 0n

In some contexts it might seem reasonable to measure loss by the relative error of
the estimate, that is,
(3.48) W(g, 0) = (lng-In0)2=In2 g

Taking then I7= In 0 as a parameter and y = ln x as the variable, the distribu-
tion density of y is given by

(3.49) h (Y 77 e (ve-r (n)

Hence the minimax estimate u* for v is given by

(3.50) u* =y-Eo (y)

=lnx-E (lnx
O

=1) Inx-d Inr(n),

which leads to x exp [- r'(n)/r(n)] as an estimate for 0. So far as we know this
estimate has never been discussed. Still another (besides the maximum likelihood
estimate x/n) estimate for this parameter is mentioned in section 4 of this paper.

4. Admissible minimax estimates for certain families of distributions which
admit a sufficient statistic

Consider a family of probability measures defined by

(4.1) dF(x|I) = 3(0) exp [u(x)r(0)]d4'(x),

where x ranges over a measurable space X, 4,(x) is a measure onX (not necessarily
bounded), 0 ranges over a set 0, u(x) and r(0) are real valued functions, u(x) is
measurable, and for 0 E 0,
(4.2) j1 (0) =f eu(z)T()d4 (x) < co.

This type of family is a slight extension of that introduced by B. 0. Koopman
[6] and E. J. G. Pitman [10] in the investigation of sufficient statistics. Because of
the Fisher-Neyman factorization theorem [9], [3], u(x) is a sufficient statistic for
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such a family, therefore, in discussing the estimation of 0, it will suffice to consider
the distribution of u instead of x. Also, whether or not distinct values of 0 lead to
distinct values of T, any question about the estimation of 0 can be referred to one
about the estimation of T. In view of these considerations, there is no loss in gen-
erality in considering only distributions dF(u T) (to be referred to as exponential
families) defined by

(4.3) dF(u T) = ,(T))eurd, (u),
where u is real, i' is a measure on the real numbers, T ranges over a nonempty set T
of real numbers, on which

(4.4) ,-1 (T) =fJ euTd4 (u) < co.
_O

Prior to discussing estimates for the parameter of exponential families, a few
relevant theorems concerning the convolutions of two or more such families will
be given.
THEOREM 4. 1. Let dF(u T), for each T E T be the distribution of the sum of n ran-

dom variables ui distributed according to

(4.5) dFi (ui T) = Oi (T) eui'd4,i (ui) X i =1, 2, . ,n

over the same range T. Then
(a) dF(u | T) is an exponential family over T such that

(4.6) ,(T) =r 13i (T); de(uod(u| To)

for any To E T, and

(b) u is a sufficient statistic for the multivariate family [J dFi(ui T).

PROOF (a): Let f(u) be any bounded measurable function over the real num-
bers. Then

(4-7)f f (u)dF (u T) =l-f . ff(ui) )()ddFiF(UiT)

= di ( T)f .. f f (E ui) e (;i) rl dFi (Ui |T)

f ...T) i f(I uj) e ( zi) ('"o dFi (Ui |T)
i (TO)
-JJ.(- ff (u) eu(Tro-)dF (u TO)

H i3i (To)

where To is any element of T. Hence we have

(4.8) dF(ul T) = 0(T)eurd4(u)
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which proves part (a). Part (b) follows from the Fisher-Neyman factorization
theorem [9], [3].
Note: If zero is in T, 46(u) is the convolution of the ipi(ui) and therefore if zero
is not in T, 4,(u) may be considered a sort of generalization of the convolution
which in the strict sense may not exist.
A partial converse of part (a) of theorem 4.1 is given by
THEOREM 4.2. If dF(u T) is an exponential family over T where u = ui is the

sum of n independent observations from a single family, dFo(uo T), then dFo(uo T) is
an exponential family over T.

PROOF. Let op(X, T) and spO(X, T) be the moment generating functions of the two
families, more precisely, let

(4.9) f(X, T) = f eXudF (u T); fo (X, T) = f eXuodFo (Uo I T),

for real X and TG T, infinite values being admitted. As the expected value of a
product of independent random variables, Io(X, T) = on(X, T). On the other hand,

(4. 10) (X, T) =,3(T)fe(x+T)ud# (u) = Ao (T fe (x+T To)udF (u To)

= d(T) li(X+ T T0; To),~3(TO)

where To is any element of T. Therefore, since $o(X, T) > 0, we have

(4.11) Po (X, T) = [ (X+ - To; To)]

But this is exactly the moment generating function p1(X, T) of the exponential
family,
(4.12) dFi(uiI r) = l(T)eUI(TT)dFo(ulITo)
since

(4.13) 1(X, T) = i31 (T) feu(X+r- To)dFo (u1 | To)

g1 (T) sPo (X+ Tr- Tro; Tro) = ,li (T) [ ° (12 + T- To; To) ] /n
and

(4.14) 13) (T) = eu (r o)dFo (uiI To) = p (Tr - To; To)

= (T -7-To; To) 'I/n=L5I3 (TO) ]

Now, (p(X, T) is finite for X between zero and To- T, as is easily seen from equa-
tion (4.10) and an elementary property of the Laplace transform [17, p. 240].
This implies [17, p. 243] that dFo(uoI T) = dFi(uoj T), which proves the theorem.
Any measure 4, defines an exponential family over any subset T' of the set T of

values of T for'which

(4 . 15) W(T) = jeurd4#(u) = #-1(T) <
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We shall henceforth work only with exponential families defined over the whole
of the natural range T, given by (4.13). Elementary theorems about the Laplace
transform [17, p. 240] say that T is connected, w(r) is positive and analytic in
the interior of T, and the first equality in (4.13) admits any number of differentia-
tions under the integral sign.

Let

(4.16) 0 (T) =-lnw( T) = --,-dT W (T)

217( d0 (T) d2lnw(T) _ (r) " (T) -W2 (T)(4.17) a(Td)= d=-=rT
THEOREM 4.3. (a) 0(T) = E(ul T): (b) a2(T) = E{ [u - 0(T)]21|T} .
PROOF. Straightforward calculations.
THEOREm 4.4. If T is the entire real line, then u is an admissible minimax esti-

mate of 0(r) for the risk function.
( 4 . 1 8 ) W [ g, 0 ( T ) g

=--- (T)(4.18) Wg0T1-[()~0r]

PROOF." Since
(4.19) (Tf [u-(T) ]2 eurd4, (u) = 1

for all T, the minimax property of u will follow, if it is proven that u is admissible.
Assume that u is not admissible. Then there exists an estimate g(u) uniformly

better than u.
Let

(4. 20) .p(r) = E[g(u)|jr] = crl(T)fg(u)euTd4,(u).
Then

(4.21) o' (T) =W ' (T) [fu g (u) euTd# (u) -(c )f g (u) euTdp (u)]

= CO-' (T)fg (u) [u - 0(T)] euTd4, (u)

=E{ g (u) [u- 0 (Tr ] T}
where the differentiation under the integral sign is justified by an elementary
theorem about the Laplace transform referred to above.
Now by the Schwartz inequality applied to equation (4.21),

(4.22) [so'(T)]2 = lEg(u)[u - 0(r)]rT12 _ 02(T)V(gjIT)
Let Io(T) = b(T) + 0(T), then O'(T) = b'(T) + 2(T). Also, V[g(T)] = {E[g(u)
- O(T)12| TI - b2(T). Substituting these in (3.22)
(4. 23) a2(T)b2(T) + [b'(T) + q2(T)]2 _ a2(r)E[g(u) - 0(T)12 .

"The essential features of this proof are due to J. L. Hodges, Jr. and E. L. Lehmann and are
contained in their paper, "Some applications of the Cram6r-Rao inequality" appearing in this
volume. Their results overlap with ours insofar as they deal with several specific cases of the ex-
ponential family of distributions. We are also indebted to H. Rubin for his assistance on some of
the details of this proof.
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Now by hypothesis E[g(u) - 0(U)]2 < o-2(T). Therefore

(4. 24) a2(T)b2(T) + [b'(r) + a2(r)] _

it follows that b'(r) is never positive, so that b(T) is nonincreasing in T. Now drop-
ping the term [b'(r)12 from the left hand side of (4.24) and simplifying

(4.25) b2(T) +2b(T)._ 0; or

where b(r) #d 0.
Since b'(T) . 0, it is either true that b(T) = 0 for all sufficiently large T, or

that above some value To, b(T) #! 0. In the latter event b-1(T) > ¾--
[To -b-b(To)]. Therefore in either event b(T) -+ 0 as T , and by the same

argument b(T) -*0 as T-r3 Now if b'(T) < 0, and b(T) -40 as T co,
b(T) = 0 for all T. This in turn implies that

(4.26) ¢2(T) 5 E[g(u) - (T)]2,

as can be seen from equation (4.23). Consequently no uniformly better estimate
can exist.
We remark that if T is not the entire real line, u need not be an admissible esti-

mate. This is illustrated by the distribution of a2X2 (an incomplete r family with
a scale parameter) where, as is shown by Hodges and Lehmann [5] the admissible
minimax estimate is u* = nu/(n + 2). It is to be hoped that some simple treat-
ment of the general case will be found.

Theorem 4.4 is somewhat more general than may be apparent at first sight. In
the first place, many of the most important families of distributions met in sta-
tistics such as the normal, binomial, Poisson, negative binomial, the scale and in-
dex parameters of the r families, are of the exponential type and many have for T
the whole line. Secondly, if ul, . . ., u, are different observations from exponential

families dF'(ujj T), u = Ui is according to theorem 4.1 sufficient for T. Accord-

ingly it is to be expected that admissible and minimax estimates for virtually any
function of T depending only on u, will exist. In particular it is known by a theorem
of Blackwell [2], [3, p. 240] that if the loss is quadratic in any function of T, only
functions of u can be admissible, and if any estimate is minimax there is a minimax
function of u. Specializing still further, if the loss function is of the form

[g-_ E (ui T) ]
(4.27) W (g, T) =

E V (Ui |T)

[g-E (u T)] 2
V (U I T)

and T is the whole line, then theorem 4.4 implies that u itself is minimax with con-
stant risk 1. As an example consider the familiar problem of estimating a success
ratio from several independent binomial samples of different sizes. Finally, if all
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the samples have the same distribution with mean and variance @(T) and u2(T),
(4.27) may be expressed essentially thus:

(4.28) Wo(g, g) 2

( T)

Here u = j u1/n is an admissible minimax estimate with constant risk l/n. Since
fi is unbiased, in the light of section 2, it is either not Bayes for any a priori distribu-
tion or only for one for which E[or2(r)I = oo. The first case is exemplified by the
sample mean from a normal family and a class of examples of the second case will
be found in the following section.

5. A class of minimax estimating procedures which are fixed sample size
procedures
Let u be a random variable distributed according to an exponential family for

which the measure A,(u) is assumed to have no rise outside a finite interval and
only a finite rise in this interval. This interval will, without loss of generality, be
taken to be (0, ,B) with 3> 0, and such that for all u interior to (0, ,B), Q(u) =

fd,(u') > 0 and Q(o) - Q(u) > 0.

From the definition of '(u), it is easily seen that the range of T is from - - to co.

Thus, by theorem 4.4, u= juj/n is an admissible minimax estimate for the
i=l

risk function (4.28) and for a fixed sample size n of observations ul, . . . , u,.
If in addition to the loss function (4.28), we assume that the cost of taking m

observations is given by some real and positive function c(m), the problem of
finding Bayes or minimax estimating procedures for O(T) involves introducing the
general class of measurable sequential procedures as possible strategies for the
statistician ([1], [16]). For the particular subclass of distributions under con-
sideration, however, the minimax estimating procedure turns out to be a fixed
sample size procedure. This result follows from several lemmas and theorems
which we shall now prove.
LEMMA 1. 0 _ 0(T) . 3.
PROOF. Follows from theorem 4.3, which states that

j ueeudi, (u)
(5.1) 0 (r) = 11 .

Io e-4dA (u)

LEmmA 2. (a) lim (T) =1; (b) lim 0 (T) = .
-r-- O 7T+ COX

PROOF (a). Let uo be any point of continuity of #6(u) interior to (0, d). Then

f ueTud- (u) ueTude, (u)
(5.2) 0 ( r) = 0 o U0
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where

(5.3) a (r) = UIeCud, (u); b ( r) =fJeTudl (u).
O ~~~~~~~uo

Now if T> 0

(5.4) a (r) _ eTuoQ(uo) ; b (7) .e 8+uo/2)[Q(3) -Q( UO)]

therefore

(5.5) a ( T) < eTr o/2) Q(uo) _b (T) = (f)Q1+UO)

Comparing this conclusion with (5.2) and lemma 1, ,B _ lim 0(T) _ uo, which
T *4O

completes the proof of part (a). The proof of part (b) is similar.
In fact, an analogous lemma holds for any positive moment of u as can be

seen from the proof of lemmas 1 and 2.
LEmmA 3. limo2 (r) = lim o2 (r) = 0.

r ~~~T-4-C

PROOF. 2(T) = E(U21|r) - 2(rT).
LEMMA 4. Let u be an interior point of (0, ,B). Then

euT euT(5.6) lim = lim = 0 .
Tr --cCO ((T) T CO (T )

PROOF. Let T > 0 and uo > u be a point of continuity of 4#(u). Then

(5.7) c(r) = deTud(u) > eeud4,6 (u) > e-T uof d# (u).
0 uo

Hence
eTU

(5.8)
eTU

< e,(u-uo) -Q (uo) V-0 as T co).

Similarly for the second half of the lemma.
The conclusion of lemma 4 no longer necessarily holds when u = 0 and T - co

and u =,Band T -4 c. However, we have the following
LEMM1A 5. If 4+(u) has a jump at u = 0 then lim ( < X and if +(u) has a

jump at u = ,B, then lim e1< co.

PROOF. Let 46(u) have measure -y at u = 0 and measure a at u = ,B. Then
@(T) > y and C(T) > e'r6, so that

(5.9) '<e < - forall -

which proves the lemma.
THEOREm 5.1. The estimate u for 0 is Bayes for 0 uniformly distributed from

0 to 13.
PROOF. If 0 is uniformly distributed from 0 to 13, the distribution of T is in view

of lemmas 1 and 2 and equation (4.17) given by

(5.10) dH(T) =dT(T) =-(r)-
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Under this restriction as under any other, the expected risk of the estimate u is 1,
according to theorem 4.4. Therefore, according to theorem 2.3, a Bayes estimate
of finite expected risk exists and is given by

E(O~U-2)(5.11) ~~~~~g(u) = E (av-21u)
whenever the numerator and denominator both exist, and g(u) = u elsewhere.
Now

(5.12) Ef(u, r)

therefore for any h for which the left member is finite

(5.13) E [h(u) a(T) av-2 (T)I =ffJdk (u) h(u) f )dr.

If h(u) .4 0, the inner integral exists and is given by

5.14 w' (r) eud=
- euT

fwFr co( -r) - co

=u () dr,

for almost all u, according to lemmas 4 and 5. Therefore

(5.15) E[h(u)O(T)a-2(T)] =E[h(u)ua-2(r)]

=E[h (u)uEo-2(r) nr,
so that

(5.16) E [ O(r) a-2 (r) IT] =uE[v 2( r) IT],
where both exist, which completes the proof.
LEMMA 6. Let r(fu) be the conditional risk of Wo(a, r) = [U- 6(T)12/o-2(T) given

n

u = ui/n, with respect to the a priori distribution (5.10). Then r(a) = 1/n for
i=l

almost all u.
PROOF. By the definition of conditional probability, r(u) is given by

f (T) ] 2 - dT
(5.17) r(u) =-

J a2 (rT e-- d T

where the denominator can be easily shown to exist for almost all u.
Now

LO()]~ ~F____u

(5.18) l (r) I d e(T]
w (r) dT[ (r

so that

(5.19) f ( T ) Id __[
edT)
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which when integrated by parts yields

eul euT If 1 euT(5.20) [ u-(T) ] 2 dT = [U- (T) +- drfco() co(,r) n co@(r)

I eu,f1- (T) d T.

by lemmas 4 and 5, which proves the lemma.
The following lemma12 is stated in terms of an estimation problem although it

obviously holds for any decision problem. The proof of this lemma is trivial and is
omitted. The implication of this lemma is that if the Bayes conditional risk for any
point xl, . . . , x. depends only on m, then the optimum sequential decision pro-
cedure is a fixed sample size procedure.
LEMMA 7. Hypothesis:
1. (6, x) = 0, X1, X2, . . , an infinite sequence of random variables.
2. W(g, 6), the loss function, measurable and defined for g in the range of 6.
3. ge(xi,... ,x** ) a measurable sequence of functions (defined on the domains

x1, ... , Xm as indicated), such that

h(m) = E{W[g (xi, * * * X Xm), 6] x1, *, Xm}

is independent of x1i... Xm, and

h(m) < E[W(g, 6) Ilx .... I xm]

for all g and all xi,..**Xm.
4. c(m), the cost of making m observations, a real valued function on the integers.
5. S a sequential sampling scheme and g(x) an estimate definedfor the x's permitted

by S.
Conclusion:

The total expected risk

Et W [ g (x), 0]+ c (m) I S I _ inf [h (m) + c (m)],

and if S is of the single. sample size m and g(x) = gm(x, . ,Xm), the total expected
risk is h(m) + c(m).
THEOREM 5.2. Let the cost of taking m observations be given by a nonnegativefunc-

tion c(m) and let the loss be given by 4.28. Then (a) the minimax sequential strategyfor
estimating 6 is to use the estimate u based on afixed sample size N which is determined
by c(m), and (b) Nature's least favorable distribution for 6 is uniform over the inter-
val (0, i).

PROOF. In view of theorem 5.1, it is only necessary to show that if Nature's
strategy is uniform over the interval (0, ,) the statistician cannot improve his total
average risk by using a sequential procedure provided the proper sample size is
used. This conclusion follows from lemma 7 in conjunction with theorem 5.2 and

12 This lemma was independently discovered by C. R. Blyth of the Statistical Laboratory, Uni-
versity of California, Berkeley, California.



BAYES AND MINIMAX ESTIMATES 73

lemma 6, which implies that for any stopping point xl, X2,... x,X, prescribed by
a sequential procedure S

(5.21) E[[Wo(a, T) Ixi,... xm] =inf[Wo(g, r) Ix1,. . .x
9 ~~~~m

We conjecture that part (a) of theorem 5.2 holds even if the range of 4,(u) is
not restricted to a finite interval provided T is the whole real line.
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